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Abstract

The topic of the paper is the question of maximum likelihood estimation in DDARROCH’s
(1959) model for capture-recapture experiments where deaths may occur, but with no immi-
gration or births. Several problems, which have not been treated in the literature, but which
are of both practical and theoretical import, are pointed out and proposals for full or partial
solution to some of the problems are given. The problems are connected to various “boundary
phenomena” and their solution rests in essential way on the observation that the model is
of exponential form (for fixed value of the initial population size) and on a certain mode of
reasoning, which involves shifting back and forth between the original form of the likelihood
and its exponential form.

1. Introduction

The method of studying population dynamics and migration of animal populations
through capture, marking, release, and recapture of individuals, which was originated
by the Danish biologist C. G. J. PETERSEN at the end of the last century, has under-
gone a very considerable development especially within the last three or four decades.
This method is widely applied by biologists, but the statistical methods for analysing
capture-recapture data are far from complete. The basis of such methods is a mathe-
matical model for the experiment performed and a large number of such models, of
increasing complexity and sophistication, has been proposed and discussed in the
literature.

A decisive breakthrough in the area of model building was achieved by DARROCH
(1959), who established a fully stochastic model for an experiment of the following type.
Consider an animal population in which deaths may occur but with no immigration
or births. At [ different occasions a random sample is taken from the population and
each individual in the sample is marked with an identifiable tag, unless it has already
been marked at a previous sampling in which case the number (or other identification
device) of its tag is recorded.

In practice it often happens that some of the animals caught are not released again,
for instance because they have been hurt or killed by the sampling. There may of
course be other reasons for not releasing an animal, but for simplicity we shall, fol-
lowing JoLLY (1965), refer to the event that an animal is retained as a “loss on capture”.
DarrocH’S model does not include the possibility of loss on capture, but is easily
extended to do so, as DARROCH himself indicated. The basic assumptions of the model
are that on any given sampling occasion, number 7 say, all the animals still alive in
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the population have the same probability p; of being caught and all the animals caught
have the same probability 7, of being released again, irrespectively of the previous
capture history of the animal; furthermore the probability ¢; of survival between
sampling occasions ¢ and 7+ 1 is assumed to be the same for all individuals in the
population.

The main purpose of the present paper is to discuss various problems connected
with maximum likelihood estimation of the parameters p,, 7; and ;. Before pursuing
this purpose, we shall briefly review some further relevant parts of the literature.
(The introductory sections of the papers by DarrocH (1958), (1959), JorLy (1965),
and SEBER (1965) together constitute"ia comprehensive and excellent review of the
literature on capture-recapture models).

DarrocH (1959) also developed a model for the case with immigration (or birth)
but no death. For both models he derived the likelihood equations and solved them
in order to obtain the maximum likelihood estimates of the parameters. At the end
of the paper DARROCH described how the two models could be merged into one in-
volving both death and immigration. The likelihood function of this latter model is
so complex that estimation by the maximum likelihood method appears quite in-
tractable. Various proposals for circumventing this difficulty have been put forward.
DarrocH himself found moment estimators. SEBER (1965) showed how a slight refor-
mulation of the model considered by DARROCH led to a likelihood accessible to the
maximum likelihood method. JoLLY (1965) gave a capture-recapture model, building
on the same basic assumptions as DARROCH’s models and comprising immigration,
death and loss on capture. He also derived estimators from this model by a method
which may be briefly described as a modification of the maximum likelihood method,
but which I find obscure.

All the above-mentioned three authors discuss various asymptotic properties
(means, variances and covariances) of the estimators.

None of these authors, however, treats the following questions:

(i) What is the situation if one or more of the proposed estimates is meaningless,
because the denominator in the ratio expression given for the estimate is zero?

(i) Suppose the estimates of the probabilities p;, 7;, @; are well-defined real numbers.
Do they actually lie in the interval between 0 and 1?

(iii) Suppose they do lie in this interval. Are they in fact maximum likelihood esti-
mators, i.e. does the likelihood function have a unique global maximum at the
point determined by these estimates (together with the estimate for the initial
population size)?

(DarrocH (1961) in another context touched upon a question similar to (i)).
Perhaps one may feel that the questions are not very pertinent provided that the
size of the population is large and that the sample sizes are approximately of the
same order of magnitude as the population size. We shall not enter into a discussion
of this point since the experimental data which brought the three questions forth do
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not have this property. However, we would like to stress that question (iii) is not
just an academic one even if population and sample sizes are large: The fact that a
function does not necessarily have global maximum at a point where its partial deriva-
tives are 0 is apparently not well heeded among statisticians, for a recent exemplification
see SOLARI (1969).

