

Analytisk-kemisk kontrol af kemiske stoffer og produkter.
 Urenheder i carbendazimog benomylholdige bekæmpelsesmidler

Faglig rapport fra DMU; nr. 21
Benny Køppen
Afdeling for Miljøkemi

TITEL:	Urenheder i carbendazim- og benomylholdige bekæmpelsesmidler.
UNDERTITEL:	Analytisk-kemisk kontrol af kemiske stoffer og produkter.
SERIETITEL,NR.:	Faglig rapport fra DMU, nr. 21.
FORFATTER:	Benny Køppen
BEDES CITERET:	Køppen, Benny: Urenheder i carbendazim- og benomylholdige bekæmpelsesmidler. Analytiskkemisk kontrol af kemiske stoffer og produkter. Danmarks Miljøundersøgelser, 1991, 24 sider. Faglig rapport fra DMU, nr. 21.
TEKSTBEHANDLING:	Majbritt Pedersen-Ulrich
LABORATORIEMÅLINGER:	Gurli Rasmussen
UDGIVELSESÅR OG OPLAG:	Marts 1991, 50 eks.
PAGINERING:	24 sider
ISBN:	87-7772-022-9
ISSN:	0905-815X
EMNEORD:	Benomyl, carbendazim, urenheder, 2,3-diaminophenazin, 2-hydroxy-3-aminophenazin, phenaziner.
COPYRIGHT:	Miljøministeriet Danmarks Miljøundersøgelser Gengivelse kun tilladt med tydelig kildeangivelse.
KøBES HOS:	Danmarks Miljøundersøgelser, Afdeling for Miljøkemi, Mørkhøj Bygade 26, bygn. H, 2860 Søborg. Tlf.: 31697088
PRIS:	70 kr . (incl. moms og forsendelse).

Indholdsfortegnelse.

Side
Datablad 2

1. Resume 5
2. Indledning 6
3. Prøver 8
4. Analysemetoder 9
5. Gældende krav 9
6. Resultater og diskussion 10
7. Konklusion 12
8. Referencer 13
Bilag A 14
Bilag B 18
Bilag C 21
Danmarks Miljøundersøgelser 24
$-S_{S}=$:
.

1. Resume.

De to kemiske stoffer, 2-hydroxy-3-aminophenazin (HAP) og 2,3-diaminophenazin (DAP), der begge har vist sig at være mutagene, er potentielle urenheder i bekæmpelsesmidler med indhold af aktivstofferne benomyl og carbendazim. Som baggrund for en vurdering af behovet for en evt. regulering af disse stoffer er 7 bekæmpelsesmiddelprodukter, der er udtaget på det danske marked, blevet analyseret for indhold af HAP og DAP. I ingen af de undersøgte prøver kunne imidlertid påvises hverken HAP eller DAP. Indholdet af aktivstof benomyl eller carbendazim i de 7 prøver er desuden blevet undersøgt med henblik på, at kontrollere om dette er i overensstemmelse med de krav, der gælder ifølge Miljøministeriets bekendtgørelse nr. 710 om kemiske bekæmpelsesmidler. Alle de undersøgte prøver viste sig at overholde kravene til indhold af aktivstof.

2. Indledning.

Carbendazim og benomyl er to stoffer, der anvendes som aktivstoffer i bekæmpelsesmidler i Danmark. Produkter med indhold af carbendazim eller benomyl anvendes som svampebekæmpelsesmidler (fungicider) enten til bejdsning (af korn eller kartofler) eller som sprøjtemidler. Disse produkter er, i lighed med alle andre bekæmpelsesmidler, omfattet af Miljøministeriets bekendtgørelse nr. 791 af 10. december 1987 om kemiske bekæmpelsesmidler, hvilket bl.a. indebærer, at produkterne skal godkendes af Miljøstyrelsen, inden de må markedsføres i Danmark. Til brug ved vurderingen af en ansøgning om godkendelse skal ansøgeren vedlægge et omfattende dokumentationsmateriale, der bl.a. skal indeholde oplysninger om det aktive stofs toksikologiske egenskaber. For aktivstofferne carbendazim og benomyl's vedkommende, der har været godkendt i Danmark i en årrække, er man inden for de seneste par ảr blevet opmærksom på, at stofferne, der i sig selv ikke er mutagene, kan indeholde to urenheder, der i tests har vist en mutagen effekt (ref. 1). De to urenheder, 2-amino-3-hydroxyphenazin (HAP) og 2,3-diaminophenazin (DAP) er sammen med benomyl og carbendazim vist i fig. 1. Ifølge en undersøgelse foretaget af firmaet Du Pont de Nemeours, Frankrig, er der ingen mutagen effekt, hvis indholdet af de to urenheder tilsammen i det aktive stof ikke overstiger $3,5 \mathrm{ppm}$ (ref. 1).

