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Preface  

This report was commissioned and funded by the Danish Environmental Pro-
tection Agency (EPA) as part of the project “Application of the Danish EPA’s 
Marine Model Complex and Development of a Method Applicable for the 
River Basin Management Plans (RBMP) 2021-2027”. The work reported was 
managed and performed by AU/DCE. DTU and DHI. During the project, a 
steering committee followed the development and was involved through di-
alogue and follow-up on progress, etc. The steering committee consisted of 
members from the Danish Ministry of Environment and Food (MFVM), the 
Danish EPA (MST), DHI and AU. In addition, a follow-up group consisting 
of members from The Danish Agriculture & Food Council. SEGES, National 
Association of Sustainable Agriculture, the Danish Society for Nature Conser-
vation, the Danish Sports Fishing Association, Danish Fishermen PO (DFPO), 
the Danish Ports and KL/municipalities was affiliated with the project. The 
follow-up group has been continuously informed about the progress of the 
project at meetings convened by the MFVM. The group has had the chance to 
comment on the report. No changes has been made based upon comments 
from the group. Choice of methods, data processing, description and presen-
tation of results have been solely AU/DCE’s, DTU’s and DHI’s decision and 
responsibility.  
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Summary 

 Bayesian hierarchical models were developed to predict chlorophyll-a con-
centration in Danish water-bodies, as a function of land-based nitrogen and 
phosphorus loadings, physicochemical and climatic predictors. The objective 
of the model development was to support the Danish implementation of the 
Water Framework Directive (WFD) by providing tools applicable for estimat-
ing chlorophyll-a reference conditions and maximum allowable nutrient in-
put (MAI) to the Danish coastal waters covered by the water framework di-
rective. 

We developed single station Bayesian models for 46 Danish water quality 
monitoring stations representing 43 water-bodies, as well as an overall group 
model that included data from 42 monitoring stations representing 39 water 
bodies.  In the group model, nutrient loadings, water temperature, salinity, 
and water column stability were the best predictors of chlorophyll-a concen-
tration in the 39 water bodies represented by the model. For the single station 
model, we found that nutrient loading was the most abundant predictor for 
chlorophyll-a concentration, followed by temperature and salinity. As ex-
pected, we found a positive slope coefficient between nutrient loadings and 
chlorophyll-a concentration in all but two stations. 

Model evaluation plots and performance statistics revealed that most of the 
models could capture the levels and year-to-year variation in chlorophyll-a 
concentrations reasonable well indicating that the models can be used to pro-
duce reliable predictions of chlorophyll-a concentrations in Danish coastal 
waters. Not surprisingly, model performance for single station models was, 
in general, better than for the group model, but the risk of “over parameteri-
zation” is also higher for single station models.    
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Dansk resume 

 Vi har udviklet bayesianske hierarkiske modeller, der beskriver klorofyl-a 
koncentrationen i de danske vandområder, som en funktion af landbaseret 
kvælstof- og fosforbelastning, fysisk-kemiske og klimatiske prediktorer. For-
målet med modeludviklingen var at tilvejebringe værktøjer, der kan anven-
des til at estimere reference tilstand for klorofyl samt bestemme den maksi-
male næringsstoftilførsel, som vil sikre målopfyldelse (målbelastninger) til de 
danske farvande, der er omfattet af vandrammedirektivet. 

Vi har udviklet enkelt-stations modeller for 46 danske vandkvalitetsstationer 
i det nationale overvågningsprogram, som tilsammen repræsenterede 43 
vandområder, og udviklet en samlet gruppemodel, indeholdende data fra 42 
stationer.   I gruppemodellen var næringsstofbelastninger, vandtemperatur, 
saltholdighed og vandsøjlestabilitet de bedste uafhængige variable til at be-
skrive klorofyl-a-koncentrationen i de 39 vandområder repræsenteret af mo-
dellen. For enkelt-station-modellerne fandt vi, at næringsstofbelastning var 
den bedste variable til estimering af klorofylkoncentration, efterfulgt af vand-
temperaturen og dernæst salinitet. Som forventet fandt vi en positiv hæld-
ningskoefficient mellem næringsstofbelastning og klorofyl-a- koncentratio-
nen i alle, undtagen to, stationer 

Modelevalueringsplot og model-performance-statistik viste, at de fleste mo-
deller kunne fange niveauer og år-til-år variationen i klorofyl-a koncentratio-
nen i de enkelte vandområder og at der var en rimelig god overensstemmelse 
mellem modelestimater og målinger, hvilket indikerer, at modellerne kan an-
vendes til modelscenarier for klorofyl koncentrationer i danske kystvande.   
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1 Introduction 

In this study, a Bayesian approach was used to develop chlorophyll-a (chl-a) 
models to support the establishment of the Danish River Basin Management 
Plans 2021-2027 (RBMP 2021-27) as part of the implementation of the Water 
Framework Directive (WFD). Bayesian statistics has gained popularity in re-
cent years, as modern computing power has facilitated the development of 
new algorithms and model types. Further, it was recommended by the panel 
of international experts evaluating models and methods used for the Danish 
RBMP 2015-2021 (Herman et al. 2017). 

In Bayesian statistics, parameter estimates are not considered point estimates, 
but rather expressed as probability distributions, involving more uncertainty 
information. Parameter uncertainty is quantified using the prior knowledge 
from earlier studies or literature, along with the sample data, which is not the 
case in frequentist or classical statistics where parameter estimates are in-
ferred from sample data only. For ecological models, it is essential to have 
information on the uncertainty in the parameter estimates and the resulting 
model predictions (Beck 1987; Ellison 1996; Omlin & Reichert 1999). Thus, the 
Bayesian perspective is more comprehensive, and incorporation of prior 
knowledge makes it more consistent in terms of the scientific process of pro-
gressive learning (Germano 1999) as well as in the policy practice of adaptive 
management (Walters 1986). Bayesian statistics has been used previously in 
water quality modeling (Malve & Qian 2006; Gronewold et al. 2010; Cha et al. 
2016). 

The chl-a concentration is a crucial indicator for assessing ecological status as 
part of the WFD. In Denmark, the chl-a indicator is defined as the average 
concentration from May to September and this indicator has been intercali-
brated with Sweden, Germany, and Norway as part of the intercalibration 
process. The main purpose of this study was to develop reliable Bayesian 
models for the chlorophyll-a indicator for as many coastal water bodies as 
possible, allowing for quantification of the relationship between the response 
variable chl-a and the predictor variables, especially the nutrient loadings, 
which can be managed. 
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2 Materials and methods 

2.1 Data collection and preparation of predictor and   
response variables 

The data used for model development consist of chl-a concentration (chl-a, μg 
L-1) as response variable and data describing the conditions assumingly af-
fecting the coastal environmental status, i.e., nutrient loadings and climate 
variables (predictor variables). Data used to construct time series of chl-a data 
were obtained from the Danish National Aquatic Monitoring and Assessment 
Programme database (DNAMAP). Data for the predictor variables (nutrient 
inputs, salinity, sea surface temperature, and buoyancy frequency) were also 
obtained from DNAMAP, whereas irradiance and wind data were obtained 
from two weather stations in Copenhagen and one in Sprogø. 

Chl-a concentration is an indicator of phytoplankton biomass, which is one of 
the biological quality elements required to assess ecological status according to 
the Water Framework Directive (WFD). The chl-a indicator is defined as the 
average chl-a concentration from May to September and was computed based 
on average chl-a concentration measurements from the surface down to 10 m 
depth.  

Nutrient loadings consisted of land-based nitrogen loadings (N, tonnes y-1) 
and phosphorous loadings (P, tonnes y-1), and physical variables included 
were salinity, sea surface temperature, buoyancy frequency, irradiance, and 
wind energy. In general, data were sampled with weekly to biweekly inter-
vals. 