The problems outlined above became prominent during work jointly by F. ABILD-
GAARD and the author, with the statistical analysis of an extensive and excellent set
of data collected by JoHANNES ANDERSEN of the Game Biology Station (Vildtbiolo-
gisk Station, Kale). The data concern the hare (Lepus europaeus) population on a
small Danish island, Illume. The hares cannot get away from the island, nordoes
immigration occur. Also there are no predators of hares on Illume. Since 1957 a
capture-recapture experiment has been going on which comprises 6 sampling occasions
per year. On each occasion roughly one half of the population is caught. As a result
of this intensive sampling it is virtually impossible for a hare to live through a whole
year without being caught at least once, and this in turn means that the year of birth
is known for (practically) all hares born in 1957 or later. It is thus possible to split
the material according to generation (as well as sex), and it was found natural to try
to base the statistical analysis of the data on application, to each generation separately,
of DARROCH’S model with death but no immigration. The initial size of a generation
(of males or of females) varied between 20 and 100, roughly, and the generations born
through the first part of the experimental period are now extinct. Thus we are faced
with a situation characterized by small population sizes. Consequently many of the
estimates to which one generation gives rise are not very accurate, but since many
generations are available there are good hopes for obtaining considerable insight
into the population dynamics.

We are able to give only a partial solution to questions (i)—(iii). Moreover, really
satisfactory methods for comparing and pooling estimates from different generations
are highly wanting. In these circumstances the statistical analysis of the data which
we have been able to do is necessarily somewhat tentative and rough. This analysis
together with detailed description of the experiment will be given elsewhere (ABILD-
GAARD, ANDERSEN and BARNDORFF-NIELSEN (1971)).

It is a main feature of the theoretical discussion below that the likelihood functions
are considered partly on a form similar to that given by DARROCH, partly on exponen-
tial form. In the effort to disentangle the problems outlined in (i)-(iii) it proved essen-
tial to shift back and forth between the two forms, as reported in the following. This
technique may well be of interest and use in other connections.

The model is introduced and its exponential form derived in Section 2. In Section 3
the likelihood equations are set up and their solution is discussed under a set of con-
ditions which together define what we call the regular case. Even in the regular case
several questions remain to be solved; one of them, discussed at the end of the section,
is particularly interesting, both from the theoretical and the practical point of view.
The nonregular case is treated in Section 4, the main aim being to illustrate how the
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technique mentioned in the previous paragraph can be used to solve some of the
special problems occurring in this case.

2. The Model and Its Exponential Form

As already stated the estimation problems to be discussed concern a model, due to
DarrocH (1959), for an animal population in which deaths may occur, but where
migration and births do not take place. At ! different occasions a random sample is
taken from the surviving part of the population. Sampled animals are marked in-
dividually when captured for the first time, and for each animal record is taken of the
occasions at which it is captured or recaptured. It may happen that not all the animals
in a sample are returned to the population after marking and recording has taken place,
for instance because some of them have been killed by the sampling. An animal which
is not returned to the population is said to be lost on capture.

The observations, then, consist of a set of lists, one for each of the animals caught
at least once, showing when the animals were captured and whether they were lost on
capture.

The basic assumptions of the model are:

1. Stochastic independence between animals.

2. All animals alive on sampling occasion 7 (i=1,2,...,) have the same probability,
Ps> of being captured, irrespective of their previous capture history.

3. All animals alive in the population right after sampling occasion 7 have the same
probability, ¢;, of surviving till occasion 7+ 1, irrespective of their previous capture
history.

A further, less important assumption is that all animals captured at sampling occasion
¢ have the same probability, #,, of being returned to the population irrespective of
their previous capture history.

Let the number of animals in the population at the time of the first sampling be
denoted by N. There is a total of 2%+1— 1 different, possible capture histories (including
that of never being caught) and the distribution of the N animals according to capture
history is a multinomial distribution. Thus the likelihood of the observations is

N! .
L= T ul (g% &)
weh

where u,, denotes the number of animals with capture history w, where 2 is the set
of possible capture histories and where 0, denotes the probability of w. Let 7; denote
the probability that an animal alive in the population right after sampling No. 7 is
not captured at any later occasion. Each 0, is easily expressed in terms of the prob-
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abilities p;, ¢y, 1; and 7r;. For instance, if o indicates that the animal was caught exactly
at samplings Nos. 2, 3 and 5, and not lost on capture, then

0., = @1910:MoP2PsMsPadaPaP5M57s

with ¢;=1—p;. Introducing this form of the 0,’s in (1) and collecting similar terms
one obtains

-1 -1

N! L LA =T e
(@) T 2t T % (=) TL @ TT /7 (2)
1=1 =1 1=1 1=].

ITu,!

L =

where

= the number of different animals caught on sampling occasion 7 or later
the number of animals caught on occasion 7
= the number of animals lost on capture 7.

s 3
It

S
|

The quantities u, can all be calculated from the observations except the one cor-
responding to the capture history: never caught. Let this capture history be denoted
by w,. Clearly

Upy = N—19.

