SPATIAL HIGH-RESOLUTION DISTRIBUTION OF EMISSIONS TO AIR – SPREAD 2.0

Technical Report from DCE - Danish Centre for Environment and Energy No. 131

2018

[Blank page]

SPATIAL HIGH-RESOLUTION DISTRIBUTION OF EMISSIONS TO AIR – SPREAD 2.0

Technical Report from DCE – Danish Centre for Environment and Energy No. 131

2018

Marlene S. Plejdrup Ole-Kenneth Nielsen Steen Gyldenkærne Henrik G. Bruun

Aarhus University, Department of Environmental Science

Data sheet

Series title and no.:	Technical Report from DCE - Danish Centre for Environment and Energy No. 131
Title:	Spatial high-resolution distribution of emissions to air – SPREAD 2.0
Authors: Institution:	Marlene S. Plejdrup, Ole-Kenneth Nielsen, Steen Gyldenkærne, Henrik G. Bruun Aarhus University, Department of Environmental Science
Publisher: URL:	Aarhus University, DCE - Danish Centre for Environment and Energy © http://dce.au.dk/en
Year of publication: Editing completed:	November 2018 November 2018
Referee: Quality assurance, DCE:	Thomas Becker, Agency for Data Supply and Efficiency Vibeke Vestergaard Nielsen
Financial support:	Part of the development of SPREAD and the preparation of this report has been funded by NordForsk project NordicWelfAir (Understanding the link between Air pollution and Distribution of related Health Impacts and Welfare in the Nordic countries; Project number 75007)
Please cite as:	Plejdrup, M.S., Nielsen, OK., Gyldenkærne, S. & Bruun, H.G. 2018. Spatial high- resolution distribution of emissions to air – SPREAD 2.0. Aarhus University, DCE – Danish Centre for Environment and Energy, 186 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 131 http://dce2.au.dk/pub/TR131.pdf
	Reproduction permitted provided the source is explicitly acknowledged
Abstract:	The report documents the model for spatially distributing emissions. The model has undergone significant improvements since the last published version in 2011. The model covers all emissions of air pollutants included in the Danish reporting under the Convention on Long-Range Transboundary Air Pollution and the National Emission Ceilings Directive. The model distributes emissions on a 1 km x 1 km grid and the outputs are used for reporting under international agreements as well as for air quality modelling.
Keywords:	Emissions, spatial distribution, air pollution, SPREAD
Layout: Front page photo:	Ann-Katrine Holme Christoffersen Ann-Katrine Holme Christoffersen (Roskilde Fjord)
ISBN: ISSN (electronic):	978-87-7156-370-2 2245-0203
Number of pages:	177
Internet version:	The report is available in electronic format (pdf) at http://dce2.au.dk/pub/SR131.pdf

Contents

Co	ntents		3
Lis	t of ab	breviations	5
Lis	t of Ta	bles	6
Lis	t of Fig	jures	8
Pre	face		9
Su	mmary	/	10
Sa	mmen	fatning	11
1	Intro	duction	12
2	Mode	el description	16
	2.1	GeoKeys	16
	2.2	Calculation of gridded emissions	17
	2.3	Outputs	18
3	Gene	eral methodology	20
4	Spat	ial data	22
	4.1	Exclusive economic zone	22
	4.2	Coastline	22
	4.3	Kort10	23
	4.4	Building and dwelling register	23
	4.5	Agricultural registries	23
	4.6	Chimneysweeper data	24
5	•	ial distribution keys	26
	5.1	General GeoKeys	28
	5.2	Stationary combustion	35
	5.3	Mobile combustion	58
	5.4	Fugitive emissions from fuels	92
	5.5	Industrial processes and product use (IPPU)	106
	5.6	Agriculture	111
	5.7	Waste	132
6	-	ial distribution of national emissions	139
	6.1	Nitrogen oxides – NO _x	139
	6.2	Sulphur dioxide – SO ₂	140
	6.3	Non-Methane Volatile Organic Compounds – NMVOC	140
	6.4	Ammonia – NH ₃	141
	6.5	Fine particulate matter – PM _{2.5}	142
7	Adhe	erence to international requirements	144
	7.1	Reporting obligations	144

	7.2	Technical guidance	144
8	Discu	ussion	147
9	Planı	ned improvements	151
	9.1	Refinement of GeoKeys	152
	9.2	Verification	161
	9.3	Model setup and documentation	162
10	Refe	rences	163
Anr		List of SNAP codes and corresponding NFR and GNFR gories	165
Anr	nex 2	List of GNFR codes and corresponding NFR codes	170
Anr	nex 3	List of SPREAD categories and corresponding GeoKeys	173
Anr		List of the plants included as LPS in the Danish inventory their coordinates	176

List of abbreviations

AS	Area Sources
AU	Aarhus University
BaP	Benzo(a)pyrene
BbF	Benzo(b)fluoranthene
BBR	Building and dwelling register
BC	Black carbon
BkF	Benzo(k)flouranthene
CHP	Combined Heat and Power
CLRTAP	Convention on Long-Range Transboundary Air Pollution
CO	Carbon dioxide
CRF	Common Reporting Format
DCE	Danish Centre for Environment and Energy
EEA	European Environment Agency
EEZ	Exclusive Economic Zone
EIONET	European Environment Information and Observation Network
EMEP	European Monitoring and Evaluation Programme
ENVS	Department of Environmental Science, AU
EPT	Database of electricity and/or heat producing plants to the grid
IDA	Integrated Database for Agriculture
GeoKey	Spatial distribution key
GIS	Geographical Information System
GNFR	Gridding Nomenclature for Reporting
HCB	Hexachlorobenzene
IcdP	Indeno(1,2,3-cd)Pyrene
IPPU	Industrial Processes and Product Use
LPS	Large Point Sources
NECD	National Emission Ceilings Directive
NFR	Nomenclature for Reporting
$\rm NH_3$	Ammonia
NMVOC	Non-Methane Volatile Organic Compounds
NO _x	Nitrogen oxides
PAHs	Polycyclic Aromatic Hydrocarbons (BaP, BbF, BkF and IcdP)
PCBs	Polychlorinated biphenyls
PM_{10}	Particulate matter with an aerodynamic diameter less than 10 μ m
$PM_{2.5}$	Particulate matter with an aerodynamic diameter less than 2.5 μ m
PS	Point Sources
TSP	Total Suspended Particulates
SFL	Association of Danish chimneysweepers
SNAP	Selected Nomenclature for Air Pollution
SO ₂	Sulphur dioxide
SPREAD	Spatial High Resolution Emission to Air Distribution Model
UNECE	United Nations Economic Commission for Europe

List of Tables

	Parameters used in the definition tables of GeoKeys	
Table 2.2	Fields used in the calculation queries.	.18
	Example output from SPREAD for the international reporting to the UNECE	
	Format for SFL data	
	Rating system for the quality of the spatial dataset	
	Rating system for the applicability as spatial proxy GeoKey for population	
	GeoKey for industrial areas	
	GeoKey for buildings	
	GeoKey for one-storey settlement.	
	GeoKey for agricultural land	
	Share of emissions from stationary combustion of the national total.	
	Activities (excl. LPS) within stationary combustion and corresponding GeoKeys.	
Table 5.10	GeoKey for large point source (LPS).	
	GeoKey for point sources - public electricity and heat production.	
	GeoKey for offshore combustion	
Table 5.13	Share of emissions from manufacturing plants (excl. LPS and PS) of the national total	.41
Table 5.14	BBR categories included in the GeoKeys for commercial and institutional plants	.41
Table 5.15	GeoKey for commercial and institutional plants – gaseous fuels.	.42
Table 5.16	GeoKey for commercial and institutional plants - liquid fuels	.43
	GeoKey for commercial and institutional plants – solid fuels	
	Ranking of building use in the BBR associated to the SFL for appliances fired with liquid or solid fuels	
	Ranking of building use in the BBR associated to the SFL for appliances fired with straw.	
Table 5.20	BBR categories included in the GeoKeys for residential plants	.46
Table 5.21	Categorisation of appliances in SFL based on SFL appliance group and BBR primary heating type	.47
Table 5.22	Weighting factors for residential wood appliances	.48
	GeoKey for residential plants – gaseous fuels.	
	GeoKey for residential plants - liquid fuels	
Table 5.25	GeoKey for residential plants - solid fuels.	.51
	GeoKey for residential and agricultural plants - straw.	
	BBR categories included in the GeoKeys for agricultural plants	
	GeoKey for agricultural plants – gaseous fuels GeoKey for agricultural plants – liquid fuels	
	GeoKey for agricultural plants - solid fuels	
	Share of emissions from mobile combustion of the national total	
	Activities within mobile combustion and corresponding GeoKeys.	
	GeoKey for aviation (landing and take-off).	
	GeoKey for aviation (cruise).	
	Road and vehicle types in the national road and traffic database	
	GeoKey for passenger cars and motorcycles on highways.	
	GeoKey for passenger cars and motorcycles on rural roads.	
	GeoKey for passenger cars and motorcycles on urban roads	
	GeoKey light-duty vehicles on highways	
Table 5.40	GeoKey for light-duty vehicles on rural roads.	.70
Table 5.41	GeoKey for light-duty vehicles on urban roads	.71
	GeoKey for heavy-duty vehicles on highways	
	GeoKey for heavy-duty vehicles on rural roads	
	GeoKey for heavy-duty vehicles on urban roads.	
	GeoKey for mopeds	
	GeoKey for non-exhaust	
	GeoKey for railways	
Table 5.48	GeoKey for national navigation	.82
	Weighting factors for building & construction GeoKey.	
	GeoKey for machinery used in building and construction	
	GeoKey for machinery used in the commercial and institutional sector.	
	GeoKey for machinery used in the forestry sector Weighting factors for fishing	
	GeoKey for fishing	
	GeoKey for recreational crafts.	
	GeoKey for military aviation	
	, ,	-

Table 5.57	GeoKey for land-based military	92
Table 5.58	Share of emissions from fugitive emissions from fuels of the national total	93
Table 5.59	Activities within fugitive emissions from fuels and corresponding GeoKeys.	93
	GeoKey for coal handling and storage.	
	GeoKey for oil and gas exploration	
	GeoKey for offshore loading	
	GeoKey for oil production.	
	GeoKey for storage and onshore loading of crude oil.	
	GeoKey for storage and onshore loading of crude oil.	
	GeoKey for gas production	
	GeoKey for gas transmission	
	GeoKey for town gas distribution	
Table 5.69	GeoKey for flaring in gas and oil extraction.	
Table 5.70	Share of emissions from industrial processes and product use of the national total	
	Activities within mineral industries and corresponding GeoKeys	
	GeoKey for quarrying and mining	
	Activities within metal industries and corresponding GeoKeys	
	Activities related to product use from non-energy use of fuels and corresponding GeoKeys	
Table 5.75	GeoKey for road paving with asphalt	
	Activities related to product use and corresponding GeoKeys.	
	Activities related to other industrial processes and corresponding GeoKeys.	
	Share of emissions from agriculture of the national total	
Table 5.79	Activities within agriculture and corresponding GeoKeys.	112
	GeoKey for dairy cattle	
	GeoKey for non-dairy cattle	
	GeoKey for sheep	
	GeoKey for swine	
	GeoKey for goats.	
	GeoKey for horses.	
	GeoKey for laying hens.	
	GeoKey for broilers.	
	GeoKey for turkeys	
	GeoKey for other poultry	
	GeoKey for other animals.	
	GeoKey for inorganic fertilisers applied to soils	
	GeoKey for animal manure applied to soils	
	GeoKey for sewage sludge applied to soils.	
Table 5.94	GeoKey for other organic fertiliser applied to soils.	120 129
Table 5.74	GeoKey for urine and dung deposited by grazing animals	, בין ייייייייייי 130
Table 5.76	Share of emissions from waste of the national total	130 132
Table 5.70	Activities within the waste sector and corresponding GeoKeys.	132 133
	GeoKey for industrial composting.	
	GeoKey for biogas plants	
) GeoKey for human cremations.	
	GeoKey for animal cremations.	
	Quality of spatial dataset by GeoKey for stationary combustion (excl. LPS).	
	Planned improvements for stationary combustion	
	Quality of spatial dataset by GeoKey for mobile combustion.	
	Planned improvements for mobile combustion	
	Quality of spatial dataset by GeoKey for fugitive emissions from fuels.	
	Planned improvements for fugitive emissions from fuels	
	Quality of spatial dataset by GeoKey for industrial processes and product use	
	Planned improvements for industrial processes and product use.	
	Quality of spatial dataset by GeoKey for agriculture.	
	Planned improvements for agriculture	
	Quality of spatial dataset by GeoKey for waste.	
	Planned improvements for waste	

List of Figures

Figure 2.1	Overview of the SPREAD model	
Figure 2.2	Example of a query calculating gridded emissions.	
Figure 3.1	Intersection workflow for one-storey settlement.	
Figure 4.1	The Danish exclusive economic zone	
Figure 4.2	Geocoded addresses from SFL.	25
Figure 6.1	Gridded emissions of NO _x for 2016	139
Figure 6.2	Gridded emissions of SO ₂ for 2016	140
	Gridded emissions of NMVOC for 2016	
Figure 6.4	Gridded emissions of NH ₃ for 2016	142
Figure 6.5	Gridded emissions of PM _{2.5} for 2016.	143
Figure 8.1	Correlation of measured and modelled PM ₁₀ concentrations (MSC-W, 2018)	149
Figure 8.2	Correlation of measured and modelled NO2 concentrations (MSC-W, 2018).	150

Preface

This report documents the methodology and data used for the spatial distribution of emissions of air pollution on a 1 km x 1 km grid.

This report describes the updated version of SPREAD that has been improved through continuous work primarily through some specific projects. The report documents the methodologies and data used in SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed.

The work on creating an updated model for high-resolution emission distribution has benefited from valuable data and information from a number of external experts.

The authors would like to thank:

- The Danish Energy Agency for providing the database on plants producing heat and/or electricity to the public grid, and for providing detailed information on location and activities for offshore installations in oil and gas production;
- The Association of Danish Chimney Sweepers for providing detailed data on the location and types of small-scale combustion installations;
- Michael Mucke Jensen, Danish Petroleum Association, for GIS data on service stations in Denmark;
- Erling Krappe, Danish Forest and Nature Agency, for delivering data on military training terrains;
- Jørn Hougaard Sørensen, Energinet.dk for data on location of transmissions stations on the natural gas network;
- Steen Solvang Jensen, Department of Atmospheric Environment, of the National Environmental Research Institute, Aarhus University, for providing data on road traffic from the National Road and Transport Database;
- Trine Østergaard Rasmussen, for contributing to improvements of the GeoKeys for fishing, national navigation and non-road machinery in industry;
- Professor Henning Sten Hansen, Aalborg University, for reviewing and contributing valuable comments to the first version of the SPREAD model;
- Thomas Becker, Agency for Data Supply and Efficiency, for reviewing and contributing valuable comments to the present report.

Additionally, the authors wish to acknowledge the improvements to the SPREAD model made possible through the following projects:

- "Health impacts and external costs from air pollution in Denmark over 25 years" funded by the Danish Centre for Environment and Energy;
- NordicWelfAir (Understanding the link between Air pollution and Distribution of related Health Impacts and Welfare in the Nordic countries) funded by NordForsk;
- "Luftforurening fra togdrift i byområder" (Air pollution from railways in urban areas) funded by the Danish Environmental Protection Agency;
- "Luftforurening fra mobile ikke-vejgående maskiner i byområder" (Air pollution from non-road machinery in urban areas) funded by the Danish Environmental Protection Agency.

Summary

The Department of Environmental Science (ENVS) at Aarhus University (AU) is working on research in several areas, one of which is atmospheric pollution. This research includes the links between emissions, atmospheric dispersion, human exposure and related costs. Part of this research is the spatial distribution of emissions as input to the air quality modelling.

The Danish Centre on Environment and Energy (DCE), Aarhus University (AU) is contracted by the Ministry of Environment and Food and the Ministry of Energy, Utilities and Climate to compile and report annual national emission inventories for greenhouse gases and air pollutants. The compilation and reporting is done in accordance with Denmark's obligations under international conventions, e.g. the Climate Convention (UNFCCC) and the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and EU regulations, e.g. the National Emission Ceilings Directive (NECD) and the Monitoring Mechanism Regulation (MMR).

The work is carried out by the Department of Environmental Science (ENVS).

Under the CLRTAP and the NECD, there is a requirement to report gridded emissions every four years. In addition, DCE is also tasked with publishing spatial data of diffuse emissions as defined under the PRTR regulation.

Before 2011, the Danish emission inventory was available on the 50 km x 50 km EMEP grid for reporting of air pollutants to CLRTAP every fifth year.

In 2011, the first version of a spatial high-resolution distribution model for emissions to air (SPREAD) was published. This model used a higher resolution (1 km x 1 km), to increase the usefulness of the data in the air quality modelling. The higher resolution was also chosen in anticipation of changes to the EMEP grid moving towards a higher resolution. This high-resolution distribution has been used in research projects focussing on either all emission sectors or in case studies for one or a few sectors, e.g. a distribution of emissions from railways on 1 km x 1 km resolution.

The current EMEP grid is a 0.1 degree x 0.1 degree resolution, which for Denmark implies grid cells with a dimension of approximately 6 km x 11 km.

The development of the SPREAD model has largely been driven by the participation in research projects. Resources from the framework contract between AU and the Ministry of Environment and Food has been used to implement the new EMEP grid.

SPREAD includes emission distributions for each sector emitting air pollution in the Danish inventory system. The main sectors are stationary combustion, mobile combustion, fugitive emissions from fuels, industrial processes and product use, agriculture and waste. However, the spatial distribution is carried out at the most detailed level possible. Currently, greenhouse gases are not included in the model.

Sammenfatning

Institut for Miljøvidenskab ved Aarhus Universitet beskæftiger sig med forskning inden for flere områder. Et af disse områder er luftforurening. Forskningen inkluderer sammenhængen mellem emissioner, spredning i atmosfæren, eksponering samt relaterede samfundsmæssige omkostninger. En del af denne forskning er geografisk fordeling af emissioner som input til atmosfærisk modellering.

Nationalt Center for Miljø og Energi (DCE) ved Aarhus Universitet udarbejder årligt emissionsopgørelser for luftforurening og drivhusgasser på kontrakt for Miljø- og Fødevareministeriet og Energi-, Forsynings-, og Klimaministeriet. Emissionsopgørelsen og rapporteringen af denne udføres i henhold til Danmarks forpligtigelser under internationale konventioner som FN's klimakonvention (UNFCCC) og FN's konvention og langtransporteret grænseoverskridende luftforurening (UNECE - CLRTAP), samt Danmarks EU-forpligtigelser som direktivet om nationale emissionslofter (NECD) og forordningen om en mekanisme til overvågning og rapportering af drivhusgasemissioner (MMR).

Arbejdet udføres af Aarhus Universitet, Institut for Miljøvidenskab (ENVS).

Under CLRTAP og NECD er der også en forpligtigelse til at rapportere geografisk fordelte emissioner hvert fjerde år. Derudover er DCE også forpligtet til at offentliggøre geografisk fordelte data af diffuse emissioner som defineret under PRTR-forordningen.

Før 2011 var den danske geografiske fordeling tilgængelig på EMEP's gitternet med en opløsning på 50 km x 50 km, som blev brugt til rapporteringen til UNECE hvert femte år.

I 2011 blev den første udgave af en geografisk højopløsnings-fordelingsmodel for luftemissioner (SPREAD) publiceret. Denne model blev udviklet med en meget højere opløsning (1 km x 1 km) for at øge anvendelsen af data som input til luftkvalitetsmodellering. Skiftet til en højere opløsning, blev også foretaget i forventning om, at EMEP's gitternet ville blive opdateret med en højere opløsning. Fordelingen med den høje opløsning er anvendt i forskningsprojekter, der enten har fokuseret på alle emissionssektorer eller som detailstudie med fokus på en eller få sektorer, f.eks. fordeling af emissioner fra jernbaner.

Det nuværende EMEP-gitternet er med en opløsning på 0.1 grad x 0.1 grad, hvilket for Danmark svarer til et gitternet på ca. 6 km x 11 km.

Udviklingen af SPREAD-modellen har været drevet af deltagelse i forskningsprojekter. Ressourcer fra rammekontrakten mellem AU og Miljø- og Fødevareministeriet er blevet brugt til at implementere den nye EMEP-gitternet.

SPREAD inkluderer emissionsfordelinger for alle sektorer, der udleder luftforurening. Hovedsektorerne er stationær forbrænding, mobil forbrænding, industrielle processer, landbrug og affald. Den geografiske fordeling foretages på det mest detaljerede niveau muligt. På nuværende tidspunkt er drivhusgasser ikke omfattet af modellen.

1 Introduction

The Department of Environmental Science (ENVS) at Aarhus University (AU) is working on research in several areas, one of which is atmospheric pollution. This research includes the links between emissions, atmospheric dispersion, human exposure and related costs. Part of this research is the spatial distribution of emissions as input to the air quality modelling.

The Danish Centre on Environment and Energy (DCE), Aarhus University (AU) is contracted by the Ministry of Environment and Food and the Ministry of Energy, Utilities and Climate to compile and report annual national emission inventories for greenhouse gases and air pollutants. The compilation and reporting is done in accordance with Denmark's obligations under international conventions, e.g. the Climate Convention (UNFCCC) and the Convention on Long-Range Transboundary Air Pollution (CLRTAP) and EU regulations, e.g. the National Emission Ceilings Directive (NECD) (EU, 2016) and the Monitoring Mechanism Regulation (MMR) (EU, 2013).

The work is carried out by the Department of Environmental Science (ENVS).

The emissions are reported as national totals and for a number of sectors and sub-sectors as defined by the Common Reporting Format (CRF) used for reporting to UNFCCC and the MMR, and the Nomenclature for Reporting (NFR) used for reporting to CLRTAP and NECD, respectively.

The methodologies in the Danish emission inventories follows the international guidelines provided by the IPCC, i.e. the 2006 IPCC Guidelines (IPCC, 2006) for the greenhouse gas emission inventories and the EMEP/EEA Guidebook (EEA, 2016) for the emission inventories for air pollution.

Emission data from the national inventories are often used as input for modelling of air quality, which again serves as input in e.g. assessment and evaluation of health impacts. In order to make a more suitable input for air quality models, emissions must be given on a more disaggregated level than national level. Until 2010, the Danish emission inventory was available on 50 km x 50 km EMEP grid for reporting of air pollutants to CLRTAP every fifth year. The methodology is described in a Danish-language report (Jensen et al., 2008).

Besides the emission distribution on 50 km x 50 km resolution, a distribution on the 17 km x 17 km EMEP grid was set up and used in research projects combined with detailed distributions for relevant sectors or sub-sectors. The 17 km x 17 km distribution has e.g. been used in combination with a detailed distribution of emissions from road traffic on 1 km x 1 km resolution.

In 2010, the new spatial high-resolution distribution model for emissions to air, SPREAD, was developed at ENVS (Plejdrup & Gyldenkærne, 2011). SPREAD enables distribution of the Danish emissions for all air pollutants and all sectors in the national emission database on a 1 km x 1 km grid covering Denmark and its exclusive economic zone. The model does not include Greenland and the Faroe Islands. The model is set up in Microsoft Access databases and the spatial distribution keys (GeoKeys) are set up in GIS (ArcMAP). Output tables are transformed to shape files for visualisation in GIS. The datum is ETRS89 and the projection is UTM zone 32N for all output shape files.

Since the first version, many improvements have been made to the model until the restructuring of the SPREAD model system, which is documented in this report, providing SPREAD 2.0.

This report presents the methodologies in the updated version of SPREAD set up for spatial distribution of the Danish emission inventory on the 1 km x 1 km Danish Grid Net.

The model includes emissions of the following pollutants:

- **Main pollutants:** sulphur dioxide (SO₂), nitrogen oxides (NO_x), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), ammonia (NH₃)
- **Particulate matter:** total suspended particulates (TSP), particulate matter with an aerodynamic diameter less than 10 μ m (PM₁₀), particulate matter with an aerodynamic diameter less than 2.5 μ m (PM_{2.5})
- Heavy metals: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), zinc (Zn)
- **Persistent organic pollutants:** dioxins and furans (PCDD/F), hexachlorobenzene (HCB) and the polycyclic aromatic hydrocarbons (PAHs): benzo(b)flouranthene (BbF), benzo(k)flouranthene (BkF), benzo(a)pyrene (BaP) and indeno(1,2,3-c,d)pyrene (IcdP).

Currently, the SPREAD model does not include any greenhouse gases, but it will be possible to extend the model to include greenhouse gases in the future.

The distribution in SPREAD is in general made on SNAP (Selected Nomenclature for Air Pollution) category level in correspondence with the Danish inventory system to assure the most detailed distribution of the emissions. The SNAP categorisation follows a six digit code system, where the first two digits indicates the main sector (e.g. 07 = road transport), the next two digits provides a further subdivision (e.g. 0701 = road transport, passenger cars) and the final two digits provide a further disagreegation (e.g. 070101 = road transport, passenger cars, highway driving).

For the reporting other less detailed categorisations are used, i.e. the Nomenclature for reporting (NFR) for the inventories and the Gridded Nomenclature for Reporting (GNFR) for the gridded inventories. See Annex 1 for a list of SNAP codes and corresponding NFR categories and Annex 2 for a list of GNFR codes and corresponding NFR codes.

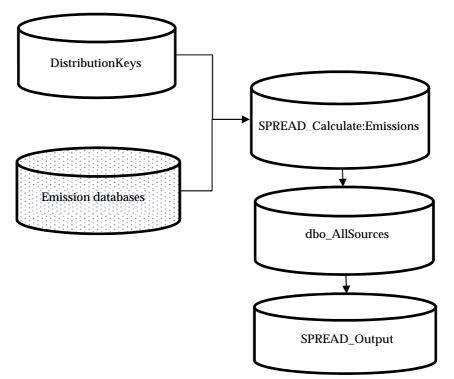
It has been aimed to use the most disaggregated SNAP level (SNAP 3 level) but for some categories and for sectors SNAP 2 or SNAP 1 level has been applied in the distribution model due to lack of detailed information. An exception is the agricultural sector, as this sector is not treated on SNAP level in the Danish emission database. Instead, the agricultural data processing is carried out for the relevant NFR categories, and the same approach is applied in SPREAD. The SPREAD model is set up in order to be applicable for the mandatory reporting every four years of gridded emissions to CLRTAP and the NECD next time in 2021 covering the emission year 2019. The CLRTAP reporting is based on GNFR categories and the distributions in SPREAD are made on a more disaggregated level than the GNFR level.

In general, emission inventories distinguish between point sources and area sources. Point sources are single facilities where the exact location is known and detailed data are available, e.g. large power plants, refineries or waste incineration plants. Area sources are typically diffuse sources, e.g. without knowledge of the exact location, e.g. road transport, or a very large number of small point sources, e.g. residential wood stoves or animal housing.

For the purposes of the SPREAD model, an additional distinction is made, so that the model operates with three terms, i.e. Large Point Sources (LPS), Point Sources (PS) and Area Sources (AS). At present (2016 inventory), the number of facilities treated as LPS in the Danish emission database is 79, see Annex 7 for a list of plants included in the Danish inventories as LPS. For a definition of plants included as LPS in the Danish inventories, please refer to Nielsen et al. (2018a).

The LPS are characterised by having more detailed data on fuel consumption, emission factors and/or emissions, as plant, installation or process specific data. LPS represent emissions at all SNAP 1 categories except solvents and other product use and road traffic (SNAP 06 and SNAP 07). The Point Sources (PS) cover emissions from stationary combustion from point sources that are smaller and with less information available compared with LPS. PS refer to the large number of plants for which the fuel consumption is known at plant level but emissions are calculated using standard emission factors.

The AS are all remaining sources, which are handled as such in the emission inventories. However, in the SPREAD model all available information has been used to develop the GeoKeys. Where available, information on the location has been applied and the resulting GeoKey will utilise point source information. This is for instance the case for residential plants and for animal husbandry. For each GeoKey, the spatial data used have been described including whether point data have been used.


A spatial distribution is more relevant for some pollutants than others. For example particulate matter, as particles can cause health effects in close proximity to the emission site. The spatial component is less important for components with long lifetimes in the atmosphere, e.g. greenhouse gases, which are more relevant at global scale.

Chapter 2 includes a description of the model system, while Chapter 3 covers the general methodology used to spatially distribute emissions including the guidance provided in the EMEP/EEA Guidebook (EEA, 2016). Chapter 4 describes the major spatial datasets available in Denmark and used in the spatial distribution.

Chapter 5 documents the spatial distribution keys (GeoKeys) for all sources in the Danish emission inventories for air pollutants. Chapter 6 presents the results of the model, while Chapter 7 describes how the SPREAD model adheres to the requirements established in international agreements. Chapter 8 includes a discussion of the model including a discussion on the uncertainty of the spatial distribution. Finally, Chapter 9 contains a list of planned improvements.

The background data and methodological description applied in the national emission inventory are not included here. For a description of the methodologies, data foundation and emissions in the national emission inventories please refer to Denmark's Informative Inventory Report, IIR (Nielsen et al., 2018a) as reported to the UNECE and Denmark's National Inventory Report, NIR (Nielsen et al., 2018b) as reported to the UNFCCC.

2 Model description

The SPREAD model is primarily build in MS Access databases and the setup is illustrated in Figure 2.1.

Figure 2.1 Overview of the SPREAD model.

The emission databases are not part of the SPREAD model. The SPREAD model uses as input emission data from the NERIRep database, which is the main emission database in the Danish emission inventories and from the IDA database, which is the Danish emission database for agricultural emissions.

The main components of the SPREAD model are:

- The GeoKeys, which are stored in the MS Access database 'DistributionKeys';
- The calculation of gridded emissions, which is done in the MS Access database 'SPREAD_Calculate_Emissions';
- The storage of the resulting gridded emissions, which is done in the sql server database 'dbo_AllSources';
- The outputs from the model, which consist of a number of MS Access databases.

These elements of the model will be described in more detail in the following.

2.1 GeoKeys

GeoKeys are normalised tables holding information on how emissions are distributed spatially in the SPREAD model, including shares of emissions to be allocated to the individual cells in the 1 km x 1 km grid. Spatial distribution keys are prepared from various data sources including a spatial component in GIS or Excel, and the requisite information is exported and stored in GeoKey tables in the 'DistributionKeys' database. The GeoKey tables include reference to the grid cells, year and share.

Table 2.1 shows the general design of a GeoKey table. In total, there is currently 75 GeoKeys in use in SPREAD. Improvements to the model, when more detailed spatial data become available will for some sources result in the number of GeoKeys to increase.

Table 2.1 Parameters used in the definition tables of GeoKeys.			
Field name	Description	Data type	
Year	Year (where relevant)	Number (Long integer)	
KN1kmDK	Grid cell name	Text (Short text)	
Share	Share of sectoral emission	Number (Double)	

Table 2.1 Parameters used in the definition tables of GeoKevs.

The general methodology for developing GeoKeys is described in Chapter 3. A comprehensive description of the GeoKeys included in the SPREAD model, including the methodology and underlying data, is given in Chapter 5.

2.2 Calculation of gridded emissions

The calculation of gridded emissions is done through queries that combines the national emissions with the assigned GeoKey. Source sectors using the same GeoKey are calculated in the same query.

Figure 2.2 shows an example of a query calculating gridded emissions from coal storage (SNAP 050103).



Figure 2.2 Example of a query calculating gridded emissions.

The standard output from each query consists of eight fields as shown in Table 2.2.

Table 2.2 Fields used in the calculation queries.	
Field name	Description
KN1kmDK	ID for the 1 km x 1 km grid cell
GNFR	The international nomenclature for gridded emissions
snap_id	The detailed level where emissions are calculated
fuel_gr_id	Fuel type
source	Indication of whether the source is a LPS or AS
pol_id	ID for the relevant pollutant
Year	The year of emission
GEmission	The gridded emission
EmissionUnit	The unit of the gridded emission

Currently, there are 106 calculation queries in the database. Each query appends the output to one result table. All queries are run consecutively through a macro.

In principle, the system can calculate gridded emissions for all years where there are emission data available. In practice, the model is run for 1990, 1995, 2000, 2005, 2010 and every year hereafter.

2.3 Outputs

Calculated emission data are stored in a MS SQL Database due to the size of the output. There are predefined outputs (views) for yearly reporting to the Danish air quality modelling group (ATMO) and for the international reporting to the UNECE in the SQL database.

2.3.1 Reporting to UNECE

Reporting to UNECE is an Excel spreadsheet made from a spreadsheet template called "ANNEX V: Template file for gridded sector data for each of the relevant aggregated Gridding NFR sectors (GNFR)".

In SQL server there is a view for the excel template called dbo.GNFR_report, see Table 2.3.

EmissionUnit	Long_c	Lat_c	GNFR	pol_abbr	Emission
kg	9.85	57.05	J_Waste	As0.0093	34815317166611
kg	6.95	56.65	I_Offroad	Benzo(b)0.0032	4086355898796
Mg	11.55	55.75	J_Waste	PM _{2.5} 0.1654	25387117366
kg	3.65	55.95	I_Offroad	Zn0.0603	840064847959
Mg	12.55	55.45	I_Offroad	BC0.0587	095876988362

Table 2.3 Example output from SPREAD for the international reporting to the UNECE.

Longitude and Latitude indicate the centre of the 0.1° x 0.1° grid cell.

This view is linked in the MS Access database Spread_Output and from there the data are filed in the template.

2.3.2 Reporting for air quality modelling

The output for the reporting to air quality modelling (ATMO) is a big text file used as input for the modelling. For the reporting to ATMO there are two views; one for area sources only, and one for area sources and point sources (LPS) combined. The outputs are named: dbo.ATMOFuel_AllYearTot & dbo.ATMOFuel_AllYearArea.

Boths views are run directly from the sql server and exported as text files.

2.3.3 Quality control

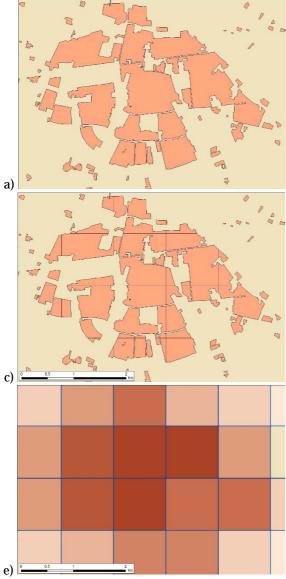
Based on the main output file storing of all data in MS SQL Server, a QC query is made in MS Access. The purpose of the query is to ensure that the total emissions as distributed by SPREAD matches the totals reported in the Danish inventories. The query is exported to MS Excel, where a comparison is made for every SPREAD year and at the GNFR level.

2.3.4 Ad-hoc reporting

It is also possible to make ad-hoc outputs via MS SQL Server Studio or MS Access written in sql.

In MS SQL server studio, it is possible to export sql and views as text files for further analysis in e.g. MS Excel. In MS Access, it is possible to link to tables and views in sql server for further analysis.

3 General methodology


Gridded emissions are prepared by adding a spatial parameter to the national total emissions. Gridding is made on a disaggregated sectoral level to be able to reflect as many details in the spatial pattern as possible. Part of the emissions are known at plant or site level and can be allocated to the exact location. These are referred to as point sources (PS) or large point sources (LPS), the latter being plants with large emissions that are treated separately in the national emission inventory system. Point sources refer to all sources for which emission allocation is made separately in the spatial emission inventory, but which are treated as an area sources in the national emission inventory system. Area sources are defined as being groups of numerous emission sources with similar characteristics, but being too large in number to be treated separately or without details on individual level and thereby not possible to handle as point sources.

A spatial component is added to the emissions via GeoKeys, which are spatial distribution keys holding information on the share of the national emission from a specific source to be allocated to each spatial unit. The SPREAD model use an orthogonal grid with a spatial resolution of 1 km x 1 km covering the Danish area defined by the national border on land and the exclusive economic zone (EEZ) on sea. GeoKeys are prepared in a geographical information system (GIS) or MS Excel spreadsheet and the resulting tables are stored in a MS Access database.

GeoKeys are prepared from a number of different spatial data with different characteristics. GeoKeys for point sources are prepared from data, where the spatial component is XY coordinates. In some cases, only plant names and/or addresses are available, and the XY coordinates must be added before the GeoKey can be prepared. This is done either by looking up the address in a national address database or via visual identification in e.g. ortho photos, google maps. XY coordinates can easily be linked to the grid as grid cell names can be generated from the XY coordinates. GeoKeys for area sources are created from data where the spatial component is points, lines or polygons, or a combination of different spatial data with the same or different type of spatial component. The emission shares to be allocated to each grid cell are calculated using spatial analysis methodologies in GIS.

Some spatial data include a source specific parameter, e.g. miles driven for the road network, which can be used to allocate the emissions. Other data only include the spatial component, e.g. the rail network has no information on mileage or number of train passages, and emissions can be allocated only according to the shape of the rail network.

The most common spatial analysis used to prepare GeoKeys is intersection of a relevant spatial dataset with the grid, thereby cutting the feature layer by the grid cells, giving the possibility to calculate number of points, length of lines or area of polygons for each grid cell. Following, the share of the total number, length or area is calculated by grid cell. The GeoKey is created as a normalised table holding the share by grid cell and following the formats outlined in Chapter 2.1. Figure 3.1 show the intersection workflow.

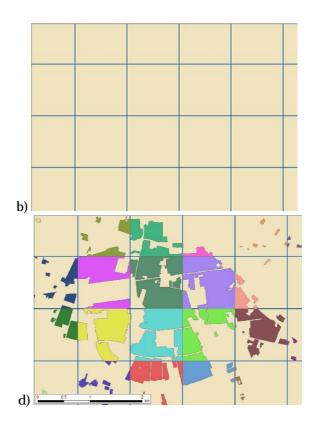


Figure 3.1 Intersection workflow for one-storey settlement. Input layers:

a) polygon layer of areas with one-storey settlement, and

b) the 1 km x 1 km grid. Result of intersection:

c) polygon layer of areas with one-storey settlement intersected by the 1 km x 1 km grid,

d) the intersected polygons dissolved by the grid cells for calculation of area by grid cell and

e) the resulting GeoKey showing the share by 1 km x 1 km grid cell.

4 Spatial data

A number of general spatial datasets are used in the SPREAD model. These general datasets are documented in this chapter. Some are used for defining the Danish area, while other registries are used as basic data sources and therefore described in general terms in this chapter.

For the individual GeoKeys, the spatial datasets used are described in Chapter 5.

4.1 Exclusive economic zone

The exclusive economic zone (EEZ) is defined in the United Nations Convention on the Law of the Sea (UN, 1982). The EEZ is an area beyond and adjacent to the territorial sea over which a state has special rights regarding the exploration and use of marine resources, including energy production. The EEZ extends at most 200 nautical miles from the coast.

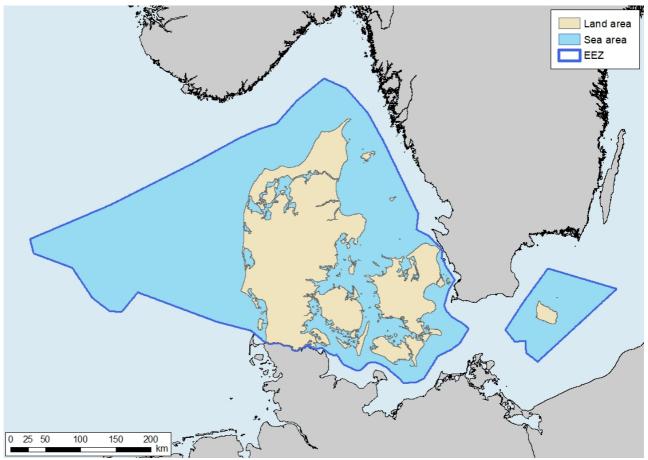


Figure 4.1 The Danish exclusive economic zone.

4.2 Coastline

The coastline is based on DAGI (Danmarks Administrative Geografiske Inddelinger – Denmarks Administrative Geographical Divisions) data from 2011, see Figure 4.1. Changes to the coastline will normally be minor and without activities causing emissions. Therefore, it has been decided not to update the coastline unless new manmade areas are constructed, e.g. bridges.

4.3 Kort10

Kort10 is a national topographic object oriented map in vector format in scale 1:10 000. Kort10 is based on Geo Denmark data, which is established in a mapping collaboration between the municipalities, the Local Government Denmark, and the Danish Geodata Agency. The Danish Agency for Data Supply and Effeciency host the download portal "The Danish Map Supply", where data are publicly available. Object types are divided into seven classes: buildings, built-up area, traffic, infrastructure, nature, hydrology and administrative units. The data set is supplemented with cartographic information, and with names of roads and places, administrative boundaries and contour lines.

4.4 Building and dwelling register

The building and dwelling register (BBR) is a national register holding data for all buildings and dwellings. The register was created in 1977, based on survey data from all Danish building owners, and is frequently updated by municipalities in connection with building projects. Further, the building owners are obligated to update the register with changes made without involving the municipality. The latter is the main reason for large uncertainties in the register, e.g. regarding heating information, as many changes does not require approval by the municipality. Further, many building owners are not aware that they should update the register themselves, and neglecting it does not lead to consequences. The BBR includes information on e.g. location, building use, heating installation, and heating fuel.

4.5 Agricultural registries

In Denmark, a large number of registries exist with relevant agricultural information. These registries are used in the emission inventory process but several datasets have a geographical component that enables them to be used to give an accurate representation of agricultural activities in Denmark. Below is a short description of the most important agricultural datasets.

4.5.1 Central husbandry register

The Central Husbandry Register (CHR) is used to estimate the number of animals with the exception of horses, see Chapter 4.5.2. CHR was established in 1993 with the purpose of being able to track animals quickly in case of outbreaks of deceases such as BSE (Bovine Spongiform Encephalopathy) and foot and mouth disease. The first year of the register is 1996 and no data at farm level exist prior to this. The register includes information on the number of animals per farm for a number of animal types, i.e. cattle, swine, sheep, goats, poultry, deer, foxes, polecats, chinchillas and mink. Some types of animals, e.g. cattle and sheep, are registered individually and the updates are therefore frequent. For other animal types, the number is accounted for a certain date of the year. Ten percent of the farmers are surveyed every month with the exception of July and December. All animal herds are registered with a CHR identification number and the geographical location of the farm. Approximately 45 000 herds are registered. No herds with horses are included in CHR.

4.5.2 Fertiliser accounts

To protect groundwater, rivers, streams and coastal waters, legislation has been enacted on how much fertiliser can be applied to soils. The fertiliser accounts include information on nitrogen allowances and nitrogen use on farm level. Farmers exceeding a given number of animals or amount of animal manure are obligated to report the number of animals and housing type, the use of nitrogen (N), including both animal manure, inorganic fertilizer and other N containing materials, e.g. sludge. The N quota, which is the amount of N that is allowed to be applied to the fields, and information on catch crops are also reported. The minimum size is approximately a farm turnover of 7 000 EUR which normally is less than three cows. Currently, approximately 35 500 farmers are reporting their fertiliser accounts annually. The difference to CHR is among things that a large number of sheep and goat holders, which are included in CHR, does not have a size, which exceeds the lower limit in the fertilizer accounts. Based on the fertilizer accounts is it possible to locate approximately 40 % of an estimated 170 000 horses.

4.5.3 General agricultural register

The General Agricultural Register (GLR) was established in 1993 for holding documentation for the area subsidies. The register contains information on the applicant, the fields that are applied for subsidies, the location and size of the fields, and the crops grown on the specific field. Other information is also included such as whether the field is organically cultivated and if afforestation takes place. In total, the location of 600 000 fields is available with an average size of 0.2 km x 0.2 km (4 hectares).

4.6 Chimneysweeper data

The Danish Association of Chimneysweepers (SFL) has provided information on the location and types of small combustion appliances in Denmark. The data consist of information on the address and the type of appliance registered on the address. An example of the format is illustrated in Table 4.1.

Table 4.1	Format for SFL data.		
Road	Number	Postal code	Type of appliance

In total, the number of appliances was counted as 1 052 742. The data from SFL was geocoded using the official Danish registry of addresses. However, due to misspelling of road names, or inconsistencies between the road name, number and postal code, it was only possible to geocode 1 046 182 appliances.

The SFL data do not cover the entire country as some chimneysweepers have chosen not to be a member of SFL and a few members did not provide data. The coverage of the SFL data is illustrated in Figure 4.2. For the areas of the country where SFL data were not available, data from BBR have been used. The BBR registry is described in Chapter 4.4.

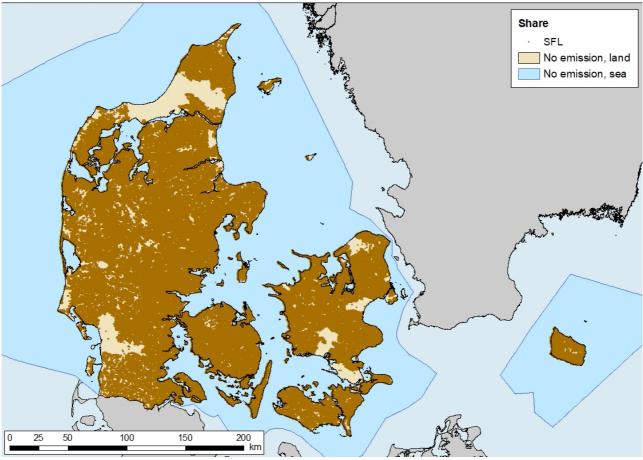


Figure 4.2 Geocoded addresses from SFL.

More information on the data from SFL as well as the data processing done by DCE, can be found in Nielsen & Plejdrup (2018).

5 Spatial distribution keys

The SPREAD model includes a large number (>50) of spatial distribution keys (GeoKeys). Some are used for one emission source only, while others are used for spatial allocation of emissions from different sources. The latter is the case for emission sources where good spatial data are not available, and where less accurate allocations are made based on spatial proxy data. Generally, there is lack of information on sources in industrial processes, except for the few plants that are treated as LPS or PS, and most emissions are allocated according to the area categorised as "Industrial area" in Kort10. Another example of the very general distribution for industry is emissions from construction & demolition and from degreasing, dry cleaning and electronics, which are allocated according to the location of buildings in Denmark.

Some emission sources cover both point sources (PS or LPS) and area sources. In these cases, emissions from PS and LPS are allocated to the exact location and GeoKeys are prepared for the residual emissions. This combination is mainly found in the stationary combustion sector, but also some cases are found in the industrial processes sector. In general, point source data are used to develop GeoKeys for sources that are handled as area sources in the emission inventories, see Chpater 1.

In order to assess the uncertainty of the spatial distribution of emissions, it is necessary to both evaluate the quality of the spatial dataset that is the basis for the GeoKey and to assess the applicability of the selected GeoKey for the specific emission source.

In this report, the quality of the spatial dataset and the applicability as spatial proxy for the specific emission source are both rated according to a five-step system. The quality of the spatial dataset is rated from A to E, see Table 5.1 and the applicability as spatial proxy is rated from 1 to 5, see Table 5.2.

