

DANISH EMISSION INVENTORIES FOR STATIONARY COMBUSTION PLANTS

Inventories until 2018

Scientific Report from DCE - Danish Centre for Environment and Energy No. 424

2021

[Blank page]

DANISH EMISSION INVENTORIES FOR STATIONARY COMBUSTION PLANTS

Inventories until the year 2018

Scientific Report from DCE – Danish Centre for Environment and Energy

No. 424

2021

Malene Nielsen

Aarhus University, Department of Environmental Science

Data sheet

Series title and no.:	Scientific Report from DCE – Danish Centre for Environment and Energy No. 424
Category:	Scientific advisory report
Title: Subtitle:	Danish emission inventories for stationary combustion plants Inventories until 2018
Author: Institution:	Malene Nielsen Aarhus University, Department of Environmental Science
Publisher: URL:	Aarhus University, DCE – Danish Centre for Environment and Energy © http://dce.au.dk/en
Year of publication: Editing completed:	January 2021 December 2020
Referee: Quality assurance, DCE: Linguistic QA:	Ole-Kenneth Nielsen, Aarhus University, Department of Environmental Science Vibeke Vestergaard Nielsen Ann-Katrine Holmr Christoffersen, Aarhus University, Department of Environmental Science
External comments:	Comments can be found here: <u>http://dce2.au.dk/pub/komm/SR424_komm.pdf</u>
Financial support:	No external financial support
Please cite as:	Nielsen, M. 2021. Danish emission inventories for stationary combustion plants. Inventories until 2018. Aarhus University, DCE – Danish Centre for Environment and Energy, 280 pp. Scientific Report No. 424 http://dce2.au.dk/pub/SR424.pdf
	Reproduction permitted provided the source is explicitly acknowledged
Abstract:	Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO ₂ , NO _x , NMVOCs, CH ₄ , CO, CO ₂ , N ₂ O, NH ₃ , particulate matter, black carbon, heavy metals, PCDD/Fs, HCB, PCBs and PAHs. The CO ₂ emission from stationary combustion was 54.8 % lower in 2018 than in 1990 and the total greenhouse gas emission was 53.9 % lower than in 1990. However, fluctuations in the emission level for CO ₂ are large as a result of electricity import/export. A considerable decrease of the SO ₂ , NO _x and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The PM emission factors have decreased for this emission source category due to installation of modern stoves and boilers. The stabilisation of wood consumption in residential plants in 2007-2014 has resulted in a decrease of PM emission from stationary combustion is the largest emission source.
Keywords:	Emission, combustion, emission inventory, stationary combustion, power plants, district heating, CHP, co-generation, boiler, engine, incineration, MSW, residential, SO ₂ , NO _x , combustion, stoves, NMVOC, CH ₄ , CO, CO ₂ , N ₂ O, particulate matter, black carbon, NH ₃ , heavy metals, PCDD/F, PAH, HCB, PCB, greenhouse gas
Layout: Front page photo:	Ann-Katrine Holme Christoffersen Malene Nielsen (Decentralt kraftvarmeværk, Toftehøjskolen, Ølstykke)
ISBN: ISSN (electronic):	978-87-7156-560-7 2245-0203
Number of pages:	280
Internet version:	The report is available in electronic format (pdf) at http://dce2.au.dk/pub/SR424.pdf

Contents

Lis	List of abbreviations 7		
Pre	eface		9
Su	mmary	/	10
Sa	mmen	fatning	14
1	Intro	duction	18
	1.1 1.2 1.3	Definition of stationary combustion and subsectors Emission share from stationary combustion Key Categories for GHGs	18 18 19
2	Fuel	consumption data	21
3	Emis	sions of greenhouse gases	29
	3.1	Greenhouse gas emission	29
	3.2	CO ₂	30
	3.3	CH ₄	32
	3.4	N ₂ O	34
4		sions of other pollutants	36
	4.1	SO ₂	36
	4.2	NO _x	38
	4.3	NMVOC	40
	4.4	CO	42
	4.5	NH ₃	44
	4.6	Particulate matter (PM)	45
	4.7	Black carbon (BC)	49
	4.8	Heavy metals	49
	4.9	Polycyclic aromatic hydrocarbons (PAH)	54
	4.10	Polychlorinated dibenzodioxins and -furans (PCDD/F)	56
	4.11	Hexachlorobenzene (HCB)	57
	4.12	Polychlorinated biphenyls (PCB)	58
5		d for subsectors	60
	5.1	1A1 Energy industries	60
	5.2	1A2 Industry	71
	5.3	1A4 Other sectors	89
6		odological issues	101
	6.1	Tiers	101
	6.2	Large point sources	104
	6.3	Area sources	105
	6.4	Fuels used for non-energy purposes	105
	6.5	Activity rates, fuel consumption	105
	6.6	Fuel consumption for 1A1c Oil and gas extraction	107
	6.7	Fuel consumption for 1A1b Petroleum refining	107
	6.8	Upgraded biogas distributed in the natural gas grid	107

	6.9	Biogas distributed in the town gas grid	107
	6.10	Town gas	107
	6.11	Waste	108
		Biogas	109
	6.13	Residential wood combustion	110
7	Emis	sion factors	122
	7.1	EU ETS data for CO ₂	122
	7.2	CO ₂ emission factors	125
	7.3	CH ₄ emission factors	133
	7.4	N ₂ O emission factors	141
	7.5	SO ₂ emission factors	146
	7.6	NO _x emission factors	151
	7.7	NMVOC emission factors	156
	7.8	CO emission factors	161
	7.9	NH ₃ emission factors	166
	7.10	Particulate matter (PM) emission factors	166
	7.11	Black carbon (BC) emission factors	172
	7.12	Heavy metals emission factors	175
		PAH emission factors	180
	7.14	PCDD/F emission factors	183
		HCB emission factors	185
		PCB emission factors	187
	7.17	Implied emission factors	189
8	Unce	ertainty	190
	8.1	Uncertainty for greenhouse gases	190
	8.2	Uncertainty for other pollutants	194
9	QA/	AC and verification	196
	9.1	National external review	196
	9.2	Data storage, level 1	196
	9.3	Data processing, level 1	199
	9.4	Data storage, level 2	200
	9.5	Data storage level 4	200
	9.6	Other QC procedures	201
10	Refe	rence approach	202
	10.1	Non-energy use of fuels	202
	10.2	Reference approach results and comparison to the	
		national approach	203
	10.3	Analysis of the differences between the sectoral	
		approach and the reference approach for each of the	00/
		fuel categories	204
11	Verifi	ication based on data from Eurostat	208
	11.1	Reference approach, comparison of CRF and Eurostat	
		data	208
	11.2	Sectoral approach, comparison of CRF and Eurostat	<u></u>
		data	217
			217

12.1 The allocation of the verified emissions reported a	
EU ETS to CRF categories	219
12.2 Consistency of data reported under EU ETS with t inventory	the CRF 219
13 Source specific recalculations and improvements in th	e 2020
reporting	224
13.1 Greenhouse gases	224
13.2 Other pollutants	225
14 Planned improvements	227
15 References	228
Annexes	238
Annex 1 Correspondence list between SNAP and CRF	/NFR
source categories	239
Annex 2 Fuel rate	242
Annex 3 Default Lower Calorific Value (LCV) of fuels a	
correspondence list	244
Annex 4 Emission factors	247
Annex 5 Large point sources	260
Annex 6 Adjustment of CO ₂ emission	265
Annex 7 Uncertainty estimates	266
Annex 8 Emission inventory 2018 based on SNAP sect	
Annex 9 EU ETS data for coal	269
Annex 10 Implied emission factors for power plants an	
municipal waste incineration plants	270
Annex 11 Time-series 1980/1985 – 2018	271
Annex 12 Description of the Danish energy statistics	273

[Blank page]

List of abbreviations

As	Arsenic
BAT	Best Available Techniques
BC	Black Carbon
BKB	Brown Coal Briquettes
BREF	BAT Reference Document
Cd	Cadmium
CH₄	Methane
CHP	Combined Heat and Power
CLRTAP	Convention on Long-Range Transboundary Air Pollution
CO	Carbon Monoxide
CO_2	Carbon Dioxide
CO ₂ eq	Carbon dioxide equivalents
CORINAIR	CORe INventory on AIR emissions
Cr	Chromium
CRF	Common Reporting Format applied for greenhouse gas emis-
CI	sion reporting
Cu	
DEA	Copper Danich Energy Agency
DEA DEPA	Danish Energy Agency Danish Environmental Protection Agency
dl-PCB	
EEA	dioxine like - polychlorinated biphenyl European Environment Agency
EMEP	European Monitoring and Evaluation Programme
EVIEP EU ETS	EU Emission Trading Scheme
GHG	Greenhouse Gas
HCB	Hexachlorobenzene
Hg HM	Mercury Heavy metals
	Heavy metals
I-Teq IEF	International Toxic Equivalents for dioxins and furans
IIR	Implied Emission Factor Informative Inventory Report
IPCC	U 1
KCA	Intergovernmental Panel on Climate Change Key Category Analysis
LPG	
	Liquefied Petroleum Gas
LRTAP LULUCF	Long-Range Transboundary Air Pollution
	Land Use, Land-Use Change and Forestry Nitrous Oxide
N ₂ O	Net Calorific Value
NCV	
NECD	European Commissions National Emissions Ceiling Directive
NFR	Nomenclature for Reporting applied for emission reporting for the LRTAP Convention
NILI	
NH ₃	Ammonia
Ni	Nickel National Inventory Depart
NIR NMVOCs	National Inventory Report
	Non-Methane Volatile Organic Compounds
NO _x PAH	Nitrogen Oxides Relycyclic Aremetic Hydrogenhong
РАП Pb	Polycyclic Aromatic Hydrocarbons Lead
PD PCB	
	Polychlorinated biphenyl Poly Chlorinated Dibenzo Dioving and Europe
PCDD/-F PM	Poly Chlorinated Dibenzo Dioxins and Furans Particulate Matter
PM_{10}	Particulate Matter < 2.5 μm

PM _{2.5}	Particulate Matter < 10 μm
POP	Persistent Organic Pollutant
Se	Selenium
SNAP	Selected Nomenclature for Air Pollution
SO ₂	Sulphur dioxide
TSP	Total Suspended Particulates
UHC	Unburned hydrocarbons
UNECE	United Nations Economic Commission for Europe
Zn	Zinc

Preface

On behalf of the Danish Ministry of Climate, Energy and Utilities, the Danish Centre for Environment and Energy (DCE), Aarhus University, is responsible for the calculation and reporting of the Danish national emission inventory. The inventories are reported to EU and the UNFCCC (United Nations Framework Convention on Climate Change) and to the UNECE CLRTAP (Convention on Long Range Transboundary Air Pollution) conventions.

A draft version of this report has not been available for comments by the ministries, and no steering group or external partners have been writing or commenting on the report. However, the report has been externally reviewed, see below.

This report forms part of the documentation for the emission inventories for stationary combustion plants. The report includes both methodology and emission data. The results of inventories up to 2018 are included. The report updates the seven reports published in 2004, 2006, 2007, 2009, 2010, 2014 and 2018.