It is therefore natural to rewrite the first factor in L as

NU k-<N>
Huw!_ 2

where & is a constant,

€)

Unless explicitly stated otherwise the domain of variation for the parameters is
taken to be {r;+1,7,+2,...} for N and the open interval (0,1) for the p/s, @;’s
and #,’s. Note that

7 = 1= @+ @i 1= Lo l=1. ©
In particular, since 7;=1,

g = l—@rip;

and therefore (cf. formula (2)) L depends on ¢, ; and p; only through their product
@10, Thus L is a function of 3/—1 independently varying parameters, namely

N.pis o sPret> Pio- - Piss N1o- - > and @y
After some algebraic rearrangements L takes the following form (note that »;=ga;)

7




OLE BARNDORFF-NIELSEN

L= ( )(qlm)Nﬁ( y 2)%(%’;%%77:)%
()

l 1 (%—1% ?‘> (5)

Ty

Hence L may be written

1 -1
L= () @ op |3 a0t 3 40,43 e
1

where
. Di . ;
e—L=—-—')7i, 1 = 1,2,...,1*“1 (62}
q;
o Piali
g ot (6.)
I—@iap;
1
O (R (7.4)
Ny T
gio = DI (8.0)
Tli—1

It is a remarkable fact that the mapping defined on (0, 1)3!~2 which transforms the
parameters py,. . ., Ppqs Pr—1Pp M- - -sNp P15+ - -» @19 iNto the new parameters g, . . .,0y
O15.. .05 Tg,. . .,7;y is one-to-one and onto the set R2%'x (—oo, 0)2 where R=
(=00, o).

To verify this result one can proceed as follows. It appears from formula (8.7) that
e™ has the interpretation of being the conditional probability for an animal to survive
between i—1 and 7 given that it is not captured after /— 1. Hence 7; € (— o0, 0) and
the mapping is into the stated set. On the other hand, for any point in this set equations
(6.1)-(8.I—1) have a unique solution in the domain (0,1)3-2. In fact, the solution
may be found explicitly by first finding %, from equation (7.0), then ¢,_;p, from equa-
tion (6.]) and then, successively, 17;_y, P1_1> Pr—9s Ni—ps- - sy from (7,1—1), (6,1—1),
(8,I—1), (7,1—2),. .., (6.1) solving these equations in the stated order.

As a consequence it is possible to express the factor (g,77;)Y in L as a function of the
new parameters. For notational convenience let

1
== Y = w(gl,...,gl, 61,...,61, 72""91’1-1) . (9)
9177y
A somewhat lengthy algebraic computation shows that
l
w =143 (1+"cyo4)e™ (10)

=1
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where 04 = (01, - ->01)s

i1
ci(0w) = TT (1+¢™)e (11
p=]
d
an Tio = Ty+ To+ ...+ Ty (12)
with 7, and 7, both defined to be zero.
In the new notation
N 4 -1
L=k<r> —Nexp=2azgl+2d0+21ﬂr (13)
1

Thus for fixed N the likelihood function is of exponential form with the canonical
parameters gqs. . .»0p 1.+ > 05 Ty . ., T,y varying freely in R2'x (—oo, 0)--2,

It is now natural to ask whether the right hand side of (13) determine a probability
distribution also if some of the 7,’s are positive or zero. This is indeed the case as
can be shown by a simple argument of analytic continuation.

The next question is then whether it is possible to give a probabilistic interpretation
of these extra distributions, which is meaningful in relation to the capture-recapture
model. At present we have not even the trace of an answer.

3. Discussion of the Likelihood Equations

The likelihood equations corresponding to partial differentiation with respect to the
canonical parameters may be written
2

dw e a.
Py (1+eel)cz(g )efzo_{______ z (1+36y)c( q\)el’vo = I'T;‘w >

aQ% 1+ y=7+1
i=1,...,1. (14.9)
0 d;
5;0— = elic,(g,)e"® = Nzw, i=1,...,1. (15.9)

:
ow -
o 5:\ (1+e")c,(e:)e™ = %w >
i=2,.. ,0=1. (16.4)

Corresponding to N there is not one equation but rather the two inequalities

LNy N 1,
L(N-1) N-nw_

(17)

LN+1) N+l 1 _
L(N) N+l-nw

foy

(18)

where L(N) denotes the likelihood function considered as a function of N.
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We proceed to solve relations (14.1)-(18) on the supposition that they have a solution
in the extended domain R3-2x {r;+1,7,+2,...} i.e. for the time being we allow also
solutions which do not correspond to one of the original capture-recapture models
(cf. the end of Section 2).

Consider first equations (14.1), (15.1) and (16.2). Using the explicit expression (10)
for @ we have

o e a;
(14 )1+ i (w—1—(1+e")e) = o (14.1)
d.
A = Loy (15.1)
w1 — (14 ) = %w (16.2)
Insertion of (16.2) in (14.1) yields
o 1_2'3 1 _a
N 1+ N

or

= . (19)

From (15.1) and (16.2) we obtain

N-—d;—r
1468 = bt S 20
+e w N (20)
which together with (19) shows that
I N—a,
1+ N—d,
or
—d
N e (21)
N—' al
Then, from (21) and (20)
N(N-—d
w = N-dy) 22)
(N—a)(N—d; —1y)
and from (22), (21) and (15.1)
61 _ dy(N—dy) ) (23)
(a—d)(N—dy—1y)
As the next step we subtract equation (16.7+1) from (16.7) to obtain
(Lt efonlee = ol (24.)