That means that the best possible combined rating for a GeoKey is A1, while the worst possible rating would be E5. There are examples of a high quality spatial proxy, e.g. population density, which is not a good representation of the spatial emission pattern, and should be used with caution. Population density is often seen used as proxy for residential wood combustion, but this will most likely lead to large overestimation in densely populated areas. The opposite is the case for the building and dwelling register, which is a good proxy for e.g. heating in commercial and institutional buildings, but where the quality of the spatial data set is lower due to large uncertainties in the register.

Quality	Description Example		
rating	Beeenpaen	Example	
A	Very low uncertainty	Geographical coordinates or address	
		Location of animals by type	
		Location of agricultural fields including information on crop types	
		Population density	
В	Low uncertainty	Location of buildings	
		Quality A data that need gap filling, e.g. data from the chimney sweeper association	
0	Medium uncertainty	Spatial parameters generated from different input data, data analysis and assump-	
		tions, e.g. mileage data based on road map and traffic counts	
D	High uncertainty	Roughly generalised Land use maps	
		Land use that is very difficult to identify, e.g. industrial areas	
E	Very high uncertainty	Outdated spatial data	
		Spatial data missing full coverage	

Table 5.1 Rating system for the quality of the spatial datase

Table 5.2 Rating system for the applicability as spatial proxy.

Applicability rating	Description	Example
1	Very good correlated proxy	GeoKeys for point sources based on emissions measured or calculated from activity
		data and corresponding technology information or emission factors
		GeoKeys for area source emissions that occur evenly from a well-defined land-use
		class, similar to evaporation from a waterbody
2	Good correlated proxy	GeoKeys based on address points including activity data, e.g. process emissions
		GeoKeys for area source emissions based on very detailed spatial and statistical data,
		e.g. emissions from fertilisers applied to agricultural soils
3	Fair correlated proxy	GeoKeys based on address points without activity data, e.g. residential wood combus-
		tion
		GeoKeys for area source emissions based on spatial data that reflect the emission
		source features, but without indication of activity level, e.g. rail network
4	Poor correlated proxy	GeoKeys distributing point source emissions evenly to areas based on land-use
		class(es)
		GeoKeys for area source emissions based on spatial parameters not well correlated
		with the emission activity, e.g. emissions from industrial processes distributed to the
		industrial areas
5	Very poor correlated proxy	GeoKey for emissions not limited to the EEZ area, e.g. fishery
		GeoKey for emissions occurring at unknown locations, e.g. military aviation

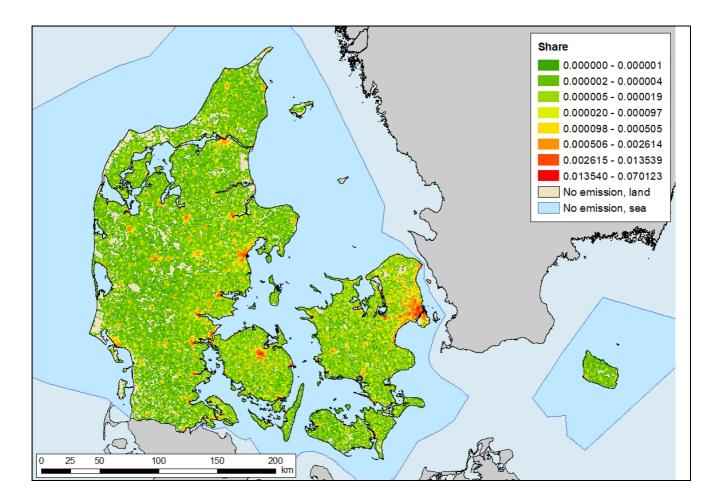
The EMEP/EEA Guidebook uses the concept of methodological tiers to distinguish between the varying levels of sophistication. However, as the tier levels are not well defined in the Guidebook, they will not be used in this report. For more discussion on this, please refer to Chapter 7.2.

The following chapters describe the GeoKeys used for the different emission sectors, including information on the spatial data behind the GeoKeys, calculations and assumptions. For each GeoKey, the share of national total emissions distributed using the key is listed and an assessment of the quality and applicability of the GeoKey is made.

The GeoKey descriptions include maps visualising the shares for the 1 km x 1 km grid cells. The sum of all shares for a given GeoKey is 1, and the emissions can be calculated for a 1 km x 1 km grid cell by multiplying the share with the corresponding national sectoral emission.

5.1 General GeoKeys

In this chapter, some of the general GeoKeys are described. These GeoKeys are generally used for more than one emission source and often they are used for lack of more detailed spatial information being available.

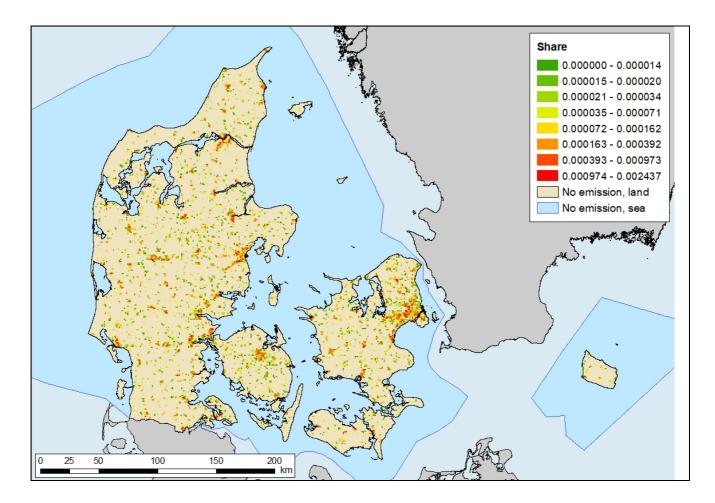

5.1.1 Population

The population GeoKey is based on the Danish Civil Registration System (CPR). The CPR, which was established in 1968, includes information for all persons living in Denmark and having a unique personal identification number. The information include e.g. gender, date of birth, and place of residence. CPR data are confidential, and the use in SPREAD is approved by the Researcher Service, Health Data Authority. Data has been provided as gridded data, including the counts of persons registered by 1 km x 1 km grid cell.

The data set is considered very accurate and therefore it has been assigned a high quality rating. Generally, population as a spatial proxy is uncertain and in many cases chosen due to a lack of a better spatial proxy. For some product uses, such as candles, the population density is considered a good proxy.

Table 5.3 Geokey tor popu						
Source data	The Danish Civil Registration System					
Data provider	CIRRAU					
Projection	ETRS89 UTM zone 32N					
Data description	Counts of persons 1 January in 1 km x 1 km squares in the Danish grid net (det danske kvadratnet, DKN1km), based on all person's registered residence in Denmark from the Danish Civil Registration System and the associated geographical coordinates.					
	-		/ww.cirrau.au.dk/data-resource	s/data-do	ocumentation and	
	https://sundhedsdatastyrelsen.dk/da/registre-og-services/om-de-nationale-sundhedsregistre/persono- plysninger-og-sundhedsfaglig-beskaeftigelse/cpr-registeret (in Danish)					
Workflow	Due to confidentiality, grid cells with 0-1 persons are given the value "<2" in the data set. These are al replaced by 1 when calculating the GeoKey as share of total population by grid cell.					
GeoKey name	_Key_Population					
Year dependent	Yes, GeoKeys are available for every five years 1990-2005 and every single year from 2010 onwards					
Share of national emission		1990	2005 20		2016	
	> 10 %	NMVOC, Zn	NMVOC, Pb, Zn, PCDD/F NMVOC, Pb, Zn, F		C, Pb, Zn, PCDD/F	
	5-10 %	PCDD/F, BkF, lcdP				
	1-5 %	PM ₁₀ , PM _{2.5} , Cu, Pb, BbF, BaP	SO ₂ , PM ₁₀ , PM _{2.5} , As, Cd, Cr, Cu, Ni, BaP, BbF, BkF, IcdP	SO ₂ , PM ₁₀ , PM _{2.5} , As, Cd, Cr, Cu, Ni, BaP, BbF, BkF, IcdP		
	< 1 %	SO ₂ , NO _x , CO, NH ₃ , TSP, BC, As, Cd, Cr, Hg, Ni. Se, HCB, PCBs	NO _x , CO, NH ₃ , TSP, BC, Hg, Se, HCB, PCBs	NO _x , CO, NH ₃ , TSP, BC, Hg, Se, HCB, PCBs		
Quality of spatial dataset	А					
Applicability as spatial	060100 Paint application			4		
proxy	060400 Other use of solvents and related activities				3	
	060601 Use of fireworks				3	
	060602 Use of tobacco (smoking)				3	
	060603 Use of shoes				3	
	060606 Use of candles				2	
	0912 Accidental fires (excl. 091206 Industrial building fires)				4	

Table 5.3 GeoKey for population.

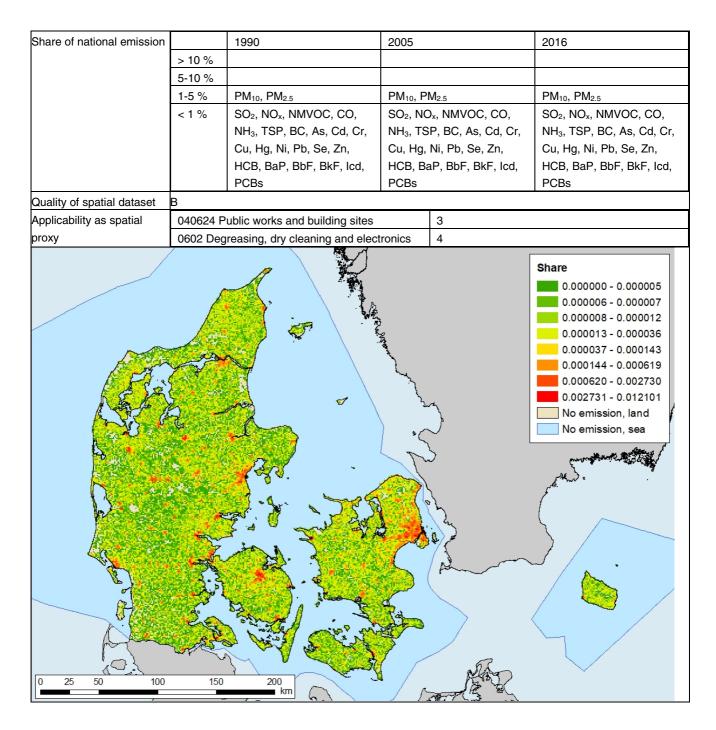

5.1.2 Industrial area

The general GeoKey for industrial areas is very generic and quite uncertain, and therefore it has been assigned the low quality rating of D. As a spatial proxy, the dataset is also very uncertain and therefore has been assigned ratings of fair to very poor. The majority of the emission sources are very specific production processes, e.g. brick and tiles manufacturing that only occurs on a limited number of sites. The use of this GeoKey will therefore tend to overestimate emissions around the population centres where there is a high proportion of industrial areas, but the industries are not producing emissions as they use electricity or district heating for their processes.

Source data	Kort10 version 2011				
Data provider	The Danish Agency for Data Supply and Effeciency				
Projection	EUREF89 UTM zone 32N				
Data description	The layer include areas with buildings categorised as industrial buildings. The 2011 version of Kort10 is used. The choice of dataset version is verified by visual comparison with World Imagery in ArcMap (Source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, Aer- oGRID, IGN, and the GIS User Community).				
Workflow	The industrial building layer is intersected with the 1 km x 1 km Danish grid net and the share of the to- tal industrial building area is calculated by grid cell.				
GeoKey name	_Key_Industry				
Year dependent	Νο				

Table 5.4GeoKey for industrial areas.

Share of national emission		1990 2005		2016		
	> 10 %	As, Ni	SO ₂ , As, Ni, HCB	SO ₂ , As	SO ₂ , As	
	5-10 %	SO ₂ , NMVOC, Cr, Se, Zn	NMVOC, Cr, Pb, Se, PCDD/F	Cr, Hg, Ni, Pb,		
	1-5 %	NO _x , TSP, PM ₁₀ , PM _{2.5} , Cd, Cu, Hg, Pb, HCB, PCDD/F, BbF, BkF, IcdP	NO _x , PM ₁₀ , PM _{2.5} , Cd, Hg, Zn	NO _x , PM	₁₀ , Cd, Se, Zn,	
	< 1 %	CO, NH ₃ , BC, BaP, PCBs	CO, NH ₃ , TSP, BC, Cu, BaP, BbF, BkF, IcdP, PCBs			
Quality of spatial dataset	D					
Applicability as spatial	03 Combi	4				
proxy	040306 A	4				
	040605 B	4				
	040606 W	5				
	040607 B	5				
	040608 S	5				
	040610 A	5				
	040614 Li	4				
	040617 O	4				
	040618 Li	4				
	040619 S	4				
	040620 W	5				
	040626 F	5				
	040627 M	5				
	040690 S	4				
	040691 P	5				
	040692 E	5				
	040698 M	4				
	040699 C	4				
	0603 Chemical products manufacturing or processing 4					
	091206 Industrial building fires				3	



5.1.3 Buildings

The spatial theme for buildings are considered relatively accurate with a rating of B. Uncertainties relate to the fact that it is currently not year dependent and therefore, it is a snapshot of status in 2011. The GeoKey is only used for the emission sources "construction and demolition" and "degreasing, dry cleaning and electronics". As part of the construction will occur outside the actual build-up area, the proxy is considered to have a fair correlation. Emissions from degreasing, dry cleaning and electronics will not occur evenly from all buildings and the applicability is considered poor.

Table 5.5 Georey 10	r buildings.
Source data	Kort10 version 2011
Data provider	The Danish Agency for Data Supply and Effeciency
Projection	EUREF89 UTM zone 32N
Data description	The layer include buildings as polygons. The 2011 version of Kort10 is used. The choise of dataset ver- sion is verified by visual comparison with World Imagery in ArcMap (Source: ESRI, DigitalGlobe, Geo- Eye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Com- munity).
Workflow	The building layer is intersected with the 1 km x 1 km Danish grid net and the share of the total building area is calculated by grid cell.
GeoKey name	_Key_Building
Year dependent	No

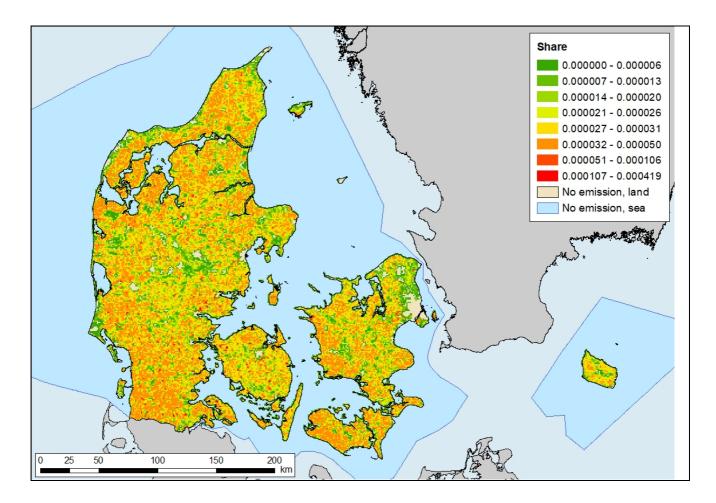
T.L		
I able 5.5	GeoKey for building	gs

5.1.4 One-storey settlement

The GeoKey is based on the theme "one-storey settlement" in Kort10. The 2011 version is used as this includes more areas than the other available versions. Unfortunately, a visual check of the data set against orthophotos shows that the theme also include some fur animal farms and lakes, but this is found to be only a minor error. The GeoKey is based on the distribution of the area of one-storey settlements, as no information is available to differentiate the activity or emissions between the individual polygons in the theme.

The GeoKey for one-storey settlement is considered to have a medium uncertainty. The applicability as a spatial proxy is considered fair for the few emission sources, where it is used.

Data provider The Projection EUF Data description The 201 Wor Workflow The GeoKey name _Ke Year dependent No Share of national emission > 1 5-1 5-1	t10 version 2011 Danish Agency for Data Supply and E REF89 UTM zone 32N a layer include areas with buildings cate 1 version of Kort10 is used. The choice rld Imagery in ArcMap (Source: ESRI, USDA, USGS, AeroGRID, IGN, and the cone-storey settlement layer is intersect total one-storey settlement area is cale by_Building_OneStorey 1990	egorised as one-storey settlem e of dataset version is verified DigitalGlobe, GeoEye, Earthst he GIS User Community). cted with the 1 km x 1 km Dani	by visual comparison with ar Geographics, CNES/Airbus	
Projection EUF Data description The 201 Wor DS, Workflow The the t GeoKey name Ker Year dependent No Share of national emission > 1 5-1 5-1	REF89 UTM zone 32N layer include areas with buildings cate 1 version of Kort10 is used. The choice rld Imagery in ArcMap (Source: ESRI, USDA, USGS, AeroGRID, IGN, and the one-storey settlement layer is intersect total one-storey settlement area is cale by_Building_OneStorey	egorised as one-storey settlem e of dataset version is verified DigitalGlobe, GeoEye, Earthst he GIS User Community). cted with the 1 km x 1 km Dani	by visual comparison with ar Geographics, CNES/Airbus	
Data description The 201 Wor DS, Workflow The the t GeoKey name _Ke Year dependent No Share of national emission > 1 5-1	e layer include areas with buildings cate 1 version of Kort10 is used. The choice rld Imagery in ArcMap (Source: ESRI, USDA, USGS, AeroGRID, IGN, and the e one-storey settlement layer is intersect total one-storey settlement area is cale ey_Building_OneStorey	e of dataset version is verified DigitalGlobe, GeoEye, Earthst he GIS User Community). cted with the 1 km x 1 km Dani	by visual comparison with ar Geographics, CNES/Airbus	
Data description The 201 Wor DS, Workflow The the t GeoKey name _Ke Year dependent No Share of national emission 21 5-1	1 version of Kort10 is used. The choice rld Imagery in ArcMap (Source: ESRI, USDA, USGS, AeroGRID, IGN, and the one-storey settlement layer is intersed total one-storey settlement area is calc ey_Building_OneStorey	e of dataset version is verified DigitalGlobe, GeoEye, Earthst he GIS User Community). cted with the 1 km x 1 km Dani	by visual comparison with ar Geographics, CNES/Airbus	
Workflow The the t GeoKey name _Ke Year dependent No Share of national emission > 1 5-1	e one-storey settlement layer is intersed total one-storey settlement area is cald ey_Building_OneStorey	cted with the 1 km x 1 km Dani	sh grid net and the share of	
GeoKey name _Key Year dependent No Share of national emission > 1 5-1	ey_Building_OneStorey			
Year dependent No Share of national emission > 1 5-1				
Share of national emission > 1 > 1 5-1	1990			
5-1				
5-1	10 %		2016	
	10 %			
I 1_0	5 % CO, BkF		со	
	1 % SO ₂ , NO _x , NMVOC, NH ₃ ,	CO, BaP, BbF, BkF, IcdP SO ₂ , NO _x , NMVOC, NH ₃ ,	SO ₂ , NO _x , NMVOC, NH ₃ ,	
	TSP, PM_{10} , $PM_{2.5}$, BC, As,	TSP, PM ₁₀ , PM _{2.5} , BC, As,	SO_2 , NO_x , $NMVOC$, NH_3 , TSP, PM_{10} , $PM_{2.5}$, BC, As,	
	Cd, Cr, Cu, Hg, Ni, Pb, Se,		Cd, Cr, Cu, Hg, Ni, Pb, Se,	
	Zn, HCB, PCDD/F, BaP,	Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PCBs	Zn, HCB, PCDD/F, BaP,	
	BkF, IcdP, PCBs	ZII, HCB, FCDD/F, FCBS	BbF, BkF, IcdP, PCBs	
		DUF, DKF, ICUF, FCDS		
Quality of spatial dataset C				
	60605 BBQ	3		
	309 Household and gardening 01104 Home composting			
			0.00026 - 0.00033 0.00034 - 0.00057 0.00058 - 0.00132 0.00133 - 0.00356 0.00357 - 0.01034 0.01035 - 0.03080 0.03081 - 0.09259 No emission, land No emission, sea	


5.1.5 Agricultural area

The GeoKey is based on areas categorised as agriculture in The Danish Areal Information System, AIS. Currently, no distinction is made between conventional and organic cultivated areas.

The GeoKey for agricultural area is considered to have a medium uncertainty, as the dataset is rather old (finalised in 2000). The applicability as a spatial proxy is considered fair for the few emission sources, where it is used. The only exception is field burning of agricultural residues, which occur on a limited part of the agricultural areas, and therefore is considered a very poor proxy.

, , , ,						
Source data	The Danish Area Information System, AIS					
Data provider	The Danish Ministry of the Environment					
Projection	ED-50 UTM32N					
Data description	AIS is an in	tegrated spatial nature and envi	ronment da	ta set made in a joint	project between The National En-	
	vironmenta	I Research Institute, The Geolog	ical Survey	of Denmark and Gre	enland, The Danish Forest and	
	Landscape	Research Institute, The Danish	Forest and	Nature Agency, The I	Danish Environmental Protection	
	Agency, Th	e Danish Energy Agency, The D	anish Surv	ey and Cadastre, The	e Spatial Planning Department,	
	The Ministr	y of Energy, Fisheries and Food	, the Danisł	n counties, The Munic	ipality of Copenhagen, and The	
	Royal Dani	sh Administration of Navigation a	and Hydrog	raphy.		
Workflow	Land use category 2112 Agriculture is selected and the polygons are intersected with the 1 km x 1 km gri					
	The GeoKe	ey is calculated as the share of	the total a	gricultural area by gr	rid cell.	
GeoKey name	_Key_AgriculturalArea					
Year dependent	No					
Share of national emission		1990	2005		2016	
	> 10 %	BC	BC, PC	Bs	PCBs	
	5-10 %	CO, PM ₁₀ , PM _{2.5} , PCBs	NO _x ,		CO, BC	
	1-5 %	NO _x , NMVOC, TSP, BkF	NMVOC, CO, TSP, PM ₁₀ ,		NO _x , PM ₁₀ , PM _{2.5} , HCB	
	1.0/		PM _{2.5} , H			
	< 1 %	SO ₂ , NH ₃ , As, Cd, Cr, Cu,	SO ₂ , NH ₃ , As, Cd, Cr, Cu,		SO ₂ , NMVOC, NH ₃ , TSP,	
		Hg, Ni, Pb, Se, Zn, HCB,	Hg, Ni, Pb, Se, Zn,		As, Cd, Cr, Cu, Hg, Ni, Pb,	
A 11 1 1 1 1 1 1 1 1 	-	PCDD/F, BaP, BbF, IcdP	PCDD/F	-, PAH	Se, Zn, PCDD/F, PAH	
Quality of spatial dataset						
Applicability as spatial	0806 Agricultural machinery		3			
proxy	3Dc Farm-level agricultural operations		3			
	3De Cultivated crops		3			
	3Df Use of pesticides		4			
	3F Field burning of agricultural residues			5		

Table 5.7 GeoKey for agricultural land.

5.2 Stationary combustion

As mentioned a large part of the emissions from stationary combustion is available in the national emission inventory system on plant level (LPS) and is allocated to the exact location of e.g. heat and power plants. Further, fuel consumptions are available for a large number of plants (PS) in the database on plants producing heat and/or electricity to the public grid, provided annually by the DEA, including fuel consumption by fuel on facility level.

Table 5.8 shows the share of emissions from stationary combustion of the national total emissions for the pollutants covered by the SPREAD model. It can be seen that the share for almost all pollutants have remained over 10 % of the national total throughout the time series.

For many pollutants, the share has decreased. This is particularly the case for pollutants, where the main emission comes from LPS, and where abatement has reduced emissions of e.g. SO_2 , NO_x and heavy metals substantially. For other pollutants, where small combustion is the main source, e.g. NMVOC, NH_3 , PM, BC and CO, the emission share has been increasing, due to the increased use of fuel wood in the residential sector.

Table 5.8	Share of emissions from static	Share of emissions from stationary combustion of the national total.				
Share	1990	2005	2016			
> 10 %	NO _x , SO ₂ , TSP, PM ₁₀ , PM _{2.5} , BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, PCDD/F, BaP BbF, BkF, IcdP, HCB	Ha As Cr Ni Se Zn	NO _x , NMVOC, SO ₂ , TSP, PM ₁₀ , PM _{2.5} , BC, CO, Pb, Cd, Hg, As, Cr, Ni, Se, Zn, PCDD/F, BaP, BbF, BkF, IcdP, HCB			
5-10 %	NMVOC		SO ₂			
1-5 %	PCBs	NH ₃ , Cu, PCBs	NH ₃ , Cu			
< 1 %	NH₃		PCBs			

An overview of the different activities within stationary combustion is provided together with the GeoKey for the individual activities in Table 5.9.

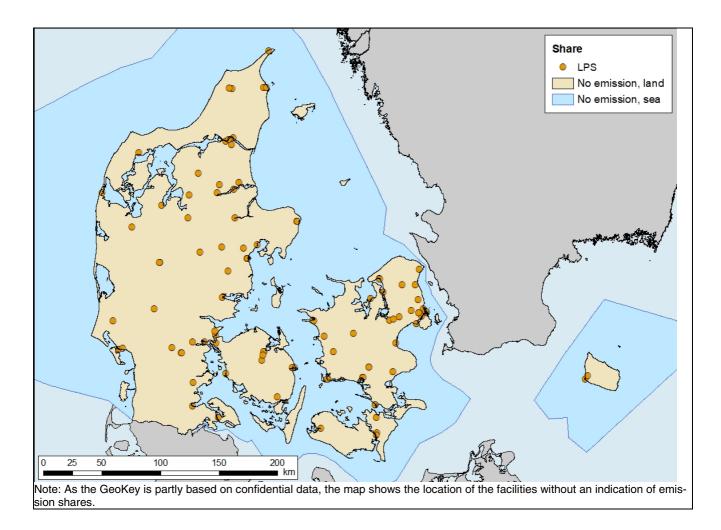
Table 5.9 Activities (excl. LPS) within stationary combustion and corresponding GeoKeys.

Activity	SNAP category	GeoKey
Public electricity and heat production	0101 & 0102	_Key_EPT
Offshore combustion	0105	_Key_010504_OffshoreGasturbines
Manufacturing plants	0304 - 0320	_Key_Industry
Commercial and institutional plants - gaseous fuels	0201	_Key_0201_Gas
Commercial and institutional plants - liquid fuels	0201	_Key_0201_Liquid
Commercial and institutional plants - solid fuels	0201	_Key_0201_Solid
Residential plants – gaseous fuels	0202	_Key_0202_Gas
Residential plants – liquid fuels	0202	_Key_0202_Liquid
Residential plants – solid fuels	0202	_Key_0202_Solid
Residential plants – straw	0202	_Key_02_Straw
Agricultural plants – gaseous fuels	0203	_Key_0203_Gas
Agricultural plants – liquid fuels	0203	_Key_0203_Liquid
Agricultural plants – solid fuels	0203	_Key_0203_Solid
Agricultural plants – straw	0203	_Key_02_Straw

The subsectors within stationary combustion are described in more detail in the following chapters.

5.2.1 Large point sources

Large Point Sources (LPS) are major point sources for which data on fuel consumption (FC) and plant specific emission factors or direct emissions are available to a large degree. Data are mainly based on environmental and annual reports, reports under the EU Emission Trading Scheme (EU ETS) and emission data provided by the major companies in the Danish transformation sector (plant specific data provided by major power plant operators). Further, a number of companies and plants contribute additional data annually or on request. LPS cover the largest heat and power plants, some major industrial plants, e.g. refineries and cement production, and natural gas storage and treatment plants.


Results from SPREAD can be generated both including and excluding LPS emissions in order to comply with the demand to input emission data in different dispersion and air quality models like the Danish Eulerian Hemispheric Model (DEHM) and the Urban Background Model (UBM) (Ellermann et al., 2018). The inventory system include stack heights for all LPS, which is used in air quality modelling together with the spatial emissions.

As shown in Table 5.10, LPS accounts for a significant share of emissions for many pollutants. However, the share of national total emissions have generally been decreasing by the introduction of stricter emission limit values and hence the installation of abatement equipment.

A list of the plants included as LPS in the Danish inventory and their coordinates are included in Annex 4.

Table 5.10 George Ion laig	go point ood				
Source data	Inventory data				
Data provider	Relevant agencies and companies				
Projection	ETRS89 UT	TM zone 32N			
Data description	Detailed da	ta are gathered from LPS facili	ities for use in the Danish emis	sion inventories. Data include	
	address, ac	tivity data and/or emissions/en	nission factors by facility.		
Workflow	Emissions a	are allocated to the exact posit	ion of the emission source.		
GeoKey name	No GeoKey	s are produced, as the LPS er	nissions are stored in the inver	ntory database system on facil-	
	ity level in a	format that is useful in SPRE	AD. The LPS emissions are tre	ated separately in order to en-	
	able genera	ation on outputs both including	LPS emissions and with LPS e	emissions separately, the latter	
	being used	as input in air quality modelling	g.		
Year dependent	Yes. LPS e	missions are available annually	y from 1994 in the inventory da	tabase	
Share of national emission		1990	2005	2016	
	> 10 %	SO ₂ , NO _x , As, Cd, Cr, Hg,	SO ₂ , NO _x , As, Cd, Cr, Hg,	SO ₂ , NO _x , As, Cr, Hg, Ni,	
		Ni, Se, Zn, HCB, PCDD/F,	Ni, Pb, Se, HCB	Se, HCB	
		BkF			
	5-10 %	BaP, IcdP	Zn, PCDD/F	NMVOC, Cd, Pb	
	1-5 %	CO, TSP, PM ₁₀ , PM _{2.5} , Cu,	NMVOC, CO, TSP, PM ₁₀ ,	CO, PM ₁₀ , PM _{2.5} , Zn,	
		Pb, BaP, PCBs	PM _{2.5} , PAH, PCBs		
	< 1 %	NMVOC, NH ₃ , BC	NH₃, BC, Cu	NH ₃ , TSP, BC, Cu, PAH,	
				PCBs	
Quality of spatial dataset	А				
Applicability as spatial	1				
proxy					

Table 5.10 GeoKey for large point source (LPS).

5.2.2 Point sources

Data on FC and combustion technology are based on the annual database from the Danish Energy Agency (DEA), holding data separately for each district heating or power producing plant ("Energiproducenttællingen", EPT). Emissions are estimated per plant and using the geographical coordinates for the plants, annual GeoKeys are prepared. EPT is available for the years 1994 onwards.

Some LPS are included in the EPT and are therefore removed from the dataset to avoid double accounting.

The EPT includes PS in several sectors, i.e. public electricity and heat production, manufacturing industries, commercial/institutional and agricultural. The workflow in preparing the data is the same for all sectors. The explanation of the workflow has therefore only been included under 'Public electricity and heat production'.

Public electricity and heat production

The part of the public electricity and heat production sector not covered by LPS (see Chapter 5.2.1) is distributed using the EPT GeoKey. The number of LPS in the Danish inventories has increased over the years and in 1990 only very few plants were included as LPS. This means that the EPT GeoKey is used for a very large share of the emissions in 1990.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as the EPT include addresses and coordinates. The spatial applicability is considered very good, as it is based on plant level fuel consumption in the EPT.

· · ·		. , , ,			
Source data	EPT (see d	lescription above)			
Data provider	Danish Energy Agency (DEA)				
Projection	ETRS89 U	TM zone 32N			
Data description	(see descri	ption above)			
Workflow	The EPT data include some LPS, which are all identified and excluded from the data processing to avoid double counting. Further, PS without any fuel consumption are excluded from the data processing (e.g. facilities with solar power). Geographical coordinates are missing for few facilities, and these are added manually based on the address. Fuel consumption is aggregated to the fuel categories in the inventory system (e.g., wood chips, wood waste, and wood pellets are combined in the fuel category "Wood and similar wood wastes"). The EPT fuel consumption are combined with emission factors for area sources from the inventory system. A few snap-fuel combinations do not occur in the inventory, and applicable emission factors are selected for emission calculations. Emissions calculated from the EPT fuel consumption and the corresponding				
		• •	m are summarised by 1 km x 1	km grid cell, and the GeoKey	
		d as the share of the annual to	tal EPT emission by grid cell.		
GeoKey name	_Key_EPT				
Year dependent	Yes. EPT c	lata are available annually fron	n 1994. 1995 data are used for	1990.	
Share of national emission		1990	2005	2016	
	> 10 %	As, Cd, Cr, Hg, Ni, Se, Zn, HCB, PCDD/F			
	5-10 %	SO ₂ , Cu, Pb,		SO ₂	
	1-5 %	NO _x , BbF, BkF	SO ₂ , NO _x , NMVOC, CO, As, Cr, Hg, Ni, HCB, BkF	NO _x , CO, PM _{2.5} , As, Cr, Hg, Ni, Se, HCB, BbF, BkF	
	< 1 %	NMVOC, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, BaP, IcdP, PCBs	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, Cd, Cu, Pb, Se, Zn, PCDD/F, BaP, BbF, IcdP, PCBs	TSP, PM ₁₀ , BC, Cd, Cu, Pb, Zn, BaP, IcdP, PCBs	
Quality of spatial dataset	A	•	·		
Applicability as spatial	1				
proxy					

Table 5.11 GeoKey for point sources – public electricity and heat production.

Other sectors

As mentioned, the EPT also includes information for plants in industry, the commercial/institutional sector and in agriculture. However, the number of plants and their fuel consumption is limited and the contribution to the national total is for all pollutants less than 1 %.

The workflow for preparing the GeoKey has been described under 'Public electricity and heat production' and is not repeated here.

5.2.3 Offshore combustion

Denmark has offshore oil and gas extraction in the Danish part of the North Sea. The extraction process is energy demanding and the energy is produced on site by combustion of gas in gas turbines. The spatial dataset used for the GeoKey is considered to have very low uncertainty and the spatial applicability is considered very good, as the GeoKey is based on detailed data on installation level.

Table 5.12 Geokey for off						
Source data	Yearly data on oil and gas production in Denmark					
Data provider	The Danish Energy Agency					
Projection		ETRS89 UTM zone 32N				
Data description	Oil and gas production statistics for the years 1972 onwards. Data is available by offshore facility. The data set include data for oil production, gas production, fuel consumption and flaring rates.					
				-		
		formation on location and activi				
Workflow		of the total fuel consumption is	calculated by offshore facility a	and by year.		
GeoKey name	-	504_OffshoreGasturbines				
Year dependent		on fuel consumption.		<u></u>		
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %		NO _x	NO _x		
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,		
		NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	TSP, PM ₁₀ , PM _{2.5} , BC, As,	TSP, PM ₁₀ , PM _{2.5} , BC, As,		
		As, Cd, Cr, Cu, Hg, Ni, Pb,	Cd, Cr, Cu, Hg, Ni, Pb, Se,	Cd, Cr, Cu, Hg, Ni, Pb, Se,		
		Se, Zn, HCB, PCDD/F,	Zn, HCB, PCDD/F, PAH,	Zn, HCB, PCDD/F, PAH,		
		PAH, PCBs	PCBs	PCBs		
Quality of spatial dataset	А					
Applicability as spatial	1					
proxy						
		Browned Lawrence		 0.03 - 0.04 0.05 - 0.07 0.08 - 0.10 0.11 - 0.14 0.15 - 0.18 0.19 - 0.23 0.24 - 0.29 No emission, land No emission, sea 		
0 25 50 100 150	200	- ich	() of	and a start		

Table 5.12 GeoKey for offshore combustion.

5.2.4 Manufacturing plants

Emissions from manufacturing plants are largely covered by LPS and PS; see Chapter 5.2.1 and 5.2.2. The part of emissions that are not covered by LPS and PS is distributed using the general GeoKey for industry as described in Chapter 5.1.2. The share of emissions from manufacturing industry to the national total not covered by LPS and PS is shown in Table 5.13.

Table 5.13 Share of emissions from manufacturing plants (excl. LPS and PS) of the national total.

Share	1990	2005	2016
> 10 %	As, Ni	SO2, As, Ni, HCB	As
5-10 %	SO ₂ , Cr, Se, Zn	Cr, Se, Pb	SO ₂ , Cr, Hg, Ni, Pb
1-5 %	NO _x , PM _{2.5} , Cd, Cu, Hg, Pb, HCB, PCDD/F, BbF, BkF	NO _x , Cd, Hg, Zn, PCDD/F	NO _x , Cd, Se, Zn, HCB
< 1 %	NMVOC, CO, NH₃, TSP, PM₁₀, BC, BaP, IcdP, PCBs	NMVOC, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, Cu, PAH, PCBs	NMVOC, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, Cu, PCDD/F, PAH, PCBs

5.2.5 Commercial & institutional plants

The national building and dwelling register (BBR) is used to identify commercial and institutional buildings based on building use information. Further, information on primary and supplementary heating is used to prepare separate GeoKeys for commercial & institutional plants using gaseous, liquid and solid fuels.

The BBR does not hold detailed information on installation technology, which would make it possible to differentiate emissions between the identified plants. Therefore, the GeoKey is set up to distribute emissions evenly between the identified plants. For buildings with both primary and supplementary heating relevant for a given GeoKey, both are included. Due to the limitations in the structure of the BBR, a building can have only one primary heating and one supplementary heating, regardless that it might have two or more supplementary heating installations of the same or different types.

The following building use, heating installation, fuel, and supplementary heating categories are included in the GeoKey for emissions from commercial and institutional plants.

Table 5.14 BBR categories included in the GeoKeys for commercial and institutional plants

Table 3.14 BBIT categories included in the deorteys for	commercial and institut	lional plants.	
Building use	Heating installation	Fuel	Supplementary heating
150 Dormitory	2 Boiler, one unit	2 Town gas	2 Stove, solid fuel
160 24-hour care centre	3 Stove	3 Liquid	3 Stove, liquid fuel
300-399 Buildings for retailer, transport, office, liberal	6 Boiler, two units	4 Solid	5 Open fireplace, solid fuel
profession, service etc.	8 Gas appliance	7 Natural gas	6 Gas
400-499 Buildings for cultural purpose and institutions			10 Biogas
520-521 Holiday resort			
529-535 Building related to sport exercise			

The spatial dataset used for the GeoKey is considered to have medium uncertainty as the BBR register generally have uncertainties regarding heating installation. Due to legislation for gas-fired appliances, the registration is assumed more accurate than for liquid and solid fuel installations. The spatial applicability is considered fair as the data is a snapshot from 2017 and does not include any time series data. Further, the data set does not include any activity data.

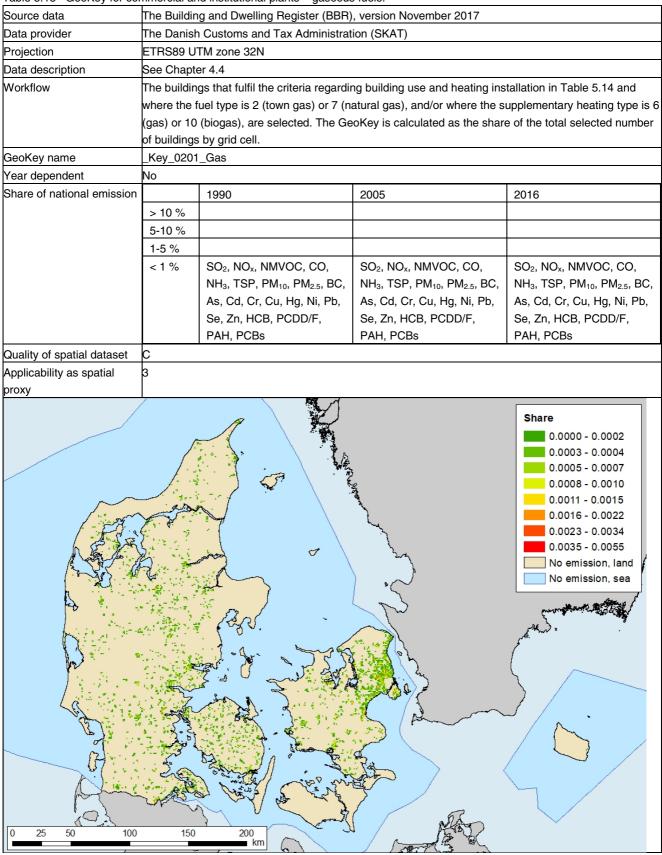
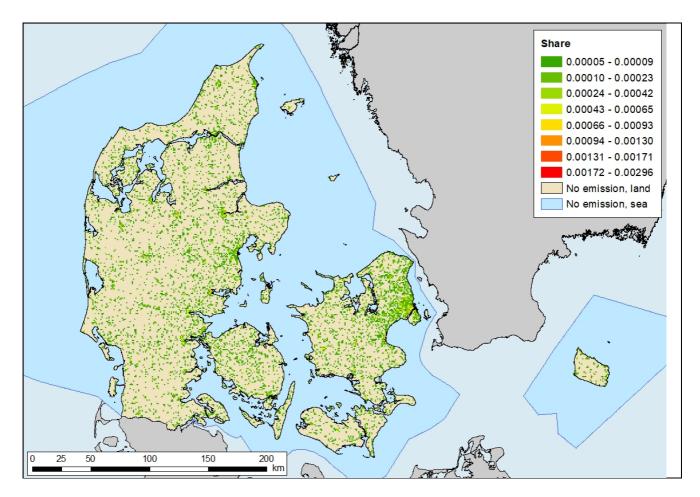
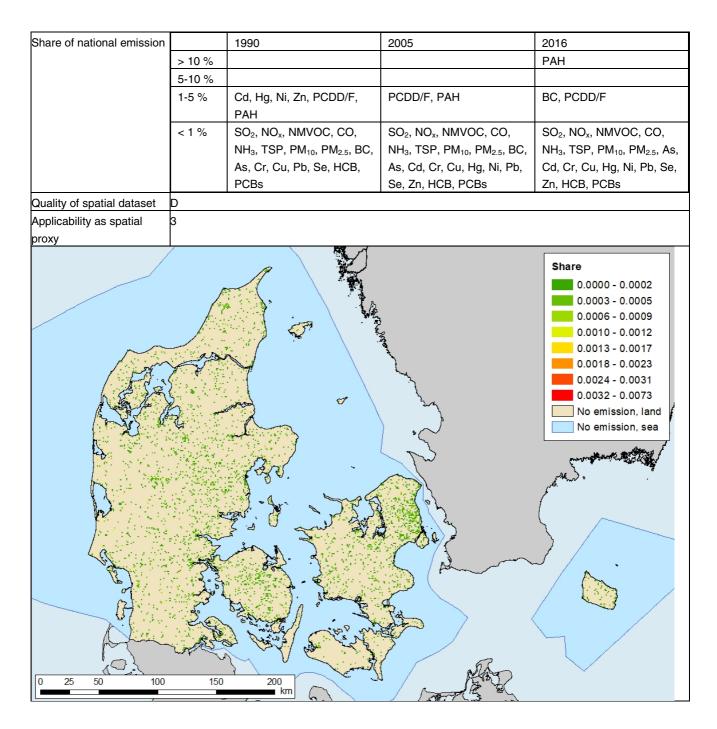



Table 5.15 GeoKey for commercial and institutional plants - gaseous fuels.

The spatial dataset used for the GeoKey is considered to have high uncertainty as the BBR register generally have uncertainties regarding heating installation, and the number of liquid fuel appliances is overestimated, as many have been taken out of use without being removed or changed in the register. The spatial applicability is considered fair as the data is a snapshot from 2017 and does not include any time series data. Further, the data set does not include any activity data.

Source data	The Building and Dwelling Register (BBR), version November 2017						
Data provider	The Danish	The Danish Customs and Tax Administration (SKAT)					
Projection	ETRS89 U	TM zone 32N					
Data description	See Chapte	er 4.4					
Workflow	The buildin	gs that fulfil the criteria regardir	ng building use and heating ins	tallation in Table 5.14 and			
	where the f	uel type is 3 (liquid), and/or wh	ere the supplementary heating	type is 3 (liquid), are selected.			
	The GeoKe	y is calculated as the share of	the total selected number of bu	uildings by grid cell.			
GeoKey name	_Key_0201	_ Liquid					
Year dependent	No						
Share of national emission		1990	2005	2016			
	> 10 %						
	5-10 %						
	1-5 %	Ni					
	<1%	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,			
		NH3, TSP, PM10, PM2.5, BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,			
		As, Cd, Cr, Cu, Hg, Pb, Se,	As, Cd, Cr, Cu, Hg, Ni, Pb,	As, Cd, Cr, Cu, Hg, Ni, Pb,			
		Zn, HCB, PCDD/F, PAH,	Se, Zn, HCB, PCDD/F,	Se, Zn, HCB, PCDD/F,			
		PCBs	PAH, PCBs	PAH, PCBs			
Quality of spatial dataset	D						
Applicability as spatial	3						
proxy							


Table 5.16 GeoKey for commercial and institutional plants – liquid fuels.

The spatial dataset used for the GeoKey is considered to have high uncertainty as the BBR register generally have uncertainties regarding heating installation. The number of solid fuel appliances is largely underestimated in BBR. The house owners have the responsibility to register installation of new appliances and dismantling of old appliances. The spatial applicability is considered fair as the data is a snapshot from 2017 and does not include any time series data. Further, the data set does not include any activity data.

Source data	The Building and Dwelling Register (BBR), version November 2017
Data provider	The Danish Customs and Tax Administration (SKAT)
Projection	ETRS89 UTM zone 32N
Data description	See Chapter 4.4
Workflow	The buildings that fulfil the criteria regarding building use and heating installation in Table 5.14 and where the fuel type is 4 (solid fuel), and/or where the supplementary heating type is 2 (stove, solid fuel) or 5 (open fireplace, solid fuel), are selected. The GeoKey is calculated as the share of the total selected number of buildings by grid cell.
GeoKey name	_Key_0201_ Solid
Year dependent	Νο

Table 5.17 GeoKey for commercial and institutional plants - solid fuels.

5.2.6 Residential plants

The GeoKeys for residential plants are based on detailed data from The Danish Association of Chimneysweepers (SFL), see Chapter 4.6, and data from the BBR. The SFL data holds the address and the type of appliance, but no information of the building use. A spatial join is run in GIS to join the building use from the nearest BBR address point to each of the SFL address points. Data from the BBR is used for gap filling for the areas not included in the SFL data (see Figure 4.2), so that these areas are based entirely on BBR data.

The BBR holds data on building level while the SFL data are on addresses level, and therefore one address in the SFL data can be associated with different building use types in the BBR after the spatial join of the two data sets. To assign only one building use type to each SFL address, ranking of building use types is introduced, see Table 5.18 and Table 5.19.

Table 5.18 Ranking of building use in the BBR associated to the SFL for appliances fired with liquid or solid fuels.

Ranking	Building use
1	Residential, Permanent residence
2	Agricultural
3	Residential, Holiday house
4	Residential, Apartment
5	Commercial & Institutional

Table 5.19 Ranking of building use in the BBR associated to the SFL for appliances fired with straw.

