Analytisk-kemisk kontrol af bekæmpelsesmidler optisk rene phenoxysyrer

Faglig rapport fra DMU, nr. 9 Benny Køppen
Afdeling for Miljøkemi

TITEL:	Analytisk-kemisk kontrol af bekæmpelsesmidler med indhold af optisk rene phenoxysyrer
SERIETITEL, NR:	Faglig rapport fra DMU, nr. 9
FORFATTER:	Benny Køppen
BEDES CITERET:	Køppen, Benny: Analytisk-kemisk kontrol af bekampelsesmidler med indhold af optisk rene phenoxysyrer. Danmarks Miljøundersøgelser, 1990. 18 s.
TEKSTBEHANDLING:	Kirsten Hansen
LABORATORIEMÅLINGER:	Gurli Rasmussen
UDGIVELSESÅR OG	
OPLAG:	Oktober 1990, 30 eks.
PAGINERING:	12 s.
ISBN:	87-7772-008-3
ISSN:	0905-815x
EMNEORD:	Bekmmpelsesmiddel, dichlorprop, mechlorprop, isomerspecifik, kontrolanalyse, phenoxysyrer
COPYRIGIH:	Miljøministeriet
	Danmarks Miljøundersфgelser Gengivelse kun tilladt med tydelig kildeangivelse
KøBES HOS:	Danmarks Miljøundersøgelser, Afd. for Miljøkemi, Mørkhøj Bygade 26, byg.H. 2860 Sфborg. Tlf. 31697088
PRIS:	kr. 60,00 (inkl. mams og forsendelse)

Indholdsfortegnelse: Side:

1. Resume 5
2. Indledning 6
3. Prøver 7
4. Analysemetoder 8
5. Gældende krav 8
6. Resultater og diskussion. 9
7. Konklusion 11
8. Referencer 12
Bilag A 1
Bilag B 4

1. Resume.

Bekæmpelsesmiddelprodukter med aktivstoffer bestående af optisk rene isomerer af phenoxysyrerne mechlorprop og dichlorprop har været på det danske marked siden 1988. I nærværende underspgelse er 8 bekmpelsesmidler af denne type blevet underspgt for indhold af aktivstof. Udover de aktive isomerer mechlorprop-P og dichlorprop-P indeholdt nogle af bekampelsesmidlerne endvidere enten phenoxysyren MCPA eller 2,4-D sam aktivstof. Analytisk-kemisk bestemmelse af indholdet af aktivstof viste, at kun en enkelt af de underspgte prover havde et indhold, der for et af aktivstoffernes vedkommende lå undenfor den tolerance, som er tilladt ifølge Miljøministeriets bekendtgørelse nr. 710 om kemiske bekampelsesmidler. De resterende 7 prover overholdt for alle aktivstoffers vedkommende de gridende krav.
Undersøgelsen viste endvidere, at den optiske renhed af mechlorprop-P i alle undersøgte prover var større end 95\%, mens den optiske renhed af dichlorprop-P varierede fra 85\% - 97\%.
2. Indledning.

Mechlorprop og dichlorprop (figur 1) er stoffer, der på grund af deres herbicide virkning bliver anvendt som aktivstoffer i bekæmpelsesmiddelprodukter. Stofferne hprer til en gruppe af bekæmpelsesmiddelstoffer, hvis kemiske betegnelse er phenoxysyrer. Bekæmpelsesmidler, der indeholder phenoxysyrer, kaldes også "hormonmidler", idet deres virkning skyldes en lighed med de to-kimbladede planters naturlige vaksthormoner, de sákaldte auxiner.