N
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for 1=2,...,0—2. The equation is, however, also valid for i= I, since in this case it
is identical with (14.0), and for i=1I~ 1, as may be seen by inserting (14.]) in (16.1—1).
Substituting (24.7) and (16.7-+ 1) in (14.2) we find

e

ri—ri+1+ri+1 ;s 1= 2,...,1“‘1

14 %
or
0;
(ry—a)e = a;+ri,—1; -
Thus, assuming temporarily

T,i"‘ai> 0, 1= 2,...,1"‘1,
we have
. Qs+ Vi1 —7Ts . .
P e . S N R (25.1)
Yi— Qg

Moreover (24.1) and (15.7) together show that

ri— Ty — 4

y = 2,.. .51 26.1
N w, 1 (26.1)

cis)e™ =

and by inserting this in (15.7) we obtain

O —
(ri—rip—dye’ = d;
s0, assuming
7'7:"‘7',,;+1-"di> 0, 7= 2,...,1,
we have
dy

=T d;

& =

s i= 2,050 (27.4)
It remains to determine Ty,. . ., 75y, ; 2nd N. Taking the ratio of (26.7) to (26..—1)

yields

Ye—Vit1 ™ di Bgi—l 1

. 0:?
[T R d’l:—l 1 + qu,Hl e’

et =

i=3,...,1—1 (28.9)

and

R e (28.0)
Fia—@—diy 1+ ‘

whence, by (25.-),

o= Py=Tpa—dy Gy — Ty T1 1~ ;
- 3
Toma—Vi— iy @G—Ti+Tiy 7

il
M)
-
M
~
|
M

(29.4)

and

21

e

a;—d a1 ta;—7 (25.0)

ra—a—dig a;
e® is found from (26.2), (25.2) and (20), to be
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o = Te—ry—dy Ty—a,

. (29.2)
N—ry—d; ay+13—1,
Finally, to obtain N we insert (22) in (17) and find

(N—a)(N—d,—r) 2 (N— r)(N—dy)
or

aldl + a17‘2 b rldl =

Z (ag+ry—r)N .
Assuming temporarily

ay+rg—ry > 0
we thus have

N < ady+ agry—rid; _

(r1—a)(ri—re—dy)
1+ .
ay+ry—1

30
a1 ty—7y (30)
Clearly, for the solution to lie in {r;+1,7,+2,...} it is necessary that

ri—a; > 0
and
r—ry—d; > 0.
Suppose this to be the case. It is plausible to presume that the value of N we are
looking for is

d;+ — ¥dy]
N = {‘11 1T a7y _1__1J

ay+ry—1y
where [ ] denotes integer part.

(D)

We may now sum up the foregoing considerations thus. We have arrived at the
following candidate for a solution to the likelihood relations (14.1)-(18).

di+ a;re—1id
Nz[all ay _71*}}

31
ay+re—7y (31
—d
&= ?\"‘1,‘—3 (25.1)
& = f‘i;f-*;_”l P=2..,0-1 (25.4)
i@
o a—d;  agtr—ry 25.)
= r—dig a;
d(N;—d
eol - 1( 1 1) (27'1)
(a—d)(N—dy—1y)
& = %

ol (27.4)
12
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To—t3—dy Ty—a

e = (29.2)
N—ry—dy ag+13—173
g Tl dp Q=TT G
Pa—ti— iy @G—TitTn Tp
1=3,...,1-1. (29.4)
In deriving these expressions we were led to assume
ri—a; > 0, 1= 1,...,[‘—‘1 (321)
7‘1-—~1'i+1—di > O, 1= 1,...,[ (33i)
and
a;+re—ry > 0. (34.1)

Obviously the expressions (31), (25.+), (27.-) and (29.-) do not determine a point in
the extended parameter domain unless furthermore

Qytrigg—1; >0, i=2,...,0-1 (34.4)
d;>0, i=1,...,1 (35.9)

a >0 (36)

N>r. (37)

(Note that (33.7) implies a;—d;> 0).

If all these conditions are satisfied then the above proposal for a solution does in
fact satisfy the likelihood relations as is easily seen by insertion. The derivation we
have given very nearly shows that the solution is unique (provided the conditions
(32.1)-(37) are fulfilled). To complete a proof of the uniqueness it would suffice to
show that the value of N given by (31) is the only integer greater than r; which satisfies
both (17) and (18) with  as given by (22). We shall, however, not pursue this problem.

Even if the uniqueness of the solution was established, the question would still
remain of whether the solution determined a unique global maximum of the likelihood
function in the extended domain. This is very likely to be true, because intuitively the
value (31) seems to be the most reasonable estimate for N, and because for any given
N the likelihood equations (14.1)-(16./— 1) have at most one solution, and if they have
a solution then that is a global maximum point for L (regarded as a function of the
canonical parameters only). The latter two results follow from the observation, pre-
viously made, that for fixed N the likelihood function is of exponential form.

The next section is devoted to a discussion of the situation when one or more of
the conditions (32.1)=(35.0) are violated. For briefness we shall refer to this situation
as “the nonregular case”.

We conclude the present section by pointing out a problem which is both theoreti-
cally interesting and of practical importance.

13
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The solution we have found in the regular case does not in general possess the
property that t; € (—c0, 0), i=2,...,/—1, as it must do in order to determine one
of the original capture-recapture models. Thus, if 7,20 for some 7, the solution is
not the maximum likelihood estimate.

So long as population and sample sizes are large this possibility is not very likely
to occur (neither are conditions (32.1)-(35.1) likely to be violated). However, in practice
it may well happen that population size is small, particularly at the end of the capture-
recapture experiment, as exemplified by the data from Illume refered to earlier.
In such cases it will not be uncommon that some of the regularity conditions do not
hold or that the solution to the likelihood relations lies outside the proper parameter
domain. .