Ranking	Building use
1	Agricultural
2	Residential, Permanent residence
3	Residential, Holiday house
4	Residential, Apartment
5	Commercial & Institutional

The straw-fired boilers are allocated very differently in SFL and BBR between residential and agricultural buildings, which makes it problematic to use BBR for gap filling. To overcome this issue, a common GeoKey is prepared for straw-fired boilers, including all straw-fired appliances in SFL and BBR regardless of building use (commercial and institutional, residential, or agricultural).

Appliances on addresses, which have been assigned specific building uses, heating installations, fuels, and supplementary heating categories, are included in the GeoKey for emissions from residential plants (see Table 5.20).

Building use	Building categories	Heating installa- tion	Fuel	Supplementary heating
110 Farmhouse	Permanent residence	2 Boiler, one unit	2 Town gas	2 Stove, solid fuel
120, 130-132 Detached house	Permanent residence	3 Stove	3 Liquid	3 Stove, liquid fuel
140 Apartment building	Apartment	6 Boiler, two units	4 Solid	5 Open fireplace, solid fuel
185 Annexe to permanent residence	Permanent residence	8 Gas appliance	6 Straw	6 Gas
190 Other permanent residence	Permanent residence		7 Natural gas	10 Biogas
510 Holiday house	Holiday house			
522, 523 Holiday apartment	Holiday house			
539 Other holiday building	Holiday house			
540 Allotment	Holiday house			
585 Annexe to holiday house	Holiday house			
590 Other leisure building	Holiday house			

Table 5.20 BBR categories included in the GeoKeys for residential plants.

Separate GeoKeys are prepared for gaseous fuels, liquid fuels, straw and solid fuels (wood). Only a very limited number of gas-fired appliances are included in the SFL data, as they do not require chimney sweeping unless they are connected to a chimney together with an appliance, for which chimney sweeping is compulsory. Accordingly, the GeoKey for gas-fired appliances are based solely on data from the BBR.

The GeoKeys for gaseous fuels, liquid fuels and straw are based on the location of the relevant appliances, i.e. the share of the total number of relevant appliances in the grid cells. A more detailed approach is made for solid fuels (wood being by far the dominant fuel), as residential wood combustion is a large emission source in Denmark with large impact on air quality and exposure, as emissions occur in low heights in areas where people live. The detailed methodology developed for residential wood combustion contribute a more precise reflection of the spatial emission pattern and thereby ensure the best possible input to the air quality models. The detailed methodology introduce weighting factors for the appliances based on appliance information in the SFL data, and building use information and heating type in the BBR. The residential buildings are subdivide into the categories "permanent residence", "apartment" and "holiday house", see Table 5.20. Further, the appliances are categorised as "boiler" or "stove", and as "primary" or "supplementary" heating installation (see Table 5.21).

Table 5.21 Categorisation of appliances in SFL based on SFL appliance group and BBR primary heating type.

, , , ,					
SEL appliance group	BBR primary heating	Categorisation			
SFL appliance group	type	Fuel	Technology	Primary/supplementary	
Other		Wood	Stove	Supplementary	
Other, wood		Wood	Stove	Supplementary	
Wood boiler		Wood	Boiler	Primary	
Wood stove	Gas	Wood	Stove	Supplementary	
Wood stove	Boiler, solid	Wood	Stove	Supplementary	
Wood stove	Boiler, liquid	Wood	Stove	Supplementary	
Wood stove	Boiler, straw	Wood	Stove	Supplementary	
Wood stove	Stove, solid	Wood	Stove	Primary	
Wood stove	Stove, liquid	Wood	Stove	Supplementary	
Wood stove	Other	Wood	Stove	Supplementary	
Gas		Gas	Boiler	Primary	
Straw boiler		Straw	Boiler	Primary	
Oil boiler		Liquid	Boiler	Primary	
Wood pellet boiler		Wood	Boiler	Primary	

For wood boilers, which are all assumed to be used as primary heating installations, a weighting factor of 1 is applied for permanent residences and apartments, while holiday houses have a weighting factor of 0.8, see Table 5.22. The relatively high factor allocated to holiday houses is assumed because the economic cost of installing a boiler and corresponding heat distribution system indicate that the holiday house will be used for the majority of the year or even be permanently inhabited, which is possible for retired people in Denmark. The corresponding weighting factor for primary stoves are 0.8 for permanent residences and apartments, and 0.2 for holiday houses. The factor for holiday houses is lower as they are generally smaller and occupied only part of the year mainly in warmer periods.

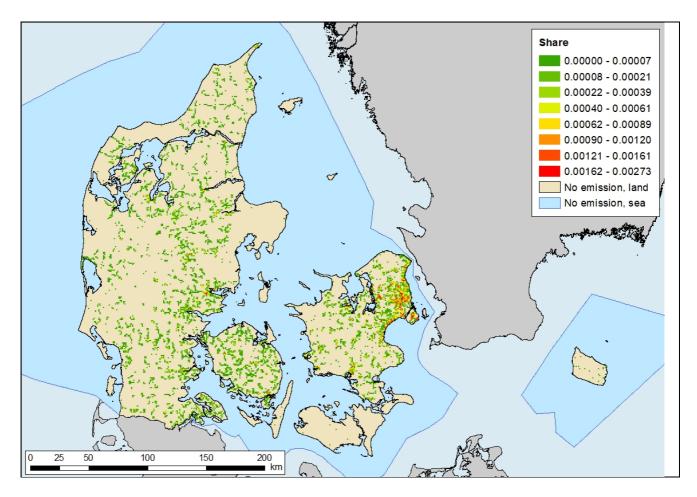
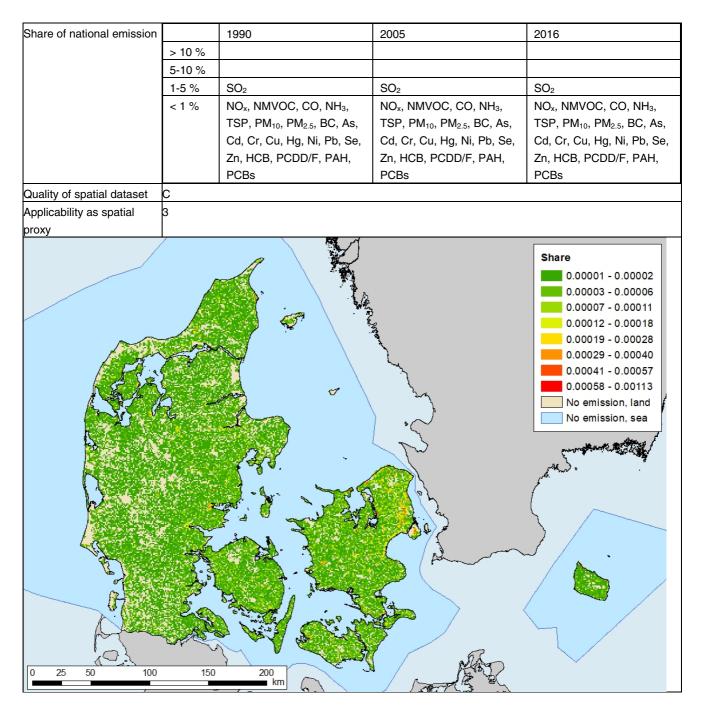

For supplementary appliances (only stoves) in permanent residences a weighting factor of 0.4 is applied, based on the assumption, that the wood consumption for supplementary heating is half the amount of primary heating with wood stoves, see Table 5.22. The wood consumption in apartments are assumed to be one tenth for supplementary heating (0.08) compared to primary heating, as the space for wood storage is limited, and access to and transport of the stored wood is often inconvenient. For holiday houses, the same weighting factor is applied for supplementary stove as for primary stove. See Plejdrup et al. (2016) for a more thorough description of the weighting factors for spatial emission modelling for residential wood combustion in Denmark.

Table 5.22 Weighting factors for residential wood appliances.					
Heating installation	n	Building categories	Weighting factor		
		Permanent residence	1		
	Boiler	Apartment	1		
Drimor chooting		Holiday house	0,8		
Primary heating		Permanent residence	0,8		
	Stove	Apartment	0,8		
		Holiday house	0,2		
		Permanent residence	0,4		
Supplementary heating	Stove	Apartment	0,08		
		Holiday house	0,2		

The spatial dataset used for the GeoKey for gas-fired residential plants is considered to have medium uncertainty as the BBR register generally have some uncertainties regarding heating installation. Due to legislation for gas-fired appliances, the registration is assumed more accurate than for liquid and solid fuel installations. The spatial applicability is considered fair as the data is a snapshot from 2017 and does not include any time series data. Further, the data set does not include any activity data.

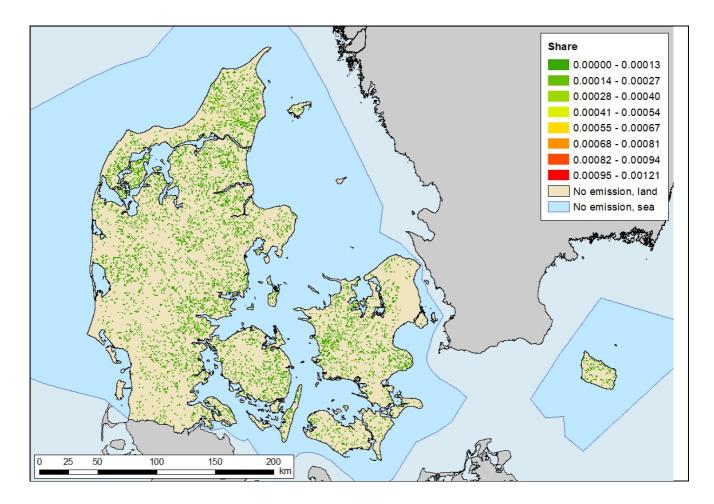
Table 5.23 GeoKey for residential plants – gaseous fuels.


Table 5.23 Geokey Ior les	naonnai piai	113 9430043 14013.				
Source data	The Building and Dwelling Register (BBR), version November 2017					
Data provider	The Danish	Customs and Tax Administrat	ion (SKAT)			
Projection	ETRS89 U	TM zone 32N				
Data description	See Chapte	er 4.4				
Workflow	The building	gs that fulfil the criteria regardir	ng building use and heating ins	tallation in Table 5.20 and		
	where the f	uel type is 2 (town gas) or 7 (n	atural gas), and/or where the s	upplementary heating type is 6		
	(gas) or 10	(biogas), are selected. The Ge	oKey is calculated as the share	e of the total selected number		
	of buildings	by grid cell.				
GeoKey name	_Key_0202	_Gas				
Year dependent	No					
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %			As		
	<1%	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,		
		NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,		
		As, Cd, Cr, Cu, Hg, Ni, Pb,	As, Cd, Cr, Cu, Hg, Ni, Pb,	Cd, Cr, Cu, Hg, Ni, Pb, Se,		
		Se, Zn, HCB, PCDD/F,	Se, Zn, HCB, PCDD/F,	Zn, HCB, PCDD/F, PAH,		
		PAH, PCBs	PAH, PCBs	PCBs		
Quality of spatial dataset	с					
Applicability as spatial	3					
proxy						

The spatial data used for the GeoKey for residential plants using liquid fuels is considered to have medium uncertainty as the number of appliances is overestimated in the SFL data as appliances not in use still require chimney sweep, and therefore occur in the SFL data (Nielsen & Plejdrup, 2018). The BBR register generally have uncertainties regarding heating installation and the number of liquid-fired appliances is largely overestimated. The spatial applicability is considered fair as neither the SFL nor the BBR data include time series or activity data.

Source data	SFL data
	The Building and Dwelling Register (BBR), version November 2017
Data provider	The Association of Danish Chimney sweepers (SFL)
	The Danish Customs and Tax Administration (SKAT)
Projection	ETRS89 UTM zone 32N
Data description	See Chapter 4.4 and Chapter 4.6
Workflow	Appliances from the SFL data that are categorised as using liquid fuels are include in the GeoKey, and for areas not covered by SFL, the buildings that fulfil the criteria in Table 5.20 and where the fuel is 3 (liquid) are used. The GeoKey is calculated as the share of the total selected number of buildings by grid cell.
GeoKey name	_Key_0202_ Liquid
Year dependent	Νο

Table 5.24 GeoKey for residential plants – liquid fuels.


The spatial data used for the GeoKey for residential plants using solid fuels is considered to have low uncertainty. The SFL data has a very low uncertainty but as it is not of full coverage, gap filling with BBR data with a medium uncertainty is made for smaller areas. The BBR register generally have uncertainties regarding heating installation and the number of appliances using solid fuels is largely underestimated. The spatial applicability is considered good. The dataset could be more applicable if the SFL or the BBR data included a time series. The weighting factors serve as proxy for actual activity data. Table 5.25 GeoKey for residential plants – solid fuels.

	suerniai pia	nts – solid fuels.					
Source data	SFL data						
	The Building and Dwelling Register (BBR), version November 2017						
Data provider	The Association of Danish Chimney sweepers (SFL)						
	The Danish	The Danish Customs and Tax Administration (SKAT)					
Projection	ETRS89 U	TM zone 32N					
Data description	See Chapt	er 4.4 and Chapter 4.6					
Workflow	Appliances	from the SFL data that are cat	egorised as using solid fuels a	re include in the GeoKey, and			
	for areas n	ot covered by SFL, the building	is that fulfil the criteria in Table	5.20 and where the fuel is 4			
	(solid) are	used. The GeoKey is calculated	d using the weighting factors in	Table 5.22. Further descrip-			
	tion is foun	d in Chapter 5.2.6 and in Plejdi	rup et al. (2016)				
GeoKey name	_Key_0202	2_Solid					
Year dependent	No						
Share of national emission		1990	2005	2016			
	> 10 %	PM ₁₀ , PM _{2.5} , BC, Cd,	CO, TSP, PM ₁₀ , PM _{2.5} , BC,	NMVOC, CO, TSP, PM ₁₀ ,			
		PCDD/F, PAH	Cd, Cr, Zn, PCDD/F, PAH	PM _{2.5} , BC, Cd, Cr, Zn,			
				PCDD/F, PAH			
	5-10 %	CO, TSP, Zn	NMVOC	Hg, Pb, HCB			
	1-5 %	NMVOC, Cr, Ni, HCB	SO ₂ , NH ₃ , As, Hg, Pb, HCB	SO ₂ , NO _x , NH ₃ , As, Ni, Se			
	< 1 %	SO ₂ , NO _x , NH ₃ , As, Cu, Hg,	NO _x , Cu, Ni, Se, PCBs	Cu, PCBs			
		Pb, Se, PCBs					
Quality of spatial dataset	В						
Applicability as spatial	2						
proxy							
			a stream and as	0.000006 - 0.00007 0.000008 - 0.000012 0.000013 - 0.000039 0.000040 - 0.000180 0.000181 - 0.000911 0.000912 - 0.004699 0.004700 - 0.024317			
A Contraction of the second seco	And a second of a			No emission, land No emission, sea			

The spatial data used for the GeoKey for straw-fired residential plants is considered to have low uncertainty. The SFL data has a very low uncertainty but as it is not of full coverage, gap filling with BBR data with a medium uncertainty is made for smaller areas. The BBR register generally have uncertainties regarding heating installation and the number of straw-fired appliances is largely overestimated. The spatial applicability is considered fair as the data is a snapshot from 2017 and does not include any time series data. Further, the data set does not include any activity data.

Table 5.26 GeoKey for residential and agricultural plants – straw.

Source data	SFL data	0 1					
	The Building and Dwelling Register (BBR), version November 2017						
Data provider		The Association of Danish Chimney sweepers (SFL)					
		Customs and Tax Administrat					
Projection		TM zone 32N					
Data description		er 4.4 and Chapter 4.6					
Workflow		from the SFL data that are cat	regorised as straw-fired are inc	clude in the GeoKey, and for			
		covered by SFL, the buildings fi	•	•			
		calculated as the share of the		. ,			
GeoKey name	_Key_02_S						
Year dependent	 No						
Share of national emission		1990	2005	2016			
	> 10 %	CO, PM _{2.5} , BC,		PM _{2.5} , BC, PCDD/F			
	5-10 %	PM ₁₀ , Cd, Zn, PCDD/F, BaP, BbF, BkF	PM ₁₀ , PM _{2.5} , BC, Cd, Cr, PCDD/F	SO ₂ , PM ₁₀ , Cd, Cr			
	1-5 %	NMVOC, TSP, Cr, lcdP	SO ₂ , NMVOC, CO, TSP, Zn, PAH	NMVOC, CO, TSP, Pb, Zn, HCB, PAH			
	< 1 %						
Quality of spatial dataset	В						
Applicability as spatial	3						
proxy							

5.2.7 Agricultural plants

The national building and dwelling register (BBR) is used to identify agricultural buildings from information on building use. Further, information on primary heating and fuel is used to identify agricultural plants. BBR does not hold detailed information on installation technology making it possible to differentiate emissions between the identified plants, and therefore the GeoKey is set up to distribute emissions evenly between the identified plants, i.e. all plants using a specific fuel is assumed to have the same fuel consumption.

The following building use, heating installation, fuel, and supplementary heating categories are included in the GeoKey for emissions from agricultural plants.

Table 5.27	BBR categories included in the	GeoKeys for agricultural plants.

Building use	Heating installation	Fuel	Supplementary heating
210 Production building in agriculture, horticulture etc.	2 Boiler, one unit	2 Town gas	2 Stove, solid fuel
211, 212, 213,214 Animal housing	3 Stove	3 Liquid	3 Stove, liquid fuel
215 Greenhouse	6 Boiler, two units	4 Solid	5 Open fireplace, solid fuel
216, 217, 218 Barn	8 Gas appliance	6 Straw	6 Gas
219 Other building in agriculture, forestry or fishery		7 Natural gas	10 Biogas
290 Other building in agriculture, industry etc.			

The spatial dataset used for the GeoKey for gas-fired agricultural plants is considered to have medium uncertainty as the BBR register generally have some uncertainties regarding heating installation. Due to legislation for gasfired appliances, the registration is assumed more accurate than for liquid and solid fuel installations. The spatial applicability is considered fair as the data is a snapshot from 2017 and does not include any time series data. Further, the data set does not include any activity data.

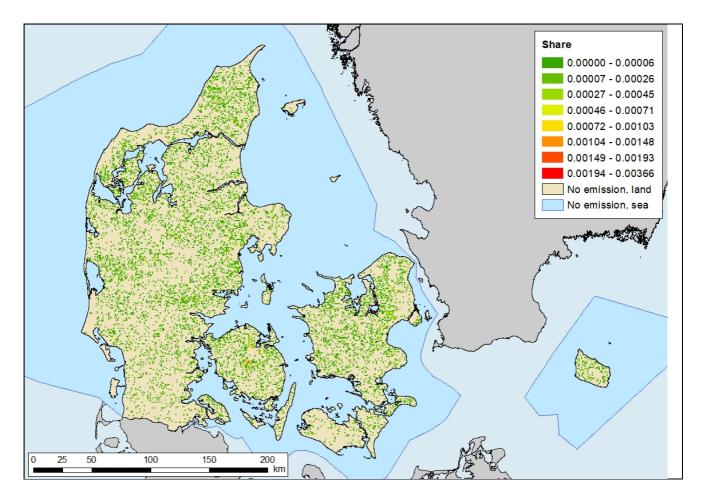
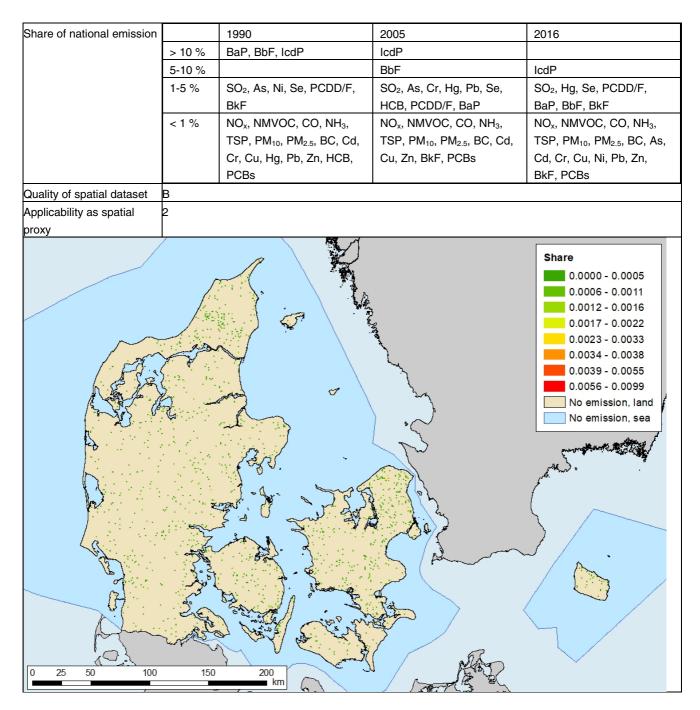

Table 5.28 GeoKey for ag	ricultural pla	ints – gaseous fuels.					
Source data	The Buildin	The Building and Dwelling Register (BBR), version November 2017					
Data provider	The Danish	Customs and Tax Administrat	tion (SKAT)				
Projection	ETRS89 U	TM zone 32N					
Data description	See Chapte	er 4.4					
Workflow			ng building use and heating ins	tallation in Table 5.27 and			
	where the f	uel type is 2 (town gas) or 7 (n	atural gas), and/or where the s	upplementary heating type is 6			
	(gas) or 10	(biogas), are selected. The Ge	oKey is calculated as the shar	e of the total selected number			
	of buildings	by grid cell.					
GeoKey name	_Key_0203	_Gas					
Year dependent	No						
Share of national emission		1990	2005	2016			
	> 10 %						
	5-10 %						
	1-5 %						
	< 1 %	SO NO NIMVOC CO					
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,			
		NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,			
		As, Cd, Cr, Cu, Hg, Ni, Pb,	As, Cd, Cr, Cu, Hg, Ni, Pb,	As, Cd, Cr, Cu, Hg, Ni, Pb,			
		Se, Zn, HCB, PCDD/F,	Se, Zn, HCB, PCDD/F,	Se, Zn, HCB, PCDD/F,			
		PAH, PCBs	PAH, PCBs	PAH, PCBs			
Quality of spatial dataset	C						
Applicability as spatial	3						
proxy	/						
	A Contraction of the second seco			0.0014 - 0.0027 0.0028 - 0.0040 0.0041 - 0.0053 0.0054 - 0.0073 0.0074 - 0.0087 0.0088 - 0.0140 0.0141 - 0.0187 No emission, land No emission, sea			
0 25 50 100	150	200 Km	A BAR				

Table 5.28 GeoKey for agricultural plants – gaseous fuels.

The spatial data used for the GeoKey for agricultural plants using liquid fuels is considered to have medium uncertainty as the number of appliances is overestimated in the SFL data as appliances not in use still require chimney sweep, and therefore occur in the SFL data (Nielsen & Plejdrup, 2018). The BBR register generally have uncertainties regarding heating installation and the number of liquid-fired appliances is largely overestimated. The spatial applicability is considered fair as neither the SFL nor the BBR data include time series or activity data.

Source data	The Building and Dwelling Register (BBR), version November 2017					
Data provider	The Danish	Customs and Tax Administrat	tion (SKAT)			
Projection	ETRS89 U	TM zone 32N				
Data description	See Chapte	er 4.4				
Workflow	The building	gs that fulfil the criteria regardin	ng building use and heating ins	tallation in Table 5.27 and		
	where the f	uel type is 3 (liquid), and/or wh	ere the supplementary heating	type is 3 (liquid), are selected.		
	The GeoKe	ey is calculated as the share of	the total selected number of bu	uildings by grid cell.		
GeoKey name	_Key_0203	_Liquid				
Year dependent	No					
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %	Ni	SO ₂ , Ni			
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	NO _x , NMVOC, CO, NH ₃ ,	SO ₂ , NO _x , NMVOC, CO,		
		NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	TSP, PM10, PM2.5, BC, As,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,		
		As, Cd, Cr, Cu, Hg, Pb, Se,	Cd, Cr, Cu, Hg, Pb, Se, Zn,	As, Cd, Cr, Cu, Hg, Ni, Pb,		
		Zn, HCB, PCDD/F, PAH,	HCB, PCDD/F, PAH, PCBs	Se, Zn, HCB, PCDD/F,		
		PCBs		PAH, PCBs		
Quality of spatial dataset	С					
Applicability as spatial	3					
proxy						


Table 5.29 GeoKey for agricultural plants – liquid fuels.

The spatial data used for the GeoKey for agricultural plants using solid fuels is considered to have low uncertainty. The SFL data has a very low uncertainty but as it is not of full coverage, gap filling with BBR data with a medium uncertainty is made for smaller areas. The BBR register generally have uncertainties regarding heating installation and the number of appliances using solid fuels is largely underestimated. The spatial applicability is considered good. The dataset could be more applicable if the SFL or the BBR data included a time series. The weighting factors serve as proxy for actual activity data.

Source data	SFL data
	The Building and Dwelling Register (BBR), version November 2017
Data provider	The Association of Danish Chimney sweepers (SFL)
	The Danish Customs and Tax Administration (SKAT)
Projection	ETRS89 UTM zone 32N
Data description	See Chapter 4.4 and Chapter 4.6
Workflow	Appliances from the SFL data that are categorised as using solid fuels are include in the GeoKey, and
	for areas not covered by SFL, the buildings that fulfil the criteria in Table 5.27 and where the fuel is 4
	(solid) are used. The GeoKey is calculated using the weighting factors in Table 5.22.
GeoKey name	_Key_0203_Solid
Year dependent	Νο

Table 5.30 GeoKey for agricultural plants - solid fuels.

Straw-fired agricultural plants are distributed using the same GeoKey as for residential straw-fired appliances (see Table 5.26).

The spatial data used for the GeoKey for straw-fired agricultural plants is considered to have low uncertainty. The SFL data has a very low uncertainty but as it is not of full coverage, gap filling with BBR data with a medium uncertainty is made for smaller areas. The BBR register generally have uncertainties regarding heating installation and the number of straw-fired appliances is largely overestimated. The spatial applicability is considered poor as the data is a snapshot from 2017 and does not include any time series data or activity data. Further, the GeoKey is prepared for residential buildings, but applied also for agricultural buildings.

5.3 Mobile combustion

Mobile combustion covers both transport (aviation, road, railways and navigation) as well as non-road machinery in industry, service, households, agriculture, forestry and fishing.

Table 5.31 shows the share of emissions from mobile combustion of the national total emissions for the pollutants covered by the SPREAD model. It can be seen that the share for many pollutants have remained over 10 % of the national total throughout the time series.

For some pollutants, the share has decreased mainly due to effective regulation of emissions. This is the case for e.g. NMVOC and CO. In other cases, the share has actually increased even if emissions have been substantially reduced. This is for instance the case for NO_x, where emissions have greatly decreased, but since emissions from stationary combustion have decreased even more, the share for mobile combustion has increased.

For heavy metals (except Pb), the share of emissions has increased as the abatement measures in stationary combustion has reduced emissions from this source.

1990 2005 Share 2016 NO_x, NMVOC, SO₂, PM₁₀, NO_x, NMVOC, SO₂, PM₁₀, NO_x, NMVOC, SO₂, PM₁₀, PM_{2.5}, BC, CO, Pb, Hg, As, PM_{2.5}, BC, CO, Pb, Cu, Ni, Zn, PM_{2.5}, BC, CO, Pb, As, Cr, > 10 % Cr, Cu, Ni, Se, Zn, HCB, PCBs Cu, Ni, Zn, HCB, PCBs PCBs TSP, As, Se, BbF, BkF, IcdP TSP, Cd, Hg, Se, BkF Cd, BkF, IcdP 5-10 % Cd, Hg, Cr, PCDD/F, BaP, NH₃, PCDD/F, BaP, BbF, IcdPNH₃, TSP, PCDD/F, BaP, BbF 1-5 % HCB NH₃ < 1 %

Table 5.31 Share of emissions from mobile combustion of the national total.

An overview of the different activities within mobile combustion is provided together with the GeoKey for the individual activities in Table 5.32.

Table 5.32	Activities withi	n mobile	combustion	and	corresponding	GeoKeys.
------------	------------------	----------	------------	-----	---------------	----------

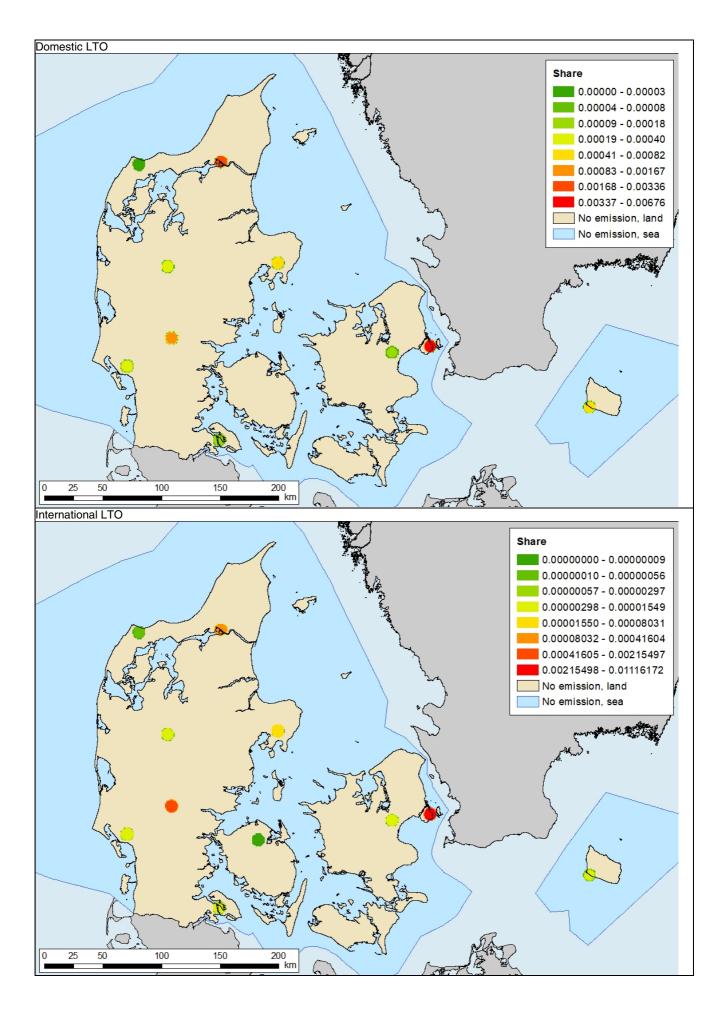
Activity	SNAP category	GeoKey
Aviation – landing and take-off, national	080501	_Key_080501_DomLTO
Aviation – landing and take-off, international	080502	 _Key_080502_IntLTO
Aviation – cruise, national	080503	_Key_080503_DomCruise
Road transport – passenger cars, highway	070101	_Key_070101_Road_PC_Highway
Road transport – passenger cars, rural	070102	_Key_070102_Road_PC_Rural
Road transport – passenger cars, urban	070103	_Key_070103_Road_PC_Urban
Road transport – light-duty vehicles, highway	070201	_Key_070201_Road_LD_Highway
Road transport – light-duty vehicles, rural	070202	_Key_070202_Road_LD_Rural
Road transport – light-duty vehicles, urban	070203	_Key_070203_Road_LD_Urban
Road transport - heavy-duty vehicles, highway	070301	_Key_070301_Road_HD_Highway
Road transport – heavy-duty vehicles, rural	070302	_Key_070302_Road_HD_Rural
Road transport – heavy-duty vehicles, urban	070303	_Key_070303_Road_HD_Urban
Road transport – mopeds	070400	_Key_0704_Mopeds
Road transport – motorcycles, highway	070501	_Key_070101_Road_PC_Highway
Road transport – motorcycles, rural	070502	_Key_070102_Road_PC_Rural
Road transport – motorcycles, urban	070503	_Key_070103_Road_PC_Urban
Road transport – non-exhaust ¹	070600, 070700 & 0708	300_Key_0706_0707_0708_NonExhaust
Railways	080200	_Key_0802_Railways
National navigation	080402	_Key_080402_Ferry
Non-road machinery – industrial	080800	_Key_0808_IndustrialMachinery
Non-road machinery - commercial & institution	al081100	_Key_0811_CommInstMachinery
Non-road machinery – residential	080900	_Key_Building_OneStorey
Non-road machinery – agriculture	080600	_Key_AgriculturalArea
Non-road machinery – forestry	080700	_Key_Forest
Fishing	080403	_Key_080403_Fishing
Recreational crafts (small boats)	080300	_Key_Buffer_15km
Military	080100	_Key_0801_Military

¹ Non-exhaust emissions are comprised of emissions from gasoline evaporation, tyre & brake wear and road abrasion.

The subsectors within mobile combustion are described in more detail in the following chapters.

5.3.1 Aviation

Emissions from aviation are estimated for two distinct phases of the flight: the landing and take-off phase (LTO) and the cruise phases. The LTO phase is defined as below 1000 feet. Additionally, for reporting of national inventories, emissions are estimated separately for national and international aviation.


Landing and take-off

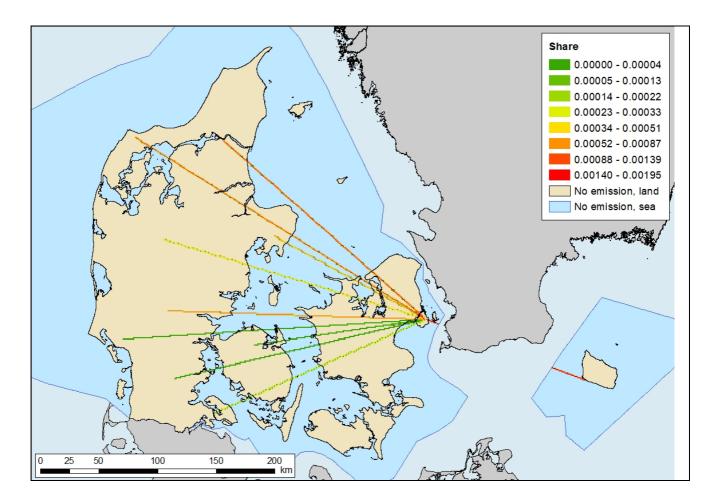
The location of the airports is well defined, so the uncertainty of the spatial dataset is very low. The applicability as a spatial proxy is only rated to be good, as there are flight fields outside of major airports that are not included and as the 5 km buffer zone does not necessarily represent the actual emission location.

Emissions from LTO are, for the most part minor, however, since the aviation gasoline still contains lead, the share of the total lead emissions has increased. As the SO_2 and NO_x emissions from other sources have decreased and the number of international LTOs have increased, the share of the national total has increased.

Table 5.33 GeoKey for aviation (landing and take-off).

Source data	Activity data statistics for domestic and international LTO.					
Data provider	The Transport and Construction Agency, and Copenhagen Airport					
	DEA	DEA				
Projection	ETRS89 U	TM zone 32N				
Data description	Location o	f airports				
	Fuel consumption data for domestic LTO and international LTO for the major airports					
Workflow	The 12 ma	in airports in Denmark are loca	ted and 5 km buffer zones are	generated in GIS. The buffer		
	zones are	intersected with the 1 km x 1 ki	m grid and the share of buffer z	one area is calculated by grid		
	cell for eac	h airport. Emissions are alloca	ted to the main airports accordi	ng to the activity data for do-		
	mestic LTC	 The GeoKey is calculated as 	the share of the domestic LTC	activity data multiplied by the		
	share of bu	uffer zone area by grid cell.				
	The GeoK	ey for international LTO is calcu	ulated using the same method u	using activity data for interna-		
	tional LTO	from the emission inventory.				
GeoKey name	_ /_	501_DomLTO				
	_Key_080502_IntLTO					
Year dependent	Yes, the G	eoKeys are based on annual a	ctivity data for domestic and int	ernational LTO, respectively.		
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %		Pb	Pb		
	1-5 %	Pb		SO ₂ , NO _x		
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	NMVOC, CO, NH ₃ , TSP,		
		NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	PM ₁₀ , PM _{2.5} , BC, As, Cd,		
		As, Cd, Cr, Cu, Hg, Ni, Se,	As, Cd, Cr, Cu, Hg, Ni, Se,	Cr, Cu, Hg, Ni, Se, Zn,		
		Zn, HCB, PCDD/F, PAH,	Zn, HCB, PCDD/F, PAH,	HCB, PCDD/F, PAH, PCBs		
		PCBs	PCBs			
Quality of spatial dataset	А					
Applicability as spatial	2					
proxy						

Cruise


Only domestic aviation is considered for the cruise phase of the flight. In the Danish inventories, flights to the Faroe Islands and Greenland are also considered domestic. However, per international guidelines emissions should be allocated within the Danish EEZ. Therefore, the total emissions are allocated to the part of domestic flight routes within the EEZ.

The share of the national total is low, for all years it is below 1 %.

The location of the airports is well defined and the flight routes generated as great circle lines between airports are assumed to be close to the actual routes, so the uncertainty of the spatial dataset is low. The applicability as a spatial proxy is determined to be god, as there are flight fields outside of major airports that are not included.

Table 5.54 Georey IOI avi		<i>.</i> ,,,,,,.,.,.,.,.,.,.,,,,,,,				
Source data	Activity data	a statistics for domestic cruise	based on data for each flight			
Data provider	The Transp	The Transport and Construction Agency, and Copenhagen Airport				
	DEA	EA				
Projection	ETRS 1989	UTM Zone 32N				
Data description	Location of airports					
	Fuel consu	mption for domestic cruise				
Workflow	Route lines	are generated as great circle I	ines between Copenhagen Air	port and the 11 largest air-		
	ports. Parts	of the routes that fall outside t	he Danish EEZ are excluded fi	rom the GeoKey, which is cal-		
	culated as t	the share of the activity data by	route multiplied by the share of	of the route length by 1 km x 1		
	km grid cell					
GeoKey name	_Key_0805	03_DomCruise				
Year dependent	Yes, the Ge	eoKey is based on annual activ	ity data for domestic cruise.			
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,		
		NH3, TSP, PM10, PM2.5, BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,		
		As, Cd, Cr, Cu, Hg, Ni, Pb,	As, Cd, Cr, Cu, Hg, Ni, Pb,	As, Cd, Cr, Cu, Hg, Ni, Pb,		
		Se, Zn, HCB, PCDD/F,	Se, Zn, HCB, PCDD/F,	Se, Zn, HCB, PCDD/F,		
		PAH, PCBs	PAH, PCBs	PAH, PCBs		
Quality of spatial dataset	В					
Applicability as spatial	3					
proxy						

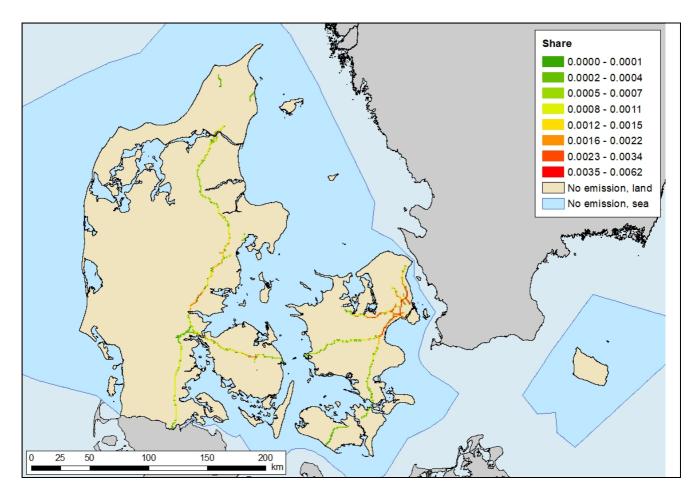
Table 5.34 GeoKey for aviation (cruise).

5.3.2 Road transport

The emission modelling for the road transport sector is very detailed. For the purpose of the spatial emission modelling, the level of detail is restricted to the vehicle type and road type. Vehicles are categorised as passenger cars, light-duty vehicles, heavy-duty vehicles, motorcycles and mopeds. For the spatial modelling passenger cars and motorcycles are handled in the same way. For the road types, a distinction is made between urban roads, rural roads and highways. The GeoKeys are based on the Danish national GISbased road network and traffic database for 1960-2005 (Jensen et al., 2009), prepared by Aarhus University. The database holds annual average daily traffic (AADT) for every fifth year. AADT is split into five road classes (motorways, express ways, road width > 6 m, road width 3 - 6 m and road width < 3 m) and four vehicle classes (passenger cars, vans, trucks and busses). The road and vehicle classes are aggregated into categories that correspond to the categorisation in the national emission inventory (see Table 5.35). The database provides information for each segment of the road network on e.g. road type and ADT for different vehicle types. The modelled data is aggregated at the Danish grid with the resolution 1 km x 1 km.

 Table 5.35
 Road and vehicle types in the national road and traffic database.

Road class	SPREAD road type	Vehicle class	SPREAD vehicle type
Road width < 3 m		Passenger cars	Passenger cars, PC
Road width 3 – 6 m	Urban road (inside urban zone)	Vans	Light-duty vehicles, LD
Road width > 6 m	Rural road (outside urban zone)	Trucks	
Expressways		Busses	Heavy-duty vehicles, HD
Motorways	Highway		


Passenger cars and motorcycles

Passenger cars are defined as vehicles used for the carriage of passengers and comprising not more than eight seats in addition to the driver's seat.

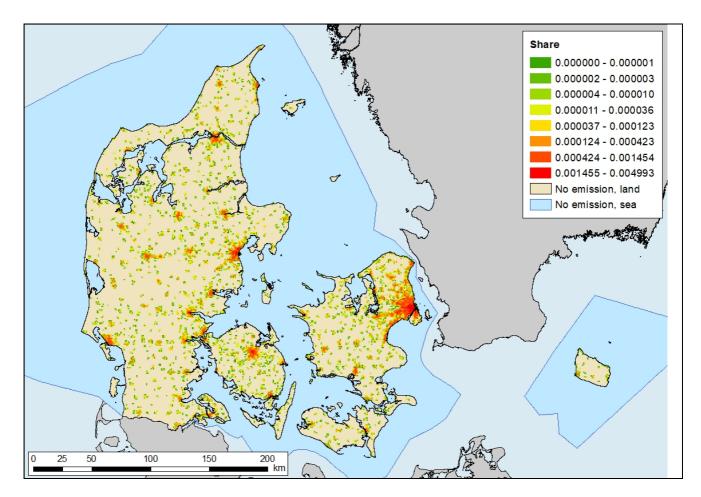
The spatial dataset used for the GeoKey for passenger cars and motorcycles on highways is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered poor as the highway network has been expanded over the years, and hence parts of the highways are missing in the GeoKey. In addition, the GeoKey is based on traffic data for 2005 only but applied for all years in the model.

Table 5.36 GeoKey for passenger cars and motorcycles on highways.

Table 5.30 Georey IOI pa	ssenger ca	rs and motorcycles on highway	/\$.		
Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da-				
	tabase for	1960-2005			
Data provider	Aarhus Un	iversity			
Projection	ETRF 198	9 UTM Zone 32N			
Data description	The databa	ase include the road network b	ased on Kort10 version 2007 a	nd mileage data for the road	
	segments	by vehicle type and road type,	based on traffic data from mun	icipalities, the Danish road di-	
	rectory, an	d traffic models. The mileage c	data is finalised by gap filling fo	llowing a simple method de-	
	scribed in	Jensen et al. (2009).			
Workflow	Mileage da	ata for passenger cars on highv	ways are used to calculate the	GeoKey, regardless if the high-	
	ways are le	ocated in urban or rural zones.	The GeoKey is calculated as the	ne share of the total mileage fo	
	passenger	cars on highways by 1 km x 1	km grid cell.		
GeoKey name	_Key_070 ⁻	101_Road_PC_Highway			
Year dependent	No				
Share of national emission		1990	2005	2016	
	> 10 %	Pb, PCBs			
	5-10 %	NO _x , CO,	СО		
	1-5 %	NMVOC, Zn	NO _x , NMVOC, BC, Cd	NO _x , CO, BC, Cd, Cr, Hg, Zn, BkF, IcdP	
	< 1 %	SO ₂ , NH ₃ , TSP, PM ₁₀ ,	SO ₂ , NH ₃ , TSP, PM ₁₀ ,	SO ₂ , NMVOC, NH ₃ , TSP,	
		PM _{2.5} , BC, As, Cd, Cr, Cu,	PM _{2.5} , As, Cr, Cu, Hg, Ni,	PM ₁₀ , PM _{2.5} , As, Cu, Ni, Pb,	
		Hg, Ni, Se, HCB, PCDD/F,	Pb, Se, Zn, HCB, PCDD/F,	Se, HCB, PCDD/F, BaP,	
		PAH	PAH, PCBs	BbF, PCBs	
Quality of spatial dataset	В				
Applicability as spatial proxy	4				

The spatial dataset used for the GeoKey for passenger cars and motorcycles on rural roads is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as the GeoKey is based on traffic data for 2005 and following does not reflect changes over time for neither the road network nor the mileage pattern. The rural road network is assumed to show roughly the same pattern over time. Urban development will affect the road network, but this has impact on relatively small areas compared to the national total land area.

Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da- tabase for 1960-2005
	Urban zones
Data provider	Aarhus University
Projection	ETRF 1989 UTM Zone 32N
Data description	The database include the road network based on Kort10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road di- rectory, and traffic models. The mileage data is finalised by gap filling following a simple method de- scribed in Jensen et al. (2009).
	Urban zones is a shape file including urban zones based on the 2007 Danish National Travel Survey (TU).


Table 5.37 GeoKey for passenger cars and motorcycles on rural roads.

GeoKey name Year dependent Share of national emission	rural zones data for hig gardless if the total m _Key_070 No	e data for passenger cars is in a depending on the share of the phways are excluded from the of part of the highways are locate ileage for passenger cars on ru 102_Road_PC_Rural 1990 NO _x , CO, Pb, PCBs	e grid cell area in urban and rur calculation of GeoKeys for pass ed in rural zones. The GeoKey	al zones, respectively. Mileage senger cars on rural roads, re- is calculated as the share of
	5-10 % 1-5 %	NMVOC, PM _{2.5} , BC, Zn, BkF, IcdP	NO _x , CO NMVOC, NH ₃ , BC, Cd, Cr, Hg, Zn, BkF	NO _x , HCB CO, BC, Cd, Cr, Hg, Zn, BkF, IcdP
	< 1 %	SO ₂ , NH ₃ , TSP, PM ₁₀ , As, Cd, Cr, Cu, Hg, Ni, Pb, Se, HCB, PCDD/F, BaP, BbF	SO ₂ , TSP, PM ₁₀ , PM _{2.5} , As, Cu, Ni, Pb, Se,HCB, PCDD/F, BaP, BbF, IcdP, PCBs	SO ₂ , NMVOC, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , As, Cu, Ni, Se, PCDD/F, BaP, BbF, PCBs
Quality of spatial dataset	В			
Applicability as spatial proxy	3			
			a strand of the	Share 0.000000 - 0.000008 0.00009 - 0.000010 0.000011 - 0.000010 0.000011 - 0.000012 0.000013 - 0.000020 0.000021 - 0.000053 0.000054 - 0.000187 0.000188 - 0.000738 No emission, land No emission, sea
	And a state of the			

The spatial dataset used for the GeoKey for passenger cars and motorcycles on urban roads is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as the GeoKey is based on traffic data for 2005 and following does not reflect changes over time for neither the road network nor the mileage pattern. Only minor changes of the road network is assumed to have occurred in urban areas, while urban development have caused expansion of the urban road network, which is not reflected in the GeoKey.