In addition to the national approach emission data for stationary combustion, this report also includes three data sets for greenhouse gases (GHG) that are reported to EU:

- The reference approach
- Verification based on Eurostat data
- Comparison of the sum of EU ETS data and the national approach data

The sector reports are reviewed by external national experts. The external national reviews forms a vital part of the QA activities for the emission inventories for stationary combustion required in IPCC Guidelines (IPCC, 2006). This year, Jytte Boll Illerup from The Danish Environmental Protection Agency has reviewed the report, mainly the chapters related to emissions and emission factors.

The 2004, 2006, 2009, 2014 and 2018 updates of this report were reviewed by Jan Erik Johnsson from the Technical University of Denmark, Bo Sander from Elsam Engineering, Annemette Geertinger from FORCE Technology, Vibeke Vestergaard Nielsen, DCE - Danish Centre for Environment and Energy, Aarhus University and energy experts from the Danish Energy Agency. Internal review of this report was performed by Ole-Kenneth Nielsen.

Summary

Danish emission inventories are prepared on an annual basis and are reported to the United Nations Framework Convention on Climate Change (UNFCCC or Climate Convention) and to the Kyoto Protocol. Furthermore, a greenhouse gas emission inventory is reported to the European Union (EU) due to the EU – as well as the individual member states – being party to the Climate Convention and the Kyoto Protocol.

Danish emission inventories for non-GHGs are prepared on an annual basis and are reported to the UNECE-Convention on Long-Range Transboundary Air Pollution (LRTAP) and EU Directive 2016/2284 on the reduction of national emissions of certain atmospheric pollutants.

Five pollutants (sulphur dioxide, nitrogen oxides, non-methane volatile organic compounds, ammonia and particulate matter with an aerodynamic diameter below 2.5 μ m) are estimated for reporting to the European Commission's National Emissions Ceiling Directive (NECD).

The inventories include the following pollutants relevant to stationary combustion: carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), sulphur dioxide (SO₂), nitrogen oxides (NO_x), non-volatile organic compounds (NMVOCs), carbon monoxide (CO), particulate matter (PM), black carbon (BC), ammonia (NH₃), heavy metals (HMs), polyclorinated dibenzodioxins and -furans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB).

The inventories for stationary combustion are based on the Danish energy statistics and on a set of emission factors for various source categories, technologies and fuels. Plant-specific emissions for large combustion sources are incorporated into the inventories. This report provides detailed background information on the methodology and references for the input data in the inventory - energy statistics and emission factors.

The emission factors are based either on national references or on international guidebooks (EEA, 2016¹; IPCC, 2006). The majority of the country-specific emission factors are determined from Danish legislation, Danish research reports, or calculations based on plant-specific emission data from a considerable number of large point sources. The plant-specific emission factors are provided by plant operators, e.g. in PRTR data, other annual environmental reports or in the EU Emission Trading Scheme (EU ETS).

In the inventory for the year 2018, 74 stationary combustion plants are specified as large point sources. The point sources include large power plants, waste incineration plants, industrial combustion plants and petroleum refining plants. The fuel consumption of these large point sources corresponds to 51 % of the overall fuel consumption of stationary combustion.

The fuel consumption for stationary combustion plants has decreased since 1990. However, the fuel consumption fluctuates due to variation in the im-

¹ Or EEA (2019) or former updates of the Guidebook.

port/export of electricity from year to year. In 2018, the total fuel consumption was 19 % lower than in 1990 and the fossil fuel consumption was 49 % lower than in 1990. The use of coal and oil has decreased whereas the use of natural gas, waste and biomass has increased.

In 2018, stationary combustion accounted for 32.5 % of the national emission of GHGs (including LULUCF) and 42 % of the CO₂ emission.

Stationary combustion plants account for more than 50 % of the national emission (2018) for the following pollutants: SO₂, PM_{2.5}, BC, the heavy metals As, Cd, Cr, Hg and Se, HCB, PCDD/Fs, PCBs and PAHs. Furthermore, the emission from stationary combustion plants accounts for more than 10 % of the national emission for the following pollutants: NO_x, NMVOC, CO, TSP, PM₁₀ and the heavy metals Ni, Pb and Zn. Stationary combustion plants account for less than 10 % of the national emission of CH₄, N₂O, NH₃ and the heavy metal Cu.

Public electricity and heat production is the most important stationary combustion emission source for CO₂, CH₄ and N₂O, SO₂, NO_x, Hg, Se, HCB and PCBs.

Residential plants is the most important stationary combustion emission source for NMVOCs, CO, NH₃, particulate matter, BC, Cd, Cr, Cu, Pb, Zn, PAHs and PCDD/Fs. Wood combustion in residential plants is the predominant emission source.

Industrial plants are the main emission sources for SO₂, As and Ni.

 CO_2 is the most important greenhouse gas accounting for 97.3 % of the greenhouse gas emission (CO_2 eq.) from stationary combustion. The greenhouse gas (GHG) emission trend follows the CO_2 emission trend closely. Both the CO_2 and the total greenhouse gas emission are lower in 2018 than in 1990, CO_2 is 54.8 % lower and greenhouse gas emissions are 53.9 % lower. However, fluctuations in the GHG emission level are large. The fluctuations in the time series are mainly a result of electricity import/export but also of outdoor temperature variations from year to year that results in fluctuations in the fuel consumption for space heating.

The CH₄ emission from stationary combustion was 54 % higher in 2018 than in 1990. The emission increased until 1996 and decreased after 2004. This time series is related to the considerable number of lean-burn gas engines installed in CHP plants in Denmark during the 1990s. The decline in later years is due to structural changes in the Danish electricity market, which means that the fuel consumption in gas engines has been decreasing.

The N_2O emission from stationary combustion has increased by 18% from 1990 to 2018. However, fluctuations in emission level due to electricity import/export are considerable.

 SO_2 emission from stationary combustion plants has decreased by 96 % since 1990. The considerable emission decrease is mainly a result of the reduced emission from public electricity and heat production plants due to installation of desulphurisation technology and the use of fuels with lower sulphur con-

tent. These improvements are a result of sulphur tax laws, legislation concerning sulphur content of fuels, emission ceilings for large power plants and lower emission limit values for several plant categories.

The NO_x emission from stationary combustion plants has decreased by 76 % since 1990. The reduced emission is largely a result of the reduced emission from Public electricity and heat production due to installation of low NO_x burners, selective catalytic reduction (SCR) units and selective non-catalytic reduction (SNCR) units. The installation of the technical improvements was launched by legislation including emission ceilings for large power plants, lower emission limits for several plant categories and NO_x tax laws. The fluctuations in the emission time series follow fluctuations in electricity import/export.

In 2018, the wood consumption in residential plants was 4.6 times the 1990 level. The increase mainly took place between 1990 and 2007. Residential wood combustion is a major emission source for NMVOCs, CO, NH₃, PM, BC, dioxins (PCDD/Fs), some heavy metals and PAHs. A change of technology (installation of modern stoves and boilers) has caused decreasing emission factors.

The NMVOC emissions from stationary combustion plants has decreased by 10 % from 1990. The emission increased until 2007 and decreased after 2007. The increased emission is mainly a result of the increasing wood consumption in residential plants and of the increased use of lean-burn gas engines in CHP plants. The decrease in 2007-2014 is a result of lower emission from residential wood combustion and the low number of operation hours for the lean burn gas engines.

The CO emission from stationary combustion has decreased 33 % since 1990. The time series for CO from stationary combustion plants follow the time series for CO emission from residential plants. The increase of wood consumption in residential plants in 1999-2007 is reflected in the time series for CO emission. The decreased emission in 2007-2018 is a result of implementation of improved residential wood combustion technologies and the fact that the rapid increase of wood consumption until 2007 have stopped.

The time series for PM emission from stationary combustion plants follows the time series for PM emission from residential plants. The emission of TSP, PM_{10} and $PM_{2.5}$ was 1 %, 5 % and 4 % lower in 2018 than in 1990. The PM emissions increased until 2007 and decreased after 2007. The increase until 2007 was caused by the increased wood combustion in residential plants. However, the PM emission factors have decreased for this emission source category due to installation of modern stoves and boilers. The stabilisation of wood consumption in residential plants in 2007-2014 has resulted in a decrease of PM emission from stationary combustion between 2007 and 2014. Residential wood combustion is the main emission source for BC.

The emission of PAHs has decreased since 1990, mainly after 2007. This is also a result of the time series for combustion of wood in residential plants.

Emissions of all heavy metals have decreased considerably (18 % - 92 %) since 1990. Emissions have decreased despite increased incineration of waste. This

has been possible due to installation and improved performance of gas cleaning devices in waste incineration plants and also in large power plants, the latter being a further important emission source.

The PCDD/F emissions has decreased 39 % since 1990 mainly due to installation of dioxin filters in waste incineration plants. The emission from residential plants has increased due to increased wood consumption in this source category.

The HCB emission has decreased 79 % since 1990 mainly due to improved flue gas cleaning in waste incineration plants.

The dl-PCB emissions have decreased 63 % since 1990. The decrease is mainly a result of the flue gas cleaning devices that have been installed in waste incineration plants for dioxin reduction.

The uncertainty interval for the Danish greenhouse gas emission from stationary combustion is estimated to be ± 2.3 % and the trend in greenhouse gas emissions is -53.9 % ± 1.0 %-age points.

As part of the EU review of the reported GHG emission data, EU performs for each member state a comparison of Eurostat energy data in terms of TJ with energy data provided in the CRF. The largest differences between the two approaches have been explained. The calorific value (LCV) for coal applied in the Eurostat data are not in agreement with the average LCV for coal applied in the Danish energy statistics. In addition, the fuel consumption for transport between mainland Denmark and Greenland and the Faroe Islands is not included in the reporting to Eurostat whereas it is considered domestic in the Danish emission inventory.

The verified emission data reported under EU ETS Directive 2003/87/EC have been compared to the Danish emission inventory for GHGs. The verified CO₂ emissions add up to 43 % of the total CO₂ emission reported in the Danish emission inventory.

Sammenfatning

Opgørelser over de samlede danske luftemissioner rapporteres årligt til klimakonventionen (United Nation Framework Convention on Climate Change, UNFCCC) og Kyotoprotokollen samt til UNECE konventionen om langtransporteret grænseoverskridende luftforurening (UNECE Convention on Long-Range Transboundary Air Pollution, der forkortes LRTAP Convention). Endvidere rapporteres drivhusgasemissionen til EU, fordi EU – såvel som de enkelte medlemslande – har ratificeret klimakonventionen og Kyotoprotokollen. Der udarbejdes også opgørelser til rapportering til Europakommissionens NEC (National Emissions Ceiling) direktiv.

De danske emissioner opgøres og rapporteres af DCE – Nationalt Center for Miljø og Energi ved Aarhus Universitet (AU). Emissionsopgørelserne omfatter følgende stoffer af relevans for stationær forbrænding: CO₂, CH₄, N₂O, SO₂, NO_x, NMVOC, CO, partikler (PM), black carbon (BC), NH₃, tungmetaller (HM), dioxiner (PCDD/F), PAH, PCB og HCB.

Emissionsopgørelserne for stationære forbrændingsanlæg (ikke mobile kilder) er baseret på den danske energistatistik og på et sæt emissionsfaktorer for forskellige sektorer, teknologier og brændsler. Anlægsspecifikke emissionsdata for store anlæg, som fx kraftværker, indarbejdes i opgørelserne. Denne rapport giver detaljeret baggrundsinformation om den anvendte metode samt referencer for de data der ligger til grund for opgørelsen – energistatistikken og emissionsfaktorerne.