We conjecture (cf. ABILDGAARD, ANDERSEN and BARNDORFF-NIELSEN (1971)) that if
some of the 7; in the solution are positive or zero then the correct estimate is obtained by
setting the corresponding survival parameters ¢, equal to 1 in the original likelihood*)
and then maximizing over the remaining parameters. It is plausible to suppose that a
proof of the conjecture could most easily be established using the exponential character
of the likelihood function. Despite considerable efforts neither this line of attack nor
any other we have been able to think of has led to a proof (or disproof).

The estimates employed in the analysis of the Illume data are derived on the basis
of this conjecture, cf. ABILDGAARD, ANDERSEN and BARNDORFF-NIELSEN (1971).

In the present connection it is worth mentioning what happens if one works with
the likelihood equations obtained by partial differentiation with respect to the original
parameters, rather than the canonical parameters. This alternative set of equations can,
in the regular case, be explicitly solved, and one obtains expressions for the (original)
parameters which have the property that py,...,011 Q1100 T1>- - -»¥; are all con-
tained in (0,1); however, as is to be expected in view of the foregoing discussion, it
is possible for the ¢; to be =1 (cf. ABILDGAARD, ANDERSEN and BARNDORFF-NIELSEN
(1971)).

Finally, it is perhaps relevant to emphasize that the essential problems discussed
in this and the following section do not stem from the introduction of the possibility
of loss on capture into DARrROCH’S model. The problems are inherent already in that
model.

4. Discussion of the Nonregular Case

We shall now discuss how to construct the correct estimate, in the sense of maximum
likelihood, in case conditions (32.1)-(35.0) are not fulfilled. Whenever these conditions
are violated the likelihood function does not have a maximum in the domain

*) It is simple to prove that the mapping from the old parameters to the canonical parameters
can be extended, under preservation of the one-to-one property, to include in the domain
points with some or all of the ¢; equal to 1. The range then becomes R* x ( — o0, 0]*-% and
pi=1 is equivalent to 7;=0.

14
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(0,1)32x {r;+ 1, 7,+2,...}. What we show in this section is that it is then natural
to set some particular of the parameters equal to one of their boundary values and
then maximize in the remaining parameters.

We assume throughout, for simplicity and since it is no severe restriction, that
a;>0 and a;> 0. Furthermore it turns out to be convenient to work with the slightly
modified model obtained by assuming #; to be 1 (and hence d; to be 0); this, of course,
does not cause any substantial loss of generality and only very minor and obvious
changes are needed in sections 2 and 3 in order to make the treatment given there fit
to the modified model. Under these circumstances condition (34.]) becomes void.

It is also practical to do away with the possibility that ;=0 for some 7, 1<1 <L
In this instance L does not depend on 7; and is a decreasing function of p,;. Hence
, should be estimated as 0 and with this value inserted the likelihood function depends
on @;_; and g; only through their product. It is therefore natural to treat sampling
occasions, where no animals are caught, as if no sampling had taken place. Accord-
ingly, we henceforth assume a;>0 for all i.

Finally, we shall impose the more severe assumption that

di<ai, 'I:"—:l,...,l“‘l.

If this was not done the notations and the arguments would become considerably
more complex although the situation, when the assumption is not fulfilled, appears
not to raise fundamentally new issues.

We shall find it convenient to introduce the notations

a;” = ry—Ty—d;

+ e 3 —
a;t = a’i+7'i+1 i

a;~ is the number of animals caught at time 7, released and never seen again whereas
a;* is the number which are recaptured. Note that since we have assumed d;<ay,
a;~ and @;* cannot simultaneously be zero.

Consider now condition (32.1) r;—a;>0, i=1,...,/—1 and suppose that it is not
fulfilled. Let

b, = 1r;—a

and let ¢, denote the least ¢ with ;=0.

If i,=1 then the only part of L which depends on N and p; is
This is always =1 for NZry, 05 p, <1 and equal to 1 if and only if N=r; and p;=1.
Thus if ,=a; it is natural to estimate N by »; and p; by 1, to insert these values in
L and maximize over the rest of the parameters.

For later use we note that with 7,=a;, N=r, and p;=1 the likelihood is

[4 -1 -1 -1
L = k] pig ™ TT m" (1 - 7)™ Hl @ H2 m (38)
i= de=

=2 2=1
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or, written in exponential form,

11 -1
L = kw ™ exp Zamgz—}—ZdG—{—zrr (39)

where the parameters are as previously defined (formulas (6.-), (7.+) and (8.-)) except
that, since #; has been taken to be 1

egl = M
l—@i 4
w is here given by
1
= o = 2 (1+e"epox)e™+ cqp(0i)e™ (40)
41 i=1

with ¢;;(0.) defined as
i1

afo.) = H (L+eMe’,  i=1,..,0 (cfe)=1).