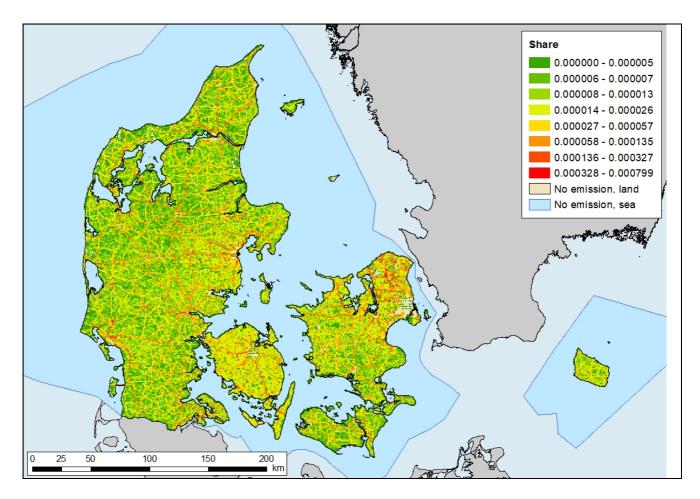
Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic tabase for 1960-2005				
	Urban zon	es			
Data provider	Aarhus Un	iversity			
Projection	ETRF 1989	9 UTM Zone 32N			
Data description	The database include the road network based on Kort10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road directory, and traffic models. The mileage data is finalised by gap filling following a simple method described in Jensen et al. (2009).				
Workflow	(TU). Mileage data is received as gridded data on the 1 km x 1 km Danish grid net, including mileage data by road and vehicle type. The mileage data is intersected with the urban zones, and the mileage data are allocated to urban and rural zones depending on the share of the grid cell area in urban and rural zones, respectively. Mileage data for highways are excluded from the calculation of GeoKeys for pas- senger cars on urban roads, regardless if part of the highways are located in urban zones. The GeoKey is calculated as the share of the national total mileage for passenger cars on urban roads by 1 km x 1 km grid cell.				
GeoKey name	_Key_070 ⁻	103_Road_PC_Urban			
Year dependent	No				
Share of national emission		1990	2005	2016	
	> 10 %	NMVOC, CO, Pb, PCBs	СО	СО	
	5-10 %		NMVOC		
	1-5 %	NO _x , PM _{2.5} , BC, Zn	NO _x , BC, Zn,	NO _x , NMVOC, BC, Hg, Zn, HCB	
	< 1 %	SO ₂ , NH ₃ , TSP, PM ₁₀ , As, Cd, Cr, Cu, Hg, Ni, Pb, Se, HCB, PCDD/F, PAH	SO ₂ , NH ₃ , TSP, PM ₁₀ , PM _{2.5} , As, Cd, Cr, Cu, Hg, Ni, Pb, Se, HCB, PCDD/F, PAH, PCBs	SO ₂ , NH ₃ , TSP, PM ₁₀ , PM _{2.5} , As, Cd, Cr, Cu, Ni, Pb, Se, PCDD/F, PAH, PCBs	
Quality of spatial dataset	В				
Applicability as spatial proxy	3				

 Table 5.38
 GeoKey for passenger cars and motorcycles on urban roads.

Light-duty vehicles

Light-duty vehicles are defined as vehicles used for the carriage of goods and having a maximum weight not exceeding 3.5 tonnes.

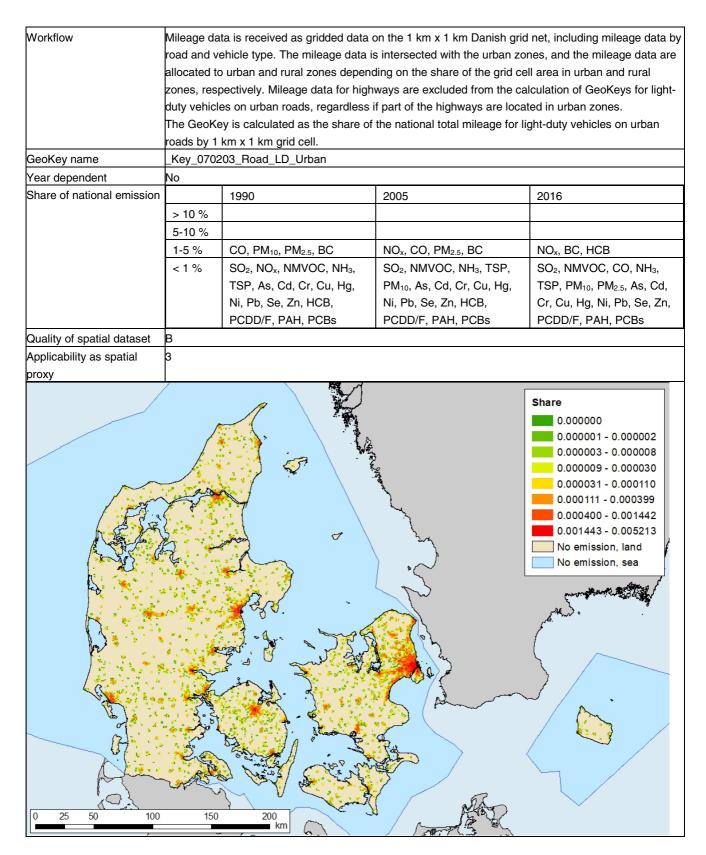
The spatial dataset used for the GeoKey light-duty vehicles on highways is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered poor as the highway network has been expanded over the years, and hence parts of the highways are missing in the GeoKey. In addition, the GeoKey is based on traffic data for 2005 only but applied for all years in the model.


Table 5.39 GeoKey light-duty vehicles on highways.
--

Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da- tabase for 1960-2005
Data provider	Aarhus University
Projection	ETRF 1989 UTM Zone 32N
Data description	The database include the road network based on Kort10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road di- rectory, and traffic models. The mileage data is finalised by gap filling following a simple method de- scribed in Jensen et al. (2009).
Workflow	Mileage data for light-duty vehicles on highways are used to calculate the GeoKey, regardless if the highways are located in urban or rural zones. The GeoKey is calculated as the share of the total mile- age for light-duty vehicles on highways by 1 km x 1 km grid cell.
GeoKey name	_Key_070201_Road_LD_Highway
Year dependent	No

Share of national emission		1990	2005	2016
	> 10 %		2000	2010
	5-10 %			
	1-5 %	PM _{2.5} , BC	BC	NO _x , BC, HCB
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NMVOC, CO, NH ₃ ,
		NH ₃ , TSP, PM ₁₀ , As, Cd,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , As,	TSP, PM ₁₀ , PM _{2.5} , As, Cd,
		Cr, Cu, Hg, Ni, Pb, Se, Zn,	Cd, Cr, Cu, Hg, Ni, Pb, Se,	Cr, Cu, Hg, Ni, Pb, Se, Zn,
		HCB, PCDD/F, PAH, PCBs	Zn, HCB, PCDD/F, PAH,	PCDD/F, PAH, PCBs
			PCBs	
Quality of spatial dataset	В			
Applicability as spatial	4			
proxy				
			a stand of the second sec	Share 0.0000 - 0.0003 0.0004 - 0.0006 0.0007 - 0.0008 0.0009 - 0.0011 0.0012 - 0.0016 0.0017 - 0.0022 0.0023 - 0.0034 0.0035 - 0.0062 No emission, land No emission, sea
0 25 50 100	The second secon	200 km	A Contraction of the second se	Contraction of the second seco

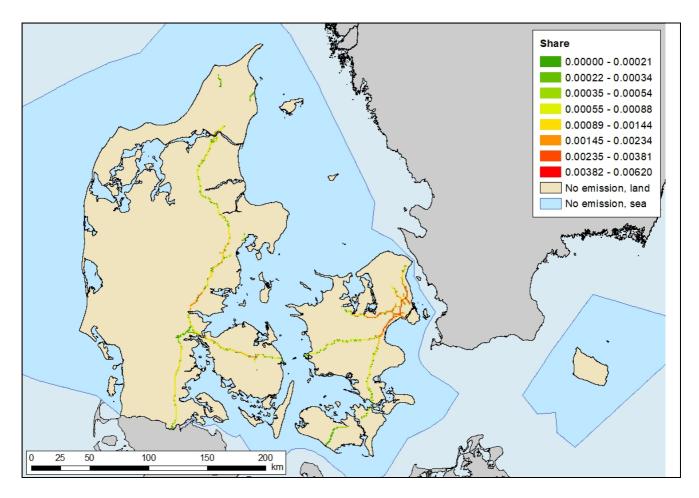
The spatial dataset used for the GeoKey for light-duty vehicles on rural roads is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as the GeoKey is based on traffic data for 2005 and following does not reflect changes over time for neither the road network nor the mileage pattern. The rural road network is assumed to show roughly the same pattern over time. Urban development will affect the road network, but this has impact on relatively small areas compared to the national total land area. Table 5.40 GeoKey for light-duty vehicles on rural roads.


Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da-				
	tabase for 1960-2005				
Dete averiden	Urban zon				
Data provider	Aarhus Un	-			
Projection		9 UTM Zone 32N			
Data description			ased on Kort10 version 2007 a	•	
	-		based on traffic data from mun	•	
	-		data is finalised by gap filling fol	lowing a simple method de-	
	scribed in	Jensen et al. (2009).			
	l Irbon zon	aa ia a ahana fila inaluding urb	an zones based on the 2007 Da	prich National Traval Survey	
	(TU).	es is a shape life including up	an zones based on the 2007 Da	anish National Travel Survey	
Workflow		no data for light-duty vohiclos i	s intersected with the urban zor	os and allocated to urban and	
VVOIKIIOW				al zones, respectively. Mileage	
			calculation of GeoKeys for pass		
			ed in rural zones. The GeoKey	•	
	-		n rural roads by 1 km x 1 km gri		
GeoKey name	1	202_Road_LD_Rural	Thurai toads by T kill X T kill gi		
Year dependent	_Rey_070/ No	202_h0au_lD_hulai			
Share of national emission					
Share of hallonal emission	10.0/	1990	2005	2016	
	> 10 %				
	5-10 %				
	1-5 %	NO _x , PM ₁₀ , PM _{2.5} , BC, Pb,	NO _x , PM _{2.5} , BC, HCB	NO _x , BC, HCB	
		PCBs			
	< 1 %	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,	
		TSP, As, Cd, Cr, Cu, Hg,	TSP, PM ₁₀ , As, Cd, Cr, Cu,	$TSP, PM_{10}, PM_{2.5}, As, Cd,$	
		Ni, Se, Zn, HCB, PCDD/F,	Hg, Ni, Pb, Se, Zn,	Cr, Cu, Hg, Ni, Pb, Se, Zn,	
		PAH	PCDD/F, PAH, PCBs	PCDD/F, PAH, PCBs	
Quality of spatial dataset	В				
Applicability as spatial	3				
proxy					

The spatial dataset used for the GeoKey for light-duty vehicles on urban roads is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as the GeoKey is based on traffic data for 2005 and following does not reflect changes over time for neither the road network nor the mileage pattern. Only minor changes of the road network is assumed to have occurred in urban areas, while urban development have caused expansion of the urban road network, which is not reflected in the GeoKey.

Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da- tabase for 1960-2005
	Urban zones
Data provider	Aarhus University
Projection	ETRF 1989 UTM Zone 32N
Data description	The database include the road network based on Kort10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road di- rectory, and traffic models. The mileage data is finalised by gap filling following a simple method de- scribed in Jensen et al. (2009).
	Urban zones is a shape file including urban zones based on the 2007 Danish National Travel Survey (TU).

Table 5.41 GeoKey for light-duty vehicles on urban roads.


Heavy-duty vehicles

Heavy-duty vehicles are defined as either vehicles used for the carriage of goods and having a maximum weight exceeding 3.5 tonnes or vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat.

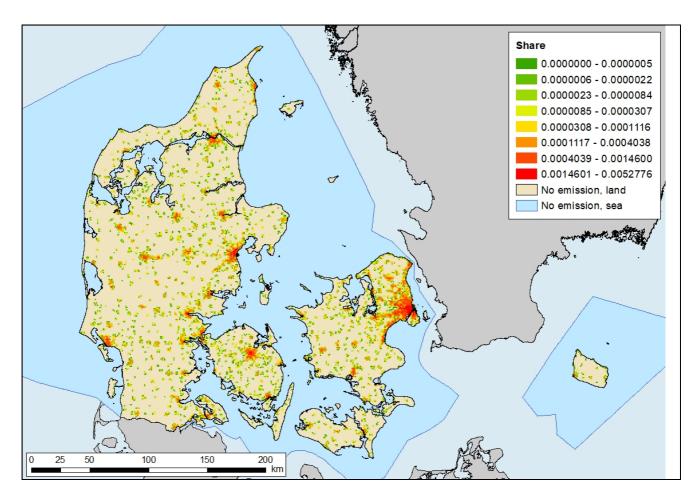
The spatial dataset used for the GeoKey for heavy-duty vehicles on highways is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered poor as the highway network has been expanded over the years, and hence parts of the highways are missing in the GeoKey. In addition, the GeoKey is based on traffic data for 2005 only but applied for all years in the model.

		<u> </u>		
Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da-			
	tabase for	1960-2005		
Data provider	Aarhus University			
Projection	ETRF 1989	9 UTM Zone 32N		
Data description	The databa	ase include the road network ba	ased on Kort10 version 2007 a	nd mileage data for the road
	segments l	by vehicle type and road type,	based on traffic data from muni	cipalities, the Danish road di-
	•	d traffic models. The mileage d Jensen et al. (2009).	lata is finalised by gap filling fol	lowing a simple method de-
Workflow	Mileage data for heavy-duty vehicles on highways are used to calculate the GeoKey, regardless if the highways are located in urban or rural zones. The GeoKey is calculated as the share of the total mileage for heavy-duty vehicles on highways by 1 km x 1 km grid cell.			
GeoKey name	Key_070301_Road_HD_Highway			
Year dependent	No			
Share of national emission		1990	2005	2016
	> 10 %		PCBs	PCBs
	5-10 %	PCBs	NO _x	НСВ
	1-5 %	NO _x , PM ₁₀ , PM _{2.5} , BC, BkF	PM _{2.5} , BC, HCB, BkF	NO _x , BC, Zn, BkF
	< 1 %	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,
		TSP, As, Cd, Cr, Cu, Hg,	TSP, PM ₁₀ , As, Cd, Cr, Cu,	TSP, PM ₁₀ , PM _{2.5} , As, Cd,
		Ni, Pb, Se, Zn, HCB,	Hg, Ni, Pb, Se, Zn,	Cr, Cu, Hg, Ni, Pb, Se,
		PCDD/F, BaP, BbF, IcdP	PCDD/F, BaP, BbF, IcdP	PCDD/F, BaP, BbF, IcdP
Quality of spatial dataset	В			
Applicability as spatial	4			
proxy				

Table 5.42 GeoKey for heavy-duty vehicles on highways.

The spatial dataset used for the GeoKey for heavy-duty vehicles on rural roads is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as the GeoKey is based on traffic data for 2005 and following does not reflect changes over time for neither the road network nor the mileage pattern. The rural road network is assumed to show roughly the same pattern over time. Urban development will affect the road network, but this has impact on relatively small areas compared to the national total land area.

Table 5.43GeoKey for heavy-duty vehicles on rural roads.


Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da- tabase for 1960-2005
	Urban zones
Data provider	Aarhus University
Projection	ETRF 1989 UTM Zone 32N
Data description	The database include the road network based on Kort10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road di- rectory, and traffic models. The mileage data is finalised by gap filling following a simple method de- scribed in Jensen et al. (2009).
	Urban zones is a shape file including urban zones based on the 2007 Danish National Travel Survey (TU).

Workflow GeoKey name Year dependent Share of national emission	and rural z Mileage da roads, rega share of th _Key_0700 No	ones depending on the share ta for highways are excluded ardless if part of the highways	s is intersected with the urban z of the grid cell area in urban an from the calculation of GeoKey are located in rural zones. The vehicles on rural roads by 1 kn 2005 PCBs NO _x PM ₁₀ , PM _{2.5} , BC, Zn, HCB,	ld rural zones, respectively. s for passenger cars on rural GeoKey is calculated as the
	< 1 %	SO ₂ , NMVOC, CO, NH ₃ , TSP, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB. PCDD/F, BaP, BbF, IcdP	BkF SO ₂ , NMVOC, CO, NH ₃ , TSP, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, PCDD/F, BaP, BbF, IcdP	SO ₂ , NMVOC, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, PCDD/F, BaP, BbF, IcdP
Quality of spatial dataset Applicability as spatial proxy	В 3			
				Share 0.000000 - 0.000005 0.000008 - 0.00007 0.000008 - 0.000012 0.000013 - 0.000024 0.000055 - 0.000131 0.000132 - 0.000326 0.000327 - 0.000817 No emission, land No emission, sea

The spatial dataset used for the GeoKey for heavy-duty vehicles on urban roads is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as the GeoKey is based on traffic data for 2005 and following does not reflect changes over time for neither the road network nor the mileage pattern. Only minor changes of the road network is assumed to have occurred in urban areas, while urban development have caused expansion of the urban road network, which is not reflected in the GeoKey.

Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da-					
	tabase for 1960-2005					
	Urban zon	es				
Data provider	Aarhus Un	Aarhus University				
Projection	ETRF 198	9 UTM Zone 32N				
Data description	The databa	ase include the road network ba	ased on Kort10 version 2007 a	nd mileage data for the road		
	segments	by vehicle type and road type,	based on traffic data from mun	icipalities, the Danish road di-		
	rectory, an	d traffic models. The mileage d	lata is finalised by gap filling fo	llowing a simple method de-		
	scribed in .	Jensen et al. (2009).				
	Urban zon (TU).	es is a shape file including urba	an zones based on the 2007 D	anish National Travel Survey		
Workflow	Mileage da	ta is received as gridded data	on the 1 km x 1 km Danish grid	d net, including mileage data by		
	road and vehicle type. The mileage data is intersected with the urban zones, and the mileage data are					
	allocated to urban and rural zones depending on the share of the grid cell area in urban and rural					
	zones, respectively. Mileage data for highways are excluded from the calculation of GeoKeys for					
	heavy-duty vehicles on urban roads, regardless if part of the highways are located in urban zones.					
	The GeoKey is calculated as the share of the national total mileage for heavy-duty vehicles on urban					
	roads by 1	km x 1 km grid cell.				
GeoKey name	_Key_0703	303_Road_HD_Urban				
Year dependent	No					
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %		PCBs	PCBs		
	1-5 %	NO _x , PM _{2.5} , BC, PCBs	NO _x , BC, HCB	NO _x , HCB		
	< 1 %	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,	SO ₂ , NMVOC, CO, NH ₃ ,		
		TSP, PM ₁₀ , As, Cd, Cr, Cu,	TSP, PM ₁₀ , PM _{2.5} , As, Cd,	TSP, PM ₁₀ , PM _{2.5} , BC, As,		
		Hg, Ni, Pb, Se, Zn, HCB.	Cr, Cu, Hg, Ni, Pb, Se, Zn,	Cd, Cr, Cu, Hg, Ni, Pb, Se,		
		PCDD/F, PAH	HCB. PCDD/F, PAH	Zn, HCB. PCDD/F, PAH		
Quality of spatial dataset	В					
Applicability as spatial	3					
proxy						

Table 5.44 GeoKey for heavy-duty vehicles on urban roads.

Mopeds

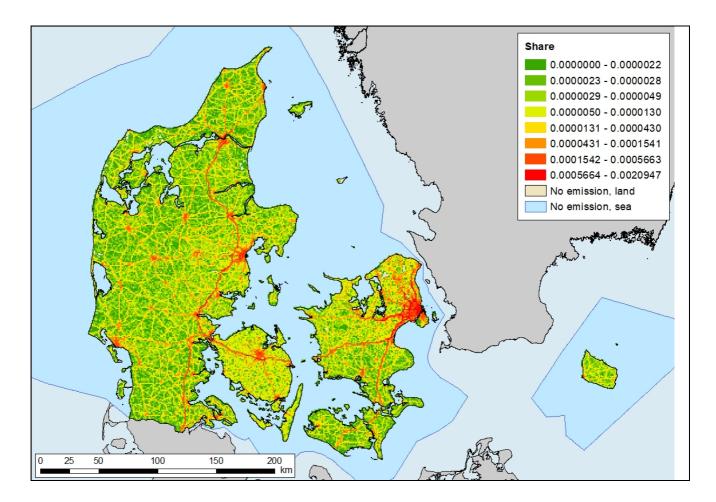
The Danish national GIS-based road network and traffic database does not include mopeds as a separate category. As mopeds are not allowed on highways, the GeoKey is based on mileage data for passenger cars on urban and rural roads assuming that mopeds follow this spatial trend.

The spatial dataset used for the GeoKey is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered poor as data for passenger cars are used as proxy for mopeds. Further, the GeoKey does not reflect changes over time for neither the road network nor the mileage pattern.

Source data	The GeoKey is based on mileage data from the Danish national GIS-based road network and traffic da-
	tabase for 1960-2005
Data provider	Aarhus University
Projection	ETRF 1989 UTM Zone 32N
Data description	The database include the road network based on Kort10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road di- rectory, and traffic models. The mileage data is finalised by gap filling following a simple method de- scribed in Jensen et al. (2009).

Table 5.45 GeoKey for mopeds.

Workflow GeoKey name Year dependent Share of national emission	road and ve allocated to zones, resp peds, as th The GeoKe	whicle type. The mileage data is o urban and rural zones depend bectively. Mileage data for high ey are not allowed to drive on h by is calculated as the share of by 1 km x 1 km grid cell.	s intersected with the urban zo ding on the share of the grid ce ways are excluded from the ca highways.	Il area in urban and rural Iculation of GeoKeys for mo-
	< 1 %	SO ₂ , NO _x , NMVOC, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PAH, PCBs	SO ₂ , NO _x , CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PAH, PCBs	SO ₂ , NO _x , NMVOC, CO, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PAH, PCBs
Quality of spatial dataset	В	,		
Applicability as spatial	4			
proxy				
				hare 0.0000000 - 0.000038 0.000039 - 0.000049 0.0000050 - 0.0000215 0.0000216 - 0.0000215 0.0000657 - 0.0002173 0.0002174 - 0.0007380 0.0007381 - 0.0025257 No emission, land No emission, sea

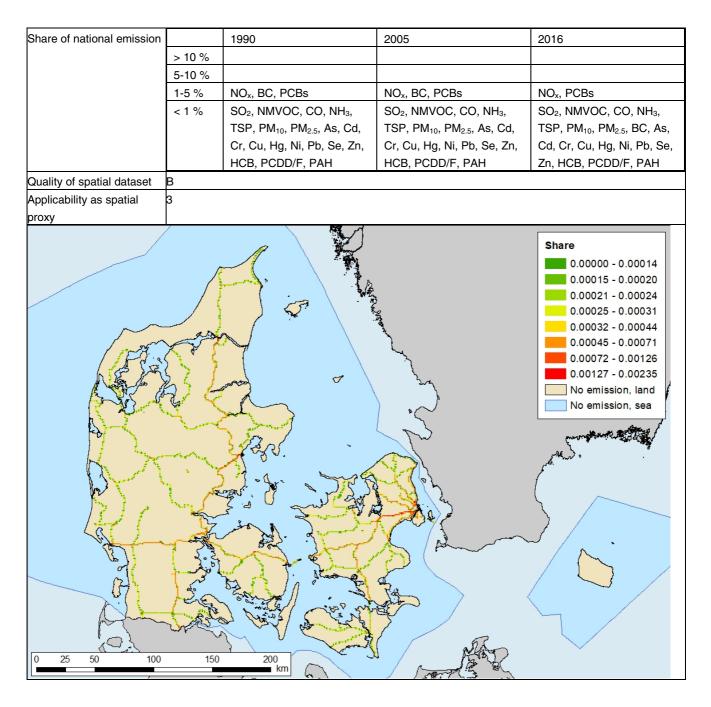

Non-exhaust

The non-exhaust emissions are evaporative emissions (NMVOC) from gasoline vehicles and particle emissions and heavy metal emissions from tyre and brake wear and road abrasion. The spatial dataset used for the GeoKey is considered to have low uncertainty as the road and traffic database is based on a large number of traffic data collected from various sources. The spatial applicability is considered fair as mileage data is a good proxy for non-exhaust emissions, but the GeoKey is missing variation over time for the road network and the mileage pattern.

The sector is a large source of emissions for some heavy metals and particulate matter.

Source data	1	evs are based on mileage data	from the Danish national GIS-	ased road network and traffic	
	The GeoKeys are based on mileage data from the Danish national GIS-based road network and traffic database for 1960-2005				
Data provider		Aarhus University			
Projection		ETRF 1989 UTM Zone 32N			
Data description	The database include the road network based on KORT10 version 2007 and mileage data for the road segments by vehicle type and road type, based on traffic data from municipalities, the Danish road directory, and traffic models. The mileage data is finalised by gap filling following a simple method de-				
		Jensen et al. (2009).			
Workflow	Mileage data is received as gridded data on the 1 km x 1 km Danish grid net, including mileage data by road and vehicle type. The mileage data is intersected with the urban zones, and the mileage data are allocated to urban and rural zones depending on the share of the grid cell area in urban and rural zones, respectively. The GeoKey is calculated as the share of the national total mileage for all vehicle types on all road types by 1 km x 1 km grid cell.				
GeoKey name	_Key_070	6_0707_0708_NonExhaust			
Year dependent	No				
Share of national emission		1990	2005	2016	
	> 10 %	NMVOC, Cu, Zn	Cu, Pb, Zn	Cu, Pb, Zn	
	5-10 %		Cr	PM ₁₀ , Cr	
	1-5 %	TSP, PM ₁₀ , PM _{2.5} , BC, Cr, Pb,	NMVOC, TSP, PM ₁₀ , PM _{2.5} , BC, As, Ni, Se	NMVOC, TSP, PM _{2.5} , BC, As, Ni, Se	
	< 1 %	As, Cd, Hg, Ni, Se	Cd, Hg	Cd, Hg	
Quality of spatial dataset	В				
Applicability as spatial	3				
proxy					

Table 5.46 GeoKey for non-exhaust.


5.3.3 Railways

The GeoKey for railways are based on the railway theme in Kort10. The 2005 version of the map is used as this includes underground parts of the railway network, which is not the case for the 2009 version. Activity data is not included in the digital railway network map and following the emissions is distributed evenly on the network lines.

The spatial dataset used for the GeoKey is considered to have low uncertainty and the spatial applicability is considered fair, as no activity data are included in the dataset.

Source data	Kort10 version 2005
Source data	Koli to version 2005
Data provider	The Danish Agency for Data Supply and Effeciency
Projection.	UTM32_EUREF89
Data description	Railway network
Workflow	The railway network is intersected with the 1 km x 1 km grid and the GeoKey is calculated as the share
	of the total railway network length by grid cell.
GeoKey name	_Key_0802_Railways
Year dependent	No

Table 5.47 GeoKey for railways.

5.3.4 Navigation

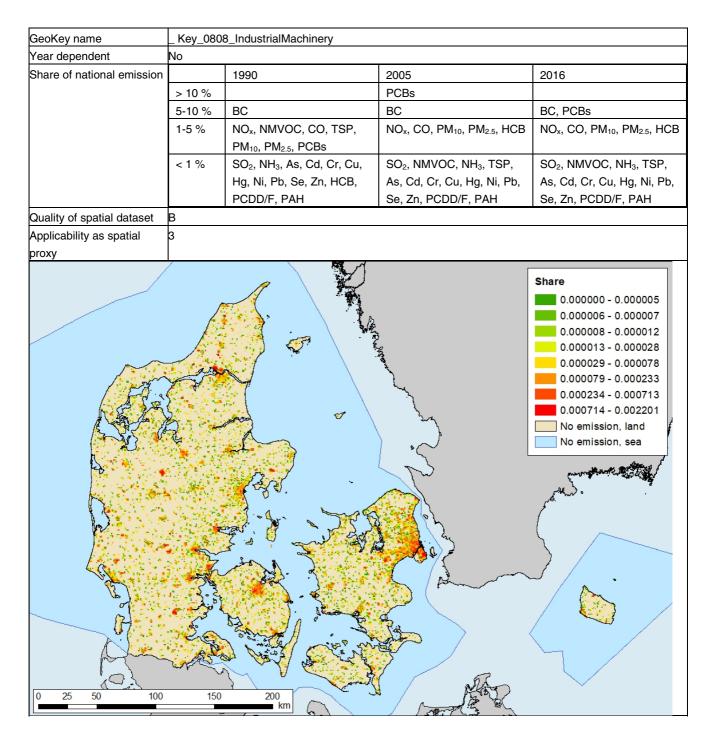
Navigation includes only sea transport defined as ferries and other vessels sailing between two Danish harbours. Recreational boats and fishing vessels are described in Chapter 5.3.11 and Chapter 5.3.10 respectively. Part of the sea transport occur outside the Danish sea territory (EEZ), e.g. ferries to Greenland and Bornholm. Due to reporting requirements, emissions can only be allocated to the Danish territory, which cause emissions to accumulate on smaller areas than they actually occur on.

The spatial dataset used for the GeoKey is considered to have low uncertainty as it include all ferry routes included in the emission inventory. The spatial applicability is considered good as the GeoKey is based on annual fuel consumption data by ferry route.

Table 5.48 GeoKey for na	tional navig	ation.		
Source data	Kort10 version 2011			
Data provider	The Danish Agency for Data Supply and Effeciency			
Projection	EUREF89	UTM zone 32N		
Data description	The ferry th	neme in Kort10 include lines for	r ferry routes in operation. Line	es for ferry routes that are no
	longer in op	peration has been added manu	ally to the spatial data set.	
Workflow	Lines for fe	rry routes that are no longer in	operation has been added ma	anually to the spatial data set
	using the e	diting tool in ArcMap. The route	es has been intersected with t	he 1 km x 1 km grid covering
	the sea are	a in the Danish EEZ, and the s	hare of the total line length is	calculated by route.
	For each ye	ear in the time series as the sh	are of the fuel consumption is	calculated by route, and the
	GeoKey is	calculated as [share of FC by r	oute]*[Share of route line leng	th by 1 km x 1 km grid cell].
GeoKey name	_ Key_080	402_Ferry		
Year dependent	Yes, based	l on fuel consumption data for t	he major ferry routes	
Share of national emission		1990	2005	2016
	> 10 %	Ni	SO ₂ , Ni	Ni, NO _x
	5-10 %		NO _x , As,	As, Se
	1-5 %	SO ₂ , NO _x , PM ₁₀ , PM _{2.5} , BC,	PM ₁₀ , PM _{2.5} , BC, Cr, Hg,	SO ₂ , PM _{2.5} , BC, Hg,
	- /-	As, Se	Se	,,,,
	< 1 %	NMVOC, CO, NH ₃ , TSP,	NMVOC, CO, NH ₃ , TSP,	NMVOC, CO, NH ₃ , TSP,
		Cd, Cr, Cu, Hg, Pb, Zn,	Cd, Cu, Hg, Pb, Zn, HCB,	PM ₁₀ , Cd, Cr, Cu, Pb, Zn,
		HCB, PCDD/F, PAH, PCBs	PCDD/F, PAH, PCBs	HCB, PCDD/F, PAH, PCBs
Quality of spatial dataset	В		, ,	, , ,
Applicability as spatial	2			
proxy				
A Company of the second	" I want the first of the second of the seco			0.0000 - 0.0002 0.0003 - 0.0005 0.0006 - 0.0008 0.0009 - 0.0012 0.0013 - 0.0020 0.0021 - 0.0030 0.0031 - 0.0058 0.0059 - 0.0101 No emission, land No emission, sea
0 25 50 100	150	200 km	1 ASTR	v

5.3.5 Building and construction machinery

Emissions from building and construction machinery are estimated from the number of machines per type and related emission factors in the national emission inventory. Information on where the activities take place is not available, and the location of the activities will change from year to year. The largest machinery, and thereby the major part of the emissions, is used in road and building construction, while smaller machinery are used in smaller maintenance works. It is not possible to separate the machinery between different use, as the same machine types are used in different building and construction works, e.g. large soil haulage vehicle are used both in building construction, and road and rail construction project. A comprehensive survey of available data related to the activity is carried out and three data sets has been selected for creating the GeoKey. First, building construction activity from statistics Denmark including the number of new-built square meters on municipality level. From this data, a key is created which holds the share of total new-built square meters per 1 km x 1 km grid cell. Second, information on larger road construction projects is available from the Danish Road Directorate. The data are available as a digital map showing the road segments that are affected by construction work and information if it is a major or minor construction project. From this data, two keys are created for major and minor road construction, respectively, including share of the construction road length per 1 km x 1 km grid cell. Third, the railway network GeoKey is included. A GeoKey for building & construction machinery is created from these four keys and corresponding weighting factors, the latter being based on expert judgement on the share of the emissions from each of the four sources (Table 5.49).


Table 5 49	Weighting factors for building & construction GeoKey.
Table 5.49	weighting factors for building & construction deokey.

Кеу	Weighting factor
Building construction	0.5
Major road construction	0.25
Minor road construction	0.15
Rail construction	0.1

The spatial datasets used for the GeoKey are all considered to have low uncertainty levels. The spatial applicability is considered fair as the GeoKey use weighting fastors for the distribution keys reflecting different activities, but does not include time variations.

Table 5.50 GeoKey for machinery used in building and construction.

Source data	Building construction activity		
	Larger road construction projects		
Data provider	Statistics Denmark		
	The Danish Road Directorate		
Projection	ETRS89 UTM zone 32N		
Data description	New-built square meters on municipality level		
	Road segments that is affected by construction work and information if it is a major or minor construc-		
	tion project		
Workflow	The GeoKey is created as a combination of four different distribution keys which hold 1) the share of		
	total new-built square meters per 1 km x 1 km grid cell, 2) the share of the construction road length for		
	major road construction projects per 1 km x 1 km grid cell, 3) the share of the construction road length		
	for major road construction projects per 1 km x 1 km grid cell, and 4) the share of the railway network		
	(see Chapter 805.3.3). The four distribution keys are combined using the weighting factors listed in Ta-		
	ble 5.49		

5.3.6 Commercial and institutional machinery

Emissions from commercial and institutional machinery are distributed on technical areas, sport areas, recreational areas, scrub and cemeteries, as defined in Kort10.

The spatial dataset used for the GeoKey is considered to have medium uncertainty. The spatial applicability is considered poor, as it has no time variation and activity data, and does not include all relevant areas.

Table 5.51 GeoKey for machinery used in the commercial and institutional sector.

	_	ed in the commercial and institu	utional sector.	
Source data	Kort10, version 2011			
Data provider	The Danish Agency for Data Supply and Effeciency			
Projection	EUREF89	UTM zone 32N		
Data description	Areas cate teries are ι	-	technical area, sport area, reci	reational area, scrub and ceme-
Workflow	unioned to		ected with the 1 km x 1 km grid	b and cemeteries are selected, I. The GeoKey is calculated as
GeoKey name	_Key_0811	CommInstMachinery		
Year dependent	No			
Share of national emission		1990	2005	2016
	> 10 %			со
	5-10 %		со	
	1-5 %	со		
	< 1 %	SO ₂ , NO _x , NMVOC, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PAH, PCBs	SO ₂ , NO _x , NMVOC, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PAH, PCBs	SO ₂ , NO _x , NMVOC, NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, HCB, PCDD/F, PAH, PCBs
Quality of spatial dataset	С			
Applicability as spatial	4			
proxy				
	Contraction of the second s		and a state of the	0.000006 - 0.000007 0.000008 - 0.000012 0.000013 - 0.000028 0.000029 - 0.000078 0.000029 - 0.000233 0.000234 - 0.000713 0.000714 - 0.002201 No emission, land No emission, sea
0 25 50 100	150	200 km	A BAR	

5.3.7 Residential machinery

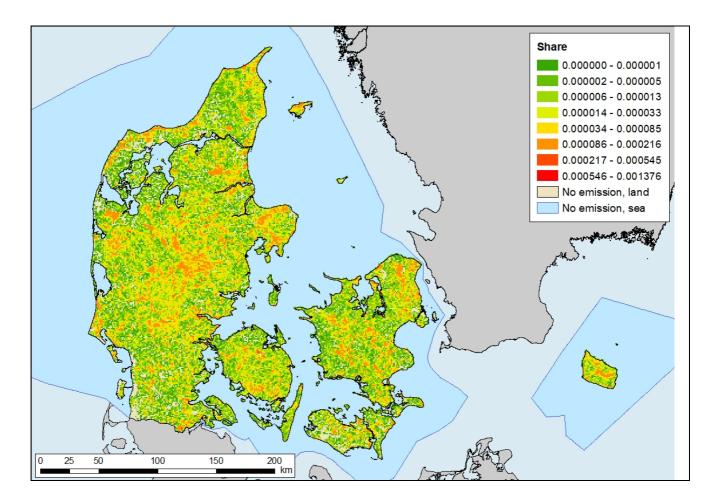
The GeoKeys for residential machinery is based on the theme "one-storey settlement" in Kort10. The GeoKey is based on the distribution of the area of onestorey settlements, as no information is available to differentiate the activity or emissions between the individual polygons in the theme.

For more information on the GeoKey for agricultural area, please see Chapter 5.1.4.

5.3.8 Agricultural machinery

The GeoKeys for agricultural machinery is based on the Danish Areal Information System, AIS. The GeoKey is based on the distribution of the agricultural area, as no information is available to differentiate the activity or emissions between the individual agricultural areas.

For more information on the GeoKey for agricultural area, please see Chapter 5.1.5.


5.3.9 Forest machinery

Emissions from forest machinery are distributed evenly on the forest area as defined in Kort10.

The spatial dataset used for the GeoKey is considered to have medium uncertainty. The spatial applicability is considered poor, as it has no time variation and activity data, and does not include all relevant areas.

Table 5.52	GeoKey for machinery used in the forestry sector.

Source data	Kort10 vers	Kort10 version 2011					
Data provider	The Danish Agency for Data Supply and Effeciency						
Projection	EUREF89 UTM zone 32N						
Data description	Polygon th	eme of forest areas					
Workflow		The forest theme is intersected with the 1 km x 1 km grid and the GeoKey is calculated as the share of					
		rest area by grid cell.					
GeoKey name	_Key_Fore	est					
Year dependent	No						
Share of national emission		1990	2005	2016			
	> 10 %						
	5-10 %						
	1-5 %						
	< 1 % All All All						
Quality of spatial dataset	С						
Applicability as spatial	4	4					
proxy							

5.3.10 Fishing

A comprehensive survey of available data related to fishing is carried out and the best available data has been selected for creating the GeoKey. Catch statistics is available from statistics Denmark including amounts per International Council for the Exploration of the Sea (ICES)/shellfish catch area and per species. The catch amounts are grouped into the two categories fish and shellfish. Some of the catch areas extends beyond the Danish EEZ, and according to international guidelines for reporting of gridded emissions, the Danish emissions from fishing must be allocated only to the Danish area, even if the activity takes place outside the Danish sea area. In these cases, the catch amount in the entire catch area is included in the GeoKey calculation, leading to an accumulation of the activity to a smaller area. From the catch data, two separate fishing distribution keys are prepared for fish and shellfish, respectively. The final GeoKey for fishing is created from the two keys and corresponding weighting factors, the latter being based on expert judgement (Table 5.53).

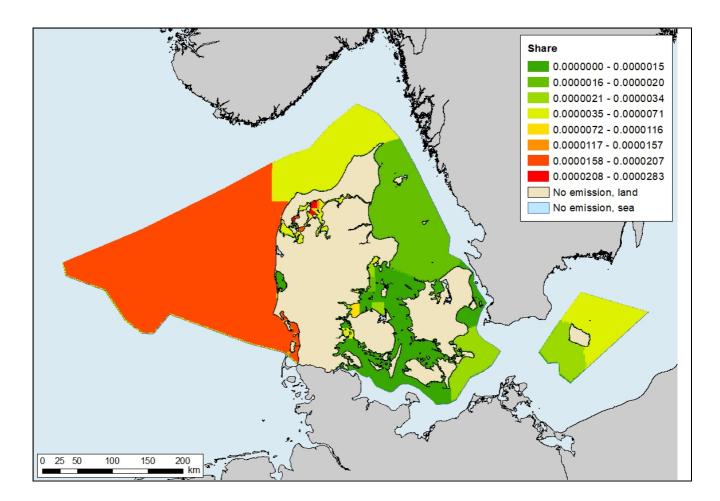
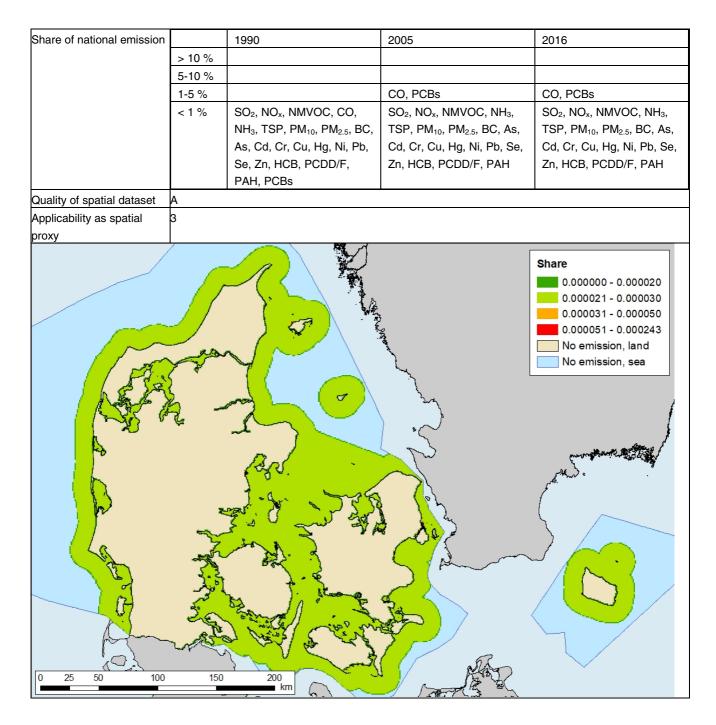

The spatial dataset used for the GeoKey is considered to have low uncertainty due to regulation and registration of catch amounts. The spatial applicability is considered very poor as the catch amounts are not expected to correlate with the emissions and as emissions are allocated to the Danish sea territory even if the catch areas extend beyond the Danish EEZ.

Table 5.53 Weighting factors for fishing.

	<u> </u>	<u> </u>
Key		Weighting factor
Fish		0.5
Shellfish		0.5

Table 5.54 GeoKey for fisl	hing.				
Source data	Shell fish c	atch areas			
	ICES area				
Data provider	Danish Fis	heries Agency (shell fish catch	areas)		
	Internation	al Council for the Exploration of	of the Sea (ICES)		
Projection	ETRS89 U	TM zone 32N			
Data description	Polygon theme covering ICES areas				
	Polygon themes covering Danish shell fish catch areas				
Workflow	Catch stati	stics from the Danish Fisheries	Agency is joined to the attrib	ute data for the relevant catch	
	area polyg	on theme (shellfish or ICES), d	epending on the split in the st	atistics. The polygon layers are	
	intersected	I with the 1 km x 1 km grid and	the share of the total catch ar	ea is calculated by grid cell. The	
	shares for	spatial distribution is calculated	d as the share of catch area (I	CES and shellfish, respectively)	
	multiplied b	by the total catch amount in the	e catch area (ICES and shellfis	sh, respectively). The GeoKey is	
	calculated	as a weighted average of the s	shares for shellfish areas and	ICES areas, using a weighting	
	factor of 0.	5 for both layers.			
GeoKey name	_Key_0804	103_Fishing			
Year dependent	Yes, based	d on annual catch amount data			
Share of national emission		1990	2005	2016	
	> 10 %				
	5-10 %				
	1-5 %	NO _x	SO ₂ , NO _x , As, Hg, Se,		
	< 1 %	SO ₂ , NMVOC, CO, NH ₃ ,	NMVOC, CO, NH ₃ , TSP,	SO ₂ , NO _x , NMVOC, CO,	
		TSP, PM ₁₀ , PM _{2.5} , BC, As,	PM ₁₀ , PM _{2.5} , BC, Cd, Cr,	NH ₃ , TSP, PM ₁₀ , PM _{2.5} , BC,	
		Cd, Cr, Cu, Hg, Ni, Pb, Se,	Cu, Ni, Pb, Zn, HCB,	As, Cd, Cr, Cu, Hg, Ni, Pb,	
		Zn, HCB, PCDD/F, PAH,	PCDD/F, PAH, PCBs	Se, Zn, HCB, PCDD/F,	
		PCBs		PAH, PCBs	
Quality of spatial dataset	В				
Applicability as spatial	5				
proxy					

Table 5.54 GeoKey for fishing.


5.3.11 Recreational crafts

Emissions from recreational crafts are distributed evenly within a 15 km buffer zone from the Danish coast.

The spatial dataset used for the GeoKey is considered to have very low uncertainty and the spatial applicability is considered fair based on the assumption the recreational crafts does not sail far from the coastline, but the actual mileage pattern is unknown.

Table 5.55	GeoKey for recreational	crafts.
------------	-------------------------	---------

Source data	Coastline
Data provider	DAGI (Danmarks Administrative Geografiske Inddelinger – Denmarks Ad-ministrative Geographical Di-
	visions), version 2011
Projection	EUREF89 UTM zone 32N
Data description	The Danish coastline
Workflow	A buffer zone of 15 km is generated around the Danish coastline. The buffer zone is adjusted to include
	the shortest path between the northern part of Zealand and the eastern part of Jutland (Djursland).
GeoKey name	_Key_Buffer_15km
Year dependent	No

5.3.12 Military

Emissions from military include road and off-road transport, aviation and use of machinery for military purpose. The land-based emissions are distributed evenly on the Danish military exercise areas given by the Danish Forest and Nature Agency, as no further data are available but the total fuel consumption. The emissions from military aviation are distributed evenly over the Danish EEZ, as no specific information is available to allow for a more precise spatial distribution.

The spatial dataset used for the GeoKey for military aviation is considered to have low uncertainty as the defined EEZ borders in small areas have been modified especially around the Danish-German border. Geometry errors in the spatial data, e.g. gaps between polylines, is manually adjusted to generate a polygon. Further, adjustments have been made where the Danish EEZ extend into the German land area. The spatial applicability is considered very poor based as the location of activities are not known.