Ukruatsmidler med inahold af phenoxysyrer er nogle af de mest anvendte bekæmpelsesmidler i Danmark. Således blev der i 1988 anvendt ca. 1600 tons phenoxysyrer (målt i mengde aktivstof), hvilket svarer til ca. 20\% af det totale forbrug af bekmpelsesmiddelstoffer (ref.1). Forbruget af de to aktivstoffer mechlorprop og dichlorprop var i 1988980 tons, svarende til 61\% af den anvendte mengde phenoxysyrer. En kraftig reduktion af den anvendte mengde dichlorprop og mechlorprop er imidlertid at forvente, fordi der i perioden siden 1988 er kommet bekzampelsesmidler på markedet med indhold af optisk * rene aktivstoffer. I modswtning til de traditionelle mechlorprop-/dichlorpropholdige midier, der bestod af aktivstoffer med 50\% indhold af den aktive "-P" isomer og 50% af den inaktive "-M" isomer, indeholder de nye midler rent dichlorprop-P eller mechlorprop-P.

Uden at reducere den herbicide effekt burde derfor ved den gradvise overgang til disse nye midler efterhånden kumne opnås en halvering af den anvendte mængde mechlorprop og dichlorprop.
A.1. Kvantitativ analyse af phenoxysyrer i bekampeilsesmidler

A.1.1. Analysemetodens princip.

Metoden er en amvendt fase HPLC-metode med UV-detektion, baseret pá CIPAC-metode $84 / \mathrm{TC} / \mathrm{M} 2 / 52$. (ref.2).

A.1.2. Provetilberedning.

En provemengde svarende til ca. 35 mg phenoxysyre blev afvejet, tilsat 5 ml methanol og 5 ml intern standard opløsning (2-(2,4 dibramphenoxy)propionsyre, $12,8 \mathrm{mg} / \mathrm{ml}$ i $0,05 \mathrm{M} \mathrm{NaOH}$) hvorefter opløsningen blev fortyndet op til 50 ml med eluent. Opløsningen blev derefter analyseret ved HPLC.

A.1.3. HPLC-betingelser.

Apparatur: Waters HPLC-pumpe (model 510), WISP autosampler (model 712) og UV-detektor (model 440), samt MerckHitachi integrator (model D-2000).

Kolonne: ODS-Hypersil, $5 \mu \mathrm{~m}, 250 \times 4,6 \mathrm{~mm}$. Termostateret ved $22^{\circ} \mathrm{C}$.

Eluent: 0,005 M natriumacetat, justeret til pH 4,6 med iseddikesyre/methanol, 55/45.

Flow: 1,0 ml/min.

Detektion: UN, 280 mm .

Injektionsvol.: 25μ l.

Kvantitativ analyse (dobbeltbestemmelse) blev foretaget ved sammenligning med eksteme standarder analyseret under samme betingelser.
På figur Al på den følgende side er vist nogle typiske kromatogrammer fra analysen.

Figur A1. Typiske kromatogrammer af prøver fra HPLC-analyse af phenoxysyrer. ($\mathrm{a}=2,4-\mathrm{D}, \mathrm{b}=\mathrm{MCPA}, \mathrm{c}=$ dichlorprop, $\mathrm{d}=$ mechlorprop og $e=$ intern standard).

Bilag B.

B.1. Bestermelse af optisk isomerforhold af mechlorprop og dichlorprop.
B.1.1. Analysemetodens princip.

Metoden er en gaskromatografisk analysemetode med flammeionisationsdetektion. Efter ekstraktion fra vandig opløsning og derivatisering til de tilsvarende isopropylamider analyseres phenoxysyreme på chiral fase kapillarkolonne med splitless injektion.

B.1.2. Prфvetilberedning.