For all the semi-enclosed water bodies, nutrient inputs were provided as 
monthly values, obtained from integrating continuous flow measurements 
and nutrient spot samples from gauged catchments combined with model 
predictions from ungauged catchments. In the relatively open coastal areas, a 
larger but still local catchment was used. 

Salinity and water temperature predictor variables were calculated as monthly 
means of the mean salinity or temperature of the surface layer (0-10 m). 

Buoyancy frequency was calculated as the Brunt-Väisälä buoyancy frequency 
(N) based on the difference between surface (0-1 m) and bottom density (1 m 
above bottom):  𝑁 = ඨ− 𝑔𝑝0 𝑑𝑝𝑑𝑧 

where g is the regional gravitational constant (9.82 ms-2), 𝑝0 is the potential 
density (surface density, kg m-3), dp is the difference between bottom and sur-
face density (kg m-3), dz is the depth difference between bottom and surface 
(m) and N is the buoyancy frequency (s-1). 

The mechanical force of the wind on the water surface is proportional to the 
cubed wind speed (Alexander et al. 2000), and we, therefore, cubed the wind 
speed to obtain a relative measure on the wind energy delivered to the sea 
surface. 
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Irradiance data were obtained as half-hourly values of global irradiance from 
1990 to 2017, and these were then converted to PAR values based on an algo-
rithm from Copenhagen University. Data gaps were filled with data from 
Sprogø (SPØ) after adjustment of the level based on the maximum level of 
irradiance (0.96 of the level measured in Copenhagen). Data from the two sites 
in Copenhagen (HCØ and HBG) have the same level and slope, and the final 
unit is μmol photons m-2 s-1 calculated from global irradiance (W m-2). 

Data from 1990 to 1993 were hourly data, which were interpolated linearly to 
obtain 30 min intervals using the “Proc Expand” procedure in SAS. For some 
years, values were adjusted (dark values subtracted) due to a significant sen-
sor offset. In addition, all values below 2 μmol photons m-2 s-1 were set to zero 
due to low sensor sensitivity within that range and problems in some years 
with a dark offset. This is significant in some winter months, where a dark 
offset may constitute a substantial part of the daily sum. Finally, the data were 
translated into monthly mean values. The remaining gaps were filled with 
average values for the same day and time from other years. 

Model development was restricted to data from monitoring stations within 
the WFD zone of water bodies with at least 15 years’ data series between 1990 
and 2017, ensuring that both year-to-year variations as well as potential long-
term trends could be resolved. Only time series with a minimum of one bi-
monthly observation was included to have enough data points to get robust 
monthly interpolated values. 

The data were filtered and interpolated linearly between observations using 
the expand procedure to obtain daily values using statistical software SAS® 
(https://support.sas.com/documentation/onlinedoc/ets/132/ex-
pand.pdf). Before performing interpolation, chl-a values were log-trans-
formed, assuming that these observations were lognormal distributed. From 
daily values, monthly averages were calculated before the values were back 
transformed to the original scale. The monthly means on the original scale 
were averaged to gain annual summer means (May-September). These sum-
mer means were combined with annual nutrient inputs from January to Sep-
tember, and different physical variables aggregated over the same seasonal 
window as chl-a (May-September). 

The two predictor variables, nitrogen inputs, and phosphorous inputs, were 
highly correlated. To avoid potential collinearity between these predictor var-
iables, the variables were considered as on latent variable referred to as 
“load”. This was done using principal component analysis (Wold et. al.1987) 
performed on N and P inputs to obtain on common vector, the first principal 
component (PC), which explained most of the total variation (an average of 
91 %) in the two datasets. The first PC was used instead of the original N and 
P inputs. Predictor variables were measured in different units and scales. 
Therefore they were standardized to a mean of zero and a standard deviation 
of one, making the variances of predictor variables comparable. 

Scatter plots of chl-a vs. load (first principal component of nutrient loadings) 
for different stations were used to identify deviating observations from the 
typical “behavior,” and such outlier observations were discarded before the 
chl-a modelling.  
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2.2 Bayesian approach 
To quantify the relationship between the chl-a and the predictor variables, i.e. 
nutrient loadings and climate variables, we used a Bayesian modeling frame-
work. 

Bayesian inference is a way of combining information from data along with 
the prior knowledge from expertise, earlier studies, or literature. Bayesian sta-
tistics is based on principles of conditional probability. It interprets probabil-
ity as a measure of believability or how confident we are in an event occur-
ring. 

Bayes’ original theorem applied to point probabilities given as follows: 

𝑝(𝐵/𝐴) =
𝑝(𝐴/𝐵)𝑝(𝐵)

𝑝(𝐴)
 

The theorem illustrates that a conditional probability for event B given event 
A is equal to the conditional probability of event A given event B, multiplied 
by the marginal probability for event B and divided by the marginal proba-
bility for event A. 

In other ways, Bayes’ rule states how the prior information 𝑝(𝐵) and the like-
lihood 𝑝(𝐴/𝐵) are combined to arrive at the posterior distribution 𝑝(𝐵/𝐴). 
p(A) is often ignored since it is, in many cases difficult to calculate and can 
often be assumed constant.  

Thus, we can write Bayes’ rule as: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟 

where likelihood is likelihood function, which reflects information about the 
parameters contained in the data, and the prior is prior probability distribu-
tion, which quantifies prior belief about the parameters before observing data. 
Posterior is posterior probability distribution; prior distribution and likeli-
hood are combined to form the posterior distribution, which describes total 
knowledge about the parameters after the data have been observed (Gelman 
et al. 2003; Glickman & van Dyk 2007). 

In the Bayesian method, model parameters intercept and slopes are consid-
ered as random variables, and prior belief about these parameters so-called 
prior probability distribution is assigned. Thus, the Bayesian approach incor-
porates prior understandings, and evidence, to produce new posterior beliefs. 
Additionally, Bayesian inference quantifies the uncertainty explicitly, which 
is appealing in environmental decision-making (Gelman et al. 2003; Ellison 
2004; Clark 2005). 

In the current study, chl-a prediction models for 42 coastal monitoring sta-
tions were fitted simultaneously with the random intercept random slope us-
ing the Bayesian hierarchical modeling approach. Where chl-a at all Danish 
water bodies are assumed to be described by the overall model, but with a 
random slope and intercept on individual station level. Combining data from 
different sources, e.g., different sampling locations within similar river types 
using hierarchical modeling method, often results in improved model accu-
racy and reduced model uncertainty (Qian et al. 2004, 2005). In a hierarchical 
structure, each subsystem is believed to be unique; however, some 
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commonality exists between other subsystems, which is captured in the pop-
ulation structure (Borsuk et al. 2001). The combining of data using a hierar-
chical method may be useful in a variety of model applications within aquatic 
and ecological science where we need to estimate empirical parameter esti-
mation. However, available local data are very limited (Borsuk et al. 2001). 

Four additional coastal monitoring stations had broader chl-a range and had 
high random effects, compared to other monitoring stations when combined 
in a Bayesian hierarchical modeling approach due to very high specific nutri-
ent loading and low retention time for one of the stations (Randers inderfjord, 
Hjarbæk fjord, Mariager fjord, and Nissum fjord). Thus, for these four sta-
tions, non-hierarchical station-specific Bayesian models were developed. Ad-
ditionally, to compare with the 42 grouped station model results, non-hierar-
chical station-specific models were developed for all of these stations. Devel-
oping separate models for each monitoring station, i.e., “no pooling”, is es-
sential as many factors can affect the relationship between the model response 
variable chl-a and the predictor variable to differ among monitoring stations. 
However, focusing on site-specific features increases the risk of overfitting. A 
comparison of results (in terms of parameter posterior distribution) from the 
hierarchical model and the station-specific models will qualify the balance be-
tween robustness (hierarchical model) and precision (site-specific model). In 
the ideal case, the differences between the hierarchical and station-specific 
models are only minor, and the model will be both precise and robust. 