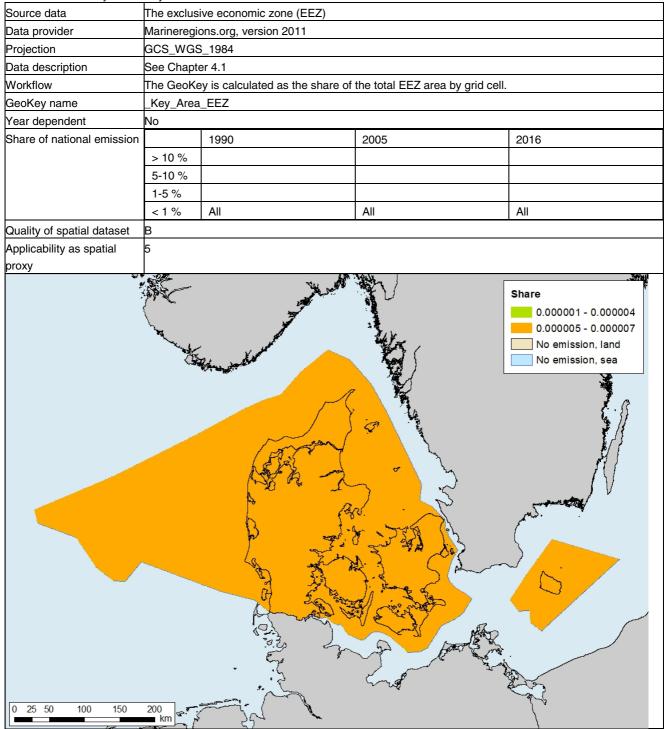


Table 5.56 GeoKey for military aviation.

The spatial dataset used for the GeoKey for land-based military is considered to have very low uncertainty as the exervise areas are weldefined areas with restricted acces. The spatial applicability is considered fair as most activity is expected to occur in these areas, while the transport on public roads are not possible to outline.

Source data						
Data providar	Military training areas					
Data provider	The Danish Nature Agency					
Projection	ETRS89 UTM zone 32N					
Data description	Spatial data from the Danish Nature Agency holding military training areas					
Workflow	The polygon layer including military training areas is intersected with the 1 km x 1 km grid and the					
		GeoKey is calculated as the share of the total military training area by grid cell.				
GeoKey name	_Key_0801		, ,			
Year dependent	No					
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 %	All	All	All		
Quality of spatial dataset	A					
Applicability as spatial	3					
proxy	č					
	/	·	A B	0.0000 - 0.0002		

5.4 Fugitive emissions from fuels

Fugitive emissions from fuels covers dust emissions from coal storage and handling, evaporative emissions from extraction, transport, refining/processing and distribution of crude oil, natural gas and town gas as well as evaporative emissions from the distribution of gasoline. In addition, emissions from flaring and venting are included in this category.

Table 5.58 shows the share of emissions from mobile combustion of the national total emissions for the pollutants covered by the SPREAD model. It can be seen that the share for most pollutants have remained below 1 % of the national total throughout the time series. For many of the pollutants, e.g. NH₃, CO, heavy metals and POPs, the share is below 0.1 %. In some cases, the emissions are insignificant compared to the national total.

Emissions of SO_2 , NMVOC and BC are contributing most to the national total. For SO_2 , the emission is mainly originating from refining of crude oil, for NMVOC, the largest sources are extraction, loading and storage of crude oil and for BC the source accounting for almost the entire fugitive emission is coal storage and handling.

The reduction in the share for PM and BC is due to less coal being consumed in Denmark.

Share	1990	2005	2016
> 10 %	BC	NMVOC	
5-10 %	NMVOC	BC	NMVOC, BC
1-5 %	SO ₂ , TSP, PM ₁₀	SO ₂	SO ₂
	NO _x , NH ₃ , PM _{2.5} , CO, Pb, Cd,	NO _x , NH ₃ , TSP, PM ₁₀ , PM _{2.5} ,	NO _x , NH ₃ , TSP, PM ₁₀ , PM _{2.5} ,
. 1 0/	Hg, As, Cr, Cu, Ni, Se, Zn,	CO, Pb, Cd, Hg, As, Cr, Cu,	CO, Pb, Cd, Hg, As, Cr, Cu,
< 1 %	PCDD/F, BaP, BbF, BkF,	Ni, Se, Zn, PCDD/F, BaP,	Ni, Se, Zn, PCDD/F, BaP,
	IcdP, HCB, PCBs	BbF, BkF, IcdP, HCB, PCBs	BbF, BkF, IcdP, HCB, PCBs

Table 5.58 Share of emissions from fugitive emissions from fuels of the national total.

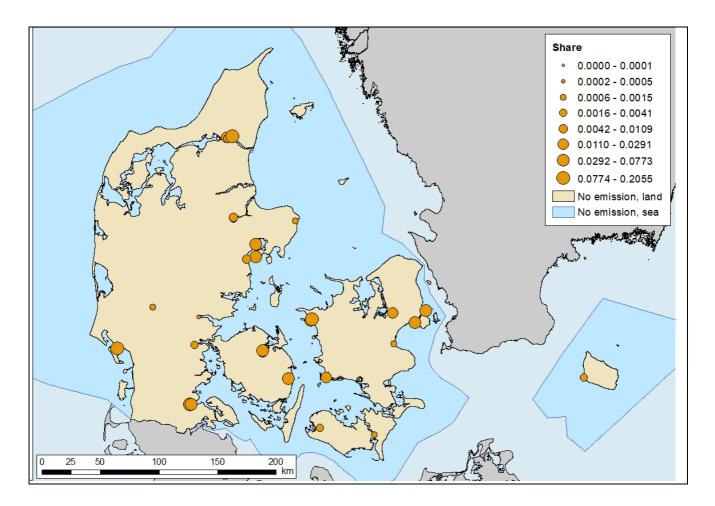
An overview of the different activities within fugitive emissions from fuels is provided together with the GeoKey for the individual activities in Table 5.59. Emissions from refining including flaring and natural gas storage are included in LPS; see Chapter 5.2.1.

Table 5.59 Activities within fugitive emissions from fuels and corresponding GeoKeys.

Activity	SNAP ca	tegoryGeoKey
Coal handling and storage	050103	_Key_050103_CoalStorage
Oil exploration	050204	_Key_050204_050304_Exploration
Gas exploration	050304	_Key_050204_050304_Exploration
Offshore loading of crude oil	050206	_Key_050206_LoadingOffshore
Oil production	050205	_Key_050205_OilProduction
Onshore loading of crude oil	050207	_Key_050208_OilTerminal
Storage of crude oil	050208	_Key_050208_OilTerminal
Natural gas production	050305	_Key_050305_GasProduction
Service stations (including refuelling of cars	s)050503	_Key_050503_ServiceStations
Natural gas transmission	050601	_Key_050601_GasTransmission
Natural gas distribution	050603	_Key_0202_Gas
Town gas distribution	050604	_Key_050604_TownGas
Flaring in gas and oil extraction	090206	_Key_090206_FlaringOffshore
Flaring in gas transmission and distribution	090299	_Key_050601_GasTransmission

The subsectors within fugitive emissions from fuels are described in more detail in the following chapters.

5.4.1 Coal handling and storage


Fugitive emissions from solid fuels in the Danish inventory cover storage of coal in coal piles and include emissions of particulate matter (TPS, PM_{10} and $PM_{2.5}$) and BC. Coal piles occur in connection with harbours and at coal fired

combined heat power (CHP) plants. Most of the coal fired CHP plants are located at or near the harbours.

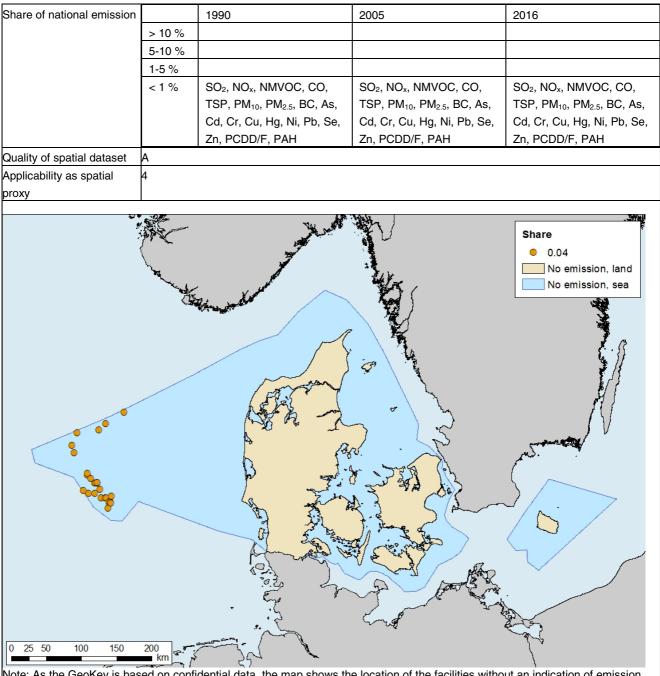
The spatial dataset used for the GeoKey is considered to have a very low uncertainty as it is based on LPS data and on national import/export statistics. The spatial applicability is considered poor, as no time variation is included in the GeoKey eventhough the spatial pattern is expected to change over time as a number of CHP plants have reduced or phased out use of coal.

Source data	Coal impo	t/export statistics				
	LPS activit	y data				
Data provider	Statistics [Statistics Denmark				
	Inventory of					
Projection	ETRS89 U	TM zone 32N				
Data description	Data from Statistics Denmark include coal loading and unloading of ships by harbour in 2007.					
	Inventory of	lata include coal cons	sumption by power plant in 2007.			
Workflow	Harbours I	nandling coal and coa	I fires CHP plants are geocoded an	d the GeoKey is calculated as share		
	of the sum	coal import, export a	nd consumption by site (harbour or	plant)		
GeoKey name	_Key_050 ⁻	103_CoalStorage				
Year dependent	No					
Share of national emission		1990	2005	2016		
	> 10 %	BC				
	5-10 %		BC	BC		
	1-5 %	TSP, PM ₁₀				
	< 1 %	PM _{2.5}	TSP, PM ₁₀ , PM _{2.5}	TSP, PM ₁₀ , PM _{2.5}		
Quality of spatial dataset	А					
Applicability as spatial	4					
proxy						

Table 5.60 GeoKey for coal handling and storage.

5.4.2 Oil

Fugitive emissions from oil include emissions from exploration, production, offshore and onshore loading of ships, storage at the oil terminal, and distribution of oil products.


Oil and gas exploration

Detailed data for exploration sites is provided annually by the Danish Energy Agency, including amounts of oil and/or gas explored. Exploration activity only occur in some years, and therefore this source does not occur in the grid-ded data for all years included in the SPREAD model.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as it is based on exact location of the offshore installations. The spatial applicability is considered poor as exploration occur on varying locations and the produced oil/gas is transported to an existing installation, which may vary between exploration drillings.

Table die 1 acertey fer e						
Source data	Location of offshore facilities					
Data provider	he Danish Energy Agency					
Projection	D1950 UTM zone 32N					
Data description	Location of offshore facilities					
Workflow	The share of the total number of offshore facilities is calculated.					
	All facilities are included in the GeoKey for oil and gas exploration.					
GeoKey name	_Key_050204-050304_Exploration-Oil-Gas					
Year dependent	Νο					

Table 5.61 GeoKey for oil and gas exploration.

Note: As the GeoKey is based on confidential data, the map shows the location of the facilities without an indication of emission shares.

Offshore loading

Offshore loading is taking place at two offshore facilities. Oil from other facilities are either transported to these two facilities for loading to ships or transported to the raw oil terminal via pipeline.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as it is based on exact location of the offshore installations. The spatial applicability is considered fair as the GeoKey is based on annual installation specific loading amount but no information about the ships are available, e.g. vapour recovery systems and previous content of the tanks, which both influence the emissions.

Table 5.62 GeoKey for off	shore loadir	ıg.			
Source data	Location of offshore facilities				
Data provider	The Danish Energy Agency				
Projection	ED1950 UTM zone 32N				
Data description	Location of	offshore facilities			
Workflow	Offshore loading occur at two facilities. As detailed data for offshore loading are not available, emis-				
	sions are assumed equally distributed between the two sites, each having a share of 0.5 in the				
	GeoKey.				
GeoKey name	_Key_0502	06_LoadingOffshore			
Year dependent	No				
Share of national emission		1990	2005	2016	
	> 10 %				
	5-10 %				
	1-5 %		NMVOC	NMVOC	
	< 1 %				
Quality of spatial dataset	A	1	1		
Applicability as spatial	3				
proxy					
		Edwardsharder		No emission, sea	
0 25 50 100 150	200 km		`	a c	

Oil production

Danish oil production only occur at offshore facilities, and annual production data is available from the DEA on facility level.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty as it is based on installation specific production amounts. The spatial applicability is considered good as production amounts are assumed to correlate well with the production amounts.

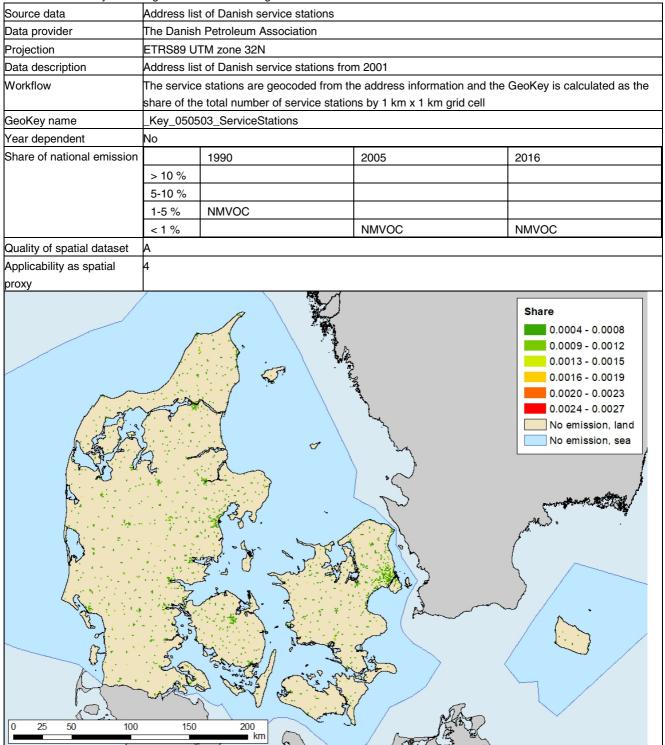
	production.				
Source data	Yearly data on oil and gas production in Denmark				
Data provider	The Danish Energy Agency				
Projection	ED1950 U	TM zone 32N			
Data description	Oil and gas	production statistics for t	he years 1972 onwards. Data	is available by offshore facility. The	
	data set include data for oil production, gas production, fuel consumption and flaring rates.				
Workflow	The share	of the total oil production i	s calculated by offshore facilit	y and by year.	
GeoKey name	_Key_0502	205_OilProduction			
Year dependent	Yes, based	l on annual production sta	tistics		
Share of national emission		1990	2005	2016	
	> 10 %				
	5-10 %				
	1-5 %				
	< 1 %	NMVOC	NMVOC	NMVOC	
Quality of spatial dataset	A				
Applicability as spatial	2				
proxy					
₩.	1 Sec.	74.			
0	Not and the second seco	Et work and a second a s		 0.007 - 0.015 0.016 - 0.029 0.030 - 0.049 0.050 - 0.082 0.083 - 0.133 0.134 - 0.214 0.215 - 0.340 No emission, land No emission, sea 	

Storage and onshore loading of crude oil

Production of oil and gas in Denmark only occur offshore. Part of the oil and gas produced are transported to the raw oil terminal via an undersea pipeline. Raw oil is stored at the terminal and either transported by pipeline to the nearby refinery or loaded to ships at the oil terminal's harbour.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty and the spatial applicability is considered very good as emissions occur at a single location.

Table 5.64	GeoKey for storage	and onshore loading of	crude oil.
------------	--------------------	------------------------	------------


Source data		–				
	Annual Self-regulation Report for the Raw Oil Terminal					
Data provider	DONG Oil Pipe A/S					
Projection		ETRS89 UTM zone 32N				
Data description	The reports include annual amounts of oil transported in pipeline from offshore facilities to the oil termi-					
	nal, annual	nal, annual amounts for onshore loading, and emissions from the oil terminal.				
Workflow	Emissions f	rom the storage and o	nshore loading of ships is al	located to the location of the oil terminal		
GeoKey name	_Key_0502	08_OilTerminal				
Year dependent	No					
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %	NMVOC	NMVOC			
	<1%			NMVOC		
Quality of spatial dataset	A					
Applicability as spatial	1					
proxy						
		Ben word have a start of the st		Share 1 No emission, land No emission, sea		

Service stations

Service stations include unloading of tanker trucks, storage in tanks at the service stations and refuelling of vehicles. Sales amounts are not available on service station level, and following the emissions are distributed evenly between the 2260 service stations included in the list from the Danish Petroleum Association. Small private and industrial gasoline/diesel tanks are not included in the list. This is assumed to be of minor importance as the main part of fuels for transport are sold from service stations.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as the list of Danish service stations is expected to include all active service stations. The spatial applicability is considered poor, as the data does not include the changes over time.

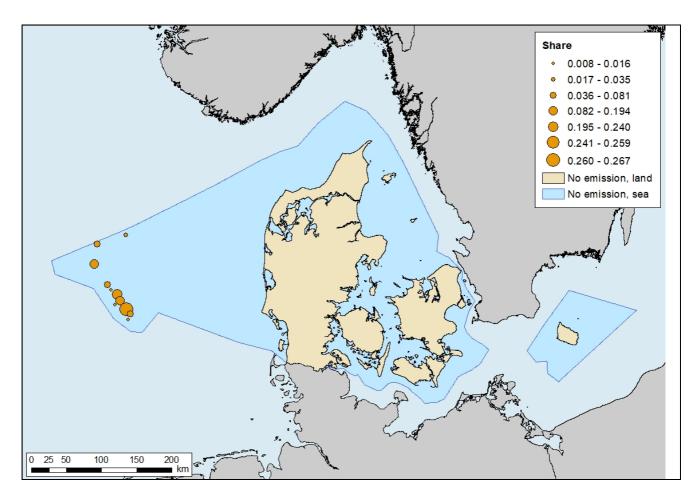
 Table 5.65
 GeoKey for storage and onshore loading of crude oil.

5.4.3 Gas

Fugitive emissions from gas include emissions from exploration, production, transmission and distribution of gas. Distribution of gas covers both natural

gas and town gas, the latter being natural gas diluted with ambient air (approximately 50/50).

Table 5.61 includes a description of the GeoKey used for gas exploration.


Gas production

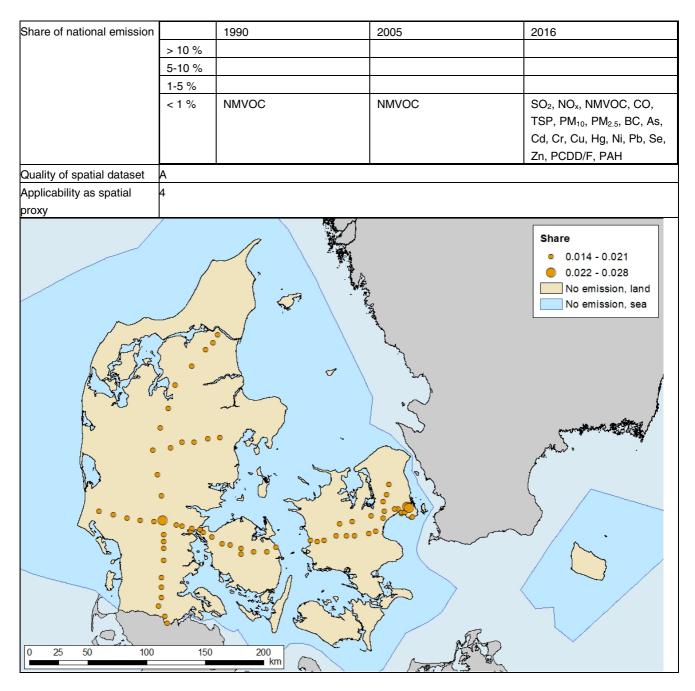
Danish gas production only occur at offshore facilities, and annual production data is available from the DEA on facility level.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty as it is based on installation specific production amounts. The spatial applicability is considered good as production amounts are assumed to correlate well with the production amounts.

Table 5.66 Geokey for gas	s production					
Source data	Yearly data on oil and gas production in Denmark					
Data provider	The Danish Energy Agency					
Projection	ED1950 UTM zone 32N					
Data description	Oil and gas	Oil and gas production statistics for the years 1972 onwards. Data is available by offshore facility. The				
	data set include data for oil production, gas production, fuel consumption and flaring rates.					
Workflow	The share o	of the total gas production is ca	Iculated by offshore facility and	d by year.		
GeoKey name	_Key_0503	05_GasProduction				
Year dependent	Yes, based	on annual production statistics	3			
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 %	NMVOC	NMVOC	NMVOC		
Quality of spatial dataset	А					
Applicability as spatial	2					
proxy						

Table 5.66 GeoKev for gas production

Natural gas transmission


The Danish natural gas pipelines are rather new and made of plastic, and emissions mainly occur due to leaks during construction and maintenance. This leads to large annual fluctuations, regarding both emission amounts and locations. As detailed data for location and size of leaks are not available, emissions are allocated to the M/R stations in the gas transmission network.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty as it include exact location of each M/R station. The spatial applicability is considered very poor, as location of leaks are unknown and vary from year to year.

The GeoKey for gas transmission is also used for flaring in gas transmission and distribution, see Chapter 5.4.4.

Source data	Location of M/R stations in the gas transmission network
Data provider	Energinet.dk
Projection	ETRS89 UTM zone 32N
Data description	Name address and geographical coordinates for the M/R stations in the gas transmission network
Workflow	The share of the total number of M/R stations is calculated by 1 km x 1 km and used for distribution of
	emissions
GeoKey name	_Key_050601_GasTransmission
Year dependent	Νο

Table 5.67 GeoKey for gas transmission.

Natural gas distribution

The emissions from natural gas distribution are distributed using information on the location of residential natural gas appliances. Please see Chapter 5.2.6 for more information.

Town gas distribution

Town gas is used in few urban areas in Denmark, and a few companies have been closed down since 1990. Detailed data for the town gas distribution network and consumers are not available for all areas with town gas, and therefore the emissions are allocated to the urban areas in municipalities with town gas.

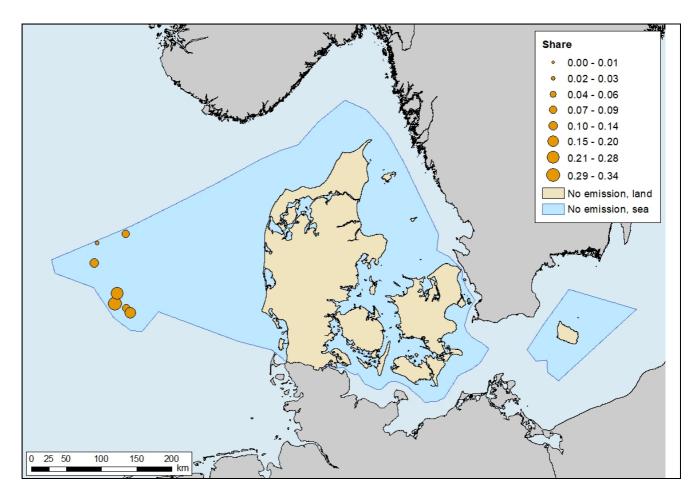
The spatial dataset used for the GeoKey is considered to have a low uncertainty as administrative borders are well defined. The spatial applicability is considered poor, as it does not reflect the location of the distribution network within the municipalities.

Table 5.68 GeoKey for tov	vn gas distri	bution.				
Source data	Kort10 vers	Kort10 version 2011				
	Urban zones					
Data provider	The Danish Agency for Data Supply and Effeciency					
Projection	EUREF89	EUREF89 UTM zone 32N				
	ED50 UTM	ED50 UTM zone 32N				
Data description	Municipaliti	Municipalities and urban zones are used.				
,		The annual reports include data on production and loss. Estimation of the part of the gas loss that owe				
		to fugitive emissions (fugitive gas loss) are based on detailed information from "Aalborg Forsyning".				
Workflow		The GeoKey is calculated as the share of the total fugitive gas loss evenly distributed on urban areas in				
VOINIOW		es with town gas.	the total lugitive gas loss ever			
GeoKey name		04_TownGas				
Year dependent	Yes, based	on annual fugitive gas loss da				
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 %	NMVOC	NMVOC	NMVOC		
Quality of spatial dataset	B					
Applicability as spatial proxy	4					
	A Contraction of the contraction			0.0000 - 0.0001 0.0002 - 0.0003 0.0004 - 0.0005 0.0006 - 0.0011 0.0012 - 0.0022 0.0023 - 0.0040 0.0041 - 0.0083 0.0084 - 0.0133 No emission, land No emission, sea		
0 25 50 100	150	200 km	A A A			
	-		1 El Marten			

5.4.4 Venting and flaring

Fugitive emissions from venting and flaring include emissions from venting in gas storage and treatment facilities (covered as LPS, see Chapter 5.2.1), flaring in offshore oil and gas production, flaring in refineries (covered as LPS),

flaring in gas storage (covered as LPS) and flaring in gas transmission and distribution.


Flaring in gas and oil extraction

Flaring in oil and gas extraction emits most pollutants covered by the SPREAD model. However, the contribution to the national total emissions is very limited for all pollutants. For all years and all pollutants, the contribution to the national total is less than 1 %.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty, since the actual location of the platforms with flaring is known. The spatial applicability is considered good, as the flaring rates are known for each platform and assumed to correlate well with the production amounts.

Table 5.09 George for halling in gas and on extraction.						
Source data	Yearly data on oil and gas production in Denmark					
Data provider	The Danish Energy Agency					
Projection	ED1950 UT	M zone 32N				
Data description	Oil and gas production statistics for the years 1972 onwards. Data is available by offshore facility. The					
	data set inc	data set include data for oil production, gas production, fuel consumption and flaring rates.				
Workflow	The share o	of the total flaring is calculated	by offshore facility and by year	•		
GeoKey name	_Key_0902	06_FlaringOffshore				
Year dependent	Yes, based	on annual facility specific flari	ng data			
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,		
		TSP, PM ₁₀ , PM _{2.5} , BC, As,	TSP, PM ₁₀ , PM _{2.5} , BC, As,	TSP, PM ₁₀ , PM _{2.5} , BC, As,		
		Cd, Cr, Cu, Hg, Ni, Pb, Se,	Cd, Cr, Cu, Hg, Ni, Pb, Se,	Cd, Cr, Cu, Hg, Ni, Pb, Se,		
		Zn, PCDD/F, PAH	Zn, PCDD/F, PAH	Zn, PCDD/F, PAH		
Quality of spatial dataset	A					
Applicability as spatial	2					
proxy						

Table 5.69 GeoKey for flaring in gas and oil extraction.

Flaring in gas transmission and distribution

There is no information available on the precise location of the flaring in the transmission and distribution of natural gas. These emissions typically occur in connection with maintenance work. The emissions have been distributed, using the same GeoKey as for natural gas transmission, see Table 5.67.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty as it include exact location of each M/R station. The spatial applicability is considered very poor, as location of leaks are unknown and vary from year to year.

5.5 Industrial processes and product use (IPPU)

Industrial processes cover a wide range of processes from a limited amount of facilities such as production of bricks and tiles, to more diffuse processes such as emissions from baking of bread or construction and demolition.

For the vast majority of activities under this sector, the general GeoKey for industry is applied, see Chapter 4.3 and Chapter 5.1.2. In some cases, it will be possible to further refine the spatial distribution. These cases have been further discussed in Chapter 7.

Table 5.70 shows the share of emissions from IPPU of the national total emissions for the pollutants covered by the SPREAD model. It can be seen that the share for many pollutants have been decreasing during the years. This is due to the closure of some industries in Denmark, e.g. the electro steelworks in Frederiksværk, but also due to flue gas abatement installed in some industrial branches. In 2016, the IPPU sector still accounts for more than 10 % of the national emissions for NMVOC, SO₂, As and Cr. For NMVOC, the major source is solvent use, in both industry and households, but a significant contribution also comes from the food and drink industry. For SO₂, the major source is production of bricks, tiles and expanded clay products. As the raw material (clay) in some cases contain sulphur, this is released as SO₂ during the production process. Emissions of As and Cr mainly originates from metal production and more specifically from steel production. Another contribution comes from product use, more specifically from the use of fireworks.

 Table 5.70
 Share of emissions from industrial processes and product use of the national total.

Share	1990	2005	2016
> 10 %	NMVOC, Zn, PCDD/F, BkF	SO ₂ , NMVOC, PM10, As, Cr, Pb	SO ₂ , NMVOC, As, Cr
5-10 %	TSP, PM ₁₀ , As, Cd, Hg, Pb, Se, BaP, BbF, IcdP, HCB	TSP, Cd, Se, Zn, PCDD/F, HCB	TSP, PM ₁₀ , Cu, Hg, Ni, Pb, Se
1-5 %	SO ₂ , CO, PM _{2.5} , Cu, Hg, Ni, PCBs	CO, PM _{2.5} , Cu, Hg, Ni, PCDD/F, PAH, PCBs	CO, PM _{2.5} , Cd, Zn
< 1 %	NO _x , NH ₃ , BC	NO _x , NH ₃ , BC	NO _x , NH ₃ , BC , HCB, PCDD/F, PAH, PCBs

The subsectors within IPPU is described in more detail in the following chapters.

5.5.1 Mineral industry

Mineral industry (NFR sector 2A) covers many different activities. Emissions from cement production in Denmark is solely estimated by LPS data from the one cement plant in Denmark and hence described in Chapter 5.2.1. The list of activities and corresponding GeoKeys are shown in Table 5.71.

Table 5.71 Activities within mineral industries and corresponding GeoKeys.

Activity	SNAP cate	goryGeoKey
Lime production	030312	_Key_Industry
Quarrying and mining of minerals other than coal	040616	_Key_040616_Quarrying
Construction and demolition	040624	_Key_Building
Storage, handling and transport of mineral produc	ts040690	_Key_Industry
Production of bricks and tiles	040691	_Key_Industry
Production of expanded clay products	040692	_Key_Industry

For production of lime (non-LPS), bricks and tiles, and expanded clay products, the default GeoKey for industry is used. This general GeoKey is described in Chapter 5.1.2 and is therefore not repeated here. The GeoKey for buildings used for emissions from construction and demolition is described in Chapter 5.1.3. The GeoKey for quarries is described in the following chapter.

Quarrying and mining

Many different minerals are quarried in Denmark leading to emissions of particulate matter. Emissions from the quarrying of minerals contributes with some significance to the national total emissions. In later years, the share of emissions has been between 1 and 5 %. The spatial dataset used for the GeoKey is considered to have a low uncertainty based on data from the municipalities. The spatial applicability is considered fair as activity data are not available.

Source data Data provider	14.140			
Doto providor	Kort10 vers	ion 2015		
Data provider	The Danish	Agency for Data Supply a	nd Effeciency	
Projection	UTM32_EU	IREF89		
Data description	Raw mater	al extraction sites		
Workflow	The raw ma	terial layer is intersected w	vith the 1 km x 1 km Danish grid	I net and the share of the total ex-
	traction are	a is calculated by grid cell.		
GeoKey name	_Key_0406	16_Quarrying		
Year dependent	No			
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %		PM ₁₀	
	1-5 %	TSP, PM ₁₀	TSP, PM _{2.5}	TSP, PM ₁₀ , PM _{2.5}
	< 1 %	PM _{2.5}		
Quality of spatial dataset	В		1	
Applicability as spatial	3			
proxy				
			A franking and a start of the s	0.0000 - 0.0003 0.0004 - 0.0007 0.0008 - 0.0012 0.0013 - 0.0018 0.0019 - 0.0027 0.0028 - 0.0039 0.0040 - 0.0060 0.0061 - 0.0099

Table 5.72 GeoKey for quarrying and mining.

5.5.2 Chemical industry

Chemical industry in Denmark is very limited and is exclusively covered by LPS. Emissions are from a relatively small number of LPS involved in the production of catalysts, pesticides, chemical ingredients, tar products and previously, until 2004, nitric and sulphuric acid.

5.5.3 Metal industry

As mentioned previously, there was an electro steelwork operating in Denmark, but this closed permanently in 2005. This is included in the inventory as a LPS. Other sources of emissions from metal production not covered by LPS are shown in Table 5.73 together with the corresponding GeoKey.

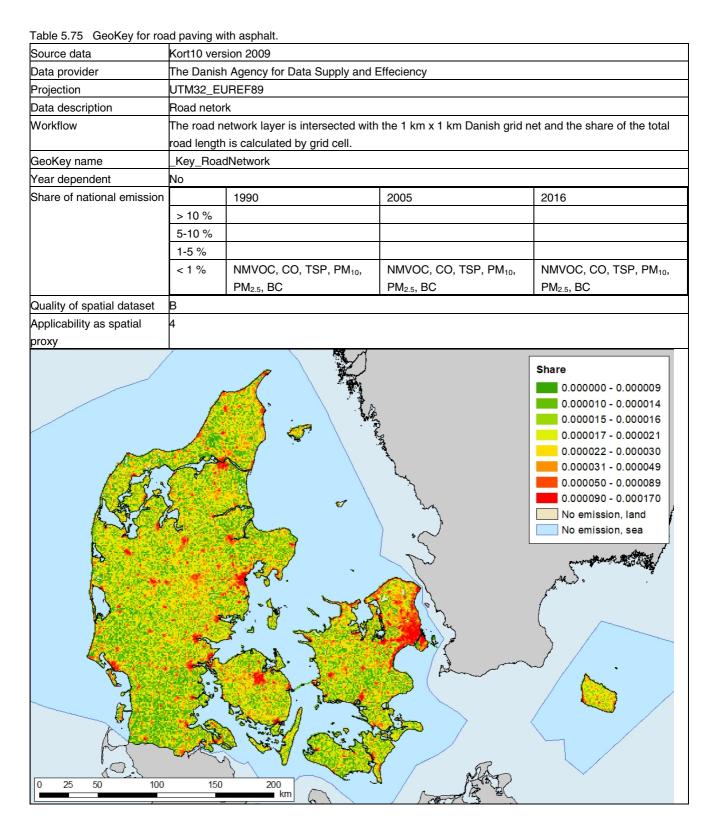
 Table 5.73
 Activities within metal industries and corresponding GeoKeys.

Activity	SNAP category	GeoKey
Cast iron production	030303	_Key_Industry
Secondary lead production	030307	_Key_Industry
Secondary aluminium production	030310	_Key_Industry
Red metal production	040306	_Key_Industry

For all sources, the general GeoKey for industry is used. This GeoKey is described in Chapter 5.1.2 and is therefore not repeated here.

5.5.4 Non-energy products from fuels and product use

This sector covers some specific product uses related to the non-energy use of fuels. The different activities covered by this sector and the corresponding GeoKey are shown in Table 5.74.


Table 5.74 Activities related to product use from non-energy use of fuels and corresponding GeoKeys.

Activity	SNAP category	GeoKey
Paint application	060100	_Key_Population
Decreasing and dry cleaning	060200	_Key_Building
Chemical products	060300	_Key_Industry
Domestic solvent use	060400	_Key_Population
Paraffin wax use (candles)	060606	_Key_Population
Asphalt roofing	040610	_Key_Industry
Road paving with asphalt	040611	_Key_RoadNetwork

The use of population density as a spatial proxy is often not very accurate. However, in the cases of some product uses, e.g. candles, it is probably the most reliable spatial proxy. The population GeoKey is described in Chapter 5.1.1.

For use of solvents in chemical products and asphalt roofing, the default GeoKey for industry is used. This general GeoKey is described in Chapter 5.1.2 and is therefore not repeated here. The GeoKey for buildings are used for emissions from decreasing and dry cleaning, this GeoKey is described in Chapter 5.1.3. The GeoKey for use of solvents in road paving with asphalt is based on the road network.

The spatial dataset used for the GeoKey is considered to have a low uncertainty based on data from the municipalities. The spatial applicability is considered poor as road paving occur only on parts of the road network and outside the present roads for construction of new roads occur. Further, no activity data or time variations are included in the GeoKey.

5.5.5 Other product manufacture and use

In the Danish inventory, this category covers a number of product uses, such as use of fireworks and tobacco. The different activities covered by this sector and the corresponding GeoKey are shown in Table 5.76.

Table 5.76	Activities related to product use and corresponding GeoKeys.
------------	--

Activity	SNAP category	GeoKey
Use of fireworks	060601	_Key_Population
Use of tobacco (smoking)	060602	_Key_Population
Use of shoes	060603	_Key_Population
Use of charcoal (barbequing)	060605	_Key_Building_OneStorey

The population GeoKey is described in Chapter 5.1.1 and the GeoKey for onestorey settlement in Chapter 5.1.4.

5.5.6 Other industrial processes

This category mainly consists of activities within the food and drinks industry and the emissions are mainly related to NMVOC. The different activities covered by this sector and the corresponding GeoKey are shown in Table 5.77.

 Table 5.77
 Activities related to other industrial processes and corresponding GeoKeys.

Activity	SNAP category	GeoKey
Bread production	040605	_Key_Industry
Wine production	040606	_Key_Industry
Beer production	040607	_Key_Industry
Spirits production	040608	_Key_Industry
Wood manufacturing	040620	_Key_Industry
Sugar production	040625	LPS
Flour production	040626	_Key_Industry
Meat curing	040627	_Key_Industry
Margarine and solid cooking fat production	040698	_Key_Industry
Coffee roasting	040699	_Key_Industry
Treatment of slaughterhouse waste	040617	_Key_Industry

Sugar production occurs at very few facilities and these are handled as LPS in SPREAD. The remaining activities covered by this sector are all distributed using the general GeoKey for industry; please see Chapter 5.1.2 for further information.

5.6 Agriculture

Agriculture covers emissions from animal husbandry and manure management as well as emissions from agricultural soils, e.g. emissions from fertiliser applied to soils, growing crops, and emissions from agricultural field operations. Agriculture is the dominant source of NH₃ emissions and contribute significantly to the emissions of NMVOC, NO_x, and PM.

Table 5.78 shows the share of emissions from agriculture of the national total emissions for the pollutants covered by the SPREAD model. It can be seen that the share for most pollutants have remained below 1 % of the national total throughout the time series. Many of these pollutants are only associated with field burning of agricultural residues and have minor contributions to the national total.

Emissions of NO_x , NMVOC, NH_3 , PM and HCB are contributing most to the national total. For NH_3 , the main sources are manure management and application as well as field application of other fertiliser and emissions from growing crops. NO_x emissions are mainly associated with application of manure

and mineral fertiliser. NMVOC emissions stem mainly from animal husbandry and manure management. Most of the PM emissions originate from the farm level field operations, e.g. from ploughing and harvesting. HCB emissions are associated with the use of pesticides, of which some contains impurities of HCB.

Combustion related emissions from tractors, harvesters, etc. are included under mobile combustion; see Chapter 5.3.8.

l able 5.78	Share of emissions from agriculture of the national total.				
Share	1990	2005	2016		
> 10 %	NMVOC, NH ₃ , TSP, PM ₁₀ ,	NMVOC, NH ₃ , TSP, PM ₁₀	NOx, NMVOC, NH ₃ , TSP,		
	HCB	$NIVIVOC$, $N\Pi_3$, ISP , $PIVI_{10}$	PM ₁₀		
5-10 %	NO _x , PM _{2.5} , BaP, BbF	NO _x , BaP, BbF, BkF	PM _{2.5} , HCB		
1-5 %	BkF, IcdP	PM _{2.5} , IcdP, HCB	BaP, BbF, BkF, IcdP		
< 1 %	SO ₂ , BC, CO, Pb, Cd, Hg, As,	SO ₂ , BC, CO, Pb, Cd, Hg, As,	SO ₂ , BC, CO, Pb, Cd, Hg, As,		
	Cr, Cu, Ni, Se, Zn, PCDD/F,	Cr, Cu, Ni, Se, Zn, PCDD/F,	Cr, Cu, Ni, Se, Zn, PCDD/F,		
	PCBs	PCBs	PCBs		

Table 5.78 Share of emissions from agriculture of the national total.

An overview of the different activities within agriculture is provided together with the GeoKey for the individual activities in Table 5.79.

Activity	NFR category	GeoKey
Dairy cattle	3B1a	_Key_3B1a_DairyCattle
Non-dairy cattle	3B1b	_Key_3B1b_NonDairyCattle
Sheep	3B2	_Key_3B2_Sheep
Swine	3B3	_Key_3B3_Swine
Goats	3B4d	_Key_3B4d_Goats
Horses	3B4e	_Key_3B4e_Horses
Laying hens	3B4gi	_Key_3B4gi_LayingHens
Broilers	3B4gii	_Key_3B4gii_Broilers
Turkeys	3B4giii	_Key_3B4giii_Turkeys
Other poultry	3B4giv	_Key_3B4giv_OtherPoultry
Other animals	3B4h	_Key_3B4h_OtherAnimals
Inorganic fertiliser	3Da1	_Key_3Da1_MineralFertiliser
Animal manure applied to soils	3Da2a	_Key_3Da2a_ManureSoils
Sewage sludge applied to soils	3Da2b	_Key_3Da2b_SludgeSoils
Other organic fertilisers applied to soil	s 3Da2c	_Key_3Da2c_OtherFertiliserSoils
Grazing animals	3Da3	_Key_3Da3_Grazing
Farm-level agricultural operations	3Dc	_Key_AgriculturalArea
Crops	3De	_Key_AgriculturalArea
Use of pesticides	3Df	_Key_AgriculturalArea
Field burning of agricultural residues	ЗF	_Key_AgriculturalArea
NH ₃ treated straw	31	_Key_3B1a_DairyCattle

Table 5.79 Activities within agriculture and corresponding GeoKeys.

The subsectors within agriculture are described in more detail in the following chapters.

5.6.1 Animal husbandry and manure management

The workflow for data processing is the same for all animals except horses and are therefore described here rather than for each animal type. For a description of the data processing for creating the GeoKey for horses, please see Table 5.85. The distribution of emissions from animal husbandry and manure management is based on data from the General Agricultural Register (GLR), the Central Husbandry Register (CHR) and the Fertilizer and livestock reporting (GHI), see Chapter 4.5. The CHR is a central register of animals managed by the Ministry of Environment and Food, including all animals regardless of farm size except for horses. The GeoKey for horses is based on the GHI, which only include farms that report to fertilizer accounts. No national register includes all horses, as horses are not included in the CHR register.

The location of the animals, housing systems and manure systems is important for distribution of emissions from manure management. Emissions of NH_3 from manure management are related to activities at the farms and are treated as point sources. Calculations are based on the normative figures on N-excretion per farm corrected for grazing. The correction for grazing is also used to develop the GeoKey for the category 'Urine and dung deposited by grazing animals'. This is done by using information on the number of days per year when the different animal types are grazing. The nitrogen excreted for these days of the year is allocated to pastures around the farm, and this is allocated to the 1 km x 1 km grid and normalised.

The calculated NH_3 emissions from animal husbandry and manure management on farm for the individual animal types are imported to GIS and aggregated to the 1 km x 1 km grid using the geographical coordinates for the farms included in the CHR. The GeoKeys are calculated as the share of the total NH_3 emission for a given source. The GeoKeys based on NH_3 emissions are used for NO_x , NMVOC and PM emissions as well.

The spatial data underpinning the GeoKeys for animals except horses are considered to have a very low uncertainty, and is therefore given the Quality rating A. As a spatial proxy, the developed GeoKeys are considered to have a good correlation.

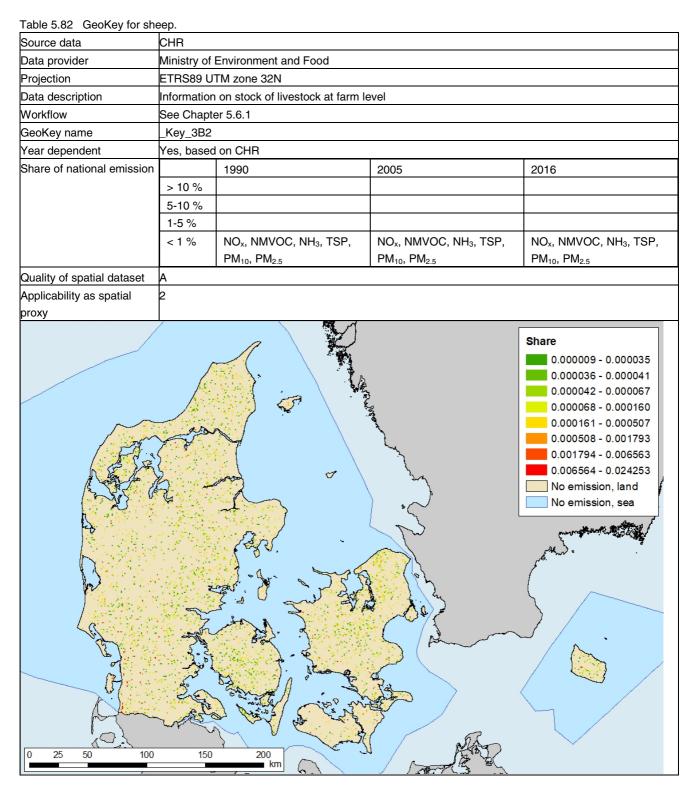
Dairy cattle

Dairy cattle is an important emission source for NH_3 and NMVOC while also contributing to the PM emission and to a very small extent to the NO_x emission.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as the register include all animals and the spatial applicability is considered good as the emissions are calculated on a highly disaggregated level.

Use of NH_3 for straw conservation is normally forbidden in Denmark, but in case with heavy rainfall during harvest, this ban can be lifted. Emissions from NH_3 treated straw take place in connection with dairy cattle farming. While the activity does not occur on all dairy cattle farms, there is no specific information available that allows for a further disaggregation. The uncertainty of the spatial data is very low, but the applicability as spatial proxy is very poor (Applicability rating 5), as the use of NH_3 treated straw only occurs on a limited number of farms, but the emission is distributed on all farms.