En provemangde svarende til $0,5 \mathrm{~g}$ mechlorprop/dichlorpnop blev afvejet $o g$ fortyndet $o p$ til 100 ml med vand. 5 ml heraf blev overført til skilletragt, tilsat 5 ml 2 M $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{Og}$ ekstrateret med $4 \times 15 \mathrm{ml}$ dichlonmethan. Det samlede dichlormethan-ekstrakt blev torre $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right) \mathrm{Og}$ inddampet til torhed pà rotationsfordamper. Efter genopløsning i toluen og kvantitativ overførsel til målekolbe blev fortyndet op til 25 ml med toluen. $1,0 \mathrm{ml}$ heraf blev i reaktionsglas tilsat $1,0 \mathrm{ml}$ intem standand opløsning (2-chlorphenoxyeddikesyre, $0,5 \mathrm{mg} / \mathrm{ml}$ i toluen), $250 \mu \mathrm{l}$ tianylchlorid ($130 \mathrm{mg} / \mathrm{ml}$ i toluen), $250 \mu \mathrm{l}$ pyridin ($17 \mathrm{mg} / \mathrm{ml}$ i toluen) og $500 \mu \mathrm{l}$ isopropylamin ($24 \mathrm{mg} / \mathrm{ml}$ i toluen). Efter henstand i varmeskab ($100^{\circ} \mathrm{C}$) i 1 time blev blandingen vasket med $1 \mathrm{ml} 0,5 \mathrm{M} \mathrm{NaOH}$, hvorefter toluenfasen blev dekanteret fra og torret over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Efter fortynding 5 gange med toluen blev opløsningen analyseret ved GC.

B.1.3. GC-betingelser.

Apparatur: Hewlett-Packand GC (model 5890) med autosampler (model 19395A) og integrator (model 3393A).

Kolonne: $25 \mathrm{~m} \times 0,25 \mathrm{~mm}$ fused silica kapillarkolonne med Chirasil-D-Val stationær fase, $0,12 \mu \mathrm{~m}$ film.

Temp.-program: $0,5 \mathrm{~min}$ ved $100^{\circ} \mathrm{C}$, derefter $10^{\circ} \mathrm{C} / \mathrm{min}$ til $150^{\circ} \mathrm{C}$ og $1,0 \mathrm{~min}$ ved $150^{\circ} \mathrm{C}$. Derefter $2^{\circ} \mathrm{C} / \mathrm{min}$ til $190^{\circ} \mathrm{C}$ $0 \mathrm{~g} 1,0 \mathrm{~min}$ ved $190^{\circ} \mathrm{C}$.

Beregas: Nitrogen, $1,0 \mathrm{ml} / \mathrm{min}$.

Detektion: FID, $250^{\circ} \mathrm{C}$.

Injektor: $240^{\circ} \mathrm{C}$, Splitless periode $0,5 \mathrm{~min}$., purge flow $50 \mathrm{ml} / \mathrm{min}$.

Inj.-vol.: 1,0 μ.

Kvantitativ analyse (dobbeltbestemmelse) blev foretaget ved beregning af relative tophøjder for -P og -M isomerer. Pá figur B.1. pả den følgende side er vist nogle typiske kromatogrammer for analyse af prover.

Figur B1. Eksempler på kromatogrammer af prøver fra GC-analyse af isomerforholdet for dichlorprop og mechlorprop. ($\mathrm{a}=$ intern standard, $b_{1} \circ \mathrm{~g}_{2}=$ mechlorprop -P og $-\mathrm{M}, \mathrm{c}_{1}$ og $\mathrm{c}_{2}=$ dichlorprop -P og -M , $\mathrm{d}^{1}=2,4^{2}-\mathrm{D}$.)

Fig. 1. Kemiske strukturfoniler for mechlonprop (I) og dichlorprop (II).

I

> * Markeringen viser placeringen af det asymmetriske kulstof-atom, der gives anledning til optisk isomeri og dermed forekomst af "-P" og "-M" isomerer. Mechlorprop-P og dichlorprop-p er de aktive isomere former.

Mechlorprop- og dichlorpropholdige bekmpelsesmidler er omfattet af Miljøministeriets bekendtgønelse nr. 791 af 10. december 1987 am kemiske bekænpelsesmidler. Neervarrende projekt har haft til formå dels at kontrollere de markedsførte bekampelsesmidler af den nye type i relation til bekendtgonelsens krav med hensyn til indhold af virksamt stof, og dels at underspge isomerfordelingen af virksamt stof i bekzmpelsesmidlerne.
3. Prquer.