Fig. 1 Kemiske strukturformler for aktivstofferne carbendazim (I) og benomyl (II) samt de to urenheder HAP (III) og DAP (IV).

I

III

II

II

Nærværende projekt har derfor haft til formál at undersøge om de bekæmpelsesmidler med indhold af aktivstofferne carbendazim og benomyl, der findes pá markedet i Danmark, har et indhold af HAP og DAP, der overstiger $3,5 \mathrm{ppm}$ i relation til indholdet af aktivstof. Undersøgelsen kan derved danne baggrund for en vurdering i Miljøstyrelsen af behovet for en eventuel regulering på dette omráde.

Undersøgelsen har endvidere haft til formál at kontrollere, at den págældende type bekæmpelsesmidlers indhold af aktivstof er i overensstemmelse med de krav, der er gældende ifølge ovennævnte bekendtgørelse.
3. Prøver.

Der er i nærværende projekt blevet undersøgt 7 prøver, der repræsenterer 4 forskellige bekæmpelsesmiddelprodukter med indhold af carbendazim eller benomyl. Af de ialt 11 produkter, der i perioden for prøveudtagning (april - juni 1990) var registreringsgodkendte i Danmark, fandtes kun de 4 produkter, af hvilke der blev udtaget prøver, på markedet. De resterende produkter enten forhandledes ikke mere eller fandtes ikke pà lager hos forhandlere/importører i prøveudtagningsperioden. En oversigt over de undersøgte prøver fremgår af tabel 1. Alle prøver er analyseret på Danmarks Miljøundersøgelser i perioden november - december 1990.

Tabel 1. Oversigt over de undersøgte prøver.

DMU reg.nr.	Produkt navn	Firma
$0-00618$	Benlate	Du Pont de Nemeours
$0-00619$	Benlate	Du Pont de Nemeours
$0-00620$	Derosal fl.	Hoechst Danmark
$0-00621$	Derosal fl.	Hoechst Danmark
$0-00622$	Derosal M	Hoechst Danmark
$0-00623$	Bavistin	Hoechst Danmark
$0-00624$	BASF Danmark M / S	

4. Analysemetoder.

Indholdet af HAP og DAP i prøverne er blevet bestemt ved højtryksvæskekromatografi (HPLC). (Analysebetingelserne fremgår af bilag A). Prøvernes indhold af aktivstofferne carbendazim og benomyl er ligeledes blevet bestemt ved HPLC. Betingelserne for disse analyser er beskrevet i henholdsvis bilag B og bilag C.
5. Gældende krav.

For produkter, der er omfattet af Miljøministeriets bekendtgørelse om bekæmpelsesmidler, gælder det, at indholdet af virksomt stof skal ligge inden for en tilladt tolerance omkring det deklarerende indhold. Den tilladte tolerance, der afhænger af det deklarerede indhold er vist i tabel 2.

Figur 2. Tilladte tolerancer på indhold af aktiv stof.

Deklareret indhold	Tilladt tolerance
$>10 \%-25 \%$	$\pm 6 \%$ relativt
$>25 \%-50 \%$	$\pm 5 \%$ relativt

6. Resultater og diskussion.

I tabel 3 er for hver undersøgt prøve vist det fundne indhold af de to urenheder HAP og DAP, samt type og deklareret indhold af aktivstof. Som det fremgår af resultaterne kunne der hverken påvises HAP eller DAP i nogen af prøverne, hvilket med den aktuelle analysemetodes detektionsgrænse vil sige, at et eventuelt indhold af HAP og DAP i prøverne har været mindre end $0,6 \mathrm{ppm}$ relativt til indholdet af aktivstof (1,1 ppm relativt for prøver med indhold af maneb) og dermed væsentligt under den værdi på $3,5 \mathrm{ppm}$ som er blevet anbefalet af producentfirmaet Du Pont de Nemeours. Resultaterne er i rimelig god overensstemmelse med en tilsvarende undersøgelse beskrevet af Van Damme et al.