Emissionsfaktorerne stammer enten fra danske referencer eller fra internationale guidebøger (EEA, 2016² og IPCC, 2006) udarbejdet til brug for denne type emissionsopgørelser. De danske referencer omfatter miljølovgivning, danske rapporter samt middelværdier baseret på anlægsspecifikke emissionsdata fra et betydeligt antal større værker. Anlægsspecifikke emissionsfaktorer oplyses af anlægsejere, bl.a. i PRTR data, grønne regnskaber og CO₂-kvoteindberetninger.

I emissionsopgørelsen for 2018 er 74 stationære forbrændingsanlæg defineret som punktkilder. Punktkilderne omfatter: Kraftværker, decentrale kraftvarmeværker, affaldsforbrændingsanlæg, industrielle forbrændingsanlæg samt raffinaderier. Brændselsforbruget for disse anlæg udgør 51 % af det samlede brændselsforbrug for stationære forbrændingsanlæg.

Brændselsforbruget til stationære forbrændingsanlæg har været faldende siden 1990. Variationen i årlig import/eksport af el medvirker til at brændselsforbruget til stationære forbrændingsanlæg varierer meget fra år til år. I 2018 var det samlede brændselsforbrug 19 % lavere end i 1990, mens det fossile brændselsforbrug var 49 % lavere end i 1990. Forbruget af kul og olie er faldet, mens forbruget af naturgas, affald og biobrændsler er steget.

I 2018 stammede 32.5 % af den samlede danske emission af drivhusgasser fra stationær forbrænding. For CO_2 var andelen fra stationær forbrænding 42 %.

² Og EEA (2019) samt tidligere opdateringer af EEA Guidebook.

For følgende stoffer udgør emissionen fra stationær forbrænding over 50 % af den nationale emission: SO₂, PM_{2.5}, BC, tungmetallerne As, Cd, Cr, Hg og Se, HCB, dioxin, PCB og PAH. Endvidere udgør emissionen over 10 % for NO_x, NMVOC, CO, TSP, PM₁₀, Ni, Pb og Zn. Stationær forbrænding bidrager med mindre end 10 % af den nationale emission af CH₄, N₂O, NH₃ og Cu.

For stationær forbrænding, er el- og varmeproducerende værker den betydeligste emissionskilde for CO₂, CH₄, N₂O, SO₂, NO_x, Hg, Se, HCB og PCB.

Emissioner fra kedler, brændeovne mv. i forbindelse med beboelse er den betydeligste emissionskilde for NMVOC, CO, NH₃, partikler, BC, Cd, Cr, Cu, Pb, Zn, dioxin og PAH. Det er især forbrænding af træ, som bidrager til disse emissioner.

Industrielle anlæg er den største emissionskilde for SO₂, As og Ni.

CO₂ udgjorde i 2018 97.3 % af den samlede drivhusgasudledning fra stationær forbrænding. Tidsserien for drivhusgasemissionen følger tidsserien for CO₂emissionen ganske tæt. Både CO₂-emissionen og den samlede drivhusgasemission fra stationær forbrænding var lavere i 2018 end i 1990. CO₂-emissionen var 54.8 % lavere og drivhusgasemissionen var 53.9 % lavere. Emissionerne fluktuerer dog betydeligt, primært pga. variationerne i import/eksport af el men også som resultat af varierende udetemperatur og deraf følgende variationer i brændselsforbruget til rumopvarmning.

 CH_4 -emissionen fra stationær forbrænding var 54 % højere i 2018 end i 1990. Emissionen steg frem til 1996 og faldt igen fra 2004. Stigningen skyldes primært, at der i 1990'erne blev installeret et betydeligt antal gasmotorer på decentrale kraftvarmeværker. De senere år er emissionen dog faldet som følge af de ændrede afregningsregler i henhold til det frie elmarked, som har resulteret i færre driftstimer for gasmotorerne.

Emissionen af N_2O var 18 % højere i 2018 end i 1990. Emissionen af N_2O fluktuerer som følge af variationerne i brændselsforbruget for stationær forbrænding, der er en følge af den varierende import/eksport af el.

SO₂-emissionen fra stationær forbrænding er faldet med 96 % siden 1990. Den store reduktion er primært et resultat af installering af afsvovlingsanlæg fra el- og fjernvarmeproducerende anlæg samt brug af brændsler med lavere svovlindhold. Dette er sket på baggrund af en indført svovlafgift, grænseværdier for svovlindhold i brændsler, SO₂-kvoter for centrale kraftværker samt lavere emissionsgrænseværdier.

NO_x-emissionen fra stationær forbrænding er faldet med 76 % siden 1990. Reduktionen er primært et resultat af, at emissionen fra el- og fjernvarmeproducerende anlæg er faldet som følge af, at der benyttes lav-NO_x-brændere på flere anlæg, og at der er idriftsat NO_x-røggasrensning på flere store kraftværker. Baggrunden herfor er emissionsloft for de centrale kraftværker, lavere emissionsgrænseværdier for flere anlægstyper og NO_x-afgift. NO_x-emissionen fluktuerer som følge af variationen i import/eksport af el.

Mængden af træ forbrændt i villakedler og brændeovne var i 2018 4.6 gange så højt som i 1990. Den store stigning skete i 1990 til 2007 hvorefter forbruget er stabiliseret. Dette har stor betydning for tidsserierne for en række emissionskomponenter for hvilke netop træ, anvendt i villakedler/brændeovne, er en væsentlig emissionskilde: NMVOC, CO, NH₃, partikler, BC, dioxin nogle metaller og PAH. Emissionen fra nyere brændeovne/-kedler er lavere end for de ældre, idet forbrændingsteknologien er forbedret, og stigningen i emissioner er således lavere end stigningen i brændselsforbruget.

CO-emissionen fra stationær forbrænding er faldet 33 % siden 1990. Tidsserien for emissionen af CO fra stationær forbrænding følger tidsserien for CO fra husholdninger. Det øgede forbrug af træ i brændeovne og –kedler i 1999 – 2007 reflekteres i tidsserien for CO-emission. Faldet i CO-emission fra 2007 til 2018 er et resultat af bedre teknologi i nyere brændeovne samt at brændeforbruget er stabiliseret fra 2007 og frem.

Emissionen af NMVOC fra stationær forbrænding er faldet 10 % siden 1990. Emissionen steg indtil 2007 og faldt derefter frem til 2014. Stigningen skyldes primært øget brændeforbrug i brændeovne og øget anvendelse af gasmotorer. Faldet i emission fra 2007-2014 er et resultat af forbedret forbrændingsteknologi i brændeovnene samt færre driftstimer for gasmotorerne.

Tidsserierne for emissionen af partikler følger tidsserierne for partikelemissionen fra træ anvendt i husholdninger (brændeovne og -kedler). Emissionen af TSP, PM_{10} og $PM_{2.5}$ er faldet henholdsvis 1 %, 5 % og 4 % siden år 1990. Emissionen steg indtil 2007 og faldt efter 2007. Stigningen indtil 2007 hænger sammen med det øgede forbrug af træ i husholdninger. Emissionsfaktorerne er dog faldet i forbindelse med udskiftning til nyere anlæg. Efter 2007, er emissionen faldet igen som følge af installering af flere nyere brændeovne og kedler. Emissionsgrænseværdien i Brændeovnsbekendtgørelsen og grænseværdien for svanemærkede brændeovne er sat ned flere gange.

Forbrænding af træ i husholdninger er den primære emissionskilde for BC.

Emissionen af de forskellige PAH'er er faldet siden 1990, primært efter 2007. Dette er ligeledes et resultat af tidsserien for forbrænding af træ i husholdninger.

Tungmetalemissionerne er faldet 18 % - 92 % siden 1990. Emissionen er faldet trods en øget forbrænding af affald. Reduktionen er et resultat af den forbedrede røggasrensning på affaldsforbrændingsanlæg og på kraftværker.

Emissionen af dioxin var 39 % lavere i 2018 end i 1990. Dette fald skyldes primært installering af dioxinrensningsanlæg på affaldsforbrændingsanlæg som alle affaldsforbrændingsanlæg iht. Forbrændingsbekendtgørelsen³ skulle idriftsætte senest i 2005. Emissionen fra husholdninger er steget siden 1990 på grund af det øgede forbrug af træ i husholdninger.

HCB-emissionen er faldet 79 % siden 1990, primært på grund af forbedret røggasrensning på affaldsforbrændingsanlæg.

PCB-emissionen er faldet 63 % siden 1990. Faldet er et resultat af forbedret dioxinrensning på affaldsforbrændingsanlæggene.

³ Bekendtgørelse om anlæg der forbrænder affald, Bekendtgørelse 162 af 11. marts 2003.

Emissionen af drivhusgasser er bestemt med en usikkerhed på $\pm 2,3$ %. Drivhusgasemissionen er siden 1990 faldet 53,9 % $\pm 1,0$ %-point.

Som en del af et EU review af de danske emissionsopgørelser, foretages en sammenligning af de rapporterede data og data baseret på Eurostats data. Denne sammenligning er vist i rapporten og de væsentligste forskelle er forklaret. I den danske opgørelse anvendes to forskellige brændværdier for kul afhængig af type, men i rapporteringen til Eurostat er data baseret på den ene brændværdi. Dette giver en væsentlig forskel for kul. Derudover er brændselsforbruget til transport mellem Danmark og henholdsvis Færøerne og Grønland er ikke inkluderet i rapporteringerne til Eurostat. Dette brændselsforbrug er imidlertid inkluderet under indenrigsluftfart/søfart i de danske emissionsopgørelser.

Summen af CO₂-kvotedata rapporteret under EU Direktivet 2003/87/EC er blevet sammenholdt med de danske emissionsopgørelser for drivhusgasser på sektorniveau. Samlet set udgør kvotedata 43 % af den samlede danske CO₂-emission.

1 Introduction

1.1 Definition of stationary combustion and subsectors

In the Danish emission database, all activity rates and emissions are defined in SNAP sector categories (Selected Nomenclature for Air Pollution) according to the CORINAIR system⁴. The emission inventories are prepared from a complete emission database based on the SNAP sectors. Aggregation to the CRF/NFR sector codes is based on a correspondence list between SNAP and CRF/NFR enclosed in Annex 3A-1. Stationary combustion is defined as combustion activities in the SNAP sectors 01-03, not including SNAP 0303.

Emissions from industrial processes e.g. calcination are not included in stationary combustion. Fugitive emissions from fuels are not included in stationary combustion.

Stationary combustion plants are included in the emission source subcategories:

- 1A1 Energy, Fuel combustion, Energy industries
 - 1A1a Public electricity and heat production
 - 1A1b Petroleum refining
 - 1A1c Oil and gas extraction
- 1A2 Energy, Fuel combustion, Manufacturing industries and construction
 - 1A2a Iron and steel
 - 1A2b Non-ferrous metals
 - 1A2c Chemicals
 - 1A2d Pulp, paper and print
 - 1A2e Food processing, beverages and tobacco
 - 1A2f Non-metallic minerals
 - 1A2 g viii Other manufacturing industry
- 1A4 Energy, Fuel combustion, Other sectors
 - 1A4a i Commercial/institutional plants
 - 1A4b i Residential plants
 - 1A1c i Agriculture/forestry

The emission and fuel consumption data included in tables and figures in this report only include emissions originating from stationary combustion plants of a given CRF sector. The consumption of fuel for military use in stationary combustion plants has been included in Commercial / institutional plants.