Source data	iry cattle.			
	CHR			
Data provider	Ministry of	Environment and Food		
Projection		TM zone 32N		
Data description	Information	on number of livestock at farr	n level	
Workflow	See Chapte	er 5.6.1		
GeoKey name	_Key_3B1a	a_DairyCattle		
Year dependent	Yes, based	on CHR		
Share of national emission		1990	2005	2016
	> 10 %	NH ₃		NH ₃
	5-10 %	NMVOC	NH ₃ , NMVOC	NMVOC
	1-5 %	PM ₁₀ , PM _{2.5}	PM ₁₀ , PM _{2.5}	TSP, PM ₁₀ , PM _{2.5}
	< 1 %	NO _x , TSP	NO _x , TSP	NO _x
Quality of spatial dataset	A		·	-
Applicability as spatial	2			
proxy				
			and a start and a start	0.000000 - 0.000002 0.000003 - 0.000007 0.000008 - 0.000024 0.000025 - 0.000081 0.000082 - 0.000266 0.000267 - 0.000871 0.000872 - 0.002841 0.002842 - 0.009266 No emission, land No emission, sea

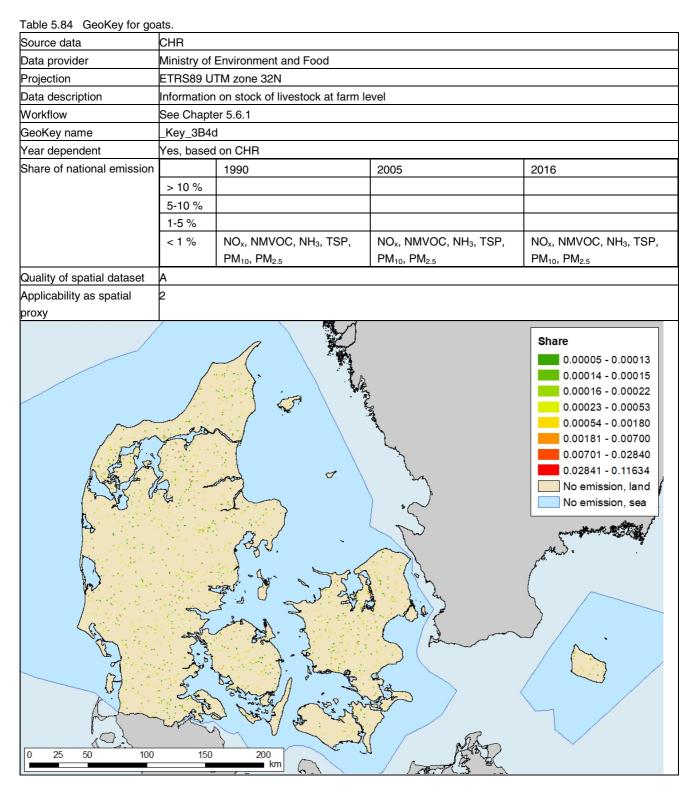

Non-dairy cattle

Non-dairy cattle is an important emission source of NMVOC emissions while also contributing to the $\rm NH_3$ emission. The emissions of PM and $\rm NO_x$ especially in the later years contribute very little to the national total.

Table 5.81 GeoKey for not Source data Data provider	CHR			
Data provider	Спк			
	Ministry of	Environment and Food		
Projection	ETRS89 U	TM zone 32N		
Data description	Informatior	on number of livestock at fa	arm level	
Workflow	See Chapt	er 5.6.1		
GeoKey name	_Key_3B1	_NonDairyCattle		
Year dependent	Yes, based			
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %	NMVOC	NMVOC	NMVOC
	1-5 %	NH ₃ , PM ₁₀ , PM _{2.5}	NH ₃	NH ₃
	< 1 %	NO _x , TSP	NO _x , TSP, PM ₁₀ , PM _{2.5}	NO _x , TSP, PM ₁₀ , PM _{2.5}
Quality of spatial dataset	A		, ,,	, ,,
	2			
proxy				
	Jes			0.0000021 - 0.0000035 0.0000036 - 0.0000114 0.0000115 - 0.0000524

Sheep

The number of sheep in Denmark is quite low and therefore, the emissions associated with sheep farming is also contributing little to the national emissions. For all years, the contribution to the national total is below 1 %.

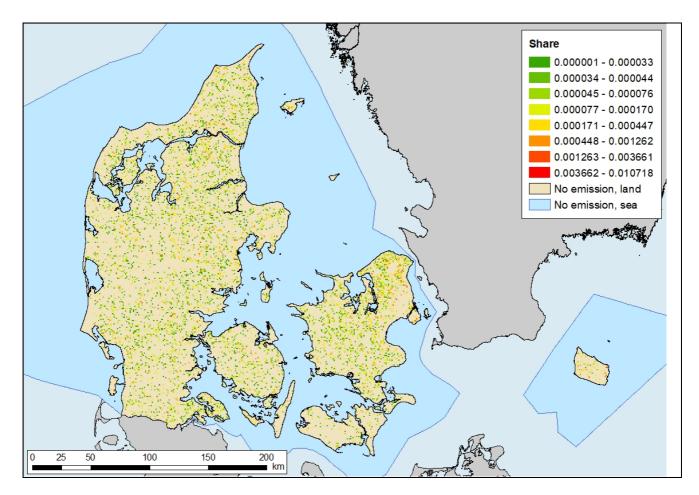

Swine

Swine is an important emission source for NH_3 and NMVOC while also contributing to the PM emission and to a very small extent to the NO_x emission.

Table 5.83 GeoKey for sw Source data Data provider				
	CHR			
Data providor	Ministry of	Environment and Food		
Projection	ETRS89 U	TM zone 32N		
Data description	Informatior	on stock of livestock at far	m level	
Workflow	See Chapt	er 5.6.1		
GeoKey name	_Key_3B3			
Year dependent	Yes, based			
Share of national emission		1990	2005	2016
	> 10 %	NH ₃	NH ₃	NH₃
	5-10 %		NMVOC	NMVOC
	1-5 %	NMVOC, TSP, PM ₁₀	TSP, PM ₁₀	TSP, PM ₁₀
	< 1 %	NO _x , PM _{2.5}	NO _x , PM _{2.5}	NO _x , PM _{2.5}
Quality of spatial dataset	A	- X, · ··· 2.0	···	
	2			
proxy				
			A.	0.00000 - 0.00001 0.00002 - 0.00004 0.00005 - 0.00008

Goats

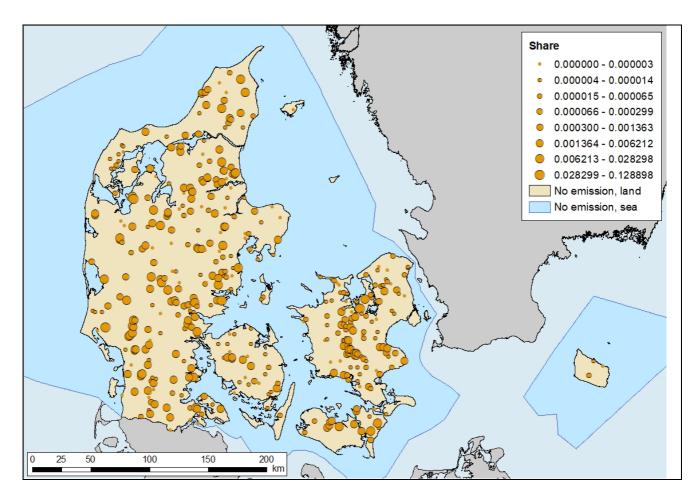
The number of goats in Denmark is very low and therefore, the emissions associated with goat farming is also contributing very little to the national emissions. For all years, the contribution to the national total is below 1 %.


Horses

As mentioned in Chapter 5.6.1, the methodology for horses is different from the other animal types. As the available spatial dataset does not contain all horses there is some uncertainty regarding the spatial distribution. However, as the majority of the horses, i.e. all larger herds are included, it is considered that the uncertainty of the spatial dataset is low and that it is a fair correlated proxy. The number of horses in Denmark is quite low and therefore, the emissions associated with horses is also contributing very little to the national emissions. For all years, the contribution to the national total is below 1 %.

Most horses are used in riding schools or for recreational purposes and not in agriculture. Therefore, the information on their exact location is more uncertain than for the agricultural production animals. However, the data quality is still considered good and the applicability as spatial proxy is considered fair.

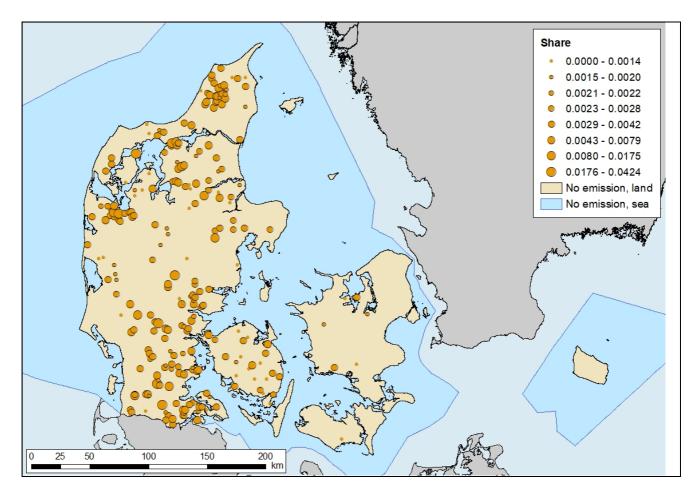
Source data	Fortilizor ar	nd livestock reporting (GHI)				
Data provider		Environment and Food				
Projection	ETRS89 U	TM zone 32N				
Data description	Information	on N-excretion from horses a	t farm level. The GeoKey is ba	sed on data from 2013.		
Workflow	The N-excr	etion for each farm is allocate	d to the 1 km x 1 km grid and t	he GeoKey is normalised by		
	dividing ea	ch cell value with the total N-e	xcretion from horses. GHI only	contains information on about		
	60000 hors	es, which is used as a proxy f	or the remaining number of ho	rses.		
GeoKey name	_Key_3B4e	e_Horses				
Year dependent	Yes, based	l on GHI				
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 % NO _x , NMVOC, NH ₃ , TSP, NO _x , NMVOC, NH ₃ , TSP, NO _x , NMVOC, NH ₃ , TSP,					
	PM ₁₀ , PM _{2.5} PM ₁₀ , PM _{2.5} PM ₁₀ , PM _{2.5}					
Quality of spatial dataset	В					
Applicability as spatial	3					
proxy						


Table 5.85 GeoKey for horses.

Laying hens

Poultry production is significant in Denmark. For laying hens, the contribution to the national emission of NH_3 , NMVOC and TSP is significant in the later years of the time series.

Table 5.86 Geokey for lay	ing nens.			
Source data	CHR			
Data provider	Ministry of	Environment and Food		
Projection	ETRS89 U	TM zone 32N		
Data description	Information	on stock of livestock at farm	level	
Workflow	See Chapte	er 5.6.1		
GeoKey name	_Key_3B4g	gi_LayingHens		
Year dependent	Yes, based	I on CHR		
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %			
	1-5 %		NH ₃	NMVOC, NH ₃ , TSP
	< 1 %	NO _x , NMVOC, NH ₃ , TSP,	NO _x , NMVOC, TSP, PM ₁₀ ,	NO _x , PM ₁₀ , PM _{2.5}
		PM ₁₀ , PM _{2.5}	PM _{2.5}	
Quality of spatial dataset	A			
Applicability as spatial	2			
proxy				

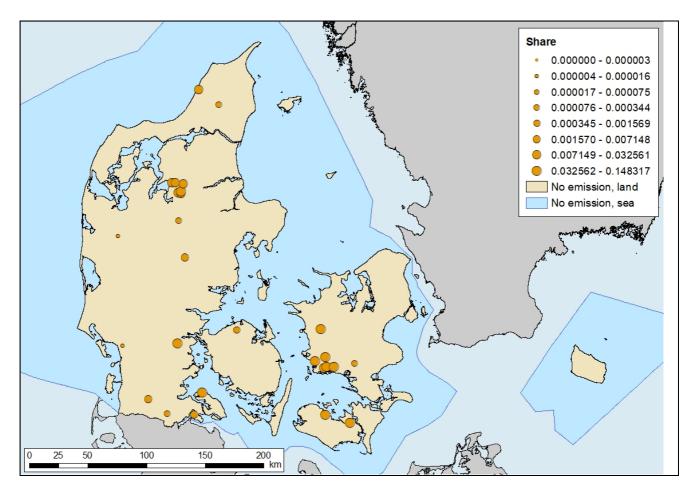


Broilers

The production of broilers contributes significantly to the national total emission of $\rm NH_3$ and $\rm NMVOC.$

Tuble 0.07 Georgy for bit						
Source data	CHR	CHR				
Data provider	Ministry of	Environment and Food				
Projection	ETRS89 U	TM zone 32N				
Data description	Informatior	on stock of livestock at farm l	evel			
Workflow	See Chapt	er 5.6.1				
GeoKey name	_Key_3B4	gii_broilers				
Year dependent	Yes, based	I on CHR				
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %	NH ₃	NH ₃	NMVOC, NH ₃		
	< 1 %	NO _x , NMVOC, TSP, PM ₁₀ ,	NO _x , NMVOC, TSP, PM ₁₀ ,	NO _x , TSP, PM ₁₀ , PM _{2.5}		
		PM _{2.5}	PM _{2.5}			
Quality of spatial dataset	А					
Applicability as spatial	2					
proxy						

Table 5 87	GeoKey for broilers	\$
1 able 5.07		э.

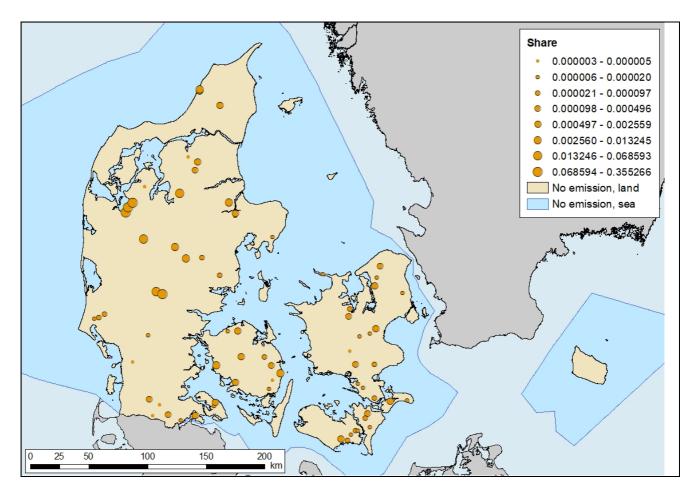

Turkeys

The number of turkeys in Denmark is very low and therefore, the emissions associated with turkey farming is also contributing very little to the national emissions. For all years, the contribution to the national total is below 1 %.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as the register include all animals and the spatial applicability is considered good as the emissions are calculated on a highly disaggregated level.

Table 5.88 Geokey for fur	keys.			
Source data	CHR			
Data provider	Ministry of	Environment and Food		
Projection	ETRS89 U	TM zone 32N		
Data description	Informatior	on stock of livestock at farm	level	
Workflow	See Chapt	er 5.6.1		
GeoKey name	_Key_3B4	giii_Turkeys		
Year dependent	Yes, based	I on CHR		
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %			
	1-5 %			
	< 1 %	NO _x , NMVOC, NH ₃ , TSP,	NO _x , NMVOC, NH ₃ , TSP,	NO _x , NMVOC, NH ₃ , TSP,
		PM ₁₀ , PM _{2.5}	PM ₁₀ , PM _{2.5}	PM ₁₀ , PM _{2.5}
Quality of spatial dataset	A			
Applicability as spatial	2			
proxy				

Table 5.88 GeoKey for turkeys

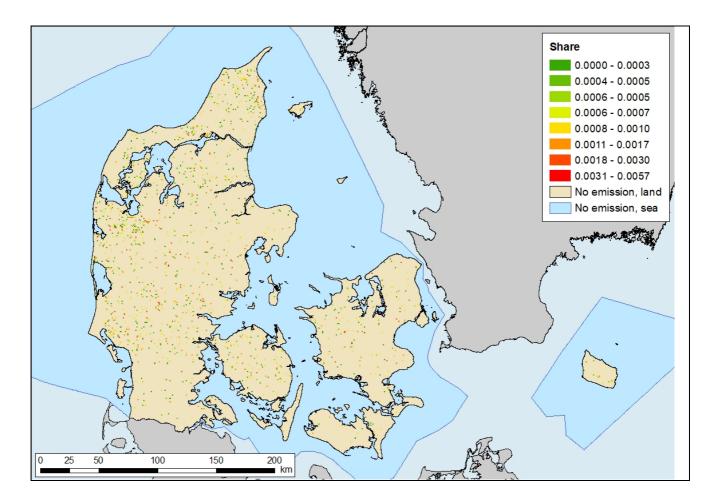


Other poultry

The category 'Other poultry' covers ducks, geese, pheasants and ostriches.

The farming of these animals in Denmark is limited and therefore their contribution to the national total emission is also limited. For all years, the combined contribution of these animals is less than 1 % of the national total.

Table 5.89 GeoKey for oth	er poultry.					
Source data	CHR					
Data provider	Ministry of	Environment and Food				
Projection	ETRS89 U	TM zone 32N				
Data description	Informatior	on stock of livestock at farm	level			
Workflow	See Chapt	er 5.6.1				
GeoKey name	_Key_3B4	giv_OtherPoultry				
Year dependent	Yes, based	I on CHR				
Share of national emission		1990	2005	2016		
	> 10 %					
	5-10 %					
	1-5 %					
	< 1 % NO _x , NMVOC, NH ₃ , TSP, NO _x , NMVOC, NH ₃ , TSP, NO _x , NMVOC, NH ₃ , TSP,					
	PM ₁₀ , PM _{2.5} PM ₁₀ , PM _{2.5} PM ₁₀ , PM _{2.5}					
Quality of spatial dataset	A					
Applicability as spatial	2					
proxy						


Other animals

The category 'Other animals' refer to mink, deer and foxes. Mink is the only animal type that contributes significantly to the national total. In later years, the contribution to especially the NH_3 emission, but also to the NMVOC emission is significant.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as the register include all animals and the spatial applicability is considered good as the emissions are calculated on a highly disaggregated level.

Table 5.90 Geokey for oth	er animais.			
Source data	CHR			
Data provider	Ministry of	Environment and Food		
Projection	ETRS89 U	TM zone 32N		
Data description	Information	on stock of livestock at farm	n level	
Workflow	See Chapt	er 5.6.1		
GeoKey name	_Key_3B4	n_OtherAnimals		
Year dependent	Yes, based	I on CHR		
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %		NH ₃	NMVOC, NH₃
	1-5 %	NMVOC, NH ₃	NMVOC, NH ₃	
	< 1 %	NO _x , TSP, PM ₁₀ , PM _{2.5}	NO _x , TSP, PM ₁₀ , PM _{2.5}	NO _x , TSP, PM ₁₀ , PM _{2.5}
Quality of spatial dataset	А			
Applicability as spatial	2			
proxy				

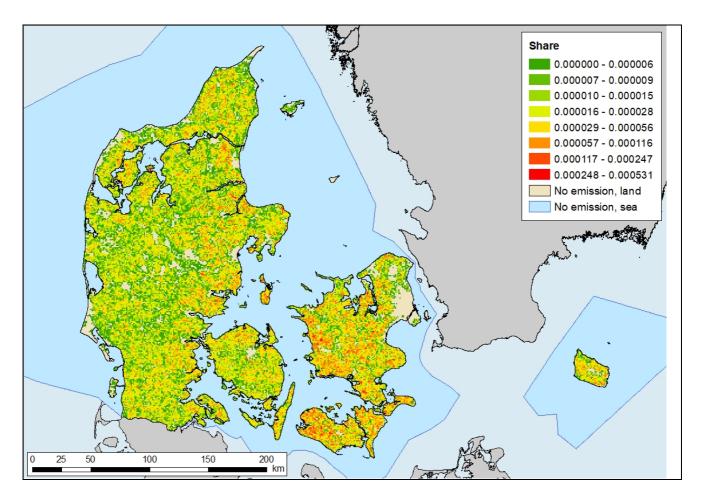
Table 5.90 GeoKey for other animals

5.6.2 Agricultural soils

The distribution of emissions from nitrogen application to agricultural soils is based on data from the field parcel maps, the GLR and the fertilizer accounts. The field parcel map include agricultural fields as polygons, the GLR holds information on crop types for the fields, and the fertilizer accounts are the farmers reporting of animal manure, inorganic fertilisers and other organic fertilisers.

The workflow is the same for all nitrogen inputs to soils, and it is only described here. The Danish agricultural fields are firstly geocoded. To keep the work manageable, the centerpoint of the field has been used to allocate emissions to a specific grid cell.

The nitrogen quotas for each field is known and from the GHI, the total application of nitrogen can be assessed. This is done for four different categories of nitrogen, i.e. inorganic fertiliser, animal manure, sewage sludge and other nitrogen components. For each farm (based on CVR number), the total nitrogen quota is calculated. Correction factors are calculated based on the total nitrogen quota and the use of the different types of nitrogen. The latter also has the effect that organic farmers, who are not using inorganic mineral fertilisers, are included in the spatial allocation. These correction factors are then used to correct the nitrogen quota. The nitrogen input per field is then calculated divided into the four different types. Finally, these values are aggregated to the 1 km x 1 km grid and normalised.

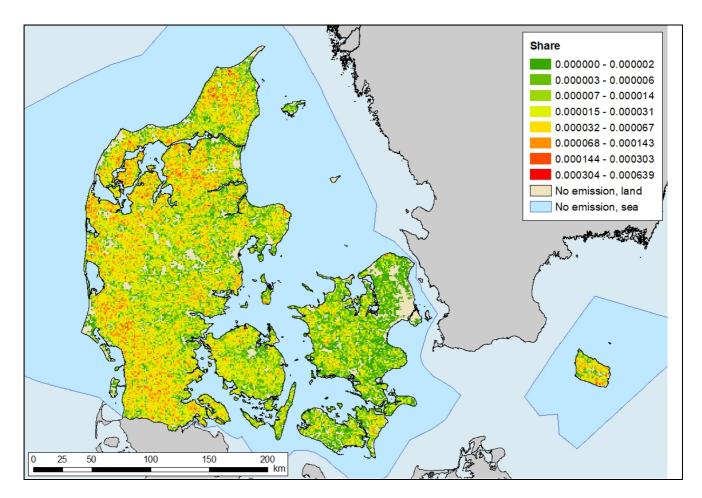

Inorganic fertilisers applied to soils

The application of inorganic fertilisers on soils is a major source of $\rm NH_3$ and $\rm NO_x$ emissions.

As shown in Chapter 5.6.1, the majority of the agricultural animal production takes place in the western part of Denmark. In eastern Denmark, there is fewer animals but a large crop production. This causes the use of inorganic fertiliser to be more prevalent in the eastern part of Denmark compared to the western part.

Source data	GLR, GHI	GLR, GHI				
Data provider	Ministry of	Environment and Food				
Projection	ETRS89 U	TM zone 32N				
Data description	See Chapte	er 5.6.2				
Workflow	See Chapte	er 5.6.2				
GeoKey name	_Key_3Da1	I_MineralFertiliser				
Year dependent	Yes, based	on GLR and GHI				
Share of national emission		1990	2005	2016		
	> 10 %	NH₃				
	5-10 %	NO _x	NH ₃	NO _x , NH ₃		
	1-5 %		NO _x			
	<1%					
Quality of spatial dataset	A					
Applicability as spatial	2					
proxy						

Table 5.91 GeoKey for inorganic fertilisers applied to soils.

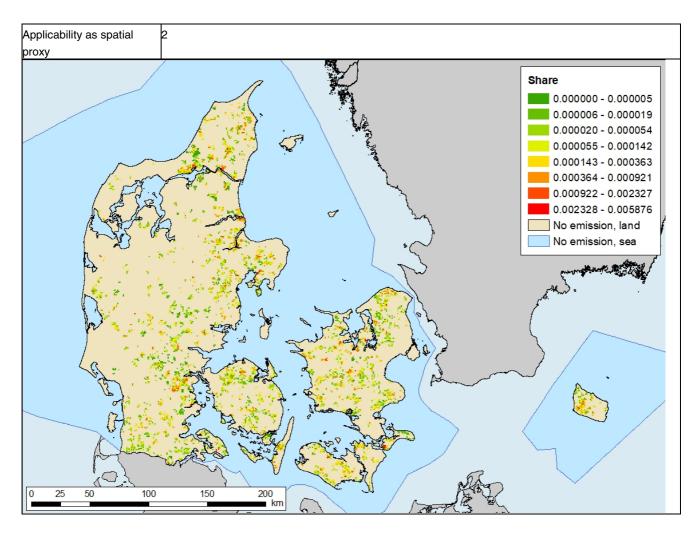


Animal manure applied to soils

The application of animal manure on soils is the single most important source of NH_3 emissions and it is also a very significant source to NO_x emissions.

/						
Source data	GLR, GHI					
Data provider	Ministry of I	Environment and Food				
Projection	ETRS89 U	TM zone 32N				
Data description	See Chapte	er 5.6.2				
Workflow	See Chapte	er 5.6.2				
GeoKey name	_Key_3Da2	a_ManureSoils				
Year dependent	Yes, based	on GLR and GHI				
Share of national emission		1990	2005	2016		
	> 10 %	NH₃	NH₃	NH₃		
	5-10 %	NO _x	NO _x	NO _x		
	1-5 %					
	< 1 %					
Quality of spatial dataset	A					
Applicability as spatial	2					
proxy						

Table 5.92 GeoKey for animal manure applied to soils.

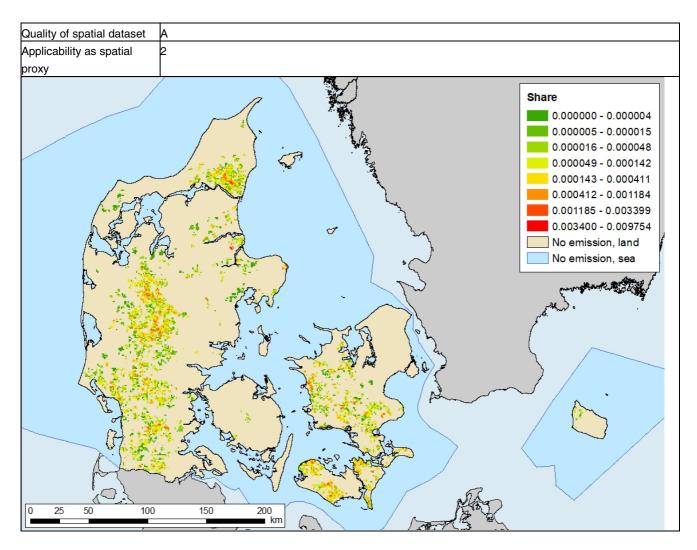


Sewage sludge applied to soils

The nitrogen applied to agricultural soils in the form of sewage sludge is very limited compared to the amounts in inorganic fertiliser and animal manure. As a result, the emission from sewage sludge applied to agricultural soils is negligible and for all years, the NH_3 emission from sewage sludge is far below 1 % of the national total.

Source data	GLR, GHI						
Data provider	Ministry of	Environment and Food					
Projection	ETRS89 U	TM zone 32N					
Data description	See Chapte	er 5.6.2					
Workflow	See Chapte	er 5.6.2					
GeoKey name	_Key_3Da2	2b_SludgeSoils					
Year dependent	Yes, based	on GLR and GHI					
Share of national emission		1990	2005	2016			
	> 10 %						
	5-10 %						
	1-5 %	1-5 %					
	< 1 %	NH ₃	NH_3	NH ₃			
Quality of spatial dataset	А						

Table 5.93 GeoKey for sewage sludge applied to soils.



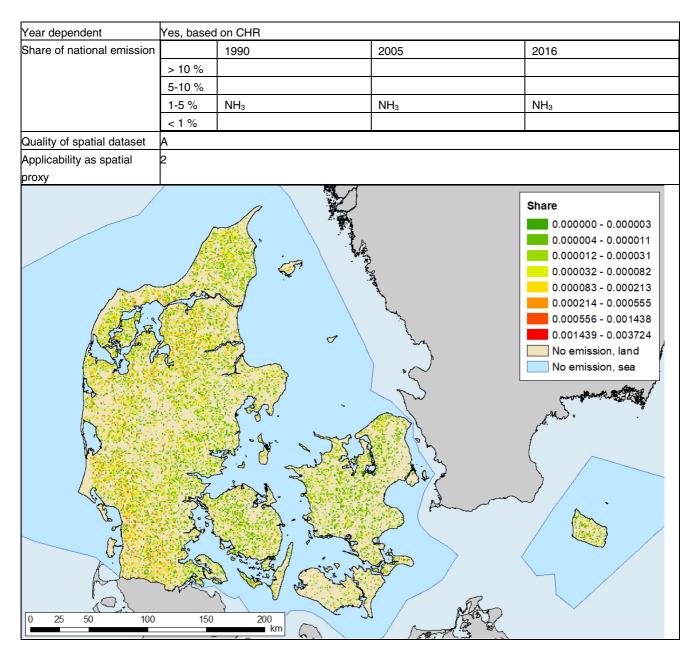
Other organic fertiliser applied to soils

Other types of organic fertiliser such as sludge from industrial productions are applied to soils and leads to emissions of NH_3 and NO_x . The major sources are nitrogen containing sewage water from potato flour processing and sugar production factories. However, as the amounts are very small, the emissions are insignificant compared to the national total emissions.

Source data	GLR, GHI				
Data provider	Inistry of Environment and Food				
Projection	ETRS89 UTM zone 32N				
Data description	See Chapte	See Chapter 5.6.2			
Workflow	See Chapte	See Chapter 5.6.2			
GeoKey name	_Key_3Da2c_OtherFertiliserSoils				
Year dependent	Yes, based on GLR and GHI				
Share of national emission	1990 2005 2016				
	> 10 %				
	5-10 %				
	1-5 %	-5 %			
	< 1 %	NO _x , NH ₃	NO _x , NH ₃	NO _x , NH ₃	

Table 5.94 GeoKey for other organic fertiliser applied to soils.

Urine and dung deposited by grazing animals


Nitrogen deposited by grazing animals leads to emissions of NH_3 . The majority of Danish livestock spends little time grazing, and hence the emission is limited. However, the contribution to the NH_3 emission is significant, accounting for between 2 and 2.5 % of the national total emission.

Emissions calculations are based on information on the number of days per year when the different animal types are grazing. The nitrogen excreted for these days of the year is allocated to pastures around the farm, and this is allocated to the 1 km x 1 km grid and normalised.

The spatial dataset used for the GeoKey is considered to have very low uncertainty as it is based on field level data. The spatial applicability is considered good as the data include information on the number of animals at farm level combined with knowledge of the average numbers of days on grass for the different animal types.

Source data	CHR
Data provider	Ministry of Environment and Food
Projection	ETRS89 UTM zone 32N
Data description	See Chapter 5.6.1
Workflow	See Chapter 5.6.1
GeoKey name	_Key_3Da3_Grazing

 Table 5.95
 GeoKey for urine and dung deposited by grazing animals.

Other soil emissions

This category covers particle emissions from farm level field operations, emissions from growing crops (NMVOC and NH₃) and emissions from the use of pesticides (HCB).

These activities all use the same GeoKey for the agricultural area. This GeoKey is described in Chapter 5.1.5.

5.6.3 Other agricultural emissions

Other agricultural emissions come from agricultural field burning and NH_3 treated straw.

As no information is available on the exact location of the agricultural field burning, the emissions are distributed using the GeoKey for the agricultural area; see Chapter 5.1.5.

Emissions from NH_3 treated straw take place in connection with dairy cattle farming. While the activity does not occur on all dairy cattle farms, there is no specific information available that allows for a further disaggregation; see Chapter 5.6.1. Emissions from NH_3 treated straw are distributed using the GeoKey for Dairy cattle; see Table 5.80.

5.7 Waste

The waste sector covers a number of different sources, some of which are occurring at a limited number of facilities, e.g. crematoria, and other sources, where the emission pattern is more diffuse, e.g. accidental fires.

Table 5.96 shows the share of emissions from waste of the national total emissions for the pollutants covered by the SPREAD model. It can be seen that the share for most pollutants have been stable during the years. The main source of emissions for most pollutants is accidental fires and this source has been relatively stable during the years. Changes in the level of specific pollutants are therefore mainly related to emission changes in other sectors, e.g. the increasing share of the Pb emission is mainly due to the significant decrease in emission from road transport in the early 1990s.

In 2016, the waste sector still accounts for more than 10 % of the national emissions for Pb, Zn and PCDD/F. For all these pollutants, it is accidental fires that causes the vast majority of emissions, with only minor contributions coming from cremations.

The decrease in the share of Hg from 2005 to 2016 is due to the implementation of flue gas abatement at Danish crematoria. The increase in the share of SO_2 is caused by the decrease in emissions from other sectors (primarily combustion), and the increase in NH₃ in the later years is due to the increased popularity of composting as a waste management system.

Share	1990	2005	2016	
> 10 %	Zn, PCDD/F	Pb, Zn, PCDD/F	Pb, Zn, PCDD/F	
5-10 %	BkF, IcdP	Hg	SO2	
1-5 %	PM _{2.5} , Pb, Hg, BaP, BbF	SO ₂ , PM _{2.5} , BaP, BbF, BkF, NH ₃ , PM _{2.5} , BaP, BbF, BkF,		
	$FW_{2.5}$, FD , HY , DAF , DDF	IcdP	IcdP	
<1%	NO _x , NMVOC, SO ₂ , NH ₃ ,	NO _x , NMVOC, NH ₃ , TSP,	NO _x , NMVOC, TSP, PM ₁₀ ,	
	TSP, PM_{10} , BC , CO, Cd, As,	PM ₁₀ , BC, CO, Cd, As, Cr,	BC, CO, Cd, Hg, As, Cr, Cu,	
	Cr, Cu, Ni, Se, HCB, PCBs	Cu, Ni, Se, HCB, PCBs	Ni, Se, HCB, PCBs	

Table 5.96 Share of emissions from waste of the national total.

An overview of the different activities within the waste sector is provided together with the GeoKey for the individual activities in Table 5.97. Table 5.97 Activities within the waste sector and corresponding GeoKeys.

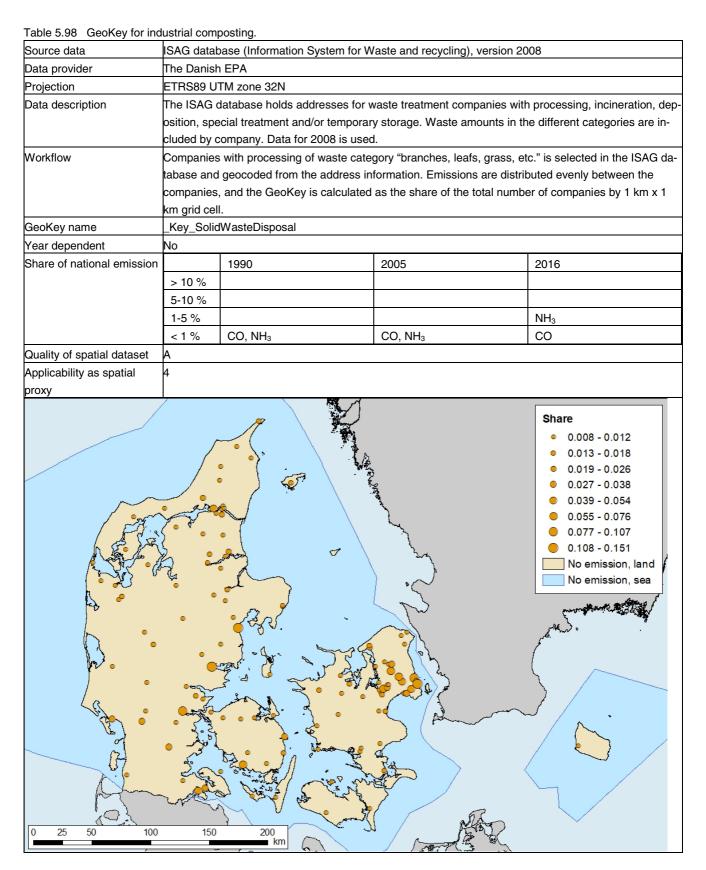
Activity	SNAP category	GeoKey
Composting of garden and park waste, organic waste	091101, 091102, 091103	_Key_SolidWasteDisposal
and sludge		
Home composting of garden and organic food waste	091104	_Key_Building_OneStorey
Anaerobic digestion at biogas facilities	091006	_Key_Biogas
Human cremation	090901	_Key_090901_Cremation
Animal cremation	090902	_Key_090902_AnimalCremation
Accidental fires – Vehicles	091201	_Key_Population
Accidental fires – Containers	091202	_Key_Population
Accidental fires – Detached houses	091203	_Key_Population
Accidental fires – Undetached houses	091204	_Key_Population
Accidental fires – Apartment buildings	091205	_Key_Population
Accidental fires – Industrial buildings	091206	_Key_Industry
Accidental fires – Other buildings	091207	_Key_Population

The subsectors within waste are described in more detail in the following chapters.

5.7.1 Solid waste disposal on land

Currently, no air pollution emissions are included from solid waste disposal on land (landfills). However, a GeoKey has been prepared as it is used for some parts of composting. Please see Chapter 5.7.2 for more information.

5.7.2 Biological treatment of waste


Biological treatment of waste covers two different activities namely composting and anaerobic digestion at biogas facilities. Composting occurs both on the industrial scale and at the residential scale, while biogas plants with anaerobic digestion occurs on known locations. The separate activities are described in the following.

Composting

There are two separate activities covered by the composting category, one is the industrial scale composting, which is usually located in connection with existing landfills. The other is home composting, which usually occurs in gardening, mainly in connection with one-storey settlement. Of the pollutants currently covered by SPREAD, only NH_3 and CO are emitted from composting.

The GeoKey for one-storey settlement is described in Chapter 5.1.4. The GeoKey used for the industrial composting facilities is described in Table 5.98 below.

The spatial dataset used for the GeoKey for industrial composting is considered to have very low uncertainty as the database include all waste treatment facilities with composting. The spatial applicability is considered poor as neither activity data nor time variations are included.

Anaerobic digestion at biogas facilities

Of the pollutants currently covered by SPREAD, only NH_3 is emitted from anaerobic digestion at biogas facilities. The emissions are very low and the contribution to the national total is far below 1 % for all years.

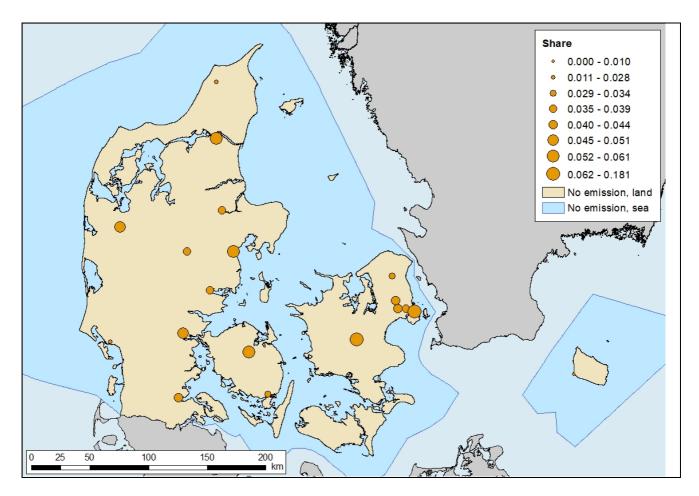
The spatial dataset used for the GeoKey is considered to have a very low uncertainty, since the exact location of the biogas plants is known and the dataset is complete. The spatial applicability is considered good, since the GeoKey takes into account the biogas production at the different plants.

	EPT (see Chapter 5.2.2)			
Data provider	Danish Energy Agency (DEA)			
Projection	ETRS89 UTM zone 32N			
Data description	(See Chapter 5.2.2)			
Workflow	The EPT data include some LPS, which are all identified and excluded from the data processing to			from the data processing to
			nout any biogas fuel consumptio	
	processing.			
	The GeoKe	y for biogas is calculated a	s the share of the total biogas co	nsumption by plant and summa-
	rised by 1 k	m x 1 km grid cell.		
GeoKey name	Key_Biogas			
Year dependent	Yes, based on annual EPT data			
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %			
	1-5 %			
	< 1 %	NH ₃	NH ₃	NH ₃
Quality of spatial dataset	A			•
	2			
proxy				
			A for a start of the start of t	No emission, land

Table 5.99 GeoKey for biogas plants.

5.7.3 Waste incineration

In Denmark, all traditional waste incineration, i.e. municipal, industrial, chemical and hazardous waste incineration is carried out with energy recovery and all facilities are included as LPS, see Chapter 5.2.1. The activities covered within this sector are therefore limited to human and animal cremations.

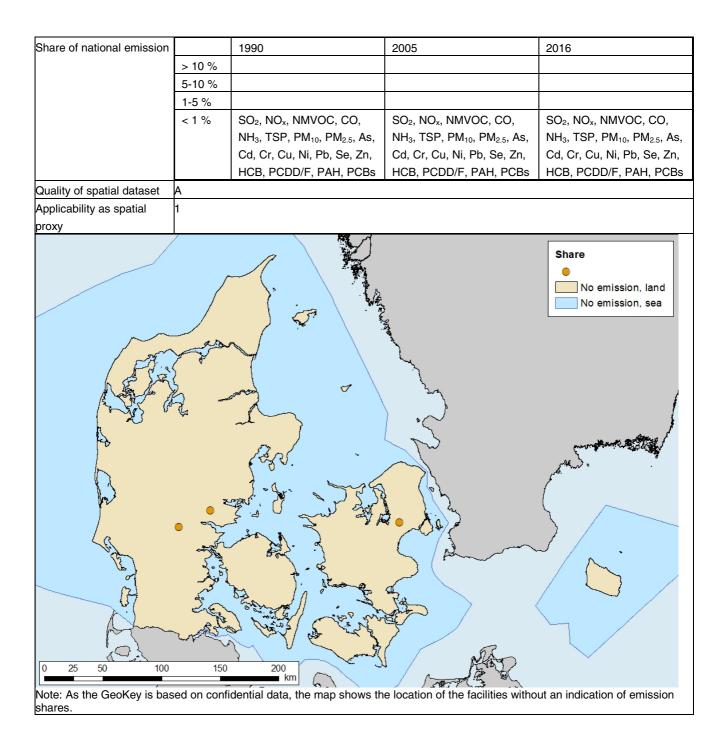

Human cremations

The emissions from human cremations are for the majority of pollutants negligible. The only exception is mercury, where the share of national total emissions are significant in the early years of the time series. In later years, the share has decreased due to legislation requiring the installation of abatement equipment at the crematoria.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty since the exact location and the number of cremated bodies are known. The spatial applicability is considered very good since the coverage is complete and the emissions are directly proportional to the activity level.

/				
Source data	Address and activity data for crematoria			
Data provider	Danske Krematoriers Landsforening			
Projection	ETRS89 UTM zone 32N			
Data description	Address and annual activity data for human crematoria			
Workflow	The GeoKey is calculated as share of total activity by crematorium			
GeoKey name	_Key_090901_Cremation			
Year dependent	Yes, based on annual activity data			
Share of national emission		1990	2005	2016
	> 10 %			
	5-10 %		Hg	
	1-5 %	Hg		
	< 1 %	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,	SO ₂ , NO _x , NMVOC, CO,
		TSP, PM ₁₀ , PM _{2.5} , As, Cd,	TSP, PM ₁₀ , PM _{2.5} , As, Cd,	TSP, PM ₁₀ , PM _{2.5} , As, Cd,
		Cr, Cu, Ni, Pb, Se, Zn,	Cr, Cu, Ni, Pb, Se, Zn,	Cr, Cu, Hg, Ni, Pb, Se, Zn,
		HCB, PCDD/F, PAH, PCBs	HCB, PCDD/F, PAH, PCBs	HCB, PCDD/F, PAH, PCBs
Quality of spatial dataset	А			
Applicability as spatial	1			
proxy				

Table 5.100 GeoKey for human cremations.


Animal cremations

Animal cremations only occur at very few facilities. As the data on the annual activity level have been received on the condition of confidentiality, the map below simply identifies the location of the facilities without an indication of the distribution in activity data between the three sites. Emissions from animal cremations have a negligible impact on the national total emissions.

The spatial dataset used for the GeoKey is considered to have a very low uncertainty since the exact location and the amount of cremated animals are known. The spatial applicability is considered very good since the coverage is complete and the emissions are directly proportional to the activity level.

Source data	Address and activity data for animal crematoria
Data provider	The Danish pet crematoria
Projection	ETRS89 UTM zone 32N
Data description	Address and annual activity data for animal cremation
Workflow	The GeoKey is calculated as share of total activity by animal crematorium
GeoKey name	_Key_090902_AnimalCremation
Year dependent	Yes, based on annual activity data

Table 5.101 GeoKey for animal cremations.

5.7.4 Wastewater handling

Currently, no air pollution emissions are included from wastewater handling in the Danish inventory.

5.7.5 Other waste

Emissions from other waste handling include emissions from accidental fires. The emissions from fires in the Danish inventory are based on different building types, and vehicles are considered as a separate category.

Currently, emissions from fires in industrial buildings are distributed evenly on the industrial areas; see Chapter 5.1.2. The emissions from all other types of fires listed in Table 5.97 are distributed using the GeoKey for population; see Chapter 5.1.1.

6 Spatial distribution of national emissions

Based on the GeoKeys documented in Chapter 5 and the national emission inventory, the gridded emissions are calculated and outputs are generated from the model. These outputs are imported to ArcGIS to create emission maps. The outputs are created for several different purposes, e.g. for reporting to the UNECE and the European Commission (0.1 degree x 0.1 degree and Gridding Nomenclature for Reporting - GNFR) and for the national model-ling of air pollution (1 km x 1 km and at a more detailed level than the GNFR).

Some examples of the resulting emission maps are included below for some of the most important pollutants together with comments and an explanation of the spatial patterns.

6.1 Nitrogen oxides - NO_x

Figure 6.1 shows the NO_x emission in 2016 distributed on 1 km x 1 km. Clearly visible are the major road network in Denmark, the large metropolitan areas around Copenhagen, Aarhus, Aalborg and Odense and ferry/airline routes. The major sources of NO_x emissions are distributed using GeoKeys with medium or lower uncertainty. However, there are still room for improvement for certain categories, see Chapter 9.1.

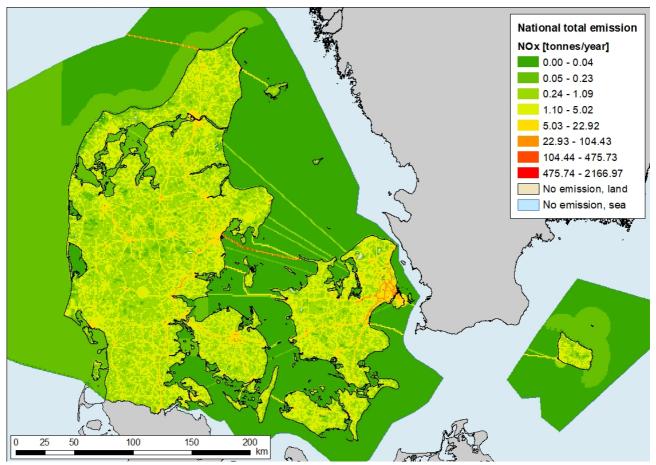


Figure 6.1 Gridded emissions of NO_x for 2016.

6.2 Sulphur dioxide – SO₂

Figure 6.2 shows the SO₂ emission in 2016 distributed on 1 km x 1 km. Major urban areas are visible as area ferry/airline routes. However, a large part of the SO₂ emission stems from various industries either as process emissions (such as production of bricks and tiles) or as combustion emissions from plants using coal or fuel oil. These emissions are currently distributed using an uncertain GeoKey with limited applicability, see Chapter 5.1.2. As such, there is a number of planned improvements that would significantly improve the distribution of SO₂ emissions, see Chapter 9.1.