Tabel 3. Resultat af analyse for indhold af phenazin-urenheder i prøver.

DMU Reg.nr.	Aktivstof	Deklareret indhold	Fundet indhold, ppm ${ }^{\text {b) }}$	
			DAP	
$0-00618$	Benomyl	50%	i.d.	i.d.
$0-00619$	Benomyl	50%	i.d.	i.d.
$0-00620$	Carbendazim	$516 \mathrm{~g} / 1 \sim 43 \%$	i.d.	i.d.
$0-00621$	Carbendazim	$516 \mathrm{~g} / 1 \sim 43 \%$	i.d.	i.d.
$0-00622$	Carbendazim	$15 \%{ }^{\text {a }}$	i.d.	i.d.
$0-00623$	Carbendazim	$15 \%{ }^{\text {a }}$	i.d.	i.d.
$0-00624$	Carbendazim	50%	i.d.	i.d.

a) Deklareret indhold: 15\% carbendazim + 50\% maneb.
b) i.d. = ikke detekteret. Detektionsgrænser er angivet i bilag A.
(ref 2), hvor der i 9 ud af 12 undersøgte formulerede produkter ikke kunne påvises hverken HAP eller DAP og kun i en enkelt prøve (fra 1985) fandtes et indhold af DAP større end 3,5 ppm. Imidlertid kunne DAP påvises i samtlige 14 prøver af tekniske kvaliteter af carbendazim i den franske undersøgelse, hvilket i kombination med, at HAP og DAP nedbrydes hurtigt i tilstedeværelse af lys og vand, kan betyde, at evt. tilstedeværende HAP eller DAP i den tekniske vare af aktivstoffet muligvis nedbrydes under fremstilling eller opbevaring af det formulerede produkt. Ikke mindst for formulerede produkter bestående af vandige koncentrater má denne mulighed være sandsynlig. I nærværende undersøgelse er dog kun to af de undersøgte prøver (prøve-nr. 0-00620 og 0-00621) vandige formuleringer, så det kan muligvis være et udtryk for at nedbrydningen af HAP og DAP ligeledes forekommer under fremstillingen af vandfrie pulverformige formuleringer, som udgør resten af de undersøgte prøver.

I tabel 4 er for hver undersøgt prøve vist det fundne indhold af aktivstof. Udover analyseresultaterne er til sammenligning tillige angivet de tilladte tolerancer.
Som det fremgår af skemaet fandtes alle prøver at overholde de gældende krav til indhold af aktivstof.

Tabel 4. Resultat af analyse for indhold af aktivstof i prøver.

DMU reg.nr.	Aktivstof	Indhold		
		Deklaration	Analyse a)	Tolerance
		50%	$52,8 \pm 0,6 \%$	$47,5-52,5$
$0-00618$	Benomyl	50%	$51,6 \pm 0,6 \%$	$47,5-52,5$
$0-00619$	Benomyl	$516 \mathrm{~g} / 1$	$502 \pm 10 \mathrm{~g} / 1$	$490-542$
$0-00620$	Carbendazim	$516 \mathrm{~g} / 1$	$494 \pm 10 \mathrm{~g} / 1$	$490-542$
$0-00621$	Carbendazim	15%	$14,9 \pm 0,3 \%$	$14,1-15,4$
$0-00622$	Carbendazim	15%	$14,6 \pm 0,3 \%$	$14,1-15,4$
$0-00623$	Carbendazim	50%	$47,1 \pm 1,0 \%$	$47,5-52,5$
$0-00624$	Carbendazim			

a) Gennemsnit (mindst dobbeltbestemmelse) $\pm 95 \%$ konfidensgrænser.
7. Konklusion.

Det må på baggrund af de udførte undersøgelser konkluderes at der er intet der tyder på, at bekæmpelsesmidler med aktivstofferne carbendazim og benomyl på det danske marked indeholder de to mulige urenheder HAP og DAP i en mængde, der totalt overstiger den foreslảede grænse på $3,5 \mathrm{ppm}$ relativt til indhold af aktivstof. Desuden kan det konkluderes, at for alle de undersøgte prøvers vedkommende fandtes en tilfredsstillende god overensstemmelse mellem produkternes deklaration og det faktiske indhold af aktivstof.