1.2 Emission share from stationary combustion

Table 1 gives an overview of the emission share from stationary combustion compared to national total. Main emission sources are discussed in chapter 3 and 4.

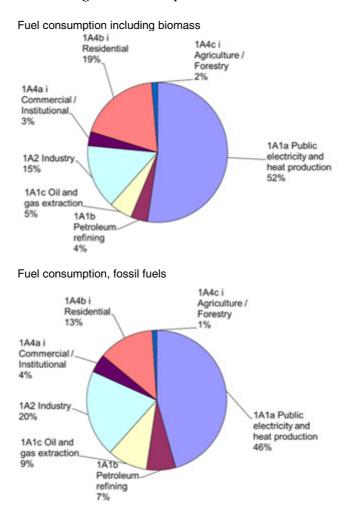
⁴ Including some additional SNAP added for industrial combustion.

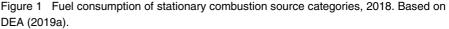
	from stationary combustion comp	ared
Pollutant	Emission share	
GHG total	32.5 %	
CO ₂	42 %	
CH ₄	3.6 %	
N ₂ O	3.9 %	
SO ₂	58%	
NO _x	26%	
NMVOC	13%	
CO	45%	
NH ₃	2.9%	
TSP	13%	
PM ₁₀	41%	
PM _{2.5}	69%	
BC	50%	
As	58%	
Cd	83%	
Cr	74%	
Cu	1.3%	
Hg	81%	
Ni	43%	
Pb	17%	
Se	75%	
Zn	39%	
HCB	50%	
PCDD/F	81%	
Benzo(a)pyrene	93%	
Benzo(b)fluoranthene	89%	
Benzo(k)fluoranthene	87%	
Indeno(123cd)pyrene	86%	
PCB	83%	

Table 1 Emission share from stationary combustion compared to national total, 2018.

1.3 Key Categories for GHGs

Key Category Analysis (KCA) approach 1 and approach 2 for the years 1990 and 2018 and for the trend 1990-2018 for Denmark has been carried out in accordance with the IPCC Guidelines (IPCC, 2006). Table 2 shows the 26 stationary combustion key categories. The table is based on the analysis including LULUCF. Detailed key category analysis is shown in the National Inventory Report, Chapter 1.5 (Nielsen et al., 2020).


The CO₂ emissions from stationary combustion are key categories for all the major fuels. In addition, CH₄ from residential wood combustion and from straw combustion in agriculture/residential plants are key categories in the approach 2 analysis. Finally, due to the relatively high uncertainty for N₂O, emission factors the N₂O emission from a number of emission sources are also key categories in the approach 2 analysis.


Table 2 Key categories⁵, stationary combustion.

			Approach 1			Approach 2		
			1990	2018	1990-	1990	2018	1990-
					2018			2018
Energy	1A Stationary combustion, Coal, ETS data, CO ₂	CO ₂		Level	Trend			Trend
Energy	1A Stationary combustion, Coal, no ETS data, CO2	CO ₂	Level	Level	Trend	Level		Trend
Energy	1A Stationary combustion, Fossil waste, ETS data,	CO_2		Level	Trend			Trend
	CO ₂							
Energy	1A Stationary combustion, Fossil waste, no ETS	CO ₂	Level	Level				
	data, CO ₂							
Energy	1A Stationary combustion, Petroleum coke, ETS data, CO ₂	CO ₂		Level	Trend			
Energy	1A Stationary combustion, Petroleum coke, no	CO ₂	Level		Trend			
	ETS data, CO ₂							
Energy	1A Stationary combustion, Residual oil, ETS data,	CO ₂		Level	Trend			
	CO ₂							
Energy	1A Stationary combustion, Residual oil, no ETS	CO ₂	Level		Trend			Trend
	data, CO ₂							
Energy	1A Stationary combustion, Gas oil, CO ₂	CO ₂	Level	Level	Trend	Level		Trend
Energy	1A Stationary combustion, Kerosene, CO ₂	CO ₂	Level		Trend			
Energy	1A Stationary combustion, LPG, CO ₂	CO ₂		Level				
Energy	1A1b Stationary combustion, Petroleum refining,	CO ₂	Level	Level	Trend			
	Refinery gas, CO ₂							
Energy	1A Stationary combustion, Natural gas, onshore,	CO ₂	Level	Level	Trend		Level	Trend
	CO ₂							
Energy	1A1c_ii Stationary combustion, Oil and gas extrac-	CO_2	Level	Level	Trend			
	tion, Off shore gas turbines, Natural gas, CO2							
Energy	1A4b_i Stationary combustion, Residential wood	CH_4				Level	Level	Trend
	combustion, CH ₄							
Energy	1A4b_i/1A4c_i Stationary Combustion, Residential	CH₄				Level	Level	
	and agricultural straw combustion, CH ₄							
Energy	1A1 Stationary Combustion, Solid fuels, N ₂ O	N ₂ O				Level	Level	Trend
Energy	1A1 Stationary Combustion, Gaseous fuels, N_2O	N ₂ O				Level	Level	Trend
Energy	1A1 Stationary Combustion, Waste, N ₂ O	N ₂ O						Trend
Energy	1A1 Stationary Combustion, Biomass, N ₂ O	N ₂ O					Level	Trend
Energy	1A2 Stationary Combustion, Solid fuels, N ₂ O	N_2O					Level	Trend
Energy	1A2 Stationary Combustion, Liquid fuels, N ₂ O	N_2O				Level	Level	Trend
Energy	1A2 Stationary Combustion, Gaseous fuels, N ₂ O	N ₂ O					Level	Trend
Energy	1A4 Stationary Combustion, Liquid fuels, N ₂ O	N_2O				Level		Trend
Energy	1A4 Stationary Combustion, Gaseous fuels, N ₂ O	N_2O					Level	Trend
Energy	1A4b_i Stationary Combustion, Residential wood	N_2O					Level	Trend
	combustion, N ₂ O							

2 Fuel consumption data

In 2018, the total fuel consumption for stationary combustion plants was 407 PJ of which 236 PJ was fossil fuels and 171 PJ was biomass. Fuel consumption distributed according to the stationary combustion subcategories is shown in Figure 1 and Figure 2. The majority - 52 % - of all fuels is combusted in the source category, Public electricity and heat production. Other source categories with high fuel consumption are Residential and Industry.

Coal, natural gas and wood are the most utilised fuels for stationary combustion plants. Coal is mainly used in power plants, natural gas is used in power plants and in decentralised combined heat and power (CHP) plants, as well as in industry, residential plants and offshore gas turbines (see Figure 2). Wood is mainly applied for public electricity and heat production and in residential plants.

Detailed fuel consumption rates are shown in Annex 2.

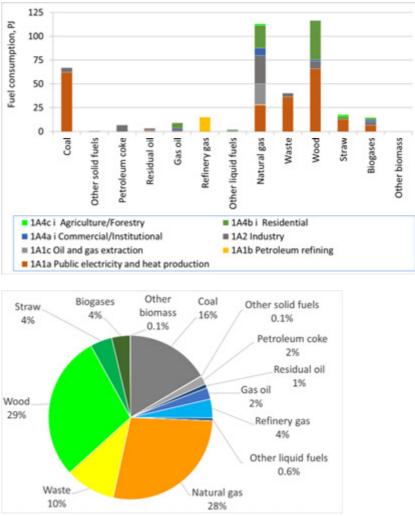
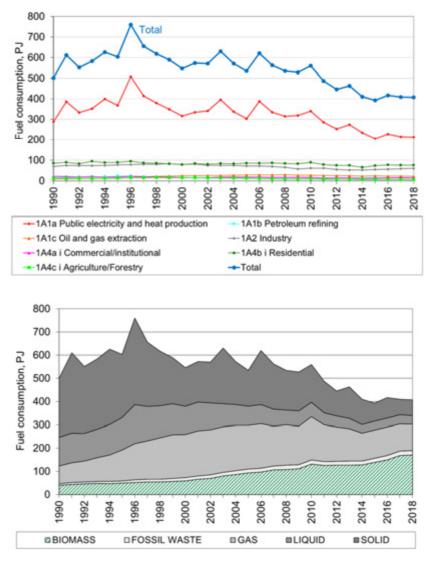
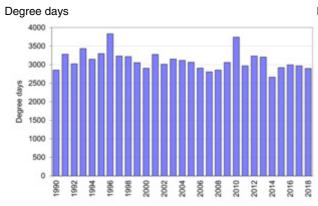
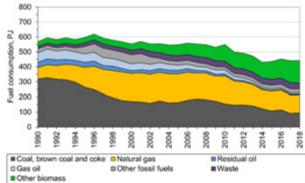


Figure 2 Fuel consumption of stationary combustion 2018, disaggregated to fuel type. Based on DEA (2019a).

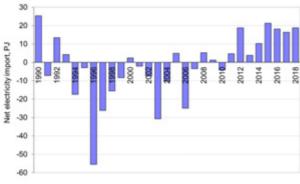
Time series for fuel consumption for stationary combustion plants are presented in Figure 3. The fuel consumption for stationary combustion was 19 % lower in 2018 than in 1990, while the fossil fuel consumption was 49 % lower and the biomass fuel consumption 4.2 times the level in 1990.

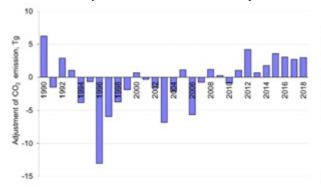
The consumption of natural gas, waste and biomass has increased since 1990 whereas the consumption of coal and oil has decreased.

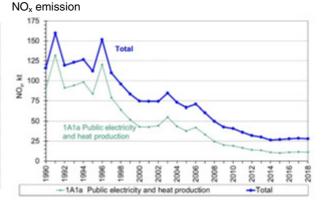



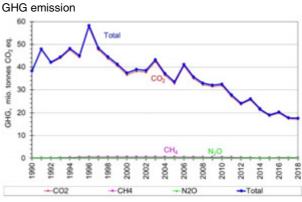

Figure 3 Fuel consumption time series, stationary combustion. Based on DEA (2019a).

The fluctuations in the time series for fuel consumption are mainly a result of electricity import/export, but also of outdoor temperature variations from year to year. This, in turn, leads to fluctuations in emission levels. The fluctuations in electricity trade, fuel consumption, CO_2 and NO_x emission are illustrated and compared in Figure 4. In 1990, the Danish net electricity import was large causing relatively low fuel consumption, whereas the fuel consumption was high in 1996 and 2003 due to a large net electricity export. In 2018, the net electricity import was 19 PJ, whereas there was a 16 PJ net electricity import in 2017. The large net electricity export that occurs some years is a result of low rainfall in Norway and Sweden causing insufficient hydropower production in both countries.


The Danish electricity production is highly dependent on the electricity trade with especially Sweden and Norway. Denmark has a number of central coalfuelled power plants that consists of a number of blocks. These do not under normal conditions, operate at max load, i.e. there is free capacity for peak situations. In addition, there are blocks, which are mothballed but can be reopened in situations where there is a significant increase in the electricity demand. To be able to follow the national energy consumption, the Danish Energy Agency (DEA) produces a correction of the observed fuel consumption and CO_2 emission without random variations in electricity import/export and in ambient temperature. This fuel consumption trend is also illustrated in Figure 4. The estimates are based on DEA (2016d) and updated data (DEA, 2019d). The corrections are included here to explain the fluctuations in the time series for fuel rates and emissions.