The Bayesian linear model used in this study summarized as shown: 𝐶ℎ𝑙𝑎௢௕௦௘௥௩௘ௗ௜௝  ~ 𝐺𝑎𝑚𝑚𝑎 ቀ𝑐ℎ𝑙௧௥௨௘௜௝ , 𝜈 ቁ 

The chl-a data are right-skewed and always positive; thus a reparameterized 
gamma distribution is used to model the chl-a concentration. It will also en-
sure that the model will put more emphasis on the lower values with less var-
iation. 

Compare to the traditional gamma parameterization: 

𝑠ℎ𝑎𝑝𝑒 = 𝑐ℎ𝑙௧௥௨௘௜௝ 𝑠𝑐𝑎𝑙𝑒   and 𝑠𝑐𝑎𝑙𝑒 = 𝜈  

Where 𝑐ℎ𝑙௧௥௨௘௜௝  is the mean and 𝜈  is the scale parameter. 

The mean model for the hierarchical (grouped station) model: 𝐶ℎ𝑙𝑎௧௥௨௘௜௝ = (𝜇ఈ + 𝛼௝) + 𝑋ଵ,௜௝൫𝜇ఉೣభ + 𝛽௝௫ଵ൯ + 𝑋ଶ,௜௝൫𝜇ఉೣమ + 𝛽௝௫ଶ൯ 
where  𝜇ఈ is the group mean intercept parameter. 𝛼௝ is the deviation from mean intercept for grouped station model. 𝑋ଵ,௜௝,  𝑋ଶ,௜௝ , … are predictors of ith sample in jth station. 𝜇ఉೣభ,  𝜇ఉೣమ ,… are group mean slope parameters for respective predictor in a 
grouped station model. 
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𝛽௝௫ଵ , 𝛽௝௫ଶ … are deviation from mean slope for grouped station model for re-
spective predictor variable. 

The mean model for station-specific model: 𝐶ℎ𝑙𝑎௧௥௨௘௜௝ = 𝛼௜ + 𝑋ଵ,௜௝  𝛿௝௫ଵ + 𝑋ଶ,௜௝𝛿௝௫ଶ 

where 𝐶ℎ𝑙𝑎௜௝  is ith sample of chl-a concentration, which occurs in the jth station. 𝛼௜ is the intercept term for station-specific model. 𝛿௝௫ଵ , 𝛿௝௫ଶ … are station-specific slope parameters. 

The non-informative prior distributions were used for model intercept and 
overall slope parameters: 𝛼௝  , 𝜇ఉೣభ , 𝜇ఉೣమ    ~ 𝑁(0,100)  𝛼௜ , 𝛿௝௫ଵ, 𝛿௝௫ଶ   ~ 𝑁(0,1000). 

In the grouped station model, station-specific slope parameters (i.e., mean 
slope deviation) had narrower priors, which intended to regularize (McElreath 
2016): 𝛽௝௫ଵ ,𝛽௝௫ଶ … ~ 𝑁(0,𝜎). Such regularization in the hierarchical approach 
attempts to improve the generalizability of the model but with station-specific 
slope and intercept as random effects. This will help reduce uncertainty and 
potential bias, which may occur while fitting station-specific models. Thus, a 
hierarchical model can be generalized to all representative monitoring sta-
tions. 

Scale parameter 𝜈 had non-informative prior:  𝜈  ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 

Initial values were defined for parameters as shown: 𝛼௜ = mean of 𝐶ℎ𝑙𝑎௜  𝜇ఉೣభ , 𝜇ఉೣమ , 𝛿௝௫ଵ, 𝛿௝௫ଶ… = 0 and 

 𝜈 = Standard deviation of 𝐶ℎ𝑙𝑎௜   

Simulation of parameter posterior distributions was performed using Hamil-
tonian Monte Carlo (HMC) - a Markov chain Monte Carlo (MCMC) method. 
The MCMC method allows the user to sample all unknown parameters using 
joint posterior distributions that otherwise cannot be directly calculated (Gilks 
et al. 1996; Gamerman & Lopes 2006). In this study, sampling consisted of 
20,000 iterations and 4,000 warmup iterations. Initially, two independent 
chains were used to sample from, but in the final models, one chain was used, 
which was sufficient. The mean value of the posterior samples was considered 
as the estimate of each parameter. 

Convergence diagnostics such as effective number of samples, trace and pos-
terior density plots  were evaluated to ensure that sufficient number of chains 
was used, trajectory of the chain was stationary around the similar values, 
mixing was good and posterior had appropriate target distribution 
(McElreath 2016). 
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Statistical software SAS® (SAS 9.4, SAS Institute Inc, Cary, North Carolina, 
USA) was used for relevant data extraction from database and data manage-
ment. Bayesian analysis was performed using R software (R Core Team 2018) 
using Rethinking (McElreath 2016) and RStan (Stan Development Team 2019) 
packages. 

2.3 Choosing informative predictor variables 
In this study, six predictor variables were available for chl-a prediction. How-
ever, not all predictor variables are of importance for chl-a modeling at differ-
ent monitoring stations. We used the method proposed by Lindeman, Me-
renda, and Gold (LMG) (Lindeman et al. 1980) to exclude predictor variables 
with no explanatory power for chl-a. The method uses sequential sums of 
squares from the multiple linear regression model, and overall assessment is 
obtained through the coefficient of determination (R2) partitioned by averag-
ing over orderings among predictors. R package ‘relaimpo’ (Grömping 2006) 
was used to perform this analysis. For a few selected stations, partial least 
squares regression (Wold et al. 2001) was also used to check for variable im-
portance for prediction, and the variable importance was then compared with 
the LMG method. 

2.4 Model comparison and final model selection 
Once the informative predictors were selected based on their relative im-
portance in predicting chl-a, different combinations of importance predictors 
were used in the Bayesian approach. The Watanabe-Akaike or widely appli-
cable information criterion (WAIC) (Watanabe, 2010) was used to compare 
the model with different predictors. Lower WAIC values correspond to better 
model performance, and therefore models with the lowest WAIC were con-
sidered as the best model. However, for some monitoring stations, the final 
selected model was chosen based on the best balance between both WAIC 
value and R2 value. 

WAIC is regarded as an improvement on the deviance information criterion 
(DIC) for Bayesian models and is defined as (McElreath 2016): 

WAIC = -2(lppd - pWAIC) 

where lppd is log-pointwise-predictive density, averaged over the posterior 
distribution, given by:  𝑙𝑝𝑝𝑑 = ෍ log Pr (𝑦𝑖)ே

௜ୀଵ  Pr (𝑦𝑖) is the average likelihood of the ith observation of training sample. 

pWAIC is the effective number of parameters, given by: pWAIC = ෍V (𝑦𝑖)ே
௜ୀଵ  V (𝑦𝑖) is the variance in log-likelihood of the  ith observation of training sam-

ple. 
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2.5 Dunn-Smyth residuals 
The current study used gamma distribution to model the chl-a concentration, 
and therefore the obtained residuals were far from normally distributed re-
siduals. Thus, randomized quantile residuals or Dunn-Smyth residuals were 
calculated and used as a diagnostic tool. Dunn-Smyth residuals are based on 
the principle of inverting the fitted distribution function at each response 
value to obtain the equivalent standard normal residuals (Dunn & Smyth 
1996). Dunn-Smyth residuals are obtained by using two transformations; first, 
transforming the response values into approximately independent uniformly 
distributed random variables using the fitted cumulative distribution func-
tion and then the inverse of the standard normal cumulative distribution func-
tion is used to obtain variables that are approximately independent with 
standard normal distribution. 

2.6 Posterior predictive evaluation 
• Model performance for both the grouped station model and single-station 

models was assessed and quantified by comparing model predictions and 
observations of Chl-a concentrations using a suite of quantitative and vis-
ual measures listed below.     

• Time series plots of modeled and observed Chl-a values (appendix A+B) 
together with the 95 % highest posterior density interval (HPDI) for each 
predicted observation obtained using samples from a posterior density. 