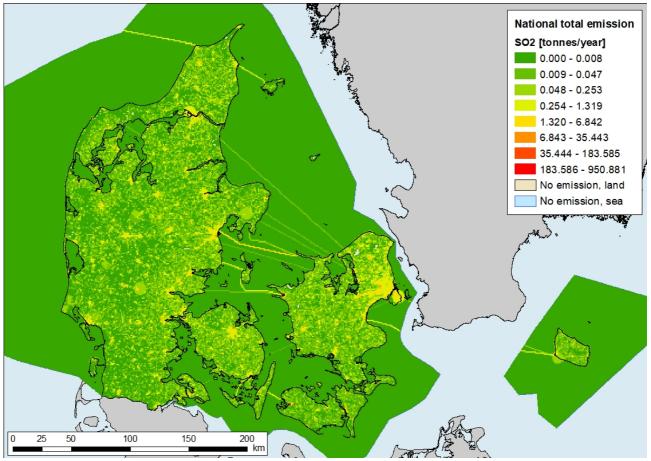


Figure 6.2 Gridded emissions of SO₂ for 2016.

6.3 Non-Methane Volatile Organic Compounds – NMVOC

Figure 6.3 shows the NO_x emission in 2016 distributed on 1 km x 1 km. There are many significant sources of NMVOC emissions, e.g. agriculture, use of solvents, residential combustion, oil/gas industry and gasoline fuelled machinery. Some of the sources are distributed using GeoKeys with low or very low uncertainty and good applicability, e.g. agriculture, oil/gas industry and residential wood burning. For use of solvents and gasoline machinery, the GeoKeys are more uncertain and the applicability lower. There are planned improvements addressing a number of these sources, see Chapter 9.1.

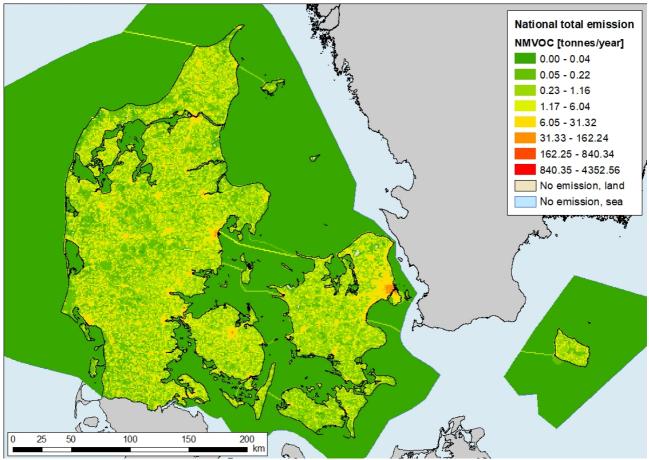


Figure 6.3 Gridded emissions of NMVOC for 2016.

6.4 Ammonia – NH₃

Figure 6.4 shows the NH₃ emission in 2016 distributed on 1 km x 1 km. Emissions of NH₃ is dominated by the agricultural sector with small contributions from small-scale combustion and waste treatment. As such, the distribution of NH₃ emissions closely follows the density of livestock production. The agricultural emissions are distributed using the excellent register data available for the Danish agriculture and the distribution is therefore considered very accurate. Therefore, there are no planned improvements that would significantly impact the distribution of NH₃ emissions.

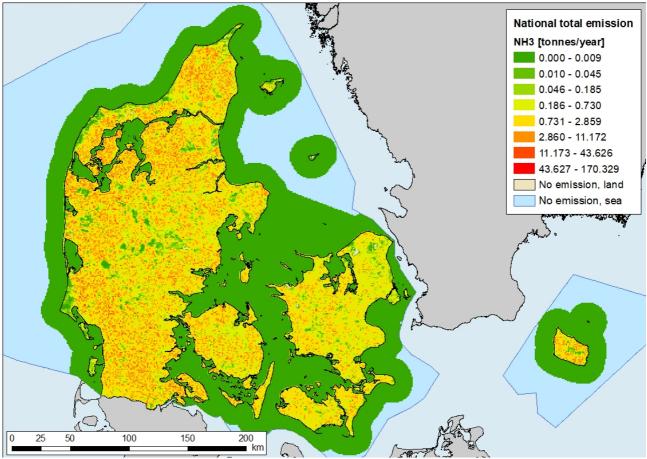


Figure 6.4 Gridded emissions of NH₃ for 2016.

6.5 Fine particulate matter – PM_{2.5}

Figure 6.5 shows the $PM_{2.5}$ emission in 2016 distributed on 1 km x 1 km. The $PM_{2.5}$ emissions are dominated by small-scale combustion, especially wood and straw, but there is also significant contributions from road transport, industrial machinery and agriculture. While the largest sources are distributed using GeoKeys with medium or lower uncertainties, there is further possibilities for improvements, especially for emissions currently allocated using the general GeoKey for the agricultural area. See Chapter 9.1 for a description of the planned improvements.

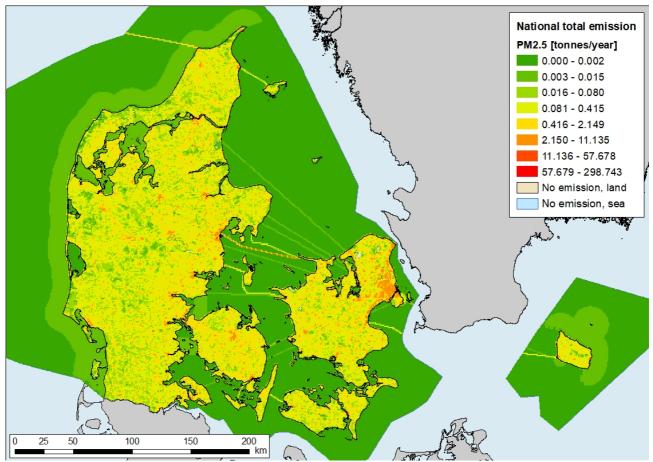


Figure 6.5 Gridded emissions of PM_{2.5} for 2016.

7 Adherence to international requirements

7.1 Reporting obligations

Under both CLRTAP (UNECE, 2014) and NECD (EU, 2016), there is an obligation to report gridded emissions. The requirements are identical and therefore described together in this report.

The obligation is to report gridded emissions every four years by 1 May on the EMEP grid according to GNFR sectors (Gridding Nomenclature for Reporting). The EMEP grid refers to a $0.1^{\circ} \times 0.1^{\circ}$ latitude-longitude projection in the geographic coordinate World Geodetic System (WGS) latest revision, WGS 84. The EMEP domain covers the geographic domain between 30° N– 82°N latitude and 30° W– 90° E longitude. The first reporting was due in 2017, so the next reporting is due by 1 May 2021.

The spatial distribution of emissions should be carried out in accordance with the guidance provided by the EMEP/EEA Guidebook (EEA, 2016), see Chapter 7.2 for more details.

As mentioned, Parties/Member States (MS) are obligated to report every four years from 2017 onward, Parties/MS shall report for the year x-2 updated aggregated sectoral (GNFR) gridded emissions. The submission shall include the following pollutants: SO₂, NO_x, NH₃, NMVOC, CO, PM₁₀, PM_{2.5}, Cd, Pb, Hg, PAHs, PCDD/F, PCBs and HCB. The NECD further requires reporting of BC, if available.

While the reporting under UNECE and NECD are identical, it is technically reported twice. The latest reporting of gridded emissions can be found at the Eionet (European Environment Information and Observation Network) Central Data Repository:

- UNECE: <u>http://cdr.eionet.europa.eu/dk/un/clrtap/gridded/</u>
- NECD: <u>http://cdr.eionet.europa.eu/dk/eu/nec_revised/gridded/</u>

7.2 Technical guidance

The EMEP/EEA Guidebook (EEA, 2016) provides guidance on spatial distribution of emissions. The Guidebook lists a number of elements as 'good practice'. These are shown in Table 7.1 together with an assessment of how the element is incorporated in SPREAD.

Table 7.1 Good practice elements from the EMEP/EEA Guidebook.

Good practice element	SPREAD adherence
Use key category analysis (KCA) to identify the most important sources and give the most time to these.	At present, a KCA is not carried out for the Danish inventory. However, efforts are prioritised for sources with large con tributions to total emissions. In Chapter 5, it has for each GeoKey been listed the share of the national total emission that is distributed using the particular GeoKey.
Make use of GIS tools and skills to improve the usefulness of available data. This will mean understanding the general types of spatial features and possibly bringing in skills from outside the existing inventory team for the production/manipulation of spatial datasets.	This is documented in Chapter 3, 4 and 5.
Make use of existing spatial datasets and carefully consider the merits versus costs of extensive new surveying or data processing to derive new spatial datasets. It is often more important to generate a timely dataset based on less accurate data than a perfect dataset that means reporting deadlines are missed or all resources are consumed.	The rating system used for both the ac- curacy and applicability of the spatial proxy as well as contribution to emis- sions, enables the judgement on where to prioritise resources.
Select the surrogate data that is judged to most closely represent the spatial emis- sions patterns and intensity, e.g. for combustion sources, surrogate spatial datasets that most closely match the spatial patterns of fuel consumed by type should be cho- sen.	For each GeoKey, the applicability is as sessed and scored.
Surrogate spatial datasets that are complete (cover the whole national area) should be preferred.	This is documented in Chapter 5.
Use, when possible and when no other more accurate data is available, the spatial surrogate that was used for spatial mapping in previous years. This is to guarantee consistency.	The GeoKeys in SPREAD are either used for the entire time series, or they are based on detailed annual data allow ing for a GeoKey time series.
Issues relating to non-disclosure may be encountered (at a sectoral or spatial level) that may impose barriers to acquiring data (e.g. population, agriculture, employment data). As only highly aggregated output data is needed for reporting, signing of non- disclosure or confidentiality agreements or asking the data supplier to derive aggre- gated datasets may improve the accessibility of this data. It is important that issues relating to this are identified and dealt with in consultation with the national statistical authority.	SPREAD runs at a resolution of 1 km x ⁻ km, and at that resolution, we have not had any issues with confidentiality. We have received confidential datasets, but these are aggregated with other data to protect the data confidentiality.
It is advisable to consider the resolution (spatial detail) required in order to meet any wider national or international uses. Aggregation to the present EMEP 0.1×0.1 degree longitude/latitude grid could be done, for example, from more detailed spatial resolutions that might be more useful in a national context. Most nationally reported emissions datasets are based on national statistics and are not resolved spatially in a manner that could be readily disaggregated to the required 0.1×0.1 degree EMEP grid. Possible exceptions in some countries are detailed road transport networks and reported point source emissions data.	As mentioned, SPREAD runs at a resolution of 1 km x 1 km and this is judged as sufficient for the main use, which is to form the basis of air quality modelling and subsequent evaluations of human exposure.
When updating a spatial inventory it is often not possible to update all the spatial da- tasets every year (for economic reasons). A yearly data acquisition plan (DAP) can describe which surrogate data is updated with which frequency, depending on its im- portance, costs and variation in time.	The SPREAD model uses annual GeoKeys to the extent possible. As part of the planned improvements, it is con- sidered whether it is feasible to move to annual GeoKeys, see Chapter 9.1.
When the budget is very limited, available international datasets can act as a starting point when they are used as a surrogate data for the spatial allocation of the national total for some sectors. The limited resources can then be used for the most relevant sectors.	Not relevant.

The general approach, as outlined in the Guidebook, is first to separate between point sources (PS) and diffuse emission (or area sources, AS). Generally, SPREAD follows this principle. However, as outlined in Chapter 5, there are several distinct types of PS. Some are used with emission information, e.g. LPS, while other point source data are used for developing the GeoKey.

The Guidebook presents a decision tree for emissions mapping. In general, the SPREAD model uses methods that are mostly considered as tier 3 or tier 2 methodologies. In some cases, the authors of this report disagrees with the tier levels indicated in the Guidebook. For example, in many instances, the tier 2 methodology is listed as employment statistics. The employment in certain branches of industry says very little on the emission intensity, in some cases employment will be registered at a main office, which in many cases can be located elsewhere than the production site.

Due to the disagreement in defining the tier levels, the tiers have not been included in the description of the GeoKeys in Chapter 5. Instead, the quality of the spatial data as well as the applicability of the spatial data as spatial proxy have been assessed for each GeoKey. The system for ranking the quality and applicability is explained in Chapter 5 (see Table 5.1 and Table 5.2).

8 Discussion

Since the development of SPREAD in 2010, a number of improvements have been carried out. The improvements have been made possible through various advisory and research projects, where the aim of the projects has been to improve certain aspects of SPREAD. These improvements have mainly focussed on small combustion and non-road mobile sources as well as making design changes to the model to ensure, that it can perform better and deliver the requested outputs.

However, as highlighted in Chapter 9, there is still plenty of opportunities to further improve the model. When considering possible improvements, focus should be given to several aspects, i.e. the uncertainty of the spatial proxy, the applicability of the spatial proxy to a given emission source and the emission impact of a given source.

In Chapter 5, when describing the GeoKeys, an assessment has been made of the uncertainty of the GeoKey as well as an assessment of the applicability of the spatial proxy to the emission source. Finally, the share of the Danish emissions that have been spatially distributed using each GeoKey has been presented. The combination of the uncertainty, spatial applicability and share of emissions distributed will be used in prioritising the planned improvements described in Chapter 9.1.

At the moment, there is no plans to increase the spatial resolution as 1 km x 1 km is deemed sufficient. Firstly, the resolution is sufficient to meet the reporting requirement under international obligations (see Chapter 7.1), and secondly the resolution is considered high enough to be used in air quality modelling and human exposure studies.

It could be considered to introduce a temporal component to the SPREAD model as this is often sought after by modellers. However, at the present time resources have not been available to develop temporal profiles for Denmark.

For a complex model system such as SPREAD, it is important to make verification of the output. Verification can focus on the final results or on parts of the model system, e.g. a sector, a case area or a pollutant. Comparison of modelled air quality, based on the spatial emissions, and air quality measurements is often the best way to verify the spatial emissions. Due to the limited number of measurement sites, it is only possible to verify the model for relatively few locations. Comparison of modelled and measured air quality can provide valuable information that can be used to improve the spatial distribution of emissions, e.g. by identifying emission sources that are over- or underestimated on a given location. Depending on the source characteristics, the spatial distribution can be changed to reflect local conditions better.

When the first version of the SPREAD model was finalised, the urban level air quality modelling improved significantly compared with measurements. Before, gridding of Danish emissions was prepared on 17 km x 17 km resolution for national air quality modelling. The high resolution applied in SPREAD contributed to improve the national air quality modelling. Gridded emissions from SPREAD were applied in two Danish air quality models, DEHM and UBM (Ellermann et al., 2018). The performance of the latter did significantly improve, leading to less deviation between modelled and measured concentrations in selected urban areas. Before the SPREAD model was developed, the UBM model was run using only traffic emissions. This was a problem especially for the city of Aalborg where the traffic emissions only constituted approximately 18 % of the total emissions. Spatial emissions data for other sectors were not available. Furthermore, the old traffic emissions, which were based on rough assumptions, were approximately 25 % less than the new traffic emissions for the SPREAD model. In general, the model was underestimating the measured values using the old emissions based on traffic, since the other sectors were missing and the old traffic emissions were underestimated. With the new emissions from SPREAD, the UBM model performance improved significantly, so that the modelled annual mean values of NO_x and NO₂ were within +/-20% of the mesurements for the four cities modelled.

Some emission sources have a varying and upredictable pattern regarding amounts and spatial location, which is not possible to reflect in the model. An example is building and construction machinery where the activity depend on where construction and maintenance work take place. In a project funded by the Danish Environmental Protection Agency ('Luftforurening fra mobile ikke-vejgående maskiner i byområder' – 'Air pollution from non-road machinery in urban areas'), it was identified that especially two large building projects were not reflected in the spatial emissions. When focusing on a case area it can be possible and important to include such emission sources, while they cannot be incorporated on national level, as the nessecary data are not available.

In another project funded by the Danish Environmental Protection Agency ('Luftforurening fra togdrift i byområder' – 'Air pollution from railways in urban areas'), it was found that the measured air pollution concentritons were higher than the estimated concentrations for a specific site. In this case, the measurement station is located near a larger shunting area, which was not included in the spatial distribution for railways. The finding lead to an improvement of the railway GeoKey to include all tracks, and not only main tracks as was the case for the old GeoKey. This change improved the correspondence between modelled and measured emissions for the current location.

In a project funded by the Municipality of Copenhagen ('Brændeovnes bidrag til luftforurening i København' – 'Wood stoves contribution to air pollution in Copenhagen), a study was made for residential wood combustion in Copenhagen, e.g. comparing data from different data sources. In the national emission inventory it is assumed that there are 750 000 woodstoves in Denmark. Detailed data from the Danish chimney sweepers in Copenhagen show that the total number of woodstoves in Copenhagen is 16 349, which corresponds to 2.18 % of the woodstoves in Denmark. In the BBR register only 12 068 woodstoves is identified in Copenhagen, indicating and underestimation of approximately 25 % compared to the number from the chimney sweepers.

Results from a survey focusing on residential wood consumption in Copenhagen was published in 2015 (Andersen, 2015). This indicated that the residential wood consumption in Copenhagen comprised 0.72 % of the national residential wood consumption, and that the unit consumption in Copenhagen is lower than the national average unit consumption. This seems reasonable, as there is almost complete coverage of district heating and more difficult access to store fuel wood in apartment buildings. Generally, a higher spatial resolution allow for more detailed and accurate spatial emissions. In the 2014 guidelines for reporting under the LRTAP convention, the requirement for reporting of gridded emissions were changed, and from 2017 onwards, gridded emissions shall be reported on a spatial resolution of 0.1 degree x 0.1 degree (~10 km x 6 km for Denmark) instead of previous resolution of 50 km x 50 km.

In 2018, the Meteorological Synthesizing Centre - West (MSC-W) made a comparison of the correlation between modelled and measured concentrations for Parties to the LRTAP Convention. For most Parties the shift to the higher resolution spatial emissions improved the correlation for PM_{10} (see Figure 8.1), among which is Denmark.

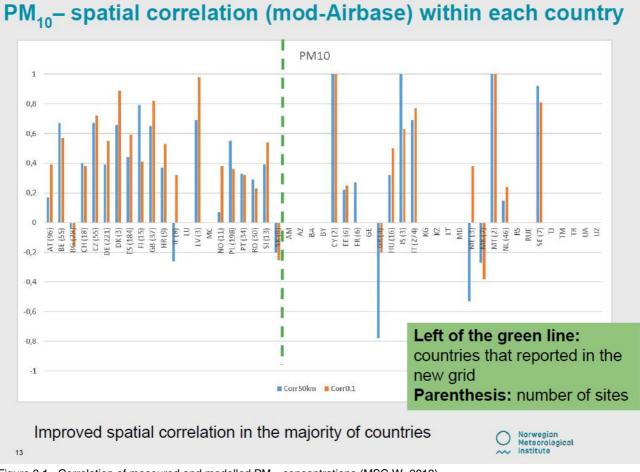


Figure 8.1 Correlation of measured and modelled PM_{10} concentrations (MSC-W, 2018).

A separate comparison for Denmark showed that the correlation between modelled and measured NO_2 concentrations significantly improved with the new higher resolution spatial emissions (see Figure 8.2).

Denmark

Significantly improved spatial correlation

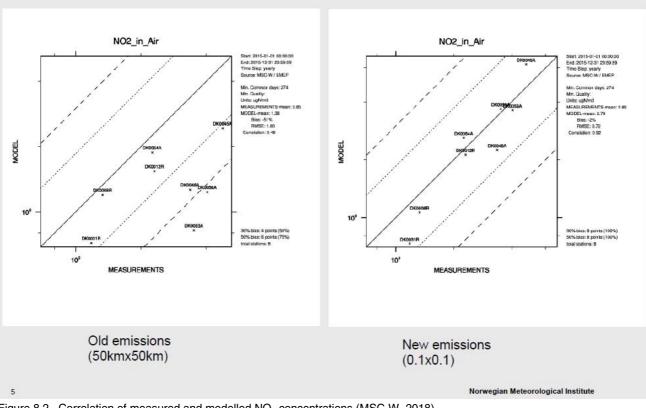


Figure 8.2 Correlation of measured and modelled NO₂ concentrations (MSC-W, 2018).

9 Planned improvements

The work on improving the SPREAD model is continuous. However, significant improvements relies on resources from projects and hence it is not possible to have a specific timeline for the implementation of the identified improvements.

In Chapter 9.1, a number of potential improvements has been identified. In some cases, the necessary data are available but is not yet implemented in SPREAD. In other cases, it is not known if data required for improvements exists and if it can be made available for use in SPREAD.

An important activity going forward would be to try to verify the results obtained using the SPREAD model with top-down spatial inventories developed at the European scale. A verification could provide valuable insight and promote improvements in the spatial distribution. More information is provided in Chapter 9.2.

Furthermore, the SPREAD model only covers the air pollutants and not greenhouse gases. Consequently, sources that only emit greenhouse gases are not included in SPREAD now.

An improvement plan is made for SPREAD, including issues revealed when updating and running the model. The issues for improvement are prioritised according to importance and the ease of implementation, i.e. the size of the emissions source (share of national total), the quality and applicability of the present GeoKey compared to the improved GeoKey, and the easiness of making the improvement. This means that an improvement for a GeoKey used for only minor emission sources can be of high priority if the update is relatively easy to make. Other high priority improvements necessitate considerable workload to identify, select and analyse spatial data sets and to build and incorporate new GeoKeys in the SPREAD model system.

Most improvements relate to a single source or sector, while other refer to the model system. Improvements to the model system are made to improve calculation speed and minimise the risk for user-introduced errors.

Another issue related to model improvements is the framework. Due to the reporting requirements for gridded emissions to the CLRTAP convention, the area is limited to the EEZ. As mentioned earlier, this require that emissions from navigation and aviation which occur outside the EEZ needs to be allocated to areas inside the EEZ. For modelling purpose, it is relevant to build an alternative SPREAD model, which are not limited to the Danish EEZ area, but where emissions from e.g. ferries between Denmark and Greenland are allocated to the entire route and not only the part of the route that falls within the Danish EEZ.

The quality of the spatial data set is crucial when generating a GeoKey. The quality of spatial data depend on the how well the spatial pattern reflect real life. If shapes are generalised they may not reflect the shape correct, which can be the case for e.g. land-use maps and infrastructure networks. Another parameter is the update frequency and/or the latest update of the data. This is most important for parameters with large variations over time, e.g. heating

type or land use, while it is less important for parameters with minor and/or slow changes over time, e.g. the gas transmission network or railways. Few spatial datasets like coastline and the EEZ does not under normal conditions change over time.

The planned improvements of the GeoKeys are described by sector in the following chapters.

9.1 Refinement of GeoKeys

There is potential for further refinement and improvement of many of the GeoKeys currently used. For each main sector, the GeoKeys used have been assessed below with regards to their uncertainty, applicability and contribution to the national total emissions. Planned improvements are assigned a priority based on a combination on the elements mentioned above as well as whether data to improve the GeoKey is known to be readily available.

9.1.1 Stationary combustion

The GeoKeys used for stationary combustin are listed in Table 9.1. Most of the GeoKeys are based on spatial data of medium quality or better. The spatial data for manufacturing plants and for commercial and institutional plants using liquid and solid fuels have high uncertainty.

GeoKey	Quality of spatial dataset		Highest contribution to national emission in 2016
_Key_010504_OffshoreGasturbines	A	1	1-5 % (NO _x)
_Key_EPT	А	1	5-10 % (SO ₂)
_Key_0202_Solid	В	2	> 10 % (MVOC, CO, TSP, PM ₁₀ , PM _{2.5} , BC, Cd, Cr, Zn, PCDD/F, PAH)
_Key_0203_Solid	В	2	5-10 % (lcdP)
_Key_02_Straw	В	3	>10 % (PM _{2.5} , BC, PCDD/F)
_Key_0201_Gas	С	3	<1 % (all pollutants)
_Key_0202_Gas	С	3	1-5 % (As)
_Key_0202_Liquid	С	3	1-5 % (SO ₂)
_Key_0203_Gas	С	3	<1 % (all pollutants)
_Key_0203_Liquid	С	3	<1 % (all pollutants)
_Key_0201_Liquid	D	3	<1 % (all pollutants)
_Key_0201_Solid	D	3	>10 % (PAH)
_Key_Industry	D	4	>10 % (As)

Table 9.1 Quality of spatial dataset by GeoKey for stationary combustion (excl. LPS).

Emissions from LPSs are based on plant specific data with very low uncertainty and very good applicability. Still distribution of LPS emissions could be improved for 1990, as only few plants are treated as LPS before 1994. This causes emissions from LPSs, which is a rather large source, to be distributed using the EPT GeoKey as a proxy. This can be improved by extending the time series for LPSs back to 1990 to the extent possible based on the availability of data and other information.

The GeoKeys for commercial and institutional plants are based on the BBR, which have large uncertainties regarding heating installations, especially for liquid and solid fuels.

The number of liquid-fired plants are generally overestimated in the BBR. The total number of liquid-fired plants was estimated to 100 000 by Danish Fuels Industry Association (Drivkraft Danmark, previously Energi og Olieforum (EOF)) in 2015, while the total number based on SFL and BBR data is around 200 000 in 2017. The SFL data include liquid fueled plants that are taken out of use, but still exists on the address, due to the obligation for chimney sweep. The BBR register is only updated if either the property owner report changes, or if the municipality change the heating data e.g. in connection with approval of building projects. Separate data for the commercial and institutional sector are not available, but the tendency is assumed to be similar even it might be less pronounced compared to the residential sector.

Soild fueld plants are generally underestimated in the BBR, which include around 425 000 woodstoves/fireplaces, compared to the 635 000 woodstoves/fireplaces included in the SFL data. Most woodstoves/fireplaces in the BBR are supplementary heating installations, and both installation and dismantling have to be reported to the register by the property owners, which is often neglected. Therefore, the BBR both includes appliances on addresses where they do not occur and miss appliances on addresses where they do occur. Separate data for the commercial and institutional sector are not available, but the tendency is assumed to be similar even if it might be less pronounced compared to the residential sector.

Despite the uncertainties of the BBR data, this is assumed the best available dataset to use for preparing GeoKeys. Comparisons with other datasets can contribute to qualification of the uncertainty level of the BBR data. However, the GeoKeys can be improved by including newer BBR data and by adding a time series based on BBR data for different years.

Since 2011, energy consumption, data have been included in the BBR based on reportings from the energy utility companies regarding electricity, district heating, natural gas, town gas and fuel oil. Data are not collected for the remaining energy sources (LPG, wood, wood pellets and straw). Depending on the format and completeness of the energy consumption data, it could be used to improve the GeoKeys based on BBR heating information. Fuel consumptions can be used as activity data, which will be an improvement compared to the even distribution on buildings, which is used in the present GeoKeys. For the fuel without fuel consumption data in BBR, heat demand modelling could be used to estimate consumption levels, for use as activity data. Preparing the energy data in the BBR for use in SPREAD is expected to demand a large workload, as energy data are not reported by calender year and following needs to be scaled according to time and e.g. heating degree days. Due to the expected workload, this improvement has low priority.

The GeoKey used for manufacturing plants (_Key_Industry) is based on KORT10 with a very high uncertainty, as areas with industry are often a mix of different landuse (residential, commercial/institutional, agricultural and industrial). Further, it is a landuse class that changes over time, which are not reflected in the GeoKey. It can be evaluated if e.g. production or employment statistics can be used to generate a new GeoKey with a better applicability.

Improvement priority	Sector	Current GeoKey	Planned improvement
High	Manufacturing plants	_Key_Industry	New GeoKey based on e.g. production or employ- ment statistics. If data allows, the GeoKey will be made time dependent.
Medium	Agricultural plants	_Key_0203_Gas	Verification of uncertainties of the BBR data. Update with new BBR data.
			Preparing time series if uncertainties do not exced the time variations.
Medium	Agricultural plants	_Key_0203_Liquid	Assess if energy data in the BBR can be used to improve the GeoKeys. Verification of uncertainties of the SFL and the BBF
			data. Update with new BBR data. Branching time series SEL if data become sucilable
			Preparing time series SFL if data become available for more years. Assess if energy data in the BBR can be used to
Medium	Commercial and in-	_Key_0201_Gas, _Key_0201_Liq-	improve the GeoKeys. Verification of uncertainties of the BBR data.
	stitutional plants	uid	Update with new BBR data. Preparing time series if uncertainties do not exceed the time variations.
			Assess if energy data in the BBR can be used to improve the GeoKeys.
Medium	LPS	No GeoKey. Based on inventory data	Create LPS distribution for 1990 to replace the pre- sent use of the EPT GeoKey.
Vedium	Residential plants	_Key_0202_Gas	Verification of uncertainties of the BBR data. Update with new BBR data. Preparing time series if uncertainties do not exeed
			the time variations. Assess if energy data in the BBR can be used to
Medium	Residential plants	_Key_0202_Liquid	improve the GeoKeys. Verification of uncertainties of the SFL and the BBF data.
			Update with new BBR data. Preparing time series if SFL data become available
			for more years. Assess if energy data in the BBR can be used to improve the GeoKeys.
Low	Agricultural plants	_Key_0203_Solid, _Key_02_Straw	Verification of uncertainties of the SFL and the BBF data.
			Update with new BBR data. Preparing time series if SFL data become available for more years.
			Assess if energy data in the BBR can be used to improve the GeoKeys.
Low	Commercial and in- stitutional plants	_Key_0201_Solid	Verification of uncertainties of the BBR data. Update with new BBR data.
			Preparing time series if uncertainties do not exeed the time variations. Assess if energy data in the BBR can be used to
_ow	Residential plants	_Key_02_Straw	improve the GeoKeys. Verification of uncertainties of the SFL and the BBF
			data. Update with new BBR data. Preparing time series if SFL data become available
			for more years. Assess if energy data in the BBR can be used to
_ow	Residential plants	_Key_0202_Solid	improve the GeoKeys. Verification of uncertainties of the SFL and the BBF data.
			Update with new BBR data. Preparing time series if SFL data become available
			for more years. Assess if energy data in the BBR can be used to improve the GeoKeys and/or weighting factors.

Table 9.2 Planned improvements for stationary combustion.

9.1.2 Mobile combustion

The GeoKeys used for mobile combustin are listed in Table 9.3. Most of the GeoKeys are based on spatial data with low or very low uncertainty.

Table 9.3 Quality of spatial dataset by GeoKey Particular	Quality of spatial dataset		Priority	Highest contribution to national emission in 2016
_Key_080501_DomLTO	A	2		5-10 % (Pb)
_Key_080502_IntLTO	А	2		1-5 % (SO ₂ , NO _x)
_Key_0801_Military	А	3		<1 % (all pollutants)
_Key_Buffer_15km	А	3		1-5 % (CO, PCBs)
_Key_080402_Ferry	В	2		>10 % (Ni, NO _x)
_Key_070102_Road_PC_Rural	В	3	High	5-10 % (NO _x , HCB)
_Key_070103_Road_PC_Urban	В	3	High	>10 % (CO)
_Key_070202_Road_LD_Rural	В	3	High	1-5 % (NO _x , BC, HCB)
_Key_070203_Road_LD_Urban	В	3	High	1-5 % (NO _x , BC, HCB)
_Key_070302_Road_HD_Rural	В	3	High	>10 % (PCBs)
_Key_070303_Road_HD_Urban	В	3	High	5-10 % (PCBs)
_Key_0706_0707_0708_NonExhaust	В	3	High	>10% (Cu, Pb, Zn)
_Key_0802_Railways	В	3	Medium	1-5 % (NO _x , PCBs)
_Key_080503_DomCruise	В	3	High	<1 % (all pollutants)
_Key_0808_IndustrialMachinery	В	3		1-5 % (BC, PCBs)
_Key_070101_Road_PC_Highway	В	4	High	1-5 % (NO _x , CO, BC, Cd,
_Key_070201_Road_LD_Highway	В	4	High	Cr, Hg, Zn, BkF, IcdP) 1-5 % (NO _x , BC, HCB)
_Key_070301_Road_HD_Highway	В	4	High	>10 % (PCB)
_Key_0704_Mopeds	В	4	Medium	<1 % (all pollutants)
_Key_080403_Fishing	В	5	Low	<1 % (all pollutants)
_Key_EEZ	В	5		<1 % (all pollutants)
_Key_AgriculturalArea	С	3	High	>10 % (PCBs)
_Key_Building_OneStorey	С	3		1-5 % (CO)
_Key_0811_CommInstMachinery	С	4		>10 % (CO)
_Key_Forest	С	4	High	<1 % (all pollutants)

Table 9.3 Quality of spatial dataset by GeoKey for mobile combustion

The GeoKeys for the agricultural area and the forest area can be significantly improved by changing the background data to "Basemap", which is an up-todate nationwide map of land use and land cover for Denmark. This will entail correspondence between the spatial data used in SPREAD and in the national emission inventory for the sector Land Use – Land Use Change and Forestry (LULUCF). Time series for the agricultural area from the LULUCF inventory should be used to improve the GeoKey further.

The GeoKey for domestic cruise can be improved by adding routes to Greenland and the Faroe Islands. Due to reporting requirements, emissions can only be allocated inside the Danish EEZ, which leads to accumulation of emissions to a small part of the total flight routes. Still this will serve as an improvement, as it reflect the flight route pattern. When spatial emissions are used for air quality modelling, this accumulation of emissions needs to be kept in mind, as it will lead to overestimation of air pollution concentrations. An extension of the SPREAD model with a module allowing for emissions to be allocated outside the Danish EEZ will improve the applicability of spatial emissions for air quality modelling. The GeoKeys for road transport are based on older data, both regarding the road network and mileage data. Especially the highways network has changed significantly over time, but also the split between urban and rural zones changes over time. The road transport GeoKeys can be significantly improved by including new mileage data preferably corresponding the vehicle categories in the national emission inventory.

The railway GeoKey is based on a rather simple railway network map. A dataset including mileage data are not identified, but for part of the railway network, a dataset is available including network classes, e.g. main track and siding. This can be used to make assumptions of activity levels.

The weighting factors used to prepare the GeoKey for fishing is based on expert judgement and should be adjusted if further information of the split between emissions from fishing of fish and shellfish is found.

Table 9.4 Planned improvements for mobile combustion

Improveme priority	ent Sector	Current GeoKey	Planned improvement
High	Raod transport	_Key_070101_Road_PC_Highway _Key_070102_Road_PC_Rural _Key_070103_Road_PC_Urban _Key_070201_Road_LD_Highway _Key_070202_Road_LD_Rural _Key_070203_Road_LD_Urban _Key_070301_Road_HD_Highway _Key_070302_Road_HD_Rural _Key_070303_Road_HD_Urban _Key_0704_Mopeds	Update with new mileage data and road network.
High	Domestic cruise	_Key_0706_0707_0708_NonExhaus _Key_080503_DomCruise	t Update by including routes to Greenland and the Faroe Islands.
High	Non-road machinery – agricultur	re _Key_AgriculturalArea	Prepare new GeoKey based on Basemap data.
High	Non-road machinery – forestry	_Key_Forest	Prepare new GeoKey based on Basemap data.
Medium	Railways	_Key_0802_Railways	Update the GeoKey by including more detailed data for the railway network, e.g. from GeoDanmark. If available, mileage data or train pas- sages can be used to further im- prove the GeoKey.
Low		_Key_080403_Fishing	Evaluate the weighting factors used for fish and shellfish.

9.1.3 Fugitive emissions from fuels

The GeoKeys used for fugitive emissions from fuels are listed in Table 9.5. Most of the GeoKeys are based on spatial data with very low uncertainty, but in more cases, the applicability is poor.

Table 9.5 Quality of spatial dataset by GeoKey for fugitive emissions from fuels.						
GeoKey	Quality of spatial dataset	Applicability of GeoKey	Priority	Highest contribution to national emission in 2016		
_Key_050208_OilTerminal	А	1		<1 % (all pollutants)		
_Key_050205_OilProduction	А	2		<1 % (all pollutants)		
_Key_050305_GasProduction	А	2		<1 % (all pollutants)		
_Key_090206_FlaringOffshore	А	2		<1 % (all pollutants)		
_Key_050206_LoadingOffshore	А	3		1-5 % (NMVOC)		
_Key_050601_GasTransmission	А	4	Medium	<1 % (all pollutants)		
_Key_050103_CoalStorage	А	4	High	5-10 % (BC)		
_Key_050204_050304_Exploration	А	4		<1 % (all pollutants)		
_Key_050503_ServiceStations	А	4	Medium	<1 % (all pollutants)		
_Key_050604_TownGas	В	4	Medium	<1 % (all pollutants)		
_Key_0202_Gas	С	3		1-5 % (As)		

For coal storage, the GeoKey can be improved by including updated import/export statistics and LPS data, and a time series can be developed. In addition, the service stations GeoKey can be improved by including updated address data, if available.

Town gas network maps are available for the three areas where distribution occur in the later years. It is not expected that data exist for the companies shut down years ago. The GeoKey can be improved by the use of the available spatial data. Rough assumptions must be made for areas supplied by the closed down companies to generate time series.

The spatial distribution for gastransmission can be improved by changing the spatial dataset from the M/R stations to the gas transmission network. Further, it can be assessed if more detailed information of maintenance locations are available.

Improvement priority	Sector	Current GeoKey	Planned improvement
High	Coal handling and storage	_Key_050103_CoalStorage	Update of import/export data and LPS data
			Development of time series.
Medium	Natural gas transmission	_Key_050601_GasTransmission	New GeoKey based on transmission network or information regarding gas loss from the transmission net- work.
Medium	Service stations	_Key_050503_ServiceStations	Update with new data.
Medium	Town gas distribution	_Key_050604_TownGas	Update with town gas pipeline data. Development of time series require assumptions for areas around closed down distribution companies.

Table 9.6 Planned improvements for fugitive emissions from fuels.

9.1.4 Industrial processes and product use

The GeoKeys used for industrial processes and product use are listed in Table 9.7.

Table 9.7 Quality of spatia GeoKey Image: Contract of the second secon	dataset by Geok Quality of spatial dataset	Applicability	1	and product use. Highest contribution to national emission in 2016
_Key_Population	А	2-4	Medium	>10 % (NMVOC)
_Key_Building	В	3-4	High	<1 % (all pollutants)
_Key_040616_Quarrying	В	3	Low	1-5 % (TSP, PM ₁₀ , PM _{2.5})
_Key_Building_OneStorey	С	3	Low	<1 % (all pollutants)
_Key_RoadNetwork	В	4	Low	<1 % (all pollutants)
_Key_Industry	D	4-5	High	1-5 % (NMVOC)

The uncertainty of the GeoKey based on industrial area is high, see Chapter 9.1.1, and the applicability is poor/very poor. For many sources, the major part of the emissions come from relatively few plants, and the distribution can be improved by using the location of the major plants combined with activity data when available. This is the case for e.g. 'Flour production', 'Production of yellow bricks', 'Expanded clay products', 'Beer', and 'Spirits'. In addition, it can be evaluated if the same approach can be used to improve the spatial distribution for 'Storage, handling and transport of mineral products'.

The quarrying data are relatively old and can be improved by adding new data and creating a time series.

Population has in many cases a fair or poor applicability, but is still considered the best available proxy. This is the case for e.g. use of fireworks and tobacco, which is expected to show reasonable correlation with the population density, eventhough regional and local differences occur. Another issue is, that population density describe where people lives while the activities might be better correlated to the places where people spend their time, e.g. on workplaces. The population GeoKey can be improved by including time series based on data from the CPR.

Spatial distribution of emissions from asphalt roofing is based on the industrial areas. This will be changed to buildings or a GeoKey could be prepared from BBR data, if the information on roofing material is useful.

The GeoKeys for road network and the one-storey buildings should be updated with new data.

Improvement priority	Sector	Current GeoKey	Planned improvement
Medium	Paint application Domestic solvent use Paraffin wax use (candles) Use of fireworks Use of tobacco (smoking) Use of shoes	_Key_Population	Development of time series.
High	Construction and demolition Degreasing and dry cleaning	_Key_Building	Update with new data or other data source if available.
Low	Quarrying and mining of minerals other than coal	_Key_040616_Quarrying	Update wit new data and develop- ment of time series.
High	Lime production Storage, handling and transport of mineral products Production of bricks and tiles Metal industries Chemical products Bread production Wine production Wood manufacturing Meat curing Margarine and solid cooking fat pro- duction Coffee roasting Treatment of slaughterhouse waste	_Key_Industry	Update with new data or other data source if available.
High	Flour production	_Key_Industry	New GeoKey based on location of major plants and activity data if available.
High	Production of yellow bricks	_Key_Industry	Development of time series in- cluding opening and close down of plants.
High	Expanded clay products	_Key_Industry	New GeoKey based on location of major plants and activity data if available.
High	Beer production	_Key_Industry	Development of time series in- cluding opening and close down of plants.
High	Spirits production	_Key_Industry	New GeoKey based on location of major plants and activity data if available.
High	Asphalt roofing	_Key_Industry	Change GeoKey to buildings or create new GeoKey based on roofing materials information in the BBR.
Low	Use of charcoal (barbequing)	_Key_Building_OneStorey	Update with new data.
Low	Road paving with asphalt	_Key_RoadNetwork	Update with new road network data.

Table 9.8 Planned improvements for industrial processes and product use.

9.1.5 Agriculture

The GeoKeys used for agriculture are listed in Table 9.9. Most of the GeoKeys are based on spatial data with very low uncertainty.

GeoKey	Quality of spatial dataset		riority	Highest contribution to national emission in 2016
_Key_3B1a_DairyCattle	А	2		>10 % (NH ₃)
_Key_3B1b_NonDairyCattle	А	2		5-10 % (NMVOC)
_Key_3B2_Sheep	А	2		<1 % (all pollutants)
_Key_3B3_Swine	А	2		>10 % (NH ₃)
_Key_3B4d_Goats	А	2		<1 % (all pollutants)
_Key_3B4gi_LayingHens	А	2		1-5 % (NMVOC, NH ₃ , TSP)
_Key_3B4gii_Broilers	А	2		1-5 % (NMVOC, NH ₃)
_Key_3B4giii_Turkeys	А	2		<1 % (all pollutants)
_Key_3B4giv_OtherPoultry	А	2		<1 % (all pollutants)
_Key_3B4h_OtherAnimals	А	2		5-10 % (NMVOC, NH₃)
_Key_3Da1_MineralFertiliser	А	2		5-10 % (NO _x , NH₃)
_Key_3Da2a_ManureSoils	А	2		>10 % (NH ₃)
_Key_3Da2b_SludgeSoils	А	2		<1 % (all pollutants)
_Key_3Da2c_OtherFertiliserSoils	A	2		<1 % (all pollutants)
_Key_3Da3_Grazing	А	3		1-5 % (NH ₃)
_Key_3B4e_Horses	В	3		<1 % (all pollutants)
_Key_AgriculturalArea	С	3-5 H	ligh	>10 % (TSP, PM ₁₀)

Table 9.9 Quality of spatial dataset by GeoKey for agriculture.

Improvement is planned for the GeoKey for the agricultural area, see Chapter 9.1.2.

Table 9.10 Planned improvements for agriculture.

Improvement priority	Sector	Current GeoKey	Planned improvement
High	Farm-level agricultural operations Cultivated crops Field burning of agricultural residues	_Key_AgriculturalArea	Update based on Basemap data. Development of time series.
Medium	Use of pesticides	_Key_AgriculturalArea	Update based on Basemap data taking into account organic farming. Development of time series.

9.1.6 Waste

The GeoKeys used for waste are listed in Table 9.11. Most of the GeoKeys are based on spatial data with very low uncertainty.

Table 9.11 Quality of spatial dataset by GeoKey for waste

GeoKey	Quality of spatial dataset		Priority	Highest contribution to national emission in 2016
_Key_090901_Cremation	A	1		<1 % (all pollutants)
_Key_090902_AnimalCremation	А	1		<1 % (all pollutants)
_Key_Biogas	А	2		<1 % (all pollutants)
_Key_Population	А	4		>10 % (Pb, Zn, PCDD/F)
_Key_SolidWasteDisposal	А	4	Medium	1-5 % (NH ₃)
_Key_Building_OneStorey	С	3		<1 % (all pollutants)
_Key_Industry	D	3		5-10 % (PCDD/F)

The GeoKey for composting is based on data from 2008 and can be improved by applying updated data and a time series if sufficient data is available.

 Table 9.12 Planned improvements for waste.

 Improvement Sector
 Current GeoKey
 Planned improvement

 priority
 Industrial composting _Key_SolidWasteDisposal
 Update with new data.

9.2 Verification

In accordance with the planned improvements of the GeoKeys, it is relevant to make verification of the SPREAD model, both regarding input data and resulting spatial emissions.

Verification of the spatial emission can be made by comparison with measurements, but it is also relevant to make comparison of spatial emissions data prepared with different models. SPREAD is the only national model, but if local model is developed, it will be relevant to make comparisons. Often local model make use of more detailed data and thereby is able to reflect real life better, but these detailed data are often of local extend and cannot be included in a national model like SPREAD, as data with full coverage is prioritised. Still, it should be evaluated if a number of local data sets can be used in combination with a more general national dataset.

Comparison with other spatial emission inventories can contribute knowledge about methodological differences. In the FAIRMODE project, the Delta benchmarking tool has been prepared to enable comparison of bottomup and top-down emission estimates at regional and local scale. It include four different comparison methods; 1) pollutant emission comparisons across sectors, 2) evaluation of the differences between inventories allocated in terms of activity data and emission factors, 3) emission per capita comparisons, and 4) comparison of pollutant ratios (Guevara et al., 2017).

The Delta tool analyse discrepancies between the total emissions reported by macro-sector and pollutant, contribution of each macro-sector to the total emissions, and the identification and quantification of the different factors causing the discrepancies between total emissions (Thunis et al., 2016).

Verification of input data can contribute to quantify uncertainties, and to make comparison of different input data sets and support the decision of which data to use in the model.

Combustion in residential plants is an important emission source with large contribution to the national total emission for a number of pollutants. The GeoKeys for residential plants are based on SFL data and BBR data. It is planned to make comparisons of SFL and BBR. The SFL data includes all registered wood stoves on address level, and is assumed to have low uncertainty. On contrary, the BBR is known to have large uncertainties regarding heating information, e.g. the number of residential wood stoves is largely underestimated. It is planned to analyse the differences between the SFL and the BBR. It will be assessed how many woodstoves in the SFL that can be found in the BBR. Also, it will be assessed how many addresses that have registered woodstoves in the BBR but not in the SFL and opporsite, and it will be evaluated if any regional patterns occur for the BBR errors. The number of liquid-fired appliances are overestimated in both the BBR and the SFL, due to errors in the BBR registrations and occurrence of appliances in the SFL database that is no longer in use. It is planned to use the energy data in the BBR register to identify liquid-fired appliances not in use, as no or very little fuel consumption indicate that another heating installation is used instead. The same approach can be made for gas-fired appliances, eventhough the uncertainty is expected to be far lower for gas-fired that for liquid-fired appliances.