Fuel consumption adjusted for electricity trade





CO2 emission adjustment as a result of electricity trade

Fluctuations in electricity trade compared to fuel consumption Adjusted GHG emission, stationary combustion plants

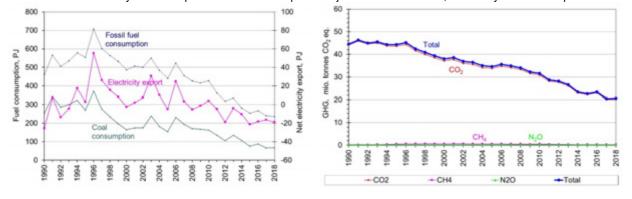


Figure 4 Comparison of time series fluctuations for net electricity import, fuel consumption, CO_2 emission and NO_x emission. Based on DEA (2019a).

Fuel consumption time series for the subcategories to stationary combustion are shown in Figure 5, 6 and 7.

Fuel consumption for Energy industries fluctuates due to electricity trade as discussed above. The fuel consumption in 2018 was 20 % lower than in 1990 and the fossil fuel consumption was 51 % lower. The fluctuation in electricity production is based on fossil fuel consumption in the subcategory Public electricity and heat production. The energy consumption in Oil and gas extraction is mainly natural gas used in gas turbines in the offshore industry. The biomass fuel consumption in Energy industries in 2018 added up to 105 PJ, which is 6.5 times the level in 1990 and 1 % lower than in 2017.

The fuel consumption in Industry was 13 % lower in 2018 than in 1990 (Figure 6) and the fossil fuel consumption was 25 % lower. The fuel consumption in industrial plants decreased considerably after 2006 as a result of the financial crisis. The fuel consumption has increased again since 2014. The biomass fuel consumption in Industry in 2018 added up to 13 PJ, which is 2.2 times the consumption in 1990.

The fuel consumption in Other sectors decreased 19 % since 1990 (Figure 7) and increased 0.5 % since 2017. The fossil fuel consumption decreased 57 % since 1990. The biomass fuel consumption in Other sectors in 2018 added up to 52 PJ, which is 2.8 times the consumption in 1990 and a 3 % increase since 2017. Wood consumption in residential plants in 2018 was 2.8 times the consumption in year 2000 and 4.6 times the consumption in 1990.

Time series for subcategories are shown in Chapter 5.

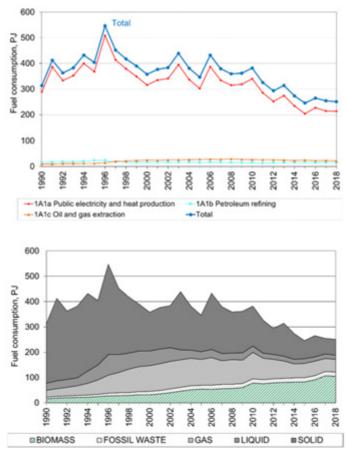


Figure 5 Fuel consumption time series for subcategories - 1A1 Energy industries.

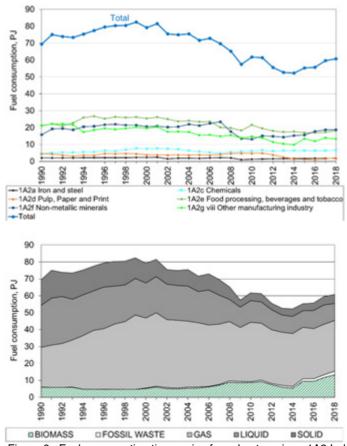
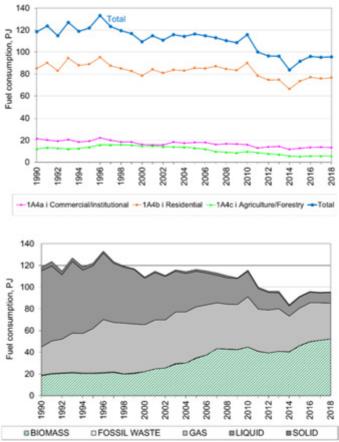



Figure 6 Fuel consumption time series for subcategories - 1A2 Industry.

3 Emissions of greenhouse gases

3.1 Greenhouse gas emission

The greenhouse gas emissions from stationary combustion are listed in Table 3. The emission from stationary combustion accounted for 32.5 % of the national greenhouse gas emission (including LULUCF) in 2018.

The CO₂ emission from stationary combustion plants accounts for 42 % of the national CO₂ emission (including LULUCF). The CH₄ emission from stationary combustion plants accounts for 3.6 % of the national CH₄ emission and the N₂O emission for 3.9 % of the national N₂O emission.

Table 3	Greenhouse gas emission, 2018 ¹⁾ .

	CO ₂	CH_4	N ₂ O
	kt C	O ₂ equiv	alent
1A1 Fuel combustion, Energy industries	11264	112	86
1A2 Fuel combustion, Manufacturing industries and construc-	3275	22	55
tion ¹⁾			
1A4 Fuel combustion, Other sectors ¹⁾	2620	130	70
Emission from stationary combustion plants	17159	264	211
Emission share for stationary combustion (LULUCF included)	42%	3.6%	3.9%

¹⁾ Only stationary combustion sources of the category is included.

 CO_2 is the most important greenhouse gas accounting for 97.3 % of the greenhouse gas emission (CO_2 equivalents) from stationary combustion. CH_4 accounts for 1.5 % and N_2O for 1.2 % of the greenhouse gas emission (CO_2 equivalents) from stationary combustion (Figure 8).

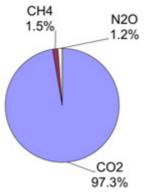


Figure 8 Greenhouse gas emissions from stationary combustion (CO_2 equivalents), contribution from each pollutant.

Figure 9 shows the time series of greenhouse gas emissions (CO_2 equivalents) from stationary combustion. The development of the greenhouse gas emission follows the CO_2 emission development very closely. Both the CO_2 and the total greenhouse gas emission are lower in 2018 than in 1990, CO_2 is 54.8 % lower and greenhouse gas emissions are 53.9 % lower. However, fluctuations in the GHG emission level are large.

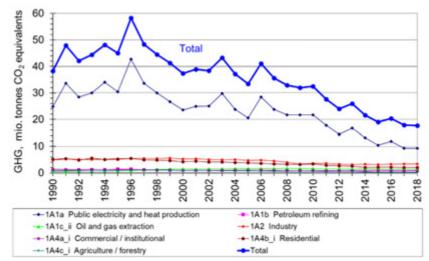


Figure 9 GHG emission time series for stationary combustion.

The fluctuations in the time series are largely a result of electricity import/export, but also of outdoor temperature variations from year to year. The fluctuations follow the fluctuations in fuel consumption discussed in Chapter 2. As mentioned in Chapter 2, the Danish Energy Agency estimates a correction of the observed CO_2 emission without random variations in electricity imports/exports and in ambient temperature. The greenhouse gas emission corrected for electricity import/export and ambient temperature has decreased by 55.6 % since 1990, and the CO_2 emission by 54.4 %. These data are included here to explain the fluctuations in the emission time series.

3.2 CO₂

The carbon dioxide (CO₂) emission from stationary combustion plants is one of the most important sources of greenhouse gas emissions. Thus, the CO₂ emission from stationary combustion plants accounts for 42 % of the national CO₂ emission (LULUCF included). Table 4 lists the CO₂ emission inventory for stationary combustion plants for 2018. Public electricity and heat production accounts for 53 % of the CO₂ emission from stationary combustion. This share is somewhat higher than the fossil fuel consumption share for this category, which is 46 % (Figure 10). This is due to a large share of coal in this category. Other large CO₂ emission sources are Industry⁶, Residential plants and Oil and gas extraction. These are the source categories, which also account for a considerable share of fuel consumption.

Table 4 CO₂ emission from stationary combustion plants, 2018¹).

	CO ₂ , kt Pesidential Agriculture /
1A1a Public electricity and heat production	9113 (A4a_i 0.9%
1A1b Petroleum refining	891
1A1c Oil and gas extraction	1260 142 Industry
1A2 Industry	3275 ^{19%}
1A4a Commercial/institutional	615 tAtc_ii Oland
1A4b Residential	1849
1A4c Agriculture/forestry	156
Total	17159

¹⁾ Only emissions from stationary combustion plants in the categories are included.

⁶ Includes only stationary combustion, whereas CO₂ from industrial processes e.g. calcination in cement production is included elsewhere.

In the Danish inventory, the source category Public electricity and heat production is further disaggregated. The CO_2 emission from each of the subcategories is shown in Table 5. The largest subcategory is power plant boilers >300MW.

Table 5 CO₂ emission from subcategories to 1A1a Public electricity and heat production.

SNAP	SNAP name	CO ₂ , kt Public power, District heating, District heating,
0101	Public power	Public power, stationary bollers > 50MW bollers < 50 MW oas butteres, engines and < 300 MW 6%
010101	Combustion plants \geq 300MW (boilers)	6216 ** **
010102	Combustion plants \geq 50MW and < 300 MW (boilers)	919
010103	Combustion plants <50 MW (boilers)	496 boles < 50 MW
010104	Gas turbines	570
010105	Stationary engines	299
0102	District heating plants	Public power.
010202	Combustion plants \geq 50MW and < 300 MW (boilers)	80 and < 300 MW (bollens) 10% 68%
010203	Combustion plants <50 MW (boilers)	534

 CO_2 emission from combustion of biomass fuels is not included in the total CO_2 emission data, because biomass fuels are considered CO_2 neutral. The CO_2 emission from biomass combustion is reported as a memo item in the Climate Convention reporting. In 2018, the CO_2 emission from biomass combustion from stationary combustion was 18 408 kt.

In Figure 10, the fuel consumption share (fossil fuels) is compared to the CO_2 emission share disaggregated to fuel origin. Due to the higher CO_2 emission factor for coal than oil and gas, the CO_2 emission share from coal combustion is higher than the fuel consumption share. Coal accounts for 29 % of the fossil fuel consumption and for 37 % of the CO_2 emission. Natural gas accounts for 48 % of the fossil fuel consumption and for 38 % of the CO_2 emission.

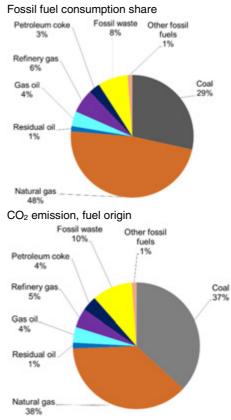


Figure 10 CO₂ emission, fuel origin.

The time series for CO_2 emission is provided in Figure 11. Despite a decrease in fuel consumption of 19 %⁷ since 1990, the CO_2 emission from stationary combustion has decreased by 55 % because of the change of fuel type used.

The fluctuations in total CO_2 emission follow the fluctuations in CO_2 emission from Public electricity and heat production (Figure 11) and in coal consumption (Figure 4). The fluctuations are a result of electricity import/export as discussed in Chapter 2.

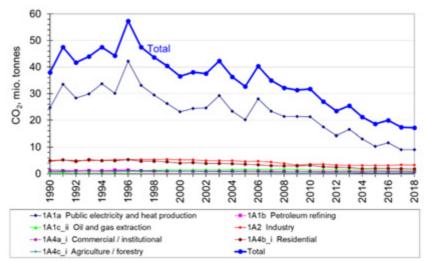


Figure 11 CO₂ emission time series for stationary combustion plants.