• Plots and correlation analysis of observed vs. modeled Chl-a values (ap-
pendix A+B) were used to evaluate the ability of the model to capture the 
variation in observed Chl-a values. The coefficient of determination R2 (Ta-
ble 2.a and 2.b) was used to quantify the variability captured by the model 
and an F test (table 2a and 2b) was used to determine if the correlation was 
significant.  

• Time series plots of residuals (appendix A+B) were used to identify any 
non-random pattern and the ability to capture year-to-year variation.  An 
F test (Table 2a and 2b) was used to test if the bias was time-dependent (i.e. 
if the regression between the residuals and time was significant). 

• Plots of residuals vs observed chl-a values (appendix A+B) were used to 
detect if residuals were distributed as expected, i.e. “U-shaped” with 
smallest residuals close to the mean and larger residuals for small or large 
chl-a values. The Shapiro-Wilk test for residuals was used to test if the re-
siduals were normally distributed. 

• Mean Dunn-Smyth residuals (bias) were used to quantify any systematic 
deviation between model results and observations  

• Root mean square error (RMSE) was used to assess the applicability of the 
model to capture high values or produced high values not reflected by the 
observations (Table 2a and 2b).  

As there do not exists any objective or formal criteria for determining when a 
model “is good enough” the following guidelines were used to identify any 
potential problematic areas that might influence overall model performance 
and the applicability of the model to perform model scenarios. 
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Table 1. Overview of statistical model assessment methods used for evaluation of model performance. 

Statistical method Description 

Coefficient of determination (R2) for the corre-

lation between model results and correspond-

ing observations 

Quantify the variation captured by the model and should be as close to 1 as pos-

sible. 

R2 and the assessment criteria is only meaningful if there is “sufficient” variation 

in the data 

Significance test (F-test) for the correlation 

between model results and observations 

Model results and observations should be significantly correlated 

Average bias of model results and observa-

tion 

Average bias identify any overall systematic deviation between model and ob-

servations and should be as close to 0 as possible  

Significant test (F test) for the correlation be-

tween time and residuals 

Correlation between time and residuals should be not significant as significant 

time trends in residuals could pose a problem for model scenarios 

Root mean square error (RMSE) RMSE should be as small as possible and not exceed the standard deviation of 

the observations. 

Shapiro-Wilk test for residuals Test if residuals are significantly different from a normal distribution. NS implies 

that residuals are normally distributed as expected 
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3 Results and discussion 

3.1 Bayesian Chl-a models 
In total, 46 monitoring stations fulfilled the requirement of more than 15 years 
of regular monitoring, and data from these stations were included in the 
model development.  

The grouped (hierarchical) Bayesian model included 42 monitoring stations 
covering 39 water bodies (figure 1). Based on the WAIC analysis four (out of 
six) predictor variables: load, Temperature, Salinity, and Buoyancy frequency 
were selected as being important for predicting chl-a concentration at these 
42 sites. Although better model performance could be obtained by including 
additional predictor variables, these were excluded by the WAIC in order to 
reduce the risk of “overfitting”. The MCMC simulation with given prior dis-
tributions converged quickly. MCMC runs were assessed using different con-
vergence statistics. The effective number of samples was sufficiently large, 
and trace plots indicated that the center of the chain appeared to be stationary 
around similar values (not shown). The posterior density plot (Appendix A, 
Figure A) of each posterior parameter distribution showed it had appropriate 
target distribution, i.e. bell-shaped curve for the posterior distributions of pa-
rameters. Posterior density is the true probability density and summarizes the 
relative belief weight of each possible value of the parameter. 

Four stations (figure 1, marked in green) showed high random effects com-
pared to other monitoring stations when combined together in hierarchical 
way. Thus, these four stations were excluded from the grouped station model 
and station-specific Bayesian models were developed. 

Single station models were developed for 46 monitoring stations covering 43 
water bodies (figure 1). Despite the lower number of observations in the sin-
gle-station models compared to the grouped station model, the MCMC runs 
converged quickly with trace plot indicating that the centre of the chain ap-
peared to be stationary around the similar values and with bell-shaped curves 
for the posterior distributions of parameters (not shown).  

Load was selected as predictor variables in 31 of the station-specific models 
making it the most common predictor variable followed by temperature, 
which was a predictor in nearly half of the station-specific models.   

The parameter selection for single station models was based on LMG and 
WAIC. Both LMG method using multiple linear regression and partial least 
squares method (in combination with WAIC) and WAIC alone yielded the 
same list of important predictor variables for chl-a prediction when compared 
for selected monitoring stations. This indicates that parameter selection was 
relatively insensitive to the choice of method. 
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3.2 Model fit and evaluation 
The grouped station model included 42 monitoring stations. Table 2a gives an 
overview of model goodness-of-fit using different model evaluation parame-
ters. The grouped station model explained overall 72 % of the chl-a variation 
with Dunn-Smyth bias of -0.021 and RMSE of 0.94. Also, at individual station 
level, the grouped station model seemed to perform acceptable for most of the 
stations, with significant correlations between model results and observations 
and no obvious systematic deviations as indicated by fairly low bias and 
RMSE as well as normally distributed residuals without time trends.  Average 

 
Figure 1.   Map showing location of the 42 monitoring stations included in the grouped (hierarchical) Bayesian chloro-
phyll-a model (blue circle) as well as the 46 monitoring stations (blue and green circles) for which single station chloro-
phyll-a models were developed. 
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bias was generally low but negative indicating an overall tendency for the 
model to underestimate the chl-a concentration. For 24 stations R2 values for 
the correlation between model and observations was low (< 0,3) indicating 
that the model did not capture the variation in observed Chl-a concentrations 
very well.   

Visual inspection of the model performance plots (Appendix A) confirmed 
the overall acceptable performance of the grouped station models also on the 
level of individual monitoring stations. Time series plots of chl-a predictive 
distribution means and its 95 % credible intervals plots showed that the model 
most often could capture the overall trend as well as the year-to-year variation 
in observations and only in few cases did the residual plots reveal potential 
undesirable patterns in residual distribution. There was, however, a tendency 
for a mismatch between the model-observation regression line and the 1:1 cor-
respondence line coinciding with a low R2 value (Appendix A).   

The performance statistics for the 46 single station models (table 2b) indicated 
a better model performance of single station models compared to the grouped 
station models. Significant (p < 0,05) correlations between model and obser-
vations were obtained for 41 out of 46 of the models, and R2 values were in 
general acceptable (R2 > 0,3).  Mean residual (Bias), as well as RMSE, were 
low, but there was a tendency for the models to underestimate chl-a concen-
trations (negative bias). The residuals were normally distributed except for 
three monitoring stations, and generally, no time trends in residuals were de-
tected. 

Visual inspection of the model performance plots (Appendix B) confirmed the 
overall good performance of the single station models. Both time series plots 
as well as regression plots of observed vs. modeled chl-a concentrations, 
showed that the models could capture the variation in the observation. In con-
trast to the grouped station models, regression lines of observed vs. model 
results were close to the 1:1 correspondence line. 

Although model performance statistics are better for single station models 
compared to the grouped model, the generality is lower for the single station 
models, and the risk of over parametrisation/”false” predictor variables is 
somewhat higher. 
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Table 2a.   Summarized model performance statistics for the grouped station model. R2 is the coefficient of determination for the 

relationship between observed and modelled chl-a concentrations; RMSE is the root mean squared error; Shapiro-Wilk test is 

the normality test results for the residuals and  F test for Dunn-Smyth residual vs. time indicate if residuals are time dependent or 

not. Stars (*) indicate significance level, NS means “not significant”..  