Der er i nærværende projekt blevet undersøgt 8 prover, der reprasenterer 8 forskellige bekampelsesmiddelprodukter med indhold af mechlorprop-P eller dichlorprop-P. Af de ialt 13 produkter, der i perioden for proveudtagning (april 1990) var registreringsgodkendte i Danmark, fandtes kun de 8 produkter, af hvilke der blev udtaget prøver, pá markedet.

En oversigt over de underspgte prøver frengår af tabel 1. Alle prøver er analyseret på Danmarks Milj申undersøgelser i perioden juni-august 1990.

Tabel 1. Oversigt over de underspgte prøver

DMU-reg.nr.	Produktnavn	Firma
0-00648	Optica MP/D Kambi	DK Petrokemi A/S
$0-00649$	Optica DP/D	DK Petrokemi A/S
$0-00650$	Optica DP/M Mix	DK Petrokemi A/S
$0-00651$	Duplosan Super	BASF Danmark
0-00652	Duplosan DP/D	BASF Danmark
$0-00653$	Duplosan MP/D Kambi	BASF Danmark
$0-00654$	Astix DP/M	Agro Norden
$0-00655$	Duplosan MP	BASF Danmark

4. Analysemetoder.

Det kvantitative indhold af de enkelte phenoxysyrer i proverne er blevet bestemt ved en kombination af to analysemetoder. Således er indholdet af hhv. mechlorprop og dichlorprop, samt for enkelte prøvers vedkommende, desuden MCPA og 2,4-D blevet bestemt ved højtryksvaskekramatografi (HPLC). (Analysebetingelseme er beskrevet i bilag A). For mechlorprop og dichlorprop's vedkommende er iscmerforholdet (P-isamer/M-isomer) blevet bestent ved gaskromatografi. (Analysebetingelser er beskrevet i bilag B). Det kvantitative indhold af de enkelte isomerer er derefter beregnet ud fra de to bestemmelser.
5. Gældende krav.

For produkter, der er amfattet af Miljфministeriets bekendtgørelse am bekæmpelsesmidler, gælder det, at
indholdet af virksamt stof skal ligge indenfor en tilladt tolerance ankring det deklarerede indhold. Den tilladte tolerance, der afhænger af det deklarerede indhold er vist 1 tabel 2.

Tabel 2. Tilladte tolerancer på indhold af aktiv stof

Deklareret indhold	Tilladt tolerance
$>10 \%-25 \%$	$\pm 6 \%$ relativt
$>25 \%-50 \%$	$\pm 5 \%$ relativt

6. Resultater og diskussion.

I tabel 2 er for hver underspgt prove vist det fundne indhold af virksomt stof. Udover analyseresultaterne er til sammenligning tillige angivet de tilladte tolerancer.