3.3 CH₄

The methane (CH₄) emission from stationary combustion plants accounts for 3.6 % of the national CH₄ emission. Table 6 lists the CH₄ emission inventory for stationary combustion plants in 2018. Public electricity and heat production accounts for 42 % of the CH₄ emission from stationary combustion. The emission from residential plants adds up to 36 % of the emission.

	CH4,	1A4c i
	tonnes	forestry 10%
1A1a Public electricity and heat production	4406	1A1a Public electricity and
1A1b Petroleum refining	18	heat production 42%
1A1c Oil and gas extraction	37	
1A2 Industry	878	1A1b Petroleum
1A4a Commercial/institutional	376	1A45_U Residential
1A4b Residential	3769	36% TATe i Oil and
1A4c Agriculture/forestry	1072	Commercial/ gas extraction 0.4%
Total	10556	4% 8%

Table 6 CH₄ emission from stationary combustion plants, 2018¹).

¹⁾ Only emission from stationary combustion plants in the source categories is included.

The CH₄ emission factor for reciprocating gas engines is much higher than for other combustion plants due to the continuous ignition/burn-out of the gas. Lean-burn gas engines have an especially high emission factor. A considerable number of lean-burn gas engines are in operation in Denmark and in 2018, these plants accounted for 49 % of the CH₄ emission from stationary combustion plants (Figure 12). Most engines are installed in CHP plants and the fuel

⁷ The consumption of fossil fuels has decreased 49 %.

used is either natural gas or biogas. Residential wood combustion is also a large emission source accounting for 27 % of the emission in 2018.

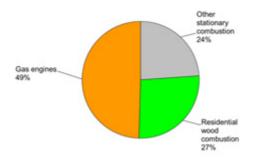


Figure 12 CH₄ emission share for gas engines and residential wood combustion, 2018.

Figure 13 shows the time series for CH_4 emission. The CH_4 emission from stationary combustion was 54 % higher in 2018 than in 1990. The emission increased until 1996 and decreased after 2004. This time series is related to the considerable number of lean-burn gas engines installed in CHP plants in Denmark during the 1990s. Figure 14 provides time series for the fuel consumption rate in gas engines and the corresponding increase of CH_4 emission. The decline in later years is due to structural changes in the Danish electricity market, which means that the fuel consumption in gas engines has been decreasing.

The CH_4 emission from residential plants has increased since 1990 due to increased combustion of biomass in residential plants. The consumption of wood in residential plants has increased but the emission factor for residential wood combustion has decreased due to implementation of new improved stoves and boilers. Combustion of wood accounted for 74 % of the CH_4 emission from residential plants in 2018.

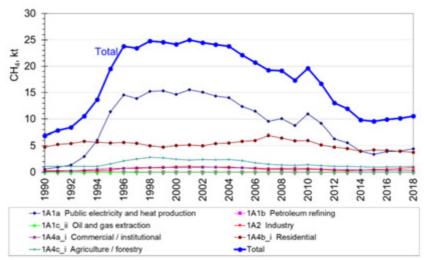


Figure 13 CH₄ emission time series for stationary combustion plants.

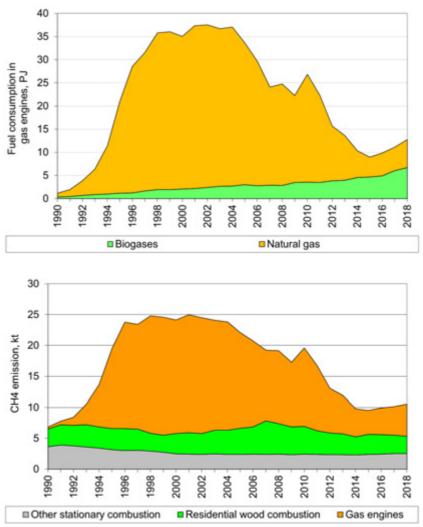


Figure 14 Time series for a) fuel consumption in gas engines and b) CH_4 emission from gas engines, residential wood combustion and other plants.

3.4 N₂O

The nitrous oxide (N₂O) emission from stationary combustion plants accounts for 3.9 % of the national N₂O emission. Table 7 lists the N₂O emission inventory for stationary combustion plants in the year 2018. Public electricity and heat production accounts for 37 % of the N₂O emission from stationary combustion.

Table 7 N_2O emission from stationary combustion plants, 2018¹).

tonnes	
1011163	forestry
263	1A4b i 1A1a Bublic
	29% electricity and heat conduction
4	37%
22	
185	
17	1A4a_i 1A1b Petroleum refining
205	institutional 0.6%
12	(1A1c_ii Oil and gas extraction
708	1A2 Industry 3% 26%
	4 22 185 17 205 12

¹⁾ Only emission from stationary combustion plants in the source categories is included.

Figure 15 shows the time series for N_2O emission. The N_2O emission from stationary combustion has increased by 18% from 1990 to 2018, but again fluctuations in emission level due to electricity import/export are considerable.

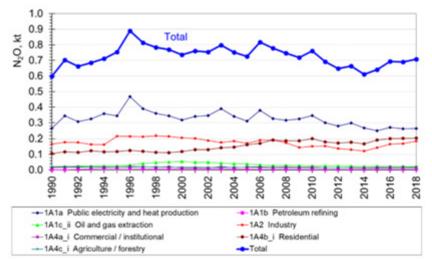


Figure 15 N₂O emission time series for stationary combustion plants.

4 Emissions of other pollutants

4.1 SO₂

Stationary combustion is the most important emission source for SO_2 accounting for 58 % of the national emission. Table 8 presents the SO_2 emission inventory for the stationary combustion subcategories.

The largest emission sources are Public electricity and heat production and Industry each accounting for 38 % of the emission from stationary combustion.

For Public electricity and heat production, the SO_2 emission share is however lower than the fuel consumption share for this source category, which is 52 %. This is a result of effective flue gas desulphurisation equipment installed in power plants combusting coal. In the Danish inventory, the source category Public electricity and heat production is further disaggregated. Figure 16 shows the SO_2 emission from Public electricity and heat production on a disaggregated level. District heating boilers < 50 MW and Power plants >300MW_{th} are the main emission sources, accounting for 39 % and 36 % of the emission.

The SO_2 emission from industrial plants adds up to 38 % of the emission from stationary combustion, a remarkably high emission share compared with fuel consumption. The main emission sources in the industrial category are combustion of coal and emissions from the cement industry, mineral wool industry and sugar production plants. Until year 2000, the SO_2 emission from the industrial category only accounted for a small part of the emission from stationary combustion, but due to reduced emissions from power plants, the share has now increased.

The time series for SO_2 emission from stationary combustion is shown in Figure 17. The SO_2 emission from stationary combustion plants has decreased by 96 % since 1990 and 99 % since 1980. The large emission decrease is mainly a result of the reduced emission from Public electricity and heat production, made possible due to installation of desulphurisation plants and due to the use of fuels with lower sulphur content. Despite the considerable reduction in emission from Public electricity and heat production plants, these still account for 38 % of the emission from stationary combustion, as mentioned above. The emission from other source categories also decreased considerably since 1990. Time series for subcategories are shown in Chapter 5.

The emission of SO_2 has decreased since 2005, but the emission level has steadied since 2014.

SO₂, t 1A4b_i Resider 14% 1A4c_i Agricult forestry 6% no / 1A1a Public electricity and heat production 2363 1A4a_i Comme 168 1A1b Petroleum refining 101.0 1A1c Oil and gas extraction 9 1A2 Industry 2389 1A4a Commercial/institutional 65 1A4b Residential 853 1A4c Agriculture/forestry 408 1A2 38% 3% 1A1c_i Oil and Total 6256 985 e

Table 8 SO_2 emission from stationary combustion plants, 2018¹⁾.

1) Only emission from stationary combustion plants in the source categories is included.

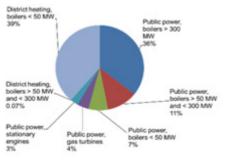


Figure 16 Disaggregated SO_2 emissions from 1A1a Public electricity and heat production.

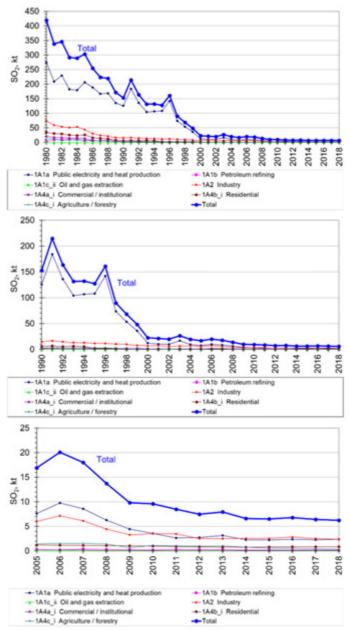


Figure 17 SO₂ emission time series for stationary combustion.

4.2 NO_x

Stationary combustion accounts for 26% of the national NO_x emission. Table 9 shows the NO_x emission inventory for stationary combustion subcategories.

Public electricity and heat production is the largest emission source accounting for 40 % of the emission from stationary combustion plants. The emission from Public power boilers > 300 MW_{th} accounts for 18 % of the emission in this subcategory, Public power boilers 50-300 MW for 24 % and District heating < 50MW for 22%.

Industrial combustion plants are also an important emission source accounting for 21 % of the emission. The main industrial emission source is cement production, which accounts for 42 % of the emission from industrial plants.

Residential plants account for 16 % of the NO_x emission. The fuel origin of this emission is mainly wood accounting for 70 % of the residential plant emission.

Oil and gas extraction, which is mainly offshore gas turbines accounts for 15 % of the NO_x emission.

Time series for NO_x emission from stationary combustion are shown in Figure 18. NO_x emission from stationary combustion plants has decreased by 76 % since 1990 and 81 % since 1985. The reduced emission is largely a result of the reduced emission from Public electricity and heat production due to installation of low NO_x burners, selective catalytic reduction (SCR) units and selective non-catalytic reduction (SNCR) units. The fluctuations in the time series follow the fluctuations in Public electricity and heat production, which, in turn, result from electricity trade fluctuations.

The emission has also decreased considerably since 2005, see Figure 18.

	NO _x , t 1A4b_i 1A4c_i Residential Agriculture /
1A1a Public electricity and heat production	11196 144a i 50'eestry
1A1b Petroleum refining	988 institutional, 1A1a Public electricity and
1A1c Oil and gas extraction	4092 3% heat production
1A2 Industry	5950
1A4a Commercial/institutional	708
1A4b Residential	4452 1A2 Industry
1A4c Agriculture/forestry	622
Total	28009 SATe_# Oil and gas extraction

Table 9 NO_x emission from stationary combustion plants, 2018¹).

1) Only emission from stationary combustion plants in the source categories is included.

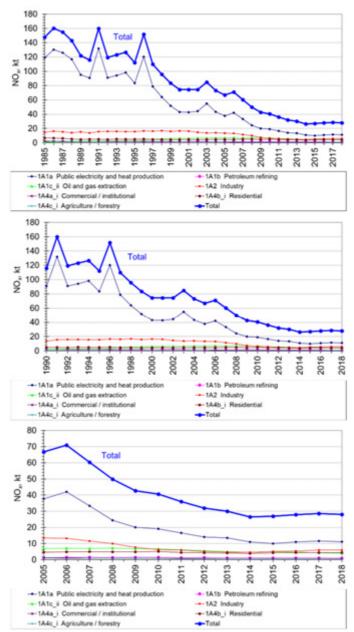


Figure 18 NO_x emission time series for stationary combustion.