The SFL database does not include building use information, which has to be added from the BBR. The coupling of these two datasets is associated with uncertainty as the SFL data is on address level, while the BBR data is on building level and one address can have more buildings with different building use. Further, the addresses in the SFL database have been geocoded based on the public information server (Den Offentlige Informationsserver, OIS), which to some degree deviate from the address coordinated in the BBR. Therefore building use from the nearest BBR point is added to the SFL points. It is planned to evaluate this workflow more into details to determine the number of addresses without a direct coubling between the BBR and the SFL, and if there is a pattern that indicate areas that need a more thorough methodology. For addresses with more buildings having different building use, it will be evaluated if the present methodology needs improvement, e.g. prioritising one building use class for another for a specific type of appliance. In the present methodology, agricultural building use is prioritised for straw-fired appliances, while residential building use is prioritised for other appliances.

9.3 Model setup and documentation

Currently, the results from the SPREAD model is only presented in reports (e.g. Nielsen et al., 2018a). It is planned that a webpage will be created for the SPREAD model providing results and documentation.

Currently, there is no standard outputs created for data visualisation. It is planned that the future version of SPREAD will include predefined outputs for easy visualisation in ArcGIS to be included in reports, presentations and on the webpage.

10 References

Andersen, J.S., 2015: Undersøgelse om brug af brændeovne i Københavns Kommune. Teknologisk Institut, 2015.

EEA, 2016: EMEP/EEA air pollutant emission inventory guidebook 2016. Technical guidance to prepare national emission inventories. EEA Report 21/2016. Available at: <u>https://www.eea.europa.eu/publications/emep-eea-guidebook-2016</u> (24-10-2017).

Ellermann, T., Nygaard, J., Nøjgaard, J.K., Nordstrøm, C., Brandt, J., Christensen, J., Ketzel, M., Massling, A., Bossi, R. & Jensen, S.S. 2018: The Danish Air Quality Monitoring Programme. Annual Summary for 2017. Aarhus University, DCE – Danish Centre for Environment and Energy, 83 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 281. Available at: <u>http://dce2.au.dk/pub/SR281.pdf</u>

EU, 2013: Regulation (EU) No 525/2013 of the European Parliament and of the Council of 21 May 2013 on a mechanism for monitoring and reporting greenhouse gas emissions and for reporting other information at national and Union level relevant to climate change and repealing Decision No 280/2004/EC. Available at:

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R0525&from=EN (30-08-2018).

EU, 2016: Directive 2016/2284/EU on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Di rective 2001/81/EC. Available at: <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L2284&from=EN</u> (19-08-2018).

Guevara, M., Lopez-Aparicio, S., Cuvelier, C., Tarrason, L., Clappier, A., & Thunis, P. 2017: A benchmarking tool to screen and compare bottom-up and top-down atmospheric emission inventories. Air Qual Atmos Health (2017) 10: 627. Available at: <u>https://doi.org/10.1007/s11869-016-0456-6</u>

IPCC 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. Available at: <u>https://www.ipcc-nggip.iges.or.jp/public/2006gl/</u> (16-03-2018).

Jensen, M. T., Nielsen, O-K., Mikkelsen, M. H., Winther, M., Gyldenkærne, S., Viuf, P. Ø. & Illerup J. B., 2008: Rapportering af Luftemissioner på Grid – Metoder og Principper. Danmarks Miljøundersøgelser, Århus Universitet. 58 s. – Faglig rapport fra DMU nr. 654. Available at:

http://www.dmu.dk/Pub/FR654.pdf (in Danish with summary in English).

Jensen, S.S., Hvidberg, M., Petersen, J., Storm, L., Stausgaard, L., Becker, T., Hertel, O., 2009: GIS-baseret national vej- og trafikdatabase 1960-2005. Danmarks Miljøundersøgelser, Aarhus Universitet. 74s – Faglig rapport fra DMU nr. 678. Available at: <u>http://www.dmu.dk/FR678.pdf</u> (in Danish with summary in English). MSC-W, 2018: Emissions for CLRTAP modelling - experience and feedback. Presentation at the 19th Joint EIONET & UNECE Task Force on Emission Inventories & Projections Meeting, Sofia, Bulgaria. Available at: <u>https://tfeipsecretariat.org/assets/Meetings/Presentations/Sofia-2018/Verificationworkshop/TFEIP-Apr2018-MSCW-AgnesNyiri.pdf</u>

Nielsen, O.-K. & Plejdrup, M.S. 2018: Antal og placering af små fyringsanlæg i Danmark. Research note from DCE. Available at: <u>http://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/Notater_2018/Antal_og_placer-</u> ing_af_smaa_fyringsanlaeg_i_Danmark.pdf (In Danish).

Nielsen, O-K., Plejdrup, M.S., Winther, M., Mikkelsen, M.H., Nielsen, M., Gyldenkærne, S., Fauser, P., Albrektsen, R., Hjelgaard, K.H., Bruun, H.G. & Thomsen, M. 2018a: Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2016. Aarhus University, DCE – Danish Centre for Environment and Energy, 495 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 267. Available at: <u>http://dce2.au.dk/pub/SR267.pdf</u>

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2018: Denmark's National Inventory Report 2018. Emission Inventories 1990-2016 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy 851 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 272. Available at: http://dce2.au.dk/pub/SR272.pdf

Plejdrup, M.S. & Gyldenkærne, S. 2011: Spatial distribution of emissions to air – the SPREAD model. National Environmental Research Institute, Aarhus University, Denmark. 72 pp. – NERI Technical Report no. FR823. Available at: http://www.dmu.dk/Pub/FR823.pdf

Plejdrup, M.S., Nielsen, O-K. & Brandt, J., 2016: Spatial emission modelling for residential wood combustion in Denmark. Atmospheric Environment. 144, pp. 389-396. Available at: https://doi.org/10.1016/j.atmosenv.2016.09.013

Thunis, P., Degraeuwe, B., Cuvelier, K., Guevara, M., Tarrason, L. & Clappier, A., 2016: A novel approach to screen and compare emission inventories Air Qual Atmos Health (2016) 9: 325. Available at: https://doi.org/10.1007/s11869-016-0402-7

UN. 1982: Available at: <u>http://www.un.org/depts/los/convention_agree-ments/texts/unclos/unclos_e.pdf</u>

UNECE, 2014: Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution (ECE/EB.AIR/122/Add.1, decisions 2013/3 and 2013/4). Available at: <u>http://www.ceip.at/fileadmin/inhalte/emep/2014_Guidelines/ece.eb.air.125_ADVANCE_VERSION_reporting_guidelines_2013.pdf</u> (19-08-2018).

Annex 1 List of SNAP codes and corresponding NFR and GNFR categories

As mentioned, the agriculture sector in the Danish emission inventories is not using the SNAP nomenclature, but rather the NFR nomenclature. Therefore, the agricultural sources are not included in this Annex; please refer to Annex 2. SNAP cateogies that are not occurring in Denmark have not been included.

SNAP code	SNAP name	NFR	GNFR
010100	Public power	1A1a	A_PublicPower
010101	Combustion plants >= 300 MW (boilers)	1A1a	A_PublicPower
010102	Combustion plants >= 50 and < 300 MW (boilers)	1A1a	A_PublicPower
010103	Combustion plants < 50 MW (boilers)	1A1a	A_PublicPower
010104	Gas turbines	1A1a	A_PublicPower
010105	Stationary engines	1A1a	A_PublicPower
010200	District heating plants	1A1a	A_PublicPower
010201	Combustion plants >= 300 MW (boilers)	1A1a	A_PublicPower
010202	Combustion plants >= 50 and < 300 MW (boilers)	1A1a	A_PublicPower
010203	Combustion plants < 50 MW (boilers)	1A1a	A_PublicPower
010204	Gas turbines	1A1a	A_PublicPower
010205	Stationary engines	1A1a	A_PublicPower
010300	Petroleum refining plants	1A1b	B_Industry
010301	Combustion plants >= 300 MW (boilers)	1A1b	B_Industry
010302	Combustion plants >= 50 and < 300 MW (boilers)	1A1b	B_Industry
010303	Combustion plants < 50 MW (boilers)	1A1b	B_Industry
010304	Gas turbines	1A1b	B_Industry
010305	Stationary engines	1A1b	B_Industry
010306	Process furnaces	1A1b	B_Industry
010500	Coal mining, oil / gas extraction, pipeline compressors	1A1c	B_Industry
010501	Combustion plants >= 300 MW (boilers)	1A1c	B_Industry
010502	Combustion plants >= 50 and < 300 MW (boilers)	1A1c	B_Industry
010503	Combustion plants < 50 MW (boilers)	1A1c	B_Industry
010504	Gas turbines	1A1c	B_Industry
010505	Stationary engines	1A1c	B_Industry
020100	Commercial and institutional plants	1A4a i	C_OtherStationaryComb
020101	Combustion plants >= 300 MW (boilers)	1A4a i	C_OtherStationaryComb
020102	Combustion plants >= 50 and < 300 MW (boilers)	1A4a i	C_OtherStationaryComb
020103	Combustion plants < 50 MW (boilers)	1A4a i	C_OtherStationaryComb
020104	Stationary gas turbines	1A4a i	C_OtherStationaryComb
020105	Stationary engines	1A4a i	C_OtherStationaryComb
020200	Residential plants	1A4b i	C_OtherStationaryComb
020201	Combustion plants >= 50 MW (boilers)	1A4b i	C_OtherStationaryComb
020202	Combustion plants < 50 MW (boilers)	1A4b i	C_OtherStationaryComb
020203	Gas turbines	1A4b i	C_OtherStationaryComb
020204	Stationary engines	1A4b i	C_OtherStationaryComb
020300	Plants in agriculture, forestry and aquaculture	1A4c i	C_OtherStationaryComb
020301	Combustion plants >= 50 MW (boilers)	1A4c i	C_OtherStationaryComb
020302	Combustion plants < 50 MW (boilers)	1A4c i	C_OtherStationaryComb
020303	Stationary gas turbines	1A4c i	C_OtherStationaryComb
020304	Stationary engines	1A4c i	C_OtherStationaryComb
030303	Gray iron foundries	2C1	B_Industry
030307	Secondary lead production	2C5	B_Industry
030310	Secondary aluminium production	2C3	B_Industry

SNAP code	SNAP name	NFR	GNFR
030311	Cement	2A1	B_Industry
030314	Flat glass	2A3	B_Industry
030315	Container glass	2A3	B_Industry
030316	Glass wool (except binding)	2A3	B_Industry
030318	Mineral wool (except binding)	2A6	B_Industry
030319	Bricks and tiles	2A6	B_Industry
030320	Fine ceramic materials	2A6	B_Industry
030326	Other	2L	B_Industry
030400	Iron and Steel	1A2a	B_Industry
030401	Combustion plants >= 300 MW (boilers)	1A2a	B_Industry
030402	Combustion plants >= 50 and < 300 MW (boilers)	1A2a	B_Industry
030403	Combustion plants < 50 MW (boilers)	1A2a	B_Industry
030404	Gas turbines	1A2a	B_Industry
030405	Stationary engines	1A2a	B_Industry
030500	Non-Ferrous Metals	1A2b	B_Industry
030501	Combustion plants \geq 300 MW (boilers)	1A2b	B_Industry
030502	Combustion plants >= 50 and < 300 MW (boilers)	1A2b	B_Industry
030503	Combustion plants < 50 MW (boilers)	1A2b	B_Industry
030504	Gas turbines	1A2b	B_Industry
030505	Stationary engines	1A2b	B_Industry
030600	Chemical and Petrochemical	1A2c	B_Industry
030601	Combustion plants >= 300 MW (boilers)	1A2c	B_Industry
030602	Combustion plants >= 50 and < 300 MW (boilers)	1A2c	B_Industry
030603	Combustion plants < 50 MW (boilers)	1A2c	B_Industry
030604	Gas turbines	1A2c	B_Industry
030605	Stationary engines	1A2c	B_Industry
030700	Non-Metallic Minerals	1A2f	B_Industry
030701	Combustion plants >= 300 MW (boilers)	1A2f	B_Industry
030702	Combustion plants >= 50 and < 300 MW (boilers)	1A2f	B_Industry
030703	Combustion plants < 50 MW (boilers)	1A2f	B_Industry
030704	Gas turbines	1A2f	B_Industry
030705	Stationary engines	1A2f	B_Industry
030800	Mining and Quarrying	1A2q viii	B_Industry
030801	Combustion plants >= 300 MW (boilers)	1A2g viii	B_Industry
030802	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	B_Industry
030803	Combustion plants < 50 MW (boilers)	1A2g viii	B_Industry
030804	Gas turbines	1A2g viii	B_Industry
030805	Stationary engines	1A2g viii	B_Industry
030900	Food and Tobacco	1 A2e	B_Industry
030901	Combustion plants >= 300 MW (boilers)	1A2e	B_Industry
030902	Combustion plants >= 50 and < 300 MW (boilers)	1A2e	B_Industry
030903	Combustion plants < 50 MW (boilers)	1A2e	B_Industry
030904	Gas turbines	1A2e	B_Industry
030905	Stationary engines	1A2e	B_Industry
031000	Textile and Leather	1A2g viii	B_Industry
031001	Combustion plants >= 300 MW (boilers)	1A2g viii	B_Industry
031001	Combustion plants \geq 500 kW (boilers) Combustion plants \geq 50 and < 300 MW (boilers)	1A2g viii	B_Industry
031002	Combustion plants < 50 MW (boilers)	1A2g viii	B_Industry
031003	Gas turbines	1A2g viii	B_Industry
031004	Stationary engines	1A2g viii	B_Industry
031100	Paper, Pulp and Print	1A2g viii 1A2d	B_Industry
031100	Combustion plants >= 300 MW (boilers)	1A2d	B_Industry
031101	Combustion plants $>= 300$ MW (boilers) Combustion plants $>= 50$ and < 300 MW (boilers)	1A2d	B_Industry
031102	Combustion plants < 50 MW (boilers)	1A2d	B_Industry
001100		IAZU	D_incustry

SNAP code	SNAP name	NFR	GNFR
031104	Gas turbines	1A2d	B_Industry
031105	Stationary engines	1A2d	B_Industry
031200	Transport Equipment	1A2g viii	B_Industry
031201	Combustion plants >= 300 MW (boilers)	1A2g viii	B_Industry
031202	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	B_Industry
031203	Combustion plants < 50 MW (boilers)	1A2g viii	B_Industry
031204	Gas turbines	1A2g viii	B_Industry
031205	Stationary engines	1A2g viii	B_Industry
031300	Machinery	1A2g viii	B_Industry
031301	Combustion plants >= 300 MW (boilers)	1A2g viii	B_Industry
031302	Combustion plants $>= 50$ and < 300 MW (boilers)	1A2g viii	B_Industry
031303	Combustion plants < 50 MW (boilers)	1A2g viii	B_Industry
031304	Gas turbines	1A2g viii	B_Industry
031305	Stationary engines	1A2g viii	B_Industry
031400	Wood and Wood Products	1A2g viii	B_Industry
031401	Combustion plants >= 300 MW (boilers)	1A2g viii	 B_Industry
031402	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	B_Industry
031403	Combustion plants < 50 MW (boilers)	1A2g viii	B_Industry
031404	Gas turbines	1A2g viii	B_Industry
031405	Stationary engines	1A2g viii	B_Industry
031500	Construction	1A2g viii	B_Industry
031501	Combustion plants >= 300 MW (boilers)	1A2g viii	B_Industry
031502	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	B_Industry
031503	Combustion plants < 50 MW (boilers)	1A2g viii	B_Industry
031504	Gas turbines	1A2g viii	B_Industry
031505	Stationary engines	1A2g viii	B_Industry
031600	Cement production	1 A 2f	B_Industry
031601	Combustion plants >= 300 MW (boilers)	1A2f	B_Industry
031602	Combustion plants >= 50 and < 300 MW (boilers)	1A2f	B_Industry
031603	Combustion plants < 50 MW (boilers)	1A2f	B Industry
031604	Gas turbines	1A2f	B_Industry
031605	Stationary engines	1A2f	B_Industry
032000	Non-specified (Industry)	1A2g viii	B_Industry
032001	Combustion plants >= 300 MW (boilers)	1A2g viii	B_Industry
032002	Combustion plants $>= 50$ and < 300 MW (boilers)	1A2g viii	B_Industry
032003	Combustion plants < 50 MW (boilers)	1A2g viii	B Industry
032004	Gas turbines	1A2g viii	B_Industry
032005	Stationary engines	1A2g viii	B_Industry
040100	Processes in petroleum industries	1B2a iv	D_Fugitive
040101	Petroleum products processing	1B2a iv	D_Fugitive
040102	Fluid catalytic cracking - CO boiler	1B2a iv	D_Fugitive
040103	Sulphur recovery plants	1B2a iv	D_Fugitive
040104	Storage and handling of petroleum produc. in refinery	1B2a iv	D_Fugitive
040105	Other	1B2a iv	D_Fugitive
040207	Electric furnace steel plant	2C1	B_Industry
040207	Rolling mills	201 2C1	B_Industry
040200	Allied metal manufacturing	201 2C7c	B_Industry
040300	Sulfuric acid	2870 2B10a	B_Industry
040401	Nitric acid	2B10a 2B2	B_Industry
040402	Pesticide production	2B2 2B10a	B_Industry
040525	Other (phytosanitary)	2B10a 2B10a	B_Industry
040527	Bread	2B10a 2H2	B_Industry
040605	Wine	2H2 2H2	B_Industry
			•
040607	Beer	2H2	B_Industry

SNAP code	SNAP name	NFR	GNFR
040608	Spirits	2H2	B_Industry
040610	Roof covering with asphalt materials	2D3c	B_Industry
040611	Road paving with asphalt	2D3b	B_Industry
040612	Cement (decarbonizing)	2A1	B_Industry
040613	Glass (decarbonizing)	2A3	B_Industry
040614	Lime (decarbonizing)	2A2	B_Industry
040616	Extraction of mineral ores	2A5a	B_Industry
040617	Other (including asbestos products manufacturing)	2L	B_Industry
040620	Wood manufacturing	21	B_Industry
040624	Public works and building sites	2A5b	B_Industry
040625	Sugar production	2H2	B_Industry
040626	Flour production	2H2	B_Industry
040627	Meat curing	2H2	B_Industry
040628	Bricks and tiles (decarbonizing)	2A6	B_Industry
040629	Fine ceramic materials (decarbonizing)	2A6	B_Industry
040690	Storage, handling and transport of mineral products	2A5c	B_Industry
040691	Production of yellow bricks	2A6	B_Industry
040692	Expanded clay products	2A6	B Industry
040698	Margarine and solid cooking fats	2H2	B_Industry
040699	Coffee roasting	2H2	B_Industry
050103	Storage of solid fuel	1B1a	D_Fugitive
050200	Extraction, 1st treatment and loading of liquid fossil fuels	1B2a i	D_Fugitive
050201	Land-based activities	1B2a i	D_Fugitive
050202	Off-shore activities	1B2a i	D_Fugitive
050204	Exploration of oil	1B2a i	D_Fugitive
050205	Production of oil	1B2a i	D_Fugitive
050206	Offshore loading of oil	1B2a i	D_Fugitive
050207	Onshore loading of oil	1B2a i	D_Fugitive
050208	Storage of crude oil	1B2a i	D_Fugitive
050304	Exploration of gas	1B2b	D_Fugitive
050305	Production of gas	1B2b	D_Fugitive
050503	Service stations (including refuelling of cars)	1B2a v	D_Fugitive
050601	Natural gas transmission	1B2b	D_Fugitive
050603	Natural gas distribution	1B2b	D_Fugitive
050604	Town gas distribution	1B2b	D_Fugitive
050699	Venting in gas storage	1B2c	D_Fugitive
060100	Paint application	2D3d	E_Solvents
060200	Degreasing, dry cleaning and electronics	2D3d	E_Solvents
060200	Chemical products manufacturing or processing	2D3g	E_Solvents
060300	Other use of solvents and related activities	2D3g 2D3i	E_Solvents
060601	Use of fireworks	2D3i 2G	E_Solvents
	Use of tobacco	2G 2G	
060602			E_Solvents
060603	Use of shoes	2G	E_Solvents
060605	BBQ	2G	E_Solvents
060606	Use of candles	2D3h	E_Solvents
070100	Passenger cars	1A3b i	F_RoadTransport
070101	Highway driving	1A3b i	F_RoadTransport
070102	Rural driving	1A3b i	F_RoadTransport
070103	Urban driving	1A3b i	F_RoadTransport
070200	Light-duty vehicles < 3.5 t	1A3b ii	F_RoadTransport
070201	Highway driving	1A3b ii	F_RoadTransport
070202	Rural driving	1A3b ii	F_RoadTransport
070203	Urban driving	1A3b ii	F_RoadTransport
070300	Heavy-duty vehicles > 3.5 t and buses	1A3b iii	F_RoadTransport

SNAP code	SNAP name	NFR	GNFR
070301	Highway driving	1A3b iii	F_RoadTransport
070302	Rural driving	1A3b iii	F_RoadTransport
070303	Urban driving	1A3b iii	F_RoadTransport
070400	Mopeds and Motorcycles < 50 cm3	1A3b iv	F_RoadTransport
070500	Motorcycles > 50 cm3	1A3b iv	F_RoadTransport
070501	Highway driving	1A3b iv	F_RoadTransport
070502	Rural driving	1A3b iv	F_RoadTransport
070503	Urban driving	1A3b iv	F_RoadTransport
070600	Gasoline evaporation from vehicles	1A3b v	F_RoadTransport
070700	Automobile tyre and brake wear	1A3b vi	F_RoadTransport
070800	Automobile road abrasion	1A3b vii	F_RoadTransport
080100	Military	1A5b	I_Offroad
080200	Railways	1A3c	I_Offroad
080300	Inland waterways	1A5b	I_Offroad
080402	National sea traffic within EMEP area	1A3d ii	 G_Shipping
080403	National fishing	1A4c iii	I_Offroad
080404	International sea traffic (international bunkers)	1A3d i (i)	P_IntShipping
080501	Domestic airport traffic (LTO cycles - <1000 m)	1A3a ii (i)	H_Aviation
080502	International airport traffic (LTO cycles - <1000 m)	1A3a i (i)	H_Aviation
080503	Domestic cruise traffic (>1000 m)	1A3a ii (ii)	O_AviCruise
080504	International cruise traffic (>1000 m)(i)	1A3a i (ii)	_ O_AviCruise
080600	Agriculture	1A4c ii	I_Offroad
080700	Forestry	1A4c ii	 I_Offroad
080800	Industry	1A2g vii	_ I_Offroad
080900	Household and gardening	1A4b ii	_ I_Offroad
081100	Off-road - Commercial and institutional	1A4a ii	_ I_Offroad
090203	Flaring in oil refinery	1B2c	D_Fugitive
090206	Flaring in gas and oil extraction	1B2c	D_Fugitive
090298	Flaring in gas storage	1B2c	D_Fugitive
090299	Flaring in gas transmission and distribution	1B2c	D_Fugitive
090401	Managed Waste Disposal on Land	5A	J_Waste
090901	Incineration of corpses	5C1b v	J_Waste
090902	Incineration of carcasses	5C1b v	J Waste
091001	Waste water treatment in industry	5D2	J_Waste
091002	Waste water treatment in residential/commercial sector	5D1	J_Waste
091006	Biogas production	5B2	J_Waste
091101	Composting of garden and park waste	5B1	J_Waste
091102	Composting of organic waste	5B1	J_Waste
091103	Composting of sludge	5B1	J_Waste
091104	Home composting	5B1	J_Waste
091201	Vehicle fires	5E	J_Waste
091202	Container fires	5E	J_Waste
091203	Detached house fires	5E	J_Waste
091204	Undetached house fires	5E	J_Waste
091205	Apartment building fires	5E	J_Waste
091206	Industrial building fires	5E	J_Waste
091207	Other building fires	5E	J_Waste

Annex 2 List of GNFR codes and corresponding NFR codes

GNFR	NFR	NFR name
A_PublicPower	1A1a	Public electricity and heat production
B_Industry	1A1b	Petroleum refining
B_Industry	1A1c	Manufacture of solid fuels and other energy industries
B_Industry	1A2a	Stationary combustion in manufacturing industries: Iron and steel
B_Industry	1A2b	Stationary combustion in manufacturing industries: Non-ferrous metals
B_Industry	1A2c	Stationary combustion in manufacturing industries: Chemicals
B_Industry	1A2d	Stationary combustion in manufacturing industries: Pulp, Paper and Print
B_Industry	1A2e	Stationary combustion in manufacturing industries: Food processing, beverages and tobacco
B_Industry	1A2f	Stationary combustion in manufacturing industries: Non-metallic minerals
I_Offroad	1A2gvii	Mobile Combustion in manufacturing industries and construction
B_Industry	1A2gviii	Stationary combustion in manufacturing industries and construction: Other
H_Aviation	1A3ai(i)	International aviation LTO (civil)
H_Aviation	1A3aii(i)	Domestic aviation LTO (civil)
F_RoadTransport	1A3bi	Road transport: Passenger cars
F_RoadTransport	1A3bii	Road transport: Light-duty vehicles
F_RoadTransport	1A3biii	Road transport: Heavy-duty vehicles and buses
F_RoadTransport	1A3biv	Road transport: Mopeds & motorcycles
F_RoadTransport	1A3bv	Road transport: Gasoline evaporation
F_RoadTransport	1A3bvi	Road transport: Automobile tyre and brake wear
F_RoadTransport	1A3bvii	Road transport: Automobile road abrasion
I_Offroad	1A3c	Railways
G_Shipping	1A3di(ii)	International inland waterways
G_Shipping	1A3dii	National navigation (shipping)
I_Offroad	1A3ei	Pipeline transport
I_Offroad	1A3eii	Other
C_OtherStationaryComb	1A4ai	Commercial/institutional: Stationary
I_Offroad	1A4aii	Commercial/institutional: Mobile
C_OtherStationaryComb	1A4bi	Residential: Stationary
I_Offroad	1A4bii	Residential: Household and gardening (mobile)
C_OtherStationaryComb	1A4ci	Agriculture/Forestry/Fishing: Stationary
I_Offroad	1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery
I_Offroad	1A4ciii	Agriculture/Forestry/Fishing: National fishing
C_OtherStationaryComb	1A5a	Other stationary (including military)
I_Offroad	1A5b	Other, Mobile (including military, land based and recreational boats)
D_Fugitive	1B1a	Fugitive emission from solid fuels: Coal mining and handling
D_Fugitive	1B1b	Fugitive emission from solid fuels: Solid fuel transformation
D_Fugitive	1B1c	Other fugitive emissions from solid fuels
D_Fugitive	1B2ai	Fugitive emissions oil: Exploration, production, transport
D_Fugitive	1B2aiv	Fugitive emissions oil: Refining / storage
D_Fugitive	1B2av	Distribution of oil products
D_Fugitive	1B2b	Fugitive emissions from natural gas
D_Fugitive	1B2c	Venting and flaring (oil, gas, combined oil and gas)
D_Fugitive	1B2d	Other fugitive emissions from energy production
B_Industry	2A1	Cement production
B_Industry	2A2	Lime production
B_Industry	2A3	Glass production
B_Industry	2A5a	Quarrying and mining of minerals other than coal
B_Industry	2A5b	Construction and demolition

	andling and transport of mineral products
B_Industry 2A6 Other mine	ral products
B_Industry 2B1 Ammonia p	•
B_Industry 2B2 Nitric acid p	
B_Industry 2B3 Adipic acid	
B_Industry 2B5 Carbide pro	
	oxide production
B_Industry 2B7 Soda ash p	
	ndustry: Other
	andling and transport of chemical products
	eel production
B_Industry 2C2 Ferroalloys	
B_Industry 2C3 Aluminium	·
	n production
B_Industry 2C5 Lead produ	
B_Industry 2C6 Zinc produc	ction
B_Industry 2C7a Copper pro	
B_Industry 2C7b Nickel prod	luction
	I production
	andling and transport of metal products
E_Solvents 2D3a Domestic s	olvent use including fungicides
E_Solvents 2D3b Road pavin	ig with asphalt
B_Industry 2D3c Asphalt roo	
B_Industry 2D3d Coating app	plications
E_Solvents 2D3e Degreasing	-]
E_Solvents 2D3f Dry cleanin	g
E_Solvents 2D3g Chemical p	roducts
E_Solvents 2D3h Printing	
E_Solvents 2D3i Other solve	ent use
E_Solvents 2G Other produ	uct use
B_Industry 2H1 Pulp and pa	aper industry
B_Industry 2H2 Food and b	everages industry
B_Industry 2H3 Other indus	strial processes
B_Industry 2I Wood proce	essing
B_Industry 2J Production	of POPs
B_Industry 2K Consumption	on of POPs and heavy metals (e.g. electrical and scientific equipment)
B_Industry 2L Other produ	uction, consumption, storage, transportation or handling of bulk products
K_AgriLivestock 3B1a Manure ma	nagement - Dairy cattle
K_AgriLivestock 3B1b Manure ma	nagement - Non-dairy cattle
K_AgriLivestock 3B2 Manure ma	nagement - Sheep
K_AgriLivestock 3B3 Manure ma	inagement - Swine
K_AgriLivestock 3B4a Manure ma	inagement - Buffalo
K_AgriLivestock 3B4d Manure ma	inagement - Goats
K_AgriLivestock 3B4e Manure ma	inagement - Horses
K_AgriLivestock 3B4f Manure ma	nagement - Mules and asses
K_AgriLivestock 3B4gi Manure ma	nagement - Laying hens
K_AgriLivestock 3B4gii Manure ma	nagement - Broilers
K_AgriLivestock 3B4giii Manure ma	nagement - Turkeys
K_AgriLivestock 3B4giv Manure ma	nagement - Other poultry
K_AgriLivestock 3B4h Manure ma	nagement - Other animals
L_AgriOther 3Da1 Inorganic N	I-fertilizers (includes also urea application)
L_AgriOther 3Da2a Animal mar	nure applied to soils
L_AgriOther 3Da2b Sewage slu	udge applied to soils
L_AgriOther 3Da2c Other organ	nic fertilisers applied to soils (including compost)

GNFR	NFR	NFR name
L_AgriOther	3Da3	Urine and dung deposited by grazing animals
L_AgriOther	3Da4	Crop residues applied to soils
L_AgriOther	3Db	Indirect emissions from managed soils
	0	Farm-level agricultural operations including storage, handling and transport of agricul-
L_AgriOther	3Dc	tural products
L_AgriOther	3Dd	Off-farm storage, handling and transport of bulk agricultural products
L_AgriOther	3De	Cultivated crops
L_AgriOther	3Df	Use of pesticides
L_AgriOther	3F	Field burning of agricultural residues
L_AgriOther	31	Agriculture other
J_Waste	5A	Biological treatment of waste - Solid waste disposal on land
J_Waste	5B1	Biological treatment of waste - Composting
J_Waste	5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities
J_Waste	5C1a	Municipal waste incineration
J_Waste	5C1bi	Industrial waste incineration
J_Waste	5C1bii	Hazardous waste incineration
J_Waste	5C1biii	Clinical waste incineration
J_Waste	5C1biv	Sewage sludge incineration
J_Waste	5C1bv	Cremation
J_Waste	5C1bvi	Other waste incineration
J_Waste	5C2	Open burning of waste
J_Waste	5D1	Domestic wastewater handling
J_Waste	5D2	Industrial wastewater handling
J_Waste	5D3	Other wastewater handling
J_Waste	5E	Other waste
M_Other	6A	Other (included in national total for entire territory)
O_AviCruise	1A3ai(ii)	International aviation cruise (civil)
O_AviCruise	1A3aii(ii)	Domestic aviation cruise (civil)
P_IntShipping	1A3di(i)	International maritime navigation
z_Memo	1A5c	Multilateral operations
z_Memo	1A3	Transport (fuel used)
z_Memo	6B	Other not included in national total of the entire territory
N_Natural	11A	Volcanoes
N_Natural	11B	Forest fires
N_Natural	11C	Other natural emissions

The categories shaded grey are not occurring, included under another category or not estimated in the Danish emission inventory

Annex 3 List of SPREAD categories and corresponding GeoKeys

GeoKey	SPREAD snap	SPREAD category	Quality of spatial dataset	f Applicabil- ity as spa- tial proxy	Annual update
_Key_010306_AS	010306	Refineries - process furnaces (not covered by LPS)	A	4	No
_Key_010504_OffshoreGasturbines	010504	Gasturbines - offshore	А	1	Yes
_Key_02_Straw	02	Non-industrial combustion plants - straw	В	2	No
_Key_0201_Gas	0201	Commercial and institutional plants - gaseous fuels	С	2	No
_Key_0201_Liquid	0201	Commercial and institutional plants - liquid fuels	С	2	No
_Key_0201_Solid	0201	Commercial and institutional plants - solid fuels	С	2	No
_Key_0202_Gas	0202	Residential plants – gaseous fuels	С	2	No
_Key_0202_Liquid	0202	Residential plants – liquid fuels	С	2	No
_Key_0202_Solid	0202	Residential plants – solid fuels	В	2	No
_Key_0203_Gas	0203	Agricultural plants – gaseous fuels	С	2	No
_Key_0203_Liquid	0203	Agricultural plants – liquid fuels	В	2	No
_Key_0203_Solid	0203	Agricultural plants – solid fuels	В	2	No
_Key_0401_Refineries_AS	0401	Refineries - processes (not covered by LPS)	А	4	No
_Key_040616_Quarrying	040616	Quarrying and mining of minerals other than coal	С	3	No
_Key_050103_CoalStorage	050103	Coal handling and storage	В	3	No
_Key_050204_050304_Exploration	050204	Oil exploration	А	3	Yes
_Key_050204_050304_Exploration	050304	Gas exploration	А	3	Yes
_Key_050205_OilProduction	050205	Oil production	А	3	Yes
_Key_050206_LoadingOffshore	050206	Offshore loading of crude oil	А	3	Yes
_Key_050208_OilTerminal	050207	Onshore loading of crude oil	А	1	No
_Key_050208_OilTerminal	050208	Storage of crude oil	А	1	No
_Key_050305_GasProduction	050305	Natural gas production	А	3	Yes
_Key_050503_ServiceStations	050503	Service stations (including refuelling of cars)	С	3	No
_Key_050601_GasTransmission	050601	Natural gas transmission	А	3	No
_Key_050604_TownGas	050604	Town gas distribution	С	4	No
_Key_050699_Venting	050699	Venting	А	1	No
_Key_070101_Road_PC_Highway	070101	Road transport – passenger cars, highway	С	3	No
_Key_070102_Road_PC_Rural	070102	Road transport – passenger cars, rural	С	3	No
_Key_070103_Road_PC_Urban	070103	Road transport – passenger cars, urban	С	3	No
_Key_070201_Road_LD_Highway	070201	Road transport – light-duty vehicles, highway	С	3	No
_Key_070202_Road_LD_Rural	070202	Road transport – light-duty vehicles, rural	С	3	No
_Key_070203_Road_LD_Urban	070203	Road transport – light-duty vehicles, urban	С	3	No
_Key_070301_Road_HD_Highway	070301	Road transport – heavy-duty vehicles, highway	С	3	No
_Key_070302_Road_HD_Rural	070302	Road transport – heavy-duty vehicles, rural	С	3	No
_Key_070303_Road_HD_Urban	070303	Road transport – heavy-duty vehicles, urban	С	3	No
 _Key_0704_Mopeds	0704	Road transport – mopeds	С	4	No
_Key_0706_0707_0708_NonEx- haust	0706	Road transport - non-exhaust	С	3	No
_Key_0801_Military	0801	Military	В	3	No
_Key_0802_Railways	0802	Railways	В	4	No
_Key_080402_Ferry	080402	National navigation	В	3	Yes
_Key_080403_Fishing	080403	Fishing	В	5	No

GeoKey	SPREAD snap	SPREAD category	Quality o spatial dataset	of Applicabil- ity as spa- tial proxy	Annual update
_Key_080501_DomLTO	080501	Aviation – landing and take-off, national	А	2	Yes
_Key_080502_IntLTO	080502	Aviation – landing and take-off, international	А	2	Yes
_Key_080503_DomCruise	080503	Aviation – cruise, national	А	3	Yes
_Key_0808_IndustrialMachinery	0808	Non-road machinery – industrial	С	4	No
_Key_0811_CommInstMachinery	0811	Non-road machinery - commercial & institutional	С	3	No
_Key_090206_FlaringOffshore	090206	Flaring in gas and oil extraction	А	1	Yes
_Key_090298_Flaring_GasStorage	090298	Flaring in gas storage			No
_Key_090901_Cremation	090901	Human cremation	А	2	Yes
_Key_090902_AnimalCremation	090902	Animal cremation	А	2	Yes
_Key_3B1a_DairyCattle	3B1a	DairyCattle	А	2	Yes
_Key_3B1b_NonDairyCattle	3B1b	NonDairyCattle	А	2	Yes
_Key_3B2_Sheep	3B2	Sheep	А	2	Yes
_Key_3B3_Swine	3B3	Swine	А	2	Yes
_Key_3B4d_Goats	3B4d	Goats	А	2	Yes
_Key_3B4e_Horses	3B4e	Horses	В	2	No
_Key_3B4gi_LayingHens	3B4gi	LayingHens	А	2	Yes
_Key_3B4gii_Broilers	3B4gii	Broilers	А	2	Yes
_Key_3B4giii_Turkeys	3B4giii	Turkeys	А	2	Yes
_Key_3B4giv_OtherPoultry	3B4giv	OtherPoultry	А	2	Yes
_Key_3B4h_OtherAnimals	3B4h	OtherAnimals	А	2	Yes
_Key_3Da1_MineralFertiliser	3Da1	MineralFertiliser	А	2	Yes
_Key_3Da2a_ManureSoils	3Da2a	ManureSoils	А	2	Yes
_Key_3Da2b_SludgeSoils	3Da2b	SludgeSoils	А	2	Yes
_Key_3Da2c_OtherFertiliserSoils	3Da2c	OtherFertiliserSoils	А	2	Yes
_Key_3Da3_Grazing	3Da3	Grazing	А	3	Yes
_Key_AgriculturalArea	0806	Non-road machinery – agriculture	С	3	No
_Key_AgriculturalArea	3Dc	Farm-level agricultural operations	С	3	No
_Key_AgriculturalArea	3De	Cultivated crops	С	3	No
_Key_AgriculturalArea	3Df	Use of pesticides	С	4	No
_Key_AgriculturalArea	3F	Field burning of agricultural residues	С	5	No
_Key_Area_EEZ	0801	Military aviation	А	5	No
_Key_Biogas	091006	Anaerobic digestion at biogas facilities	А	2	Yes
_Key_Buffer_15km	0803	Recreational crafts (small boats)	А	3	No
_Key_Building	040624	Public works and building sites	С	4	No
_Key_Building	0602	Degreasing, dry cleaning and electronics	С	4	No
_Key_Building_OneStorey	060605	Use of charcoal (barbequing)	С	3	No
_Key_Building_OneStorey	0809	Non-road machinery – residential	С	3	No
_Key_Building_OneStorey	091104	Home composting	С	3	No
_Key_EPT	0101	Public electricity and heat production (not covered by LPS)	А	2	Yes
_Key_EPT	0102	Public electricity and heat production (not covered by LPS)	А	2	Yes
_Key_EPT_0201	0201	Public electricity and heat production (not covered by LPS)	А	2	Yes
_Key_EPT_0203	0203	Public electricity and heat production (not covered by LPS)	А	2	Yes
_Key_EPT_0301	0301	Public electricity and heat production (not covered by LPS)	A	2	Yes
_Key_Forest	0807	Non-road machinery – forestry	В	3	No

GeoKey	SPREAD snap	SPREAD category	Quality of spatial dataset	f Applicabil- ity as spa- tial proxy	Annual update
_Key_Industry	03	Combustion in manufacturing industry (excl. PS)	D	4	No
_Key_Industry	040306	Allied metal manufacturing	D	4	No
_Key_Industry	040605	Bread	D	4	No
_Key_Industry	040606	Wine	D	4	No
_Key_Industry	040607	Beer	D	4	No
_Key_Industry	040608	Spirits	D	4	No
_Key_Industry	040610	Asphalt roofing	D	4	No
_Key_Industry	040614	Lime (decarbonizing)	D	4	No
_Key_Industry	040617	Other processes in wood, paper pulp, food, drink and other industries	D	4	No
_Key_Industry	040618	Limestone and dolomite use	D	4	No
_Key_Industry	040619	Soda ash production and use	D	4	No
_Key_Industry	040620	Wood manufacturing	D	4	No
_Key_Industry	040626	Flour production	D	4	No
_Key_Industry	040627	Meat curing	D	4	No
_Key_Industry	040690	Storage, handling and transport of mineral products	D	4	No
_Key_Industry	040691	Production of yellow bricks	D	4	No
_Key_Industry	040692	Expanded clay products	D	4	No
_Key_Industry	040698	Margarine and solid cooking fats	D	4	No
_Key_Industry	040699	Coffee roasting	D	4	No
_Key_Industry	0603	Chemical products	D	4	No
_Key_Industry	091206	Industrial building fires	D	3	No
_Key_Population	060100	Paint application	А	4	No
_Key_Population	060400	Domestic solvent use	А	4	No
_Key_Population	060601	Use of fireworks	А	3	No
_Key_Population	060602	Use of tobacco (smoking)	А	3	No
_Key_Population	060603	Use of shoes	А	3	No
_Key_Population	060606	Use of candles	А	3	No
_Key_Population	0912	Accidental fires (excl. 091206 Industrial building fires)	А	4	No
_Key_RoadNetwork	040611	Road paving with asphalt	С	3	No
_Key_SolidWasteDisposal	091101	Composting of garden and park waste	С	3	No
_Key_SolidWasteDisposal	091102	Composting of organic waste	С	3	No
_Key_SolidWasteDisposal	091103	Composting of sludge	С	3	No

Annex 4 List of the plants included as LPS in the Danish inventory and their coordinates

LPS plant name	Longitude, ETRS89 UTM zone 32N	Latitude, ETRS89 UTM zone 32N	
AffaldPlus+, Naestved Forbraendingsanlaeg	673566	6121470	
Affaldplus+, Slagelse Forbr. and DONG Slagelse KVV	648352	6143575	
Affaldscenter aarhus - Forbraendsanlaegget	571785	6232085	
Affaldsforbraendingsanlaeg I/S REFA	685470	6074097	
Amagerforbraending	727665	6176819	
Amagervaerket	728025	6177190	
Ardagh Glass Holmegaard A/S	678982	6130322	
Asnaesvaerket	631021	6170419	
Avedoerevaerket	719115	6167294	
AVV Forbraendingsanlaeg	561865	6368221	
Bofa I/S	865405	6122924	
Centralkommunernes Transmissionsselskab F_berg	721357	6176474	
Cheminova	451369	6279469	
Dalum Kraftvarmevaerk	587465	6136044	
Danisco Grindsted Dupont	495571	6179998	
DanSteel	687796	6205745	
DTU			
	720902	6187727	
Duferco Danish Steel	688216	6205699	
Esbjergvaerket	465552	6145510	
Faxe Kalk	699272	6126497	
Fjernvarme Fyn, Centrum Varmecentral	588262	6140309	
Frederikshavn Affaldskraftvarmevaerk	588994	6369339	
Frederikshavn Kraftvarmevaerk	591233	6369335	
Fynsvaerket	589288	6143526	
Grenaa Forbraending	617572	6254827	
Grenaa Kraftvarmevaerk	617466	6254807	
H.C.Oerstedsvaerket	723735	6173536	
Haldor Topsoee	691189	6194089	
Hals Metal	579840	6318443	
Hammel Fjernvarmeselskab	553305	6232984	
Helsingoer Kraftvarmevaerk	721701	6214047	
Herningvaerket	500452	6219521	
Hilleroed Kraftvarmevaerk	706981	6200721	
Hjoerring Varmeforsyning	559490	6368558	
Horsens Kraftvarmevaerk	553712	6189957	
I/S Faelles Forbraending	549365	6279146	
I/S Kara Affaldsforbraendingsanlaeg	696336	6170478	
I/S Kraftvarmevaerk Thisted	482464	6313563	
I/S Nordforbraending	718278	6200503	
I/S Reno Nord	561678	6320478	
I/S Reno Syd	558772	6212178	
I/S Vestforbraending	714904	6178706	
Kastrup Lufthavn	730277	6169690	
Koege Kraftvarmevaerk	701702	6150643	
Kolding Forbraendingsanlaeg TAS	528256	6151811	
Kommunekemi	615239	6129954	
Koppers	613595	6129819	
Kyndbyvaerket	680370	6189066	
L90 Affaldsforbraending	468965	6146340	
Lille Torup Naturgaslager	525431	6277446	
		6282294	
Maricogen Masnedoevaerket	563746 684402		
		6098108	
Maabjergvaerket	476455	6250060	
Nordic Sugar Nakskov	637993	6078044	
Nordic Sugar Nykoebing	684916	6072034	
Nordjyllandsvaerket	563014	6326209	
Nybro Gasbehandlingsanlaeg	460422	6169662	
Odense Kraftvarmevaerk	588917	6143377	
Oestkraft	863289	6120018	
Randersvaerket Verdo	564537	6257613	

LPS plant name	Longitude, ETRS89 UTM zone 32N	Latitude, ETRS89 UTM zone 32N
Rensningsanlaegget Lynetten	727110	6178181
Rockwool A/S Doense	551501	6286157
Rockwool A/S Vamdrup	518427	6142686
Saint-Gobain Isover A/S	519006	6142478
Shell Raffinaderi	547182	6160917
Silkeborg Kraftvarmevaerk	534712	6228558
Skaerbaekvaerket	538847	6151868
Skagen Forbraending	593440	6400564
Soenderborg Kraftvarmevaerk	550238	6087216
Special Waste System	685220	6087473
Statoil Raffinaderi	631973	6169627
Stenlille Naturgaslager	665499	6158912
Studstrupvaerket	583332	6234738
Svanemoellevaerket	725398	6180014
Svendborg Kraftvarmevaerk	600737	6104909
Viborg Kraftvarme	524394	6257654
Vordingborg Kraftvarme	684402	6098108
Aalborg Portland	559134	6324607
AarhusKarlshamn Denmark A/S	575355	6222981

Note: The names in the table do not necessarily reflect the latest company names, but the name with which they are listed in the national emission database

SPATIAL HIGH-RESOLUTION DISTRIBUTION OF EMISSIONS TO AIR – SPREAD 2.0

The report documents the model for spatially distributing emissions. The model has undergone significant improvements since the last published version in 2011. The model covers all emissions of air pollutants included in the Danish reporting under the Convention on Long-Range Transboundary Air Pollution and the National Emission Ceilings Directive. The model distributes emissions on a 1 km x 1 km grid and the outputs are used for reporting under international agreements as well as for air quality modelling.

ISBN: 978-87-7156-370-2 ISSN: 2245-019X