Tabel 3. Resultat af analyse af aktivstofindhold i prqver

DMEreg.rix.	Aktivstof	Indhold, (g/1)		
		Deklaration	Analyse a) , b)	Toleramo
$0-00648$	$\begin{aligned} & \text { Mechlarprop-p } \\ & \text { 2,4-D } \end{aligned}$	$\begin{aligned} & 360 \\ & 160 \end{aligned}$	$\begin{aligned} & 365 \pm 4 \\ & 163,9 \pm 1,5 \end{aligned}$	$\begin{aligned} & 362-378 \\ & 150-170 \end{aligned}$
0-00649	$\begin{aligned} & \text { Dichlarprop-P } \\ & 2,4-D \end{aligned}$	$\begin{aligned} & 355 \\ & 160 \end{aligned}$	$\begin{aligned} & 345 \pm 3 \\ & 172,6 \pm 1,6^{*} \end{aligned}$	$\begin{aligned} & 337-373 \\ & 150-170 \end{aligned}$
0-00650	Dichlarprop-P MCPA	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 381 \pm 4 \\ & 193,0 \pm 1,8 \end{aligned}$	$\begin{aligned} & 380-420 \\ & 188-212 \end{aligned}$
0-00651	Dichlarprap-P Mechlorprop-P MCPA	$\begin{aligned} & 310 \\ & 130 \\ & 160 \end{aligned}$	$\begin{aligned} & 314 \pm 3 \\ & 134,4 \pm 1,3 \\ & 163,6 \pm 1,5 \end{aligned}$	$\begin{aligned} & 294-326 \\ & 122-138 \\ & 150-170 \end{aligned}$
0-00652	$\begin{aligned} & \text { Dichlarprop-P } \\ & \text { 2,4-D } \end{aligned}$	$\begin{aligned} & 355 \\ & 160 \end{aligned}$	$\begin{aligned} & 355 \pm 3 \\ & 165,4 \pm 1,5 \end{aligned}$	$\begin{aligned} & 337-373 \\ & 150-170 \end{aligned}$
0-00653	$\begin{aligned} & \text { Mechlorprop-P } \\ & 2,4-\mathrm{D} \end{aligned}$	$\begin{aligned} & 360 \\ & 160 \end{aligned}$	$\begin{aligned} & 357 \pm 3 \\ & 169,8 \pm 1,5 \end{aligned}$	$\begin{aligned} & 362-378 \\ & 150-170 \end{aligned}$
0-00654	Dichlarprop-P MCPA	$\begin{aligned} & 285 \\ & 265 \end{aligned}$	$\begin{aligned} & 281 \pm 3 \\ & 273 \pm 2,5 \end{aligned}$	$\begin{aligned} & 271-299 \\ & 252-278 \end{aligned}$
0-00655	Mechlarprop-P	600	600 ± 6	575-625

a) For dichlorprop-P og mechlorprop-P: Totalindhold x \% indhold af -P isomer relativt.
b) Gennemsnit (mindst dobbeltbestemmelse) $\ddagger 95 \%$ konfidensgranser.
*) Ligger udenfor de tilladte tolerancer.

Som det frengår af resultaterne fandtes kun en prøve (DMU-reg.nr. 0-00649), hvor indholdet af et aktvstof (2,4-D) lả udenfor de tilladte tolerancer. Der er desuden tale om en ganske lille overskridelse.

I tabel 4 er angivet resultatet af bestermelsen af isomerforholdet, hhv. dichlorprop-P/dichlorprop-M og me-chlorprop-P/mechlorprop-M, for hver af de underspgte prover. Isomerforholdet, der er et udtryk for den optiske renhed af den anvendte tekniske kvalitet af aktivstoffet (P-isameren), viser som det fremgår af resultaterne, en vis varlation.

Tabel 4. Resultat af analyse af aktivstoffernes isomerforhold i prover

DMU- reg.nr.	Aktivstof	Isamerforhold P-isomer : M-isomer
0-00648	Mechlorprop-P	$96,4: 3,6$
0-00649	Dichlorprop-P	$92,1: 7,9$
$0-00650$	Dichlorprop-P	$85,2: 14,8$
0-00651	Dichlorprop-P Mechlorprop-P	$96,4: 3,6$ $97,7: 2,3$
0-00652	Dichlorprop-P	$96,4: 3,6$
0-00653	Mechlorprop-P	$97,6: 2,4$
$0-00654$	Dichlorprop-P	$97,4: 2,6$
$0-00655$	Mechlorprop-P	$97,7: 2,3$

Hovedparten af resultaterne viser et relativt inchold > 95% af den aktive P-iscmer, mens en enkelt havde et relativt indhold på kun Ca. 85\% af dichlorprop-P. Da den inaktive M-isomer må betragtes som en urenhed i den tekniske kvalitet af aktivstoffet, vil der kunne forventes en vis batchvariation ved produktionen. Det tyder på, at denne variation kan vere forholdsvis stor, ligesom det kunne tyde på, at der ved produktionen tages
hensyn til den optiske renhed af aktivstoffet, idet proven med et relativt indhold af dichlorprop-P på ca. 85\% også lá indenfor den tilladte tolerance pả indhold af aktivstof.