8. Referencer.

1. Kommissionen for de Europæiske Fællesskaber: Classification et étiquetage des substances dangereuses "benomyl" et "carbendazim". Note til kommissionen XI/134/85 - Add. 10.
2. Van Damme, J. C., B. de Ryckel, M. Galoux: Analyse par chromatographie liquide du diamino-2,3 phenazine et de l'hydroxy2 amino-3 phenazine dans les carbendazime techniques et formules.
J. Chromatogr. 518: 375-384, 1990.

Bilag A.

A 1 Kvantitativ analyse af 2,3-diaminophenazin (DAP) og 2-hydroxy-3-aminophenazin (HAP) i bekæmpelsesmidler.

A 1.1 Analysemetodens princip.
DAP Og HAP bestemmes ved HPLC med elektrokemisk detektor efter ekstraktion med methanol og oprensning på fast-fase ekstraktionskolonne.

A 1.2 Apparatur.
HPLC pumpe (Waters model 510), WISP autosampler (Waters model 712), elektrokemisk detektor (BAS model LC-4) og integrator (Merck-Hitachi model D-2000).

Kolonne: Novapak C18, 3,9 mm x $15 \mathrm{~cm}, 4 \mu \mathrm{~m}$ (Waters).

A 1.3 Kromatografiske betingelser.
Mobil fase: 0,050 M fosforsyre tilsat 0,025 M triethylamin og justeret til pH 6,2 med NaOH/ methanol; 68/32, flow hastighed $1,0 \mathrm{ml} / \mathrm{min}$. Kolonnetemperatur: $30,0 \pm 0,1^{\circ} \mathrm{C}$. Injektionsvolumen $50 \mu \mathrm{l}$.
Detektor: $\mathrm{E}_{\text {app1 }}+0,75 \mathrm{~V}$, range 50 nA .

A 1.4 Tilberedning af standarder.
Ved tilberedning af standarder og prøver skal arbejdes sáledes, at disse beskyttes mest muligt mod lys.
Stamopløsning: 5,0 mg HAP eller DAP opløses i 50 ml methanol. $1,0 \mathrm{ml}$ HAP opløsning og $1,0 \mathrm{ml}$

DAP opløsning fortyndes til 10 ml med methanol. Standard: $150 \mu \mathrm{l}$ stamopløsning fortyndes til 50 ml med mobil fase. Fremstilles frisk hver dag.

A 1.5 Tilberedning af prøver.

Prøver uden indhold af maneb. En prøvemængde svarende til 300 mg carbendazim/benomyl afvejes og opslemmes i $10,0 \mathrm{ml}$ methanol.
Efter behandling på ultralydbad i 15 min. og centrifugering udtages $3,0 \mathrm{ml}$ af supernatanten og sættes til $6,0 \mathrm{ml} 0,2 \mathrm{M}$ fosforsyre.
Blandingen filtreres ($0,45 \mu \mathrm{~m}$ filter) og $6,0 \mathrm{ml}$ udtages og sættes på Bond Elut SCX kolonne (50 mg), der i forvejen er ækvilibreret med $0,2 \mathrm{M}$ fosforsyre. Efter vaskning med 0,2 M fosforsyre efterfulgt af vand, elueres kolonnen med 9 ml $0,2 \mathrm{M}$ natriumfosfatbuffer, $\mathrm{pH} 9,0 /$ methanol: $10 / 7$ og fyldes op til 10 ml med mobilfase. Analyseres derefter ved HPLC.

Prove med indhold af maneb. En prøvemængde svarende til 300 mg carbendazim afvejes og opslemmes i $10,0 \mathrm{ml}$ methanol. Efter behandling på ultralydbad i 15 min . og centrifugering udtages $3,0 \mathrm{ml}$ af supernatanten og sættes til $6,0 \mathrm{ml} 0,2 \mathrm{M}$ fosforsyre. Blandingen filtreres ($0,45 \mu \mathrm{~m}$ filter) og $6,0 \mathrm{ml}$ udtages og sættes på Sep-pak C_{18} kolonne, der i forvejen er ækvilibreret med 0,2 M fosforsyre/methanol, $2 / 1$. Efter eluering med yderligere $10 \mathrm{ml} 0,2 \mathrm{M}$ fosforsyre/methanol, $2 / 1$ sættes det samlede eluat på Bond Elut SCX kolonne og behandles derefter som beskrevet for prøver uden indhold af maneb.

Abstract

A 1.6 Bestemmelse af indhold.