Station name Station ID R2 Mean Dunn-

Smyth  

residual 

(Bias) 

RMSE Shapiro- 

Wilk test for 

Dunn-Smyth 

residual 

F test for 

Dunn-Smyth 

residual vs. 

time 

Overall Overall 0.72*** -0.021 0.94 NS - 

Kalø Vig ARH170002 0.53*** -0.116 0,53 NS NS 

Århus Bugt ARH170006 0.22* -0.105 0,57 NS NS 

Hevring Bugt ARH190004 0.45** -0.119 0,56 NS NS 

Randers ydre ARH230905 0.13ns 0.004 1,59 NS * 

Nakkebølle Fjord FYN0018361 0.19* -0.034 1,29 NS NS 

Lindelse Nor FYN0018571 0.25* -0.187 0,37 NS NS 

Holcken Havn FYN0018752 0.31* 0.201 4,46 NS NS 

Kerteminde Fjord/Kertinge Nor FYN0018843 0.31* -0.041 1,17 NS NS 

Bredningen, Lillebælt FYN6100021 0.15. -0.070 0,88 NS NS 

Lillebælt nord - ved Fredericia FYN6100051 0.12 ns -0.062 0,85 NS NS 

Nord for Als (Lillebælt vest) FYN6200901 0.21. -0.088 0,75 NS NS 

Odense ydre FYN6900017 0.10 ns -0.042 0,96 NS * 

Odense indre FYN6910008 0.01 ns -0.018 1,24 NS NS 

Vadehavet Grådyb - Ho Bugt v Langli RIB1610002 0.29** 0.053 2,74 NS NS 

Vadehavet Knudedyb RIB1620014 0.14. 0.062 2,93 NS NS 

Ringkøbing Fjord nord RKB1 0.08 ns 0.081 3,21 NS NS 

Køge Bugt ROS1727 0.45*** -0.118 0,59 NS NS 

Roskilde indre ROS60 0.37** -0.061 0,73 NS NS 

Lister Dyb SJY1 0.3** -0.008 1,57 NS * 

Augustenborg Fjord SJY12 0.09 ns -0.044 1,29 NS NS 

Als Fjord SJY13B 0.36** -0.015 1,59 NS NS 

Aabenraa Fjord SJY15 0.31** -0.046 0,97 NS NS 

Genner Bugt SJY19 0.02 ns -0.051 1,07 NS NS 

Lister Dyb ved Rømø Havneby SJY3 0.21* 0.034 2,43 NS ** 

Flensborg Fjord inder SJYKFF2 0.23* 0.025 2,45 NS NS 

Flensborg Fjord yder SJYKFF5 0.46*** -0.077 0,77 NS ** 

Præstø Fjord STO0802008 0.33** 0.005 2,08 NS NS 

Kolding Fjord VEJ0003350 0.37** 0.107 2,85 NS NS 

Vejle Fjord VEJ0004273 0.59*** -0.002 1,42 NS * 

Horsens inder VEJ0005790 0.35** -0.007 1,42 NS NS 

Horsens yder VEJ0006489 0.07 ns -0.071 0,73 NS NS 

Nissum Bredning VIB3702-00001 0.37*** -0.045 1,03 NS ** 

Løgstør Bredning VIB3708-00001 0.26** -0.011 1,76 NS NS 

Nibe Bredning VIB3711-00001 0.37** -0.012 1,76 NS * 

Thisted Bredning VIB3723-00001 0.2. 0.086 3,24 NS NS 

Skive Fjord VIB3727-00001 0.22* 0.079 3,08 NS NS 

Lovns Bredning VIB3728-00001 0.03 ns 0.240 4,86 NS * 

Isefjord dybt bassin VSJ10003 0.4*** -0.057 1,21 NS NS 

Isefjord inderbredning VSJ10006 0.26* -0.036 1,34 NS NS 

Kalundborg Fjord yder VSJ41007 0.24* -0.122 0,55 NS NS 

Kalundborg Fjord inder VSJ41008 0.17. -0.126 0,54 NS NS 

Skælskør Fjord VSJ51013 0.000002 ns -0.038 1,41 * NS 

***p ≤ 0.001; **p ≤ 0.01; * p ≤ 0.05; .p ≤ 0.1; ns p > 0.1 (not significant). 
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Table 2b.   Summarized model performance statistics for the station specific models. R2 is the coefficient of determination for 

the relationship between observed and modelled chl-a concentrations; RMSE is the root mean squared error; Shapiro-Wilk test 

is the normality test results for the residuals and  F test for Dunn-Smyth residual vs. time indicate if residuals are time dependent 

or not. Stars (*) indicate significance level, NS means “not significant” 

Station name Station ID R2 Mean 

Dunn-

Smyth  

residual 

(Bias) 

RMSE Shapiro-

Wilk test 

for 

Dunn-

Smyth re-

sidual 

F test for 

Dunn-

Smyth re-

sidual vs. 

time 

Predictors 

Kalø vig ARH170002 0.52*** -0,020 0,46 NS #N/A Load 

Århus bugt ARH170006 0.22* -0,017 0,51 NS #N/A Load 

Hevring bugt ARH190004 0.52*** -0,041 0,46 NS NS Load, Sali 

Randers ml ARH230902 0.51*** -0,036 4,16 NS * Load 

Randers ydre ARH230905 0.56*** -0,053 1,14 NS NS Temp, Load, Irr, Wind 

Nakkebølle fjord FYN0018361 0.25* -0,047 1,24 Yes #N/A Load, Sali, Wind 

Lindelse nor FYN0018571 0.47** -0,038 0,18 NS #N/A Wind, Sali, Temp 

Holcken havn FYN0018752 0.35** -0,075 4,01 NS #N/A Temp, Sali 

Kerteminde fjord/kertinge 

nor 

FYN0018843 0.51*** -0,056 0,98 NS NS Load, Temp, Sali 

Bredningen, Lillebælt FYN6100021 0.22* -0,038 0,83 NS #N/A Load, BV, Wind 

Lillebælt nord - ved Fre-

derecia 

FYN6100051 0.50** -0,046 0,63 NS NS Load, Wind, Temp, Irr 

Nord for Als (Lillebælt 

vest) 

FYN6200901 0.36* -0,056 0,65 NS NS Load, Wind, Irr 

Odense ydre FYN6900017 0.18* -0,026 0,88 NS * Load, BV, Wind 

Odense indre FYN6910008 0.19* -0,041 1,09 NS #N/A Temp, Wind, Irr 

Mariager fjord NOR5503 0.71*** -0,056 3,23 Yes NS Load, Irr, Sali 

Vadehavet Grådyb - Ho 

bugt v Langli 

RIB1610002 0.34** -0,028 2,59 NS NS Sali 

Vadehavet Knudedyb RIB1620014 0.42*** -0,056 2,42 NS NS Load, BV, Temp, Irr 

Ringkøbing fjord nord RKB1 0.24* -0,064 2,95 NS * Irr, BV, Temp 

Nissum fjord RKB22 0.61*** -0,085 10,80 NS NS Load, BV, Sali 

Køge bugt ROS1727 0.46*** -0,037 0,53 NS #N/A Load, Temp 

Roskilde indre ROS60 0.43** -0,025 0,66 NS #N/A Load, BV 

Lister dyb SJY1 0.51*** -0,032 1,30 NS * Sali, Irr 

Augustenborg fjord SJY12 0,11 -0,031 1,29 NS #N/A Load 

Als fjord SJY13B 0.36** -0,055 1,54 NS NS Load 

Aabenraa fjord SJY15 0.39*** -0,031 0,89 NS #N/A Load, Temp 

Genner bugt SJY19 0.48** -0,063 0,77 NS NS Load, Temp, Irr 

Lister dyb v Rømø hav-

neby 

SJY3 0.54*** -0,038 1,83 Yes * BV, Irr, Temp 

Flensborg fjord inder SJYKFF2 0.34** -0,060 2,22 NS NS Load, BV, Temp 

Flensborg fjord yder SJYKFF5 0.44*** -0,025 0,74 NS #N/A Load 

Præstø fjord STO0802008 0.31** -0,062 2,03 NS #N/A Temp, Sali 

Kolding fjord VEJ0003350 0.46*** -0,033 2,49 NS NS Load, Wind 

Vejle fjord VEJ0004273 0.59*** -0,024 1,29 NS NS Load 

Horsens inder VEJ0005790 0.46*** -0,031 1,27 NS NS Load, Wind, Irr, Temp 
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3.3 Model coefficients 
Load coefficients estimated from either the hierarchical grouped station 
model (table 3a) or single station models (table 3b) showed an overall positive 
correlation between nutrient loadings and chl-a concentrations, as expected. 
Only at two stations (Randers ydre and Thisted), the Load coefficient ap-
peared to be negative in both the grouped station model and single station 
model.  