7. Kanklusion.

På baggrund af de udførte kontrolanalyser på de udtagede prover må det konkluderes, at der er en tilfredsstillende god overensstenmelse mellem produkternes deklaration og det faktiske indhold af de aktive phenoxysyreisomerer dichlorprop-P og mechlorprop-P,-og af indhold af aktivstof iqvrigt.

Derudover má det konkluderes, at den optiske renhed af dichlorprop-P og mechlorprop-P almindeligvis er høj >95\%, men at der kan forekomme en relativ stor (ca. 15\%) variation ihvertfald for dichlorprop-P, hvilket vil medføre en tilsvarende variation i indholdet af den inaktive M-isomer, der mả betragtes som en urenhed i produktet.

Referencer.

8. 9. Miljøstyrelsen: Salg af bekæmpelsesmidler 1987, 1988 og 1989. Miljøstyrelsen, 1990. 18s. - Orientering fra Miljøstyrelsen 4.
1. Henriet, J., Martijn, A., Poulsen, H.H., (red): Analysis of Technical and Formulated Pesticides, Vol. 1C, 1985. s.2088-2092. - CIPAC Handbook.

Danmarks Milfoundersøgelser

Danmarks Miljøundersøgelser er en forskningsinstitution i Miljøministeriet.

Opgaverne er at varetage og rádgive om dataindsamling og ege kendskabet til de processer og sammenhange i naturen, der er af betydning for sável anvendelsen som beskyttelsen af Danmarks natur- og miljovardier.

Desuden skal Danmarks Miljøundersøgelser udvikle varktøjer og metoder, der kan sikre en sammenhængende og konsekvent politisk prioritering samt formidle resultaterne af forskningen og rádgive offentlige myndigheder og private virksomheder.

Den overordnede ledelse af Danmarks Miljøundersogelser varetages af en bestyrelse, mens den daglige ledelse varetages af direktor og vicedirektor. Institutionen er i ovrigt organiseret med et okono-mi- og personalesekretariat, et forsknings- og udvikilingssekretariat og syv forskningsafdelinger.

Direktion:
Direktør Henrik Sandbech Vicedirektor John Tychsen Direktionssekretær Jytte Keldborg

Gkonomi- og Personalesekretariatet:
Sekretariatschef Marianne Viltoft
Forsknings- og Udviklingssekretariatet:
Vicedirektor John Tychsen
Adresse: Danmarks Miljøundersøgelser Thoravej 8, 2450 København NV Tlf. 31197744 telefax: $\begin{array}{lllllllll}38 & 33 & 26 & 44 & \circ g & 31 & 19 & 76 & 92\end{array}$

Eorskningsafdelinger:

Afd. for Forureningskilder og Luftforurening Forskningschef: vakant
Frederiksborgvej 399, 4000 Roskilde
Tlf. 4237 11 37. Telefax: 42372103
Afd. for Miljokemi
Forskningschef: vakant
Merkhoj Bygade 26 H, 2860 Seborg
Tlf. $31 \quad 6970$ 88. Telefax: 31698807
Afd. for Havmiljo og Mikrobiologi
Forskningschef: Meret Reuss
Jegerborg Alle 1B, 2920 Charlottenlund
Tlf. 31611400 . Telefax: 31610906
Afd. for Ferskuandsekologi
Forskningschef: Torben Moth Iversen
Lysbrogade 52, 8600 silkeborg
T1f. 8681 07' 22 Telefax: 86811413

Afd. for Terrestrisk gkologi
Forskningschef: Hans Løkke
Vejlsøvej 11, bygn, J., 8600 Silkeborg
Tlf. 868160 99. Telefax: 86814990
Afd. for Flora- og Faunamkologi Forskningschef: Helmuth Strandgaard
Kale, 8410 Rønde
T1f. 863725 O0. Telefax: 86372435
Afd. for Systemanalyse
Forskningschef: John Holten-Andersen
Thoravej 8, 2450 København NV
Tlf. 31 19' 77 44. Telefax: 38332644
Konsulent 1 systemeksport: Hans Flyger
Frederiksborgvej 399, 4000 Roskilde
T1f. 423711 37. Telefax: 42372103