Indholdet af prøven (dobbeltbestemmelse) bestemmes overfor eksterne standarder analyseret i serie med prøven, evt. korrigeres for genfinding. Identifikation foretages ved sammenligning af retentionstider og ved spikning med standard. Nogle typiske kromatogrammer af standard og prøver er vist i figur A1.

A 1.7 Metodens præcision, genfinding og detektionsgranse.

Metodens præcision (beregnet som relativ standardafvigelse pá multiple bestemmelser af samme prøve) er henholdsvis 7,2\% og 5,1\% ved bestemmelse af HAP og DAP.
Metodens genfinding skal bestemmes for hver type ved spikning med kendt mængde standard, idet genfinding kan variere fra ca. 50\% til 100\% afhængig af prøvetype.
Metodens detektionsgrænse (beregnet som injiceret mængde svarende til $\mathrm{S} / \mathrm{N}=2$) er $0,19 \mathrm{ng} \mathrm{HAP}$ eller DAP, svarende til 0,6 ppm relativt til indhold af aktivstof i prøven. For prøver med indhold af maneb er detektionsgrænsen på grund af interferens dog $0,36 \mathrm{ng}$ HAP eller DAP injiceret mængde, svarende til $1,1 \mathrm{ppm}$ relativt til indhold af aktivstof i prøven.

Figur A1. Typiske kromatogrammer fra analyse for HAP (I) og DAP (II).
a) Standard, b) Prøve (nr. 0-00618), c) b) spiket med HAP og DAP ~ 5,0 ppm relativt til aktivstof, d) Prøve ($\mathrm{nr} .0-00621$) og e) d) spiket med HAP og DAP $\sim 5,0 \mathrm{ppm}$ relativt til aktivstof.

Bilag B.

B 1 Kvantitativ analyse af carbendazim i bekæmpelsesmidler.

B 1.1 Analysemetodens princip. Carbendazim bestemmes ved HPLC med UV-detektion.

Som intern standard anvendes acetophenon.

B 1.2 Apparatur.

HPLC pumpe (Waters model 510), WISP autosampler (Waters model 712), UV-detektor (Waters model 440) og integrator (Merck-Hitachi model D-2000) Kolonne: ODS Hypersil, $4,6 \mathrm{~mm} \times 25 \mathrm{~cm}, 5 \mu \mathrm{~m}$.

B $1.3 \quad$	Kromatografiske betingelser.
	Mobilfase: $0,050 \mathrm{M}$ eddikesyre $+0,025 \mathrm{M}$ triet-
	hylamin, justeret til $\mathrm{pH} 4,0 \mathrm{med} \mathrm{HCl} /$ methanol,
	$50 / 50$, flow hastighed $1,0 \mathrm{ml} / \mathrm{min} .$. Kolonnetem-
	peratur $25,0 \pm 0,1^{\circ} \mathrm{C}$.
	Injektionsvolumen $10 \mu 1$. Detektor bølgelængde
	280 nm.

B 1.4 Tilberedning af standarder. Intern standardopløsning: Acetophenon, 1,2 $\mathrm{mg} / \mathrm{ml}$ i dimethylformamid. Standard, carbendazim: ca. 25 mg carbendazim afvejes og opløses i 100 ml dimethylformamid. $5,00 \mathrm{ml}$ heraf tilsættes $5,00 \mathrm{ml}$ intern standard opløsning og fortyndes op til 50 ml med mobil fase.

B 1.5 Tilberedning af prøver.
En prøvemængde svarende til 25 mg carbendazim afvejes og opslemmes i ca. 50 ml dimethylformamid i en 100 ml målekolbe. Efter behandling i 20 min. på ultralydbad fortyndes op til 100 ml med dimethylformamid. $5,00 \mathrm{ml}$ af den ovenstående klare opløsning udtages, tilsættes 5,00 intern standard opløsning i og fortyndes op til 50 ml med mobil fase. Analyseres derefter ved HPLC.
B 1.6 Bestemmelse af indhold.

Indholdet af prøven (dobbeltbestemmelse) be-

stemmes overfor eksterne standarder analyseret

i serie med prøven. Identifikation foretages

ved sammenligning af relative retentionstider

med standard.

B 1.7 Metodens præcision. Metodens præcision (beregnet som relativ standardafvigelse på multiple bestemmelser af samme prøve) er 1,2\%.

Figur B1. Typiske kromatogrammer fra analyse for indhold af carbendazim. a) Standard, b) Prøve (nr. 0-00620) og c) Prøve (nr . 0-00621).
$\mathrm{I}=$ carbendazim, is = intern standard.