4.3 NMVOC

Stationary combustion plants account for 13 % of the national NMVOC emissions. Table 10 presents the NMVOC emission inventory for the stationary combustion subcategories.

Residential plants are the largest emission source accounting for 75 % of the emission from stationary combustion plants. For residential plants NMVOCs is mainly emitted from wood and straw combustion, see Figure 19.

Public electricity and heat production is also a considerable emission source, accounting for 7 % of the emission. Lean-burn gas engines have a relatively high NMVOC emission factor and are the most important emission source in this subcategory (see Figure 19). The gas engines are either natural gas or biogas fuelled.

Agricultural plants accounted for 9 % of the emission in 2018. Combustion of straw was the main emission source in this category.

The time series for NMVOC emissions from stationary combustion is shown in Figure 20. The emission has decreased by 10 % from 1990 and 20 % from 1985. The emission increased until 2007 and decreased after 2007. The increased emission is mainly a result of the increasing wood consumption in residential plants and of the increased use of lean-burn gas engines in CHP plants. The decrease in after 2007-2014 is a result of lower emission from residential wood combustion and the low number of operation hours for the lean burn gas engines.

The emission from residential plants has decreased 2 % since 1990.

The emission from straw combustion in farmhouse boilers has decreased (42 %) over this period due to both a decreasing emission factor and decrease in straw consumption in this source category. The emission from most other fuels has also decreased.

However, the NMVOC emissions from residential wood combustion was 27 % higher in 2018 than in 1990 due to increased wood consumption. The emission factor has decreased since 1990 due to installation of modern stoves and boilers with improved combustion technology. The use of wood in residential boilers and stoves was relatively low in 1998-99 resulting in a lower emission level.

The consumption of wood in residential plants increased until 2007. The improved technology that has been implemented in residential wood combustion has led to lower emission factors and thus decreasing NMVOC emissions since 2007.

1A1aPublic electricity and heat production10731A1bPetroleum refining231A1cOil and gas extraction351A2Industry12531A4aCommercial/institutional167			
1A1c Oil and gas extraction351A2 Industry1253	1a Public electricity and heat productio	n 1073	0.2%
1A2 Industry 1253	1b Petroleum refining	23 🗡	142 Industry
	A1c Oil and gas extraction	35	
1A4a Commercial/institutional 167	12 Industry	1253	1Ma i
	44a Commercial/institutional	167	Commercial/ institutional
1A4b Residential 11406	A4b Residential	11406	15
1A4c Agriculture/forestry 1295	\4c Agriculture/forestry	1295 Residential	
Total 15251	otal	15251	

Table 10 NMVOC emissions from stationary combustion plants, 2018¹⁾.

1) Only emission from stationary combustion plants in the categories is included.

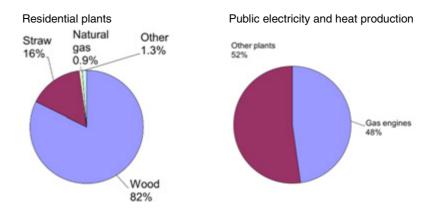


Figure 19 NMVOC emissions from Residential plants and from Public electricity and heat production, 2018.

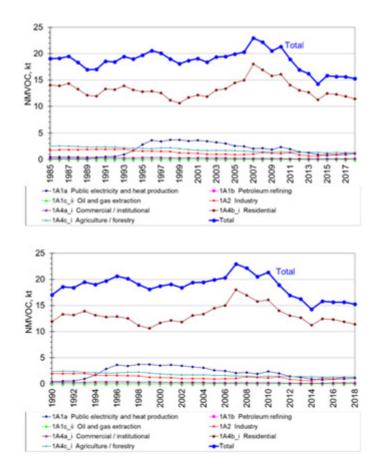


Figure 20 NMVOC emission time series for stationary combustion.

4.4 CO

Stationary combustion accounts for 45 % of the national CO emission. Table 11 presents the CO emission inventory for stationary combustion subcategories.

Residential plants are the largest emission source, accounting for 75 % of the emission. Wood combustion accounts for 92 % of the emission from residential plants, see Figure 21. This is in spite of the fact that the fuel consumption share is only 54 %. Combustion of straw is also a considerable emission source

whereas the emission from other fuels used in residential plants is almost negligible.

The time series for CO emission from stationary combustion is shown in Figure 22. The emission has decreased by 33 % from 1990 and 39 % from 1985. The time series for CO from stationary combustion plants follow the time series for CO emission from residential plants.

The increase of wood consumption in residential plants in 1999-2007 is reflected in the time series for CO emission. The consumption of wood in residential plants in 2018 was 4.6 times the 1990 level. The decreased emission in 2007-2018 is a result of implementation of improved residential wood combustion technologies and the fact that the rapid increase of wood consumption until 2007 have stopped.

Both consumption and CO emission factor have decreased for residential straw combustion plants since 1990.

	CO, t 1A4c_i	1A1a Public
1A1a Public electricity and heat production	13722 torestry	heat production refining 1Afc_II OI and 13%. 0.2% gas extraction
1A1b Petroleum refining	198	0.1%
1A1c Oil and gas extraction	105	
1A2 Industry	6799	1A2 Industry 7%
1A4a Commercial/institutional	928	
1A4b Residential	79753	1444 1
1A4c Agriculture/forestry	4630	Commercial / institutional
Total	106135	0.9%

¹⁾ Only emission from stationary combustion plants in the source categories is included.

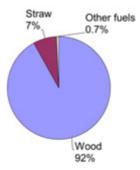
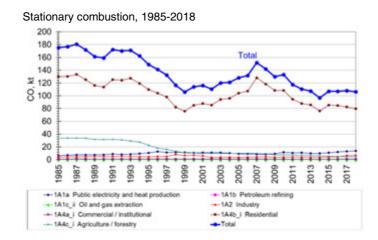
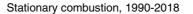
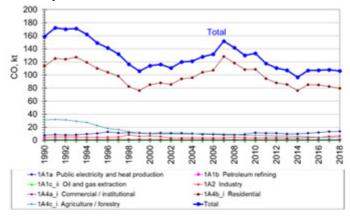
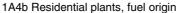






Figure 21 CO emission sources, Residential plants, 2018.

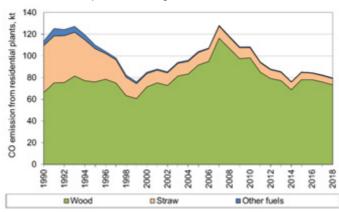


Figure 22 Time series for CO emission for stationary combustion and fuel consumption for residential plants.

4.5 NH₃

Stationary combustion plants accounted for 2.9 % of the national $\rm NH_3$ emission in 2018.

The NH_3 emission from non-residential plants is small and default emission factors are only available for biomass combustion in EEA Guidebook (EEA, 2016). However, based on national references the NH_3 emission from waste incineration has been included in the Danish inventory.

Table 12 shows the NH₃ emission inventory for the stationary combustion subcategories. Residential plants account for 73 % of the emission. Wood combustion accounts for 87 % of the emission from residential plants.

The time series for NH_3 emission is presented in Figure 23. The NH_3 emission has increased 56 % from 1990.

Table 12 NH_3 emission from stationary combustion plants, 2018¹).

	NH3, t 144c_i 1A1a Public 1A2 Industry
1A1a Public electricity and heat production	15 forestry heat production 16%
1A1b Petroleum refining	- \1
1A1c Oil and gas extraction	- 1A4a_i Commercial/
1A2 Industry	361
1A4a Commercial/institutional	65
1A4b Residential	1613
1A4c Agriculture/forestry	147
Total	2200 144b.j
	Residential. 73%

1) Only the emission from stationary combustion plants in the source categories is included.

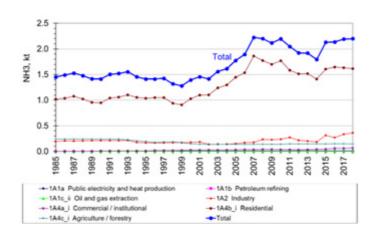


Figure 23 $\,$ NH₃ emission time series, stationary combustion plants.

4.6 Particulate matter (PM)

TSP from stationary combustion accounts for 13 % of the national emission. The emission shares for PM_{10} and $PM_{2.5}$ are 41 % and 69 %, respectively.

PM emission data include condensable particles if data references including condensable are available.

Table 13 and Figure 24 show the PM emission inventory for the stationary combustion subcategories. Residential plants are the largest emission source accounting for 85 % of the $PM_{2.5}$ emission from stationary combustion plants.

The primary sources of PM emissions are:

- Residential boilers, stoves and fireplaces combusting wood.
- Farmhouse / residential boilers combusting straw.
- Wood combusted in non-residential plants.
- Power plants primarily combusting coal.

The PM emission from wood combusted in residential plants is the predominant source. Thus, 69 % of the $PM_{2.5}$ emission from stationary combustion is

emitted from residential wood combustion. This corresponds to 50 % of the national emission. Figure 25 shows the fuel consumption and the $PM_{2.5}$ emission of residential plants. Wood combustion accounts for 86 % of the $PM_{2.5}$ emission from residential plants in spite of a wood consumption share of 54 %.

Emission inventories for PM are reported for the years 1990-2018. The time series for PM emission from stationary combustion is shown in Figure 26. The time series for PM emission from stationary combustion plants follows the time series for PM emission from residential plants. The emission of TSP, PM_{10} and $PM_{2.5}$ was 1 %, 5 % and 4 % lower in 2018 than in 1990.

The PM emissions increased until 2007 and decreased after 2007. The increase until 2007 was caused by the increased wood combustion in residential plants. However, the PM emission factors have decreased for this emission source category due to installation of modern stoves and boilers. The stabilisation of wood consumption in residential plants in 2007-2014 has resulted in a decrease of PM emission from stationary combustion between 2007 and 2014.

TSP, t PM10, t PM_{2.5}, t 1A1a Public electricity and heat production 695 508 388 Petroleum refining 94 90 88 1A1b 1A1c Oil and gas extraction 2 1 1 1A2 Industry 312 223 149 Commercial/institutional 232 218 1A4a 235 1A4b Residential 9731 9556 10183 1A4c Agriculture/forestry 891 887 884 12411 11672 11284 Total

Table 13 PM emission from stationary combustion plants, 2018¹).

1) Only emission from stationary combustion plants in the source categories is included.

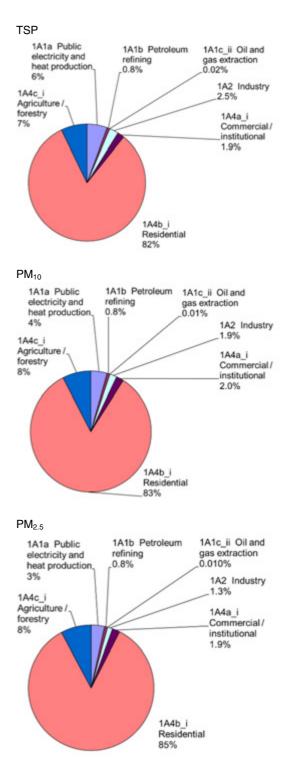
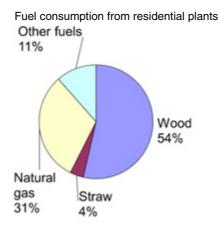
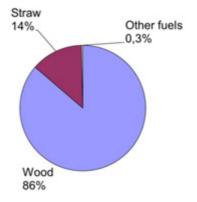




Figure 24 PM emission sources, stationary combustion plants, 2018.