The mapping which sends the point (Po,...s010 1181 N>+ - ->M11> Pro- - -5 P1s)
to the point (gg...,0p 0y . .501_1, Ts,. .., T;—y) 18 easily seen to be one-to-one from
(0,1)%% onto R¥-2x (— oo, 0)-2,

Next we treat the case 1 <4(<). It is here convenient to take the exponential form
of L

N -1 I—-1
L=k<r> —Nexp{zazgl-l-Zd@-}—zrr}
1

and introduce the variates b; instead of r; thereby obtaining

L= k(i) ’Nexp{za/ +§d0 +l§br}
where
Hy = Qg T5
It is immediate that also the new set of canonical parameters
(otgye o ortepy Opse o 5001 Ty v 5 Tyg)

varies freely except that 7;<0,7=2,...,/—1. As function of the new parameters
w is given by

-1

w=1— 3 (1+e%)(et+e1). .. (e + 1) i 4 (e 4 £4) . . (¥ + &4 1)e

i=1
Now ;=0 and L therefore depends on 7;, only through @ which is clearly a strictly
increasing function of T3 1.€. L is strictly decreasing as a function of 7;. Hence, in
particular, L does not have a maximum in the domain

R (—o0, 0) 2 {ry+ 1,1y +2,...}.
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In order to find out how to remedy the situation by going to the boundary we consider
the defining equation for 7,
eT{o - (p‘io—lqiog_ziq

n’io—l

Since L is decreasing in 7, we look for a modification which, as it were, corresponds
to putting 7;,= —oo. On the face of it there are three possibilities: ¢; =0, ¢;,=0
or m;,=0. However, ¢;,_;=0 means certain death between io— 1 and 4, so this clearly
cannot be the correct modification. 7; =0 means that all animals in the population
right after capture 7, are caught at a later occasion, but this in itself tells us nothing
about whether a; equals »; or not. Thus the only possibility is to let g;; =0, ie p,=1
and this makes good sense.

When p;, is put equal to 1 in L, the likelihood function factors in a natural way

L=1L,L,

where
p—1 ig—1 62 2p—1

N - o . » w2 4_
L=k (r1> (@) TT 20 (@ipa05) ™ TT 7™ H(1—m)® D; @ ] !1 7w
=1 t=1 i= P

and

-1 -1 12 11
s e s vi—d;s d: \ —
Ly = T1 #¢/ " (@rap)™ 11 (1 =)™ T II=" -
i=igtl i=io i=io i=io

Now, for ¢< 1, the function 7; does not depend on

Pigr- - -3 P1—2 P1-1Pp Pig1s- - :P11

because ¢;,=0. Thus L, depends only on parameters with index i<1i,, while L, is
a function only of the parameters with 7214, Accordingly the maximization problem
breaks into two independent pieces, i.e. we may maximize L, and L, separately.
Note that L, is exactly of the same form as L while L, has the same form as (38)
(except for the constant k).

Having discussed how the likelihood is to be modified at the first index with b;=0
we now pass on to the next index for which b;=0. On account of the above considera-
tions it is obvious that the problem we are then faced with is factually to maximize
a likelihood of the form (38) in which the first index with b,=0 is greater than 1
(and less than ). But this problem is precisely of the type we have just treated, except
that N=r,, p;=1, and is solvable in the same fashion.

We are now in a position to conclude that for all indices (<) with b;=0 the para-
meter p; should be estimated as 1, and if b;=0 then, moreover, N is to be estimated
as 7. When these values are inserted in L, the likelihood breaks into independent
pieces, which are all of the form (38), except that the first has the form of the original
likelihood if &; > 0. Furthermore, each of these pieces has the property that b;>0
for all #(<1).

Therefore we may and shall assume in the sequel that 5;>0,7=1,.. I~ 1. Also
we shall only work with the form (38).

17
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The original form can be treated similarly.
The modification necessary when d;=0 (condition (35.+)) is of course to set #;=1.
Let
Iy = {i:d;=0}.

For notational convenience we now assume that 1 € I,. The case 1 ¢ I, does not
cause special problems except notationally.
After #, for i € I, has been set equal to 0 in (38), L is again brought into exponential

form. We obtain
-1

!
L = kw™exp > a0+ 2 dify+ 277 (41)
2 1y 2

where the parameters are defined as previously except that

; _Ds .
fi="" iel,.
9

Again the mapping from old to new parameters is one-to-one; its domain is (0, 1)3t-3-mo

and it has range R* ™! x (— oo, 0)-2, where #, denotes the number of points in I,
Moreover
w = > (1+e"ey{)e™+ 3 cr(0:)e™.
wlg iely

For the discussion of the remaining conditions, (33.-) and (34.-), which state that
a;>0and a;>0, i=1,...,I—1 it is useful to change from the variables a;, d; and r;
in (41) to the new variables d;, @;~ and a,*. The connection between the two set of
variables is given through the relations

a; d?, + a;” -+ a.{* 5

1
ry = Z (di+a;) .
ye=g

Insertion of these in (41) yields

-1 -1
L= ko expi 3 dids+ 2 asto+ 2 arpst+am, (42)

where
Ai = 0+ 0+ T ¢y,
Bi = 0+ Ty Pi=2,...,l-1,
Y = 01+ T -
The new parameters vary freely except for the restrictions
0> pp—02 > Ug—03.-- > M1~ 011
and in these new parameters
w = 1+ 3 80" + 3 80:)(e" +€")

ielg i€ ly
2>1
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where
-1

60x) = TL(1+¢%) . (43)

Suppose that a;_;=0. Then L is decreasing in u;_, and since y; ; (for fixed values

of the other parameters) can vary down to — oo, again the likelihood does not have a
maximum. We have

1 Pre - Profe- - -d1-2Pi1
Ty

IS IR

where the factor 7, is to be deleted if /— 1 € I,. Since a;_; = 0 means that all the animals
released after sampling [— 1 are recaptured and since we are looking for a modification
which will make u;_,= — oo, the only meaningful possibility is to set the function 7; 4,
the probability of not being captured after /— 1, equal to zero, i.e. we must set ¢;_; p;=1.