Overall, there was a good agreement between Load coefficients estimated 
with the grouped station model and single station models indicating that the 
quantification is robust even at the single station models with fewer observa-
tions.  

  

Horsens yder VEJ0006489 0.17. -0,026 0,62 NS #N/A BV, Temp 

Hjarbæk fjord VIB3729-00001 0.74*** -0,106 13,61 NS NS Load, BV, Sali 

Nissum bredning VIB3702-00001 0.40*** -0,028 0,98 NS #N/A Load, Wind 

Løgstør bredning VIB3708-00001 0.24** -0,035 1,76 NS #N/A Temp, Sali 

Nibe bredning VIB3711-00001 0.45*** -0,042 1,58 NS #N/A BV, Wind 

Thisted bredning VIB3723-00001 0,16 -0,075 3,30 NS #N/A Sali 

Skive fjord VIB3727-00001 0.25** -0,031 2,99 NS #N/A BV, Sali 

Lovns bredning VIB3728-00001 0,14 -0,060 4,51 NS #N/A Irr 

Isefjord dybt bassin VSJ10003 0.44*** -0,052 1,11 NS NS Load, BV, Temp 

Isefjord inderbredning VSJ10006 0.28* -0,054 1,30 NS NS Load, Temp 

Kalundborg fjord yder VSJ41007 0.37** -0,060 0,45 NS NS Load, BV, Sali, Temp 

Kalundborg fjord inder VSJ41008 0.32* -0,046 0,42 NS * Sali, Wind, BV 

Skælskør fjord VSJ51013 0,14 -0,077 1,32 NS NS Load, Wind 

***p ≤ 0.001; **p ≤ 0.01; * p ≤ 0.05; . p ≤ 0.1; ns p > 0.1 (not significant). 
1 Shapiro Wilk Normality test indicated residuals are significantly different from normally distributed residuals, however, Q-Q plot 

(not shown) indicated normality of residuals. 

Load is the first principal component of nitrogen and phosphorous loadings (nutrient loadings); Wind is cubed wind speed; Temp 

is sea surface temperature; BV is Brunt-Väisälä buoyancy frequency for the whole water column; Irr is incoming PAR radiation; 

Sali is salinity in the water surface (upper 10 m). 



23 

 

 

 

 

Table 3a.   Estimated slope parameter for the grouped station model for predictor variables Load, Temperature, Brunt-Väisälä 

buoyancy frequency and Salinity along with the standard deviation. 

Station name Station ID Slope for 

Load ± SD 

Slope for 

Temp ± SD 

Slope for 

Sali ± SD 

Slope for 

BV ± SD 

Overall Overall 0.37 ± 0.08 0.17 ± 0.07 -0.15 ± 0.08 0.13 ± 0.07 

Kalø Vig ARH170002 0.43 ± 0.19 0.02 ± 0.15 0.01 ± 0.18 0.02 ± 0.15 

Århus Bugt ARH170006 0.32 ± 0.19 0.004 ± 0.15 -0.01 ± 0.19 0.02 ± 0.15 

Hevring Bugt ARH190004 0.30 ± 0.22 0.04 ± 0.17 -0.10 ± 0.22 0.02 ± 0.16 

Randers ydre ARH230905 -0.04 ± 0.31 0.35 ± 0.22 -0.30 ± 0.27 0.22 ± 0.2 

Nakkebølle Fjord FYN0018361 0.38 ± 0.25 0.15 ± 0.19 -0.21 ± 0.22 0.02 ± 0.15 

Lindelse Nor FYN0018571 0.15 ± 0.19 0.04 ± 0.15 -0.03 ± 0.16 0.01 ± 0.13 

Holcken Havn FYN0018752 0.14 ± 0.37 0.83 ± 0.39 -0.91 ± 0.4 0.09 ± 0.24 

Kerteminde Fjord/Kertinge Nor FYN0018843 0.55 ± 0.29 0.14 ± 0.2 0.07 ± 0.25 0.13 ± 0.16 

Bredningen, Lillebælt FYN6100021 0.37 ± 0.21 0.04 ± 0.17 0.04 ± 0.19 0.11 ± 0.15 

Lillebælt nord - ved Fredericia FYN6100051 0.40 ± 0.24 -0.0001 ± 0.19 0.07 ± 0.22 0.09 ± 0.16 

Nord for Als (Lillebælt vest) FYN6200901 0.40 ± 0.25 0.04 ± 0.18 0.04 ± 0.22 0.04 ± 0.16 

Odense ydre FYN6900017 0.42 ± 0.25 0.13 ± 0.18 -0.04 ± 0.23 0.07 ± 0.15 

Odense indre FYN6910008 0.12 ± 0.3 0.25 ± 0.2 -0.20 ± 0.25 0.19 ± 0.2 

Vadehavet Grådyb - Ho Bugt v Langli RIB1610002 0.02 ± 0.3 0.50 ± 0.25 -0.74 ± 0.32 0.22 ± 0.21 

Vadehavet Knudedyb RIB1620014 0.67 ± 0.31 -0.06 ± 0.24 -0.13 ± 0.27 0.15 ± 0.2 

Ringkøbing Fjord nord RKB1 0.56 ± 0.29 0.21 ± 0.24 -0.09 ± 0.26 0.32 ± 0.22 

Køge Bugt ROS1727 0.36 ± 0.17 0.11 ± 0.14 0.03 ± 0.15 -0.0005 ± 0.12 

Roskilde indre ROS60 0.47 ± 0.26 0.12 ± 0.18 -0.04 ± 0.23 0.03 ± 0.16 

Lister Dyb SJY1 0.17 ± 0.3 0.22 ± 0.21 -0.49 ± 0.3 0.12 ± 0.18 

Augustenborg Fjord SJY12 0.35 ± 0.26 0.06 ± 0.19 -0.05 ± 0.23 0.06 ± 0.16 

Als Fjord SJY13B 0.70 ± 0.25 -0.05 ± 0.2 0.09 ± 0.22 0.03 ± 0.17 

Aabenraa Fjord SJY15 0.55 ± 0.24 -0.11 ± 0.2 0.07 ± 0.21 0.05 ± 0.15 

Genner Bugt SJY19 0.37 ± 0.28 -0.01 ± 0.21 0.01 ± 0.25 0.06 ± 0.16 

Lister Dyb v Rømø Havneby SJY3 0.13 ± 0.32 0.30 ± 0.23 -0.22 ± 0.29 0.42 ± 0.27 

Flensborg Fjord inder SJYKFF2 0.60 ± 0.28 0.04 ± 0.22 -0.18 ± 0.25 0.26 ± 0.21 

Flensborg Fjord yder SJYKFF5 0.50 ± 0.21 0.08 ± 0.17 0.02 ± 0.19 -0.01 ± 0.15 

Præstø fjord STO0802008 0.18 ± 0.22 0.44 ± 0.21 -0.56 ± 0.22 0.02 ± 0.17 

Kolding fjord VEJ0003350 1.09 ± 0.36 0.02 ± 0.27 0.01 ± 0.29 0.35 ± 0.26 

Vejle fjord VEJ0004273 0.96 ± 0.28 -0.01 ± 0.19 0.11 ± 0.22 0.06 ± 0.17 

Horsens inder VEJ0005790 0.70 ± 0.27 0.13 ± 0.2 -0.04 ± 0.22 0.20 ± 0.17 

Horsens yder VEJ0006489 0.22 ± 0.25 0.15 ± 0.19 -0.08 ± 0.23 0.10 ± 0.17 

Nissum Bredning VIB3702-00001 0.61 ± 0.23 0.05 ± 0.17 0.05 ± 0.2 0.07 ± 0.15 

Løgstør Bredning VIB3708-00001 0.23 ± 0.23 0.38 ± 0.21 -0.33 ± 0.21 0.11 ± 0.16 

Nibe Bredning VIB3711-00001 0.41 ± 0.25 0.25 ± 0.2 -0.17 ± 0.23 0.27 ± 0.21 

Thisted Bredning VIB3723-00001 -0.002 ± 0.32 0.49 ± 0.27 -0.61 ± 0.32 0.18 ± 0.21 