PM_{2.5} emission from residential plants

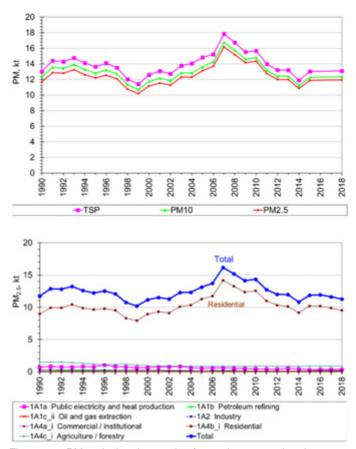


Figure 26 PM emission time series for stationary combustion.

4.7 Black carbon (BC)

Black carbon (BC) from stationary combustion accounted for 50 % of the national emission in 2018. Residential combustion is the main emission source accounting for 72 % of the emission from stationary combustion. Residential wood combustion is the main emission source accounting for 61 % of the emission from residential plants. Plants in Agriculture/forestry account for 19 % of the emission.

Table 14 shows the BC emission inventory for the stationary combustion subcategories.

The BC emission factors are estimated as fractions of the $PM_{2.5}$ emission factor. The fractions depend on both fuel and sector, see Chapter 7.11.

BC emissions are reported for year 1990 onwards. Figure 27 shows time series for BC emission.

	Table 14	BC emission fro	m stationary co	ombustion plants,	2018 ¹⁾ .
--	----------	-----------------	-----------------	-------------------	----------------------

	BC, t	1A1a Public electricity and	1A1b Petroleum refining	1A1c_ii Oil and gas extraction	
1A1a Public electricity and heat production	13	1.0%	1.1%	0.002% 10	42 Indu 2%
1A1b Petroleum refining	15	1446.	1/	1445.1	
1A1c Oil and gas extraction	0.03	Agriculture / forestry		Commerci institutiona	al/
1A2 Industry	28	·**		5%	
1A4a Commercial/institutional	63				
1A4b Residential	922	100			
1A4c Agriculture/forestry	247				
Total	1288		Res 725	idential	

1) Only emission from stationary combustion plants in the source categories is included.

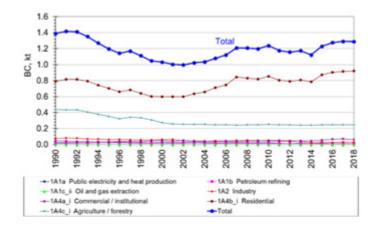


Figure 27 BC emission time series for stationary combustion.

4.8 Heavy metals

Stationary combustion plants are among the most important emission sources for heavy metals. The emission share for stationary combustion compared to national total is shown for each metal in Table 15.

Table 15 and Figure 28 present the heavy metal emission inventory for the stationary combustion subcategories. The source categories Public electricity and heat production, Residential and Industry are the main emission sources. The emission share for waste incineration plants has decreased considerably

since the year 2000 due to installation of new improved flue gas cleaning technology that was initiated based on lower emission limit values in Danish legislation (DEPA, 2011).

Table 15 Heavy metal emissions from stationary combustion plants, 2018¹).

	As, kg	Cd, kg	Cr, kg	Cu, kg	Hg, kg	Ni, kg	Pb, kg	Se, kg	Zn, kg
1A1a Public electricity and heat production	43	24	138	136	120	214	320	267	370
1A1b Petroleum refining	7	11	42	35	1	150	29	7	415
1A1c Oil and gas extraction	3	0	0	0	2	0	0	0	0
1A2 Industry	72	27	92	113	63	678	493	92	981
1A4a Commercial/institutional	1	1	5	5	2	8	6	1	11
1A4b Residential	11	572	1014	265	28	92	1189	22	22543
1A4c Agriculture/forestry	2	27	51	19	4	9	103	10	1094
Total	138	661	1341	573	220	1151	2139	399	25414
Emission share from stationary combustion	58%	83%	74%	1%	81%	43%	17%	75%	39%

1) Only emission from stationary combustion plants in the source categories is included.

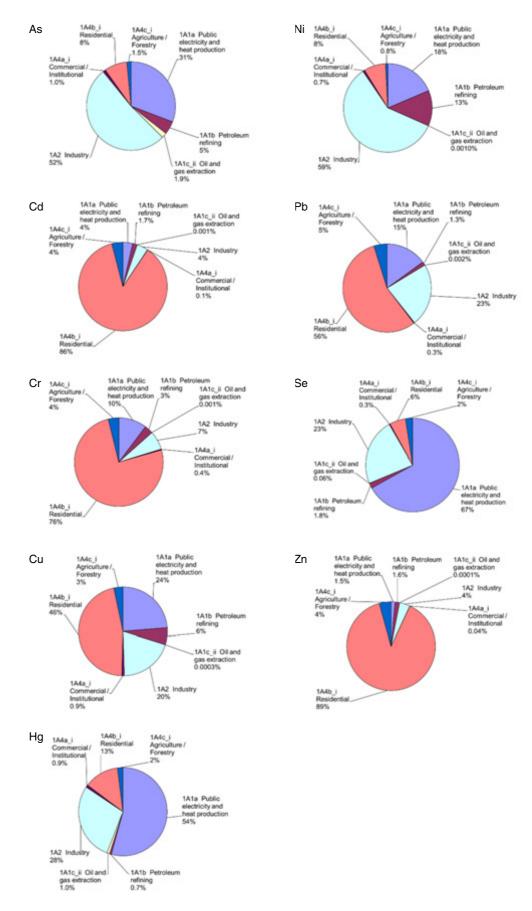


Figure 28 Heavy metal emission sources, stationary combustion plants, 2018.

The time series for heavy metal emissions are provided in Figure 29. Emissions of all heavy metals have decreased considerably (18 % - 92 %) since 1990, see Table 16. Emissions have decreased despite increased incineration of waste. This has been possible due to installation and improved performance of gas cleaning devices in waste incineration plants and also in large power plants, the latter being a further important emission source. The Zn and Cd emission decrease only 18 % and 37 % respectively. The smaller decrease compared to other HMs is due to a relatively high emission share from residential wood combustion even in 1990.

For Cd, Cr, Pb and Zn the main emission source in recent years was residential plants, mainly from residential wood combustion. Thus, in recent years the time series for Cd, Cr, Pb and Zn follow the time series for residential wood combustion.

Pollutant Cd Cr Cu Zn As Hg Ni Pb Se 88 37 76 84 92 92 86 90 18 Decrease since 1990, %

Table 16 Decrease in heavy metal emissions from 1990 to 2018.

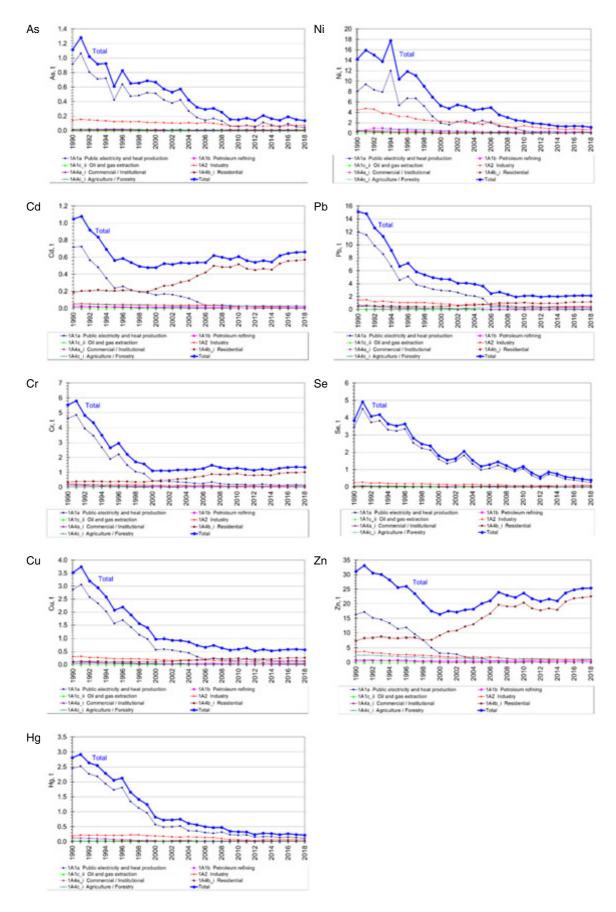
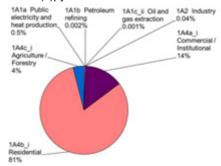


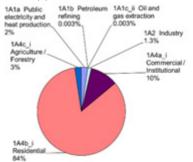
Figure 29 Heavy metal emission time series, stationary combustion plants.

4.9 Polycyclic aromatic hydrocarbons (PAH)

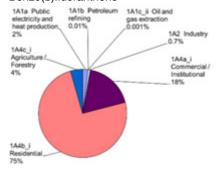
Stationary combustion plants accounted for more than 86 % of the PAH emissions in 2018.

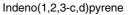

Table 17 and Figure 30 present the PAH emissions inventories for the stationary combustion subcategories. Residential combustion is the largest emission source accounting for more than 75 % of the emission. Combustion of wood is the predominant source, accounting for more than 97 % of the PAH emissions from residential plants, see Figure 31.

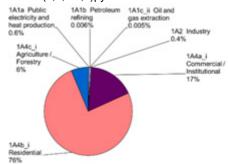
The time series for PAH emissions are presented in Figure 32. The time series for wood combustion in residential plants is also provided in Figure 32. The wood combustion in residential plants has increased whereas the emission factors have decreased due to installation of new residential wood combustion units.

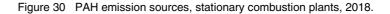

	Benzo(a)-	Benzo(b)-	Benzo(k)-	Indeno
	pyrene,	fluoran-	fluoran-	(1,2,3-c,d)
		thene,	thene,	pyrene,
	kg	kg	kg	kg
1A1a Public electricity and heat production	10	43	30	7
1A1b Petroleum refining	0	0	0	0
1A1c Oil and gas extraction	0	0	0	0
1A2 Industry	1	16	16	5
1A4a Commercial/institutional	295	388	129	210
1A4b Residential	1686	1591	1045	921
1A4c Agriculture/forestry	83	95	30	77
Total	2074	2134	1250	1219
Emission share from stationary combustion	93%	89%	87%	86%

1) Only emission from stationary combustion plants in the source categories is included.


Benzo(a)pyrene




Benzo(k)fluoranthene



Benzo(b)fluoranthene

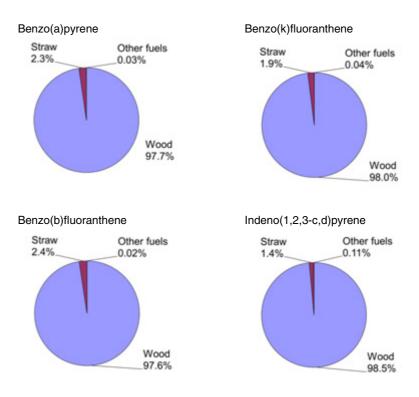