Bilag_C.

C 1 Kvantitativ analyse af benomyl i bekæmpelsesmidler.

C 1.1 Analysemetodens princip. Metoden er baseret på AOAC metode nr. 984.09 til bestemmelse af benomyl i bekæmpelsesmiddelformuleringer og er en HPLC metode med UV-detektion.

C 1.2 Apparatur.
HPLC pumpe (Waters model 510), WISP autosampler (Waters model 712), UV-detektor (Waters model 440) og integrator (Merck-Hitachi model D-2000) Kolonne: ODS Hypersil, $4,6 \mathrm{~mm} \times 25 \mathrm{~cm}, 5 \mu \mathrm{~m}$.

C 1.3 Kromatografiske betingelser.
Mobil fase: Acetonitril/2\% eddikesyre; 80/20, flow-hastighed $1,0 \mathrm{ml} / \mathrm{min}$. . Kolonnetemperatur $25,0 \pm 0,1^{\circ} \mathrm{C}$.
Injektionsvolumen $10 \mu l$. Detektor bølgelængde 280 nm.

C 1.4 Tilberedning af standard.
Standard, benomyl: Ca. 25 mg benomyl afvejes og opløses i 50 ml acetonitril indeholdende 3\% nbutyl isocyanat (BIC). $5,00 \mathrm{ml}$ heraf fortyndes op til 50 ml med 3% BIC i acetonitril.
C 1.5 Tilberedning af prøve.
En prøvemængde svarende til 25 mg benomyl af-
vejes og opslemmes i ca. $25 \mathrm{ml} 3 \%$ BIC i aceto-
nitril. Efter behandling i 20 min . på ultralyd-
bad udtages $5,00 \mathrm{ml}$ og fortyndes op til 50 ml

med 3% BIC i acetonitril. Analyseres derefter

ved HPLC.

C 1.6 Bestemmelse af indhold. Indholdet af prøven (dobbeltbestemmelse) bestemmes overfor eksterne standarder analyseret i serie med prøven. Identifikation foretages ved sammenligning af retentionstider med standard. Nogle typiske kromatogrammer af standard og prøver er vist i figur $C 1$.

C 1.7 Metodens præcision.
Metodens præcision (beregnet som relativ standardafvigelse på multiple bestemmelser af samme prøve) er 0,4\%.

Figur C1. Typiske kromatogrammer fra analyse for indhold af benomyl. a) Standard og b) Prøve (nr. 0-00619).


```
Danmarks Miljøundersøgelser (DMU)
Direktionen
Sekretariat
Forsknings- og Udviklingssekretariat
Danmarks Miljøundersøgelser
Thoravej 8, 2400 København NV
Tlf: 31 1977 44. Telefax: 38 33 26 44
Afdeling for Forureningskilder og Luftforure-
ning
Frederiksborgvej 399, 4000 Roskilde
Tlf: 46 30 12 00. Telefax: 46 30 11 14
Afdeling for Miljokemi
Mørkhøj Bygade 26 bygn. H, 2860 Søborg
Tlf: 31 69 70 88. Telefax: 31 69 88 07
Afdeling for Havmiljø og Mikrobiologi
Jægersborg Allé 1B, 2920 Charlottenlund
Tlf: 31 61 14 00. Telefax: 31 61 09 06
Afdeling for Ferskvandsøkologi
Lysbrogade 52, }8600\mathrm{ Silkeborg
Tlf: 89 20 14 00. Telefax: 89 20 14 14
Afdeling for Terrestrisk \varnothingkologi
Vejlsøvej 11, bygn. J, }8600\mathrm{ Silkeborg
Tlf: 86 81 60 99. Telefax: 86 81 49 90
Afdeling for Flora- og Faunaøkologi
Grenåvej 12, Kalø, 8410 Rønde
Tlf: 89 20 14 00. Telefax: 89 20 15 14
Afdeling for Systemanalyse
Thoravej 8, 2400 København NV
Tlf: 31 1977 44. Telefax: 38 33 26 44
```

Publikationer:
DMU udgiver: faglige rapporter, tekniske anvisninger, særtryk af videnskabelige og faglige artikler, og Danish Review of Game Biology samt årsberetninger.

I årsberetningen findes en oversigt over det pågældende års publikationer. Ârsberetning samt en opdateret oversigt over årets publikationer fås ved henvendelse til telefon: 31197744 , lok. 54.