Skive Fjord VIB3727-00001 0.42 ± 0.3 0.41 ± 0.26 -0.50 ± 0.29 0.40 ± 0.26 

Lovns Bredning VIB3728-00001 0.32 ± 0.38 0.48 ± 0.32 -0.56 ± 0.36 0.44 ± 0.3 

Isefjord dybt bassin VSJ10003 0.46 ± 0.22 0.14 ± 0.16 0.09 ± 0.19 0.19 ± 0.15 

Isefjord inderbredning VSJ10006 0.35 ± 0.27 0.28 ± 0.21 -0.12 ± 0.24 0.13 ± 0.17 

Kalundborg Fjord yder VSJ41007 0.19 ± 0.18 0.12 ± 0.15 -0.10 ± 0.18 -0.04 ± 0.15 

Kalundborg Fjord inder VSJ41008 0.12 ± 0.21 0.12 ± 0.17 -0.13 ± 0.18 0.07 ± 0.15 

Skælskør Fjord VSJ51013 0.08 ± 0.27 0.13 ± 0.2 -0.11 ± 0.23 0.16 ± 0.16 
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Table 3b.   Estimated slope parameter for station-specific models along with the standard deviation. 

Station name Coef. for 

Load 

SD for 

Load 

Coef. for 

Temp. 

SD for 

Temp 

Coef. for 

Sali 

SD for 

Sali 

Coef. 

for BV 

SD for 

BV 

Coef. 

for Irr 

SD for 

Irr 

Coef. for 

Wind 

SD for 

Wind 

ARH170002 0,52 0,12 NI NI NI NI NI NI NI NI NI NI 

ARH170006 0,31 0,11 NI NI NI NI NI NI NI NI NI NI 

ARH190004 0,23 0,16 NI NI -0,32 0,16 NI NI NI NI NI NI 

ARH230902 3,96 0,98 NI NI NI NI NI NI NI NI NI NI 

ARH230905 -0,65 0,36 1,51 0,54 NI NI NI NI -1,23 0,56 -0,68 0,41 

FYN0018361 0,50 0,36 NI NI -0,26 0,35 NI NI NI NI 0,33 0,32 

FYN0018571 NI NI 0,09 0,06 -0,10 0,06 NI NI NI NI 0,13 0,06 

FYN0018752 NI NI 2,13 1,03 -1,70 1,22 NI NI NI NI NI NI 

FYN0018843 1,09 0,38 0,47 0,30 0,84 0,42 NI NI NI NI NI NI 

FYN6100021 0,29 0,19 NI NI NI NI 0,21 0,20 NI NI 0,17 0,20 

FYN6100051 0,20 0,22 -0,41 0,23 NI NI NI NI 0,49 0,27 0,47 0,25 

FYN6200901 0,35 0,22 NI NI NI NI NI NI 0,20 0,25 0,27 0,24 

FYN6900017 0,39 0,22 NI NI NI NI -0,23 0,22 NI NI -0,18 0,22 

FYN6910008 NI NI 0,68 0,40 NI NI NI NI -0,47 0,47 0,31 0,37 

NOR5503 3,88 1,66 NI NI 2,38 1,51 NI NI 3,24 1,49 NI NI 

RIB1610002 NI NI NI NI -1,72 0,51 NI NI NI NI NI NI 

RIB1620014 1,14 0,63 -1,47 0,58 NI NI -1,08 0,73 0,88 0,54 NI NI 

RKB1 NI NI 0,98 1,03 NI NI 0,70 0,79 -1,52 0,99 NI NI 

RKB22 9,81 2,88 NI NI 8,71 2,43 -4,95 2,74 NI NI NI NI 

ROS1727 0,40 0,12 0,20 0,11 NI NI NI NI NI NI NI NI 

ROS60 0,48 0,20 NI NI NI NI -0,25 0,19 NI NI NI NI 

SJY1 NI NI NI NI -1,21 0,39 NI NI 0,48 0,37 NI NI 

SJY12 0,31 0,29 NI NI NI NI NI NI NI NI NI NI 

SJY13B 1,00 0,43 NI NI NI NI NI NI NI NI NI NI 

SJY15 0,53 0,21 -0,45 0,21 NI NI NI NI NI NI NI NI 

SJY19 0,39 0,26 -0,94 0,34 NI NI NI NI 0,92 0,31 NI NI 

SJY3 NI NI -0,81 0,59 NI NI 2,11 0,53 1,20 0,55 NI NI 

SJYKFF2 1,04 0,57 -0,78 0,60 NI NI 1,12 0,60 NI NI NI NI 

SJYKFF5 0,64 0,16 NI NI NI NI NI NI NI NI NI NI 

STO0802008 NI NI 0,70 0,35 -0,83 0,35 NI NI NI NI NI NI 

VEJ0003350 2,26 0,70 NI NI NI NI NI NI NI NI -0,97 0,60 

VEJ0004273 1,58 0,30 NI NI NI NI NI NI NI NI NI NI 

VEJ0005790 1,00 0,33 -0,37 0,42 NI NI NI NI 0,68 0,46 -0,15 0,36 

VEJ0006489 NI NI 0,17 0,24 NI NI NI NI NI NI NI NI 

VIB370200001 0,77 0,23 NI NI NI NI NI NI NI NI -0,24 0,22 

VIB370800001 NI NI 0,73 0,41 -0,41 0,42 NI NI NI NI NI NI 

VIB371100001 NI NI NI NI NI NI 0,99 0,38 NI NI -0,70 0,37 

VIB372300001 NI NI NI NI -1,81 1,07 NI NI NI NI NI NI 

VIB372700001 NI NI NI NI -0,75 0,72 1,20 0,69 NI NI NI NI 

VIB372800001 NI NI NI NI NI NI NI NI 2,07 1,40 NI NI 

VIB372900001 20,40 8,38 NI NI 18,09 8,41 -8,99 6,75 NI NI NI NI 

VSJ10003 0,46 0,24 0,38 0,22 NI NI 0,60 0,23 NI NI NI NI 

VSJ10006 0,47 0,45 0,69 0,40 NI NI NI NI NI NI NI NI 

VSJ41007 0,13 0,14 0,14 0,14 -0,21 0,15 -0,23 0,15 NI NI NI NI 

VSJ41008 NI NI NI NI -0,17 0,15 0,18 0,14 NI NI -0,13 0,16 

VSJ51013 -0,34 0,43 NI NI NI NI NI NI NI NI -0,30 0,42 
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Station name is the name of the monitoring station from which data were used 
to develop the models; Load is the first principal component of nitrogen and 
phosphorous loadings (nutrient loadings); Temp is sea surface temperature; 
Sali is salinity in the water surface (upper 10 m); BV is Brunt-Väisälä buoyancy 
frequency for the whole water column; Irr is incoming PAR radiation; Wind 
is cubed wind speed; SD is standard deviation; NI: not included (respective 
predictor variable is not included for that station). 

3.4 Model applicability 
The developed Bayesian model framework provides chl-a models for 46 mon-
itoring stations distributed in 43 coastal water bodies. The model performance 
statistics and evaluation plots indicate that most of the models can be used for 
scenario run, at least when the scenarios are within or not too far from the 
model calibration area. As for all types of models, the uncertainty will increase 
when moving away from the calibration area.  