Let m denote the smallest natural number such that g, 0. A straightforward
extension of the argument just given shows that it is reasonable to estimate each of
the parameters Qi1 - -» Pr-2 P11 by 1.

After insertion of these estimates in the likelihood and after transformation, once
more, to exponential form we have

1-1 l-m

L= Fkw™ €Xp E[ di6i+ g a;0;+ Z PiTi T et Ol
L) 2 2

with the parameters defined as previously except that

6'=1_7]'i 1

et , l—m+1=2121-1, i€l,,
Ny Gi+1---9141
Sl P
el = zl“’flz—-mﬂ---Qz—1~
1_(pl~m

The mapping from the parameters

Py 1=2y. . 51=15 Nyt & Iys gpi=1,...,1—m
to the parameters

05 1=2,.. 51— 1;5 051 & Iy; Ty 1=2,. . ,1—m; Opppny

is one-to-one from (0,1)* 3™ onto R¥*™30x (—oo, 0)-™~1, The expressions for
the canonical parameters in terms of the original parameters are well-defined also if
some or all of the ¢, i=1,...,/—m—1 are 1 and if points with this property are
included in the domain of definition, the mapping becomes onto R¥370 5 (— 00, 0]1-m—1
and is still one-to-one. This fact is useful in the following.
Changing to the variables d;, a;~, a;* we obtain
-1 -m

L = kw™" exp g dids+ 2 aitot 2 4 it @i
welg 2 2
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with the parameters defined as before except that
=040+, -mtlsisi1-1, i¢l,
Viem+1 = Tpem, 070 Olant -

These new canonical parameters vary freely apart from the restrictions

0 2 Mg Q2 Z ... 2 H1—m— Q1—m - (44}
Furthermore

w=1+ 3 o)+ X Ele N+ X Gle)e +E (o),
ielg i1y ¢ lg
2zisl-m 1=igl-m l-m+1£2sl-1
where ¢,{(0.) is given by (43).
Consider now the likelihood as function only of those u; for which

ai~ =0 (2=isl-m),
of g, if a,*=0 and of those g; for which
at=0, af;+0 Q2<igl-m),

all the other parameters being kept fixed. On the basis of the explicit expression (45)
for = it is rather simple to prove that, under the restrictions (44), maximum is attained
by choosing the varying parameters so that equality occurs between u; ;—g;; and
u;— 0; if either a; ;=0 or a;*=0 (2<i</—m) and so that u,—0,=0 if a;*=0. This
choice can be made in only one way and corresponds to setting ¢;=1 if ;7= 0 and
@;1=1if a;7=0.

This then concludes our discussion of the nonregular case.

To sum up, we propose, in the nonregular case and provided

a1>0, al>0, di<ai, 1= 1,...,1‘,

that the maximization problem be attacked by first setting

(1> N = Ty if a, = 1

Gi) n; = 1 if d =0

. Py =1 if ai_=0> 1< [—1
v R _

( ) (pl—lpl =1 if ap ., = 0

V) @a=1 if at=0 l<i<lI

and then maximizing the likelihood in the remaining parameters. This procedure
is employed in ABILDGAARD, ANDERSEN and BARNDORFF-NIELSEN (1971). Since it is
not our aim here to discuss in detail all aspects of the estimation problem, we shall
not treat the question of maximization of the, as it were, cleared likelihood, (cleared
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in the way just indicated), apart from mentioning that the likelihood equations are
not explicitly solvable in general, cf. ABILDGAARD, ANDERSEN and BARNDORFF-NIELSEN
(1971).
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Dansk resumé

Estimationsproblemer i genfangst analyse.

Et afgorende gennembrud i teorien for
genfangst forsgg skete da DarrocH (1959)
opstillede en fuldt stokastisk model for sd-
danne forsag. Modellen inkluderer mulig-
heden af afgang fra bestanden ved ded,
men ikke tilgang ved fodsel eller immi-
gration. Denne model har dannet basis
for den statistiske analyse af et omfatten-
de observationsmateriale vedrerende ha-
repopulationen pd Illumg (en mindre,
dansk @), jfr. ABILDGAARD, ANDERSEN 0g
BarNDORFE-NIELSEN (1971). Under arbej-
det med dette talmateriale blev det klart,
at der knytter sig visse problemer af teo-
retisk og praktisk betydning til de af
DarrocH foresldede estimater for mo-
dellens parametre. De pageldende estima-
ter er de storrelser som fremstér ved los-
ning af likelihood ligningerne. Problemer-
ne er folgende:

(i) Hvorledes er situationen hvis et eller
flere af de foresldede estimater er
meningslgst fordi nevneren i det an-
forte brokudtryk for estimatet er 07

(ii) Det kan heende at et eller flere af esti-
materne for dedssandsynlighed para-
metrene er storre end 1. Der er i sd
tilfeelde ikke tale om estimater i seed-
vanlig forstand, specielt er de anforte
storrelser ikke maximum likelihood
estimater. En modifikation er derfor
pékreevet.

(iii) I tilfeelde hvor problemerne (i) og (i)
ikke optreeder, er estimaterne da
maximum likelihood estimater?

I nerverende afhandling diskuteres
disse problemer ngjere og en delvis los-
ning angives. Problemerne star i forbin-
delse med visse »randfeenomener« og los-
ningen bygger essentielt pd den iagttagel-
se at modellen er af sikaldt exponentiel
form (for fast veerdi af den initiale popu-
lationssterrelse) og pd en rsesonnements-
made som involverer, at man skifter frem
og tilbage mellem den oprindelige og den
eksponentielle form af likelihood funk-
tionen.

Pe3toMe Ha PYCCKOM SI3BIKE
OLIEHOYHBIE ITPOBJIEMBI IIP AHAJIU3E TIOBTOPHOM JIOBJIN

B ofmacTu Teopuy ONBITOB IHOBTOPHOH
JIOBJIM TIPOM3OLIEN PEINUTEIbHBIA [epe-

oM, xorga Darroch (1959) mpenmoxun

TIOJIHOCThIO CTOXACTHUYECKYIO MOIEJb OJIs
TakuX ONBITOB. Mojenar BKJIFOYAET BO3-
MOXHOCTH Y6}>UII/I cocTaBa BCIICICTBHE
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CMEPTHOCTH, HO He TIPUPOCTA BCIEHCTBUE
POXACHUNA B HMMHTPal{d. DTa MOJIENb
CHYXWJa OCHOBaHHEM CTATHCTHYECKOTO
aHaIH3a TMOJIYYeHHOTO HpH MOMOIUH Ha-
OJsrroneHnil OOMIEPHOTO MaTepHaja O Io-
HyJIIOuU 3aiila Ha JATCKOM OCTpPOBKE
WnymE, oM. Abildgaard, Andersen u
Barndorff-Nielsen (1971). Ilpu o6paboTxe
STOr0 YHCJIOBOIO MaTephalia BBISCHHIIOCE,
YTO ¢ IpeIokeHHbIME Darroch oneakamMu
LIS TapaMeTPOB MOIEITH CBA3aHO HECKOIb-
Ko 1npoliieM, MMEIOIIMX KaK TeopeTH-
YecKoe, TaK W IPAKTHYECKOe 3HAYCHHUE.
Hon atuMu OLEHKAM IOXPa3yMEBAIOTCS
BEJIHYMHEI, TTOJyYaeMble PEIeHUEM ypaB-
Henmit npaspomomobus. Ilpobremsr 3a-
KJIFOYAIOTCA B CIIEAYIOLIEM :

I. KaxoBo mojgoXeHHe, €CIH OJHA WIH
HECKOJIBKO U3 MPEIJIOKEeHHBIX OIleHOK Gec-
CMBICHEHHE], TOTOMY 4YTO 3HaMEHATeJb
YKa3aHHOTO APOOHOTO BRIPAKEHUS OLEHKU
pased HYJEO?

II. Cayyaercs, 9ro OmHa HJIH HECKOJBKO
¥3 OLCHOK TapaMeTPOB BEPOSATHOCTH CMeEp-
TH HpesblimaroT 1. B TakoMm ciyvyae He

MOJKET OBITh peur 00 OIeHKax B OOBIYHOM
CMBICJIC, @ B YaCTHOCTH, IIpHBEICHHBIE
BEJIHYMHBL He TPEJICTABIISIOT cO00H ONeH-
KH MaKCHMAaJIbHOTO MPaBiomonobus.
CregoBaTenbHO, HeoOxomuma Moaupu-
Kanus.

ITII. B cayyasx, xoraa HEe BCTPEYarOTCs
npobaemer (I) u (II): moryr sm Torma
OIEHKY CYATATHECS OUEHKAMA MaKCHMAallb-
HOro mpasxonomobua?

B macrosiieit crathe, 9TH IpobieMbl 06-
cyxpaiotTes Goyee moapobHO, W yKa3bl-
BaeTCs YaCTHYHOE pelrieHne uX. IIpobiemet
CBA3QHBI C HEKOTOPBIMH  »KPaeBBIMH
SIBJICHUSIMEK, ¥ PEIEHAE UX 1O CYIIECTBY
OCHOBAHO HAa HAOJIONEHMM, YTO MOJEJb
wMeeT TAK Ha3biBAEMYIO ITOKa3aTENbHYIO
dopmy (EpH TOCTOSHHOM  3HAYCHHU
HAYAIbHOR YHCIIEHHOCTH TIOMYJIUHN), U
Ha cnocobe paccyXKIeHus, BKIIOYArOIeM
B cebg TONepeMeHHOE  TIPHMEHCHHUE
TepPBOHAYAEHON 1 Toka3aTenbHol hopm
($yHKOHH TIpaBHONOOHS.
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