Although the performance statistics for some of the models indicate potential 
problematic model performance, these models could still produce reasonable 
scenario results provided that the slope coefficients used in the scenarios are 
robust as determined by standard deviation. However, as a low model per-
formance imply that important processes or mechanisms are not included in 
the model, this could potentially influence the reliability of model scenario 
results.  

The models have been developed with the aim of producing nutrient load 
scenarios making the estimated Load slope coefficients and associated uncer-
tainty particularly important. For the grouped station model Load was in-
cluded as one of four predictor variables, and hence nutrient load scenarios 
can be performed and the uncertainty evaluated. Single station models could 
only be applied for nutrient load scenarios if Load was included as predictor 
variable in the model. For models that do not contain Load as predictor, the 
relation between nutrient loadings and chl-a concentrations have not been 
quantified. This does not necessarily imply that nutrient loadings and chl-a 
concentrations are not linked in that particular water body, but only that other 
factors are more important and that the available data do not support at quan-
tification of the Load coefficient. Although the slope coefficient for the Load 
predictor was not significantly different from 0 at all stations, Load was se-
lected as predictor variables and hence the information adds explanatory 
power to the model and the estimated slope coefficients should be used for 
running nutrient load scenarios.   
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Appendix A: Bayesian model evaluation for the 
grouped station model 

Figure A: Bayesian model evaluation plots.  In posterior density plot, “a” is 
intercept, “bP” is Load, “bB” is Brunt-Väisälä buoyancy frequency, “bS” is 
salinity and “sigma” is residual error (ν). 

Figures A1-A40 and B1 to B26: Bayesian model evaluation plots. In the time 
series plots, grey shaded areas represent 95 % highest posterior density inter-
val (HPDI) for each predicted observation. 
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Kalø Vig, St. ARH170002 

   

   
Figure A1. 
 
 
 
 
Århus Bugt, St. ARH170006 

 

 
Figure A2. 
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Hevring Bugt, St. ARH190004 

  

 
Figure A3. 
 
 
 
Randers ydre, St. ARH230905 

  

 
Figure A4. 
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Nakkebølle Fjord, St. FYN0018361 

 

 
Figure A5. 
 
 
 
 
Lindelse Nor, St. FYN0018571 

 

 
Figure A6. 
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Holcken Havn, St. FYN0018752 

  

 
Figure A7. 
 
 
 
 
Kerteminde Fjord/Kertinge Nor, St. FYN0018843 

 

 
Figure A8. 
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Bredningen, Lillebælt, St. FYN6100021 
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Lillebælt nord - ved Fredericia, St. FYN6100051 

  

 
Figure A10. 
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Nord for Als (Lillebælt vest), St. FYN6200901 

  

 
Figure A11. 
 
 
 
 
Odense ydre, St. FYN6900017 

  

 
Figure A12. 
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Odense indre, St. FYN6910008 

  

 
Figure A13. 
 
 
 
 
Vadehavet Grådyb - Ho Bugt v Langli, St. RIB1610002 

  

 
Figure A14. 
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Vadehavet Knudedyb, St. RIB1620014 

  

 
Figure A15. 
 
 
 
 
Ringkøbing Fjord nord, St. RKB1 

 

 
Figure A16. 
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Køge Bugt, St. ROS1727 

  

 
Figure A17. 
 
 
 
 
Roskilde indre, St. ROS60 

 

 
Figure A18. 
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Lister Dyb St. SJY1 

  

 
Figure A19. 
 
 
 
 
Augustenborg Fjord, St. SJY12 

 

 
Figure A20. 
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Als Fjord, St. SJY13B 

  

 
Figure A21. 
 
 
 
 
Aabenraa Fjord, St. SJY15 

   

 
Figure A22. 
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Genner Bugt, St. SJY19 

  

 
Figure A23. 
 
 
 
 
Lister Dyb v Rømø Havneby, St. SJY3 

  

 
Figure A24. 
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Flensborg Fjord inder, St. SJYKFF2 

  

 
Figure A25. 
 
 
 
 
Flensborg Fjord yder, St. SJYKFF5 

  

 
Figure A26. 
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Præstø Fjord, St. STO0802008 

  

 
Figure A27. 
 
 
 
 
Kolding Fjord, St. VEJ0003350 

  

 
Figure A28. 
 
  



43 

Vejle Fjord, St. VEJ0004273 

   

 
Figure A29. 
 
 
 
 
Horsens inder, St. VEJ0005790 

  

 
Figure A30. 
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Horsens yder, St. VEJ0006489 

  

 
Figure A31. 
 
 
 
 
Nissum Bredning, St. VIB3702-00001 

  

 
Figure A32. 
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Løgstør bredning, St. VIB3708-00001 

  

 
Figure A33. 
 
 
 
 
Nibe Bredning, St. VIB3711-00001 

  

 
Figure A34. 
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Thisted Bredning, St. VIB3723-00001 

  

 
Figure A35. 
 
 
 
 
Skive Fjord, St. VIB3727-00001 

  

 
Figure A36. 
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Lovns Bredning, St. VIB3728-00001 

  

 
Figure A37. 
 
 
 
 
Isefjord dybt basin, St. VSJ10003 

  

 
Figure A38. 
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Isefjord inderbredning, St. VSJ10006 

  

 
Figure A39. 
 
 
 
 
Kalundborg Fjord yder, St. VSJ41007 

  

 
Figure A40. 
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Kalundborg Fjord inder, St. VSJ41008 

  

 
Figure A41. 
 
 
 
 
Skælskør Fjord, St. VSJ51013 

  

  
Figure A42. 
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Appendix B: Bayesian model evaluation for station-specific model 

Hevring Bugt, St. ARH190004 

 

  
Figure B1. 
 
 
 
 
Randers ml, St. ARH230902 

  

  
Figure B2. 
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Randers ydre, St. ARH230905 
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Kerteminde Fjord/Kertinge Nor, St. FYN0018843   

 

  
Figure B4. 
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Lillebælt nord - ved Fredericia, St. FYN6100051 

  

  
Figure B5. 
 
 
 
 
Nord for Als (Lillebælt vest), St. FYN6200901 

  

  
Figure B6. 
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Odense ydre, St. FYN6900017 
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Mariager Fjord, St. NOR5503 

  

  
Figure B8. 
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Vadehavet Grådyb - Ho Bugt v Langli, St. RIB1610002 
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Vadehavet Knudedyb, St. RIB1620014 
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Ringkøbing Fjord nord, St. RKB1 
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Nissum Fjord, St. RKB22 
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Lister Dyb, St. SJY1 
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Als Fjord, St. SJY13B 

  

  
Figure B14. 
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Genner Bugt, St. SJY19 
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Lister Dyb v Rømø Havneby, St. SJY3 
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Flensborg Fjord inder, St. SJYKFF2 
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Kolding Fjord, St. VEJ0003350 
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Vejle Fjord, St. VEJ0004273 
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Horsens inder, St. VEJ0005790 
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Hjarbæk Fjord, St. VIB3729-00001 
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Isefjord dybt basin, St. VSJ10003 
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Isefjord inderbredning, St. VSJ10006 
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Kalundborg fjord yder, St. VSJ41007 
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Kalundborg Fjord inder, St. VSJ41008 
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Skælskør Fjord, St. VSJ51013 
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In this study a Bayesian group model and 46 single station 
models were developed for estimation of chlorophyll a 
concentration, nutrient input relationship, in Danish water-
bodies. The models relationships were derived to support 
the Danish EPA, setting input targets to fulfil the EU water 
framework directive. As expected nutrient input was the 
most common predictor of chlorophyll a concentration in 
single model stations (31 of 46) and temperature the sec-
ond most abundant predictor. In the group model nutrient 
input, water temperature, salinity and water column stabil-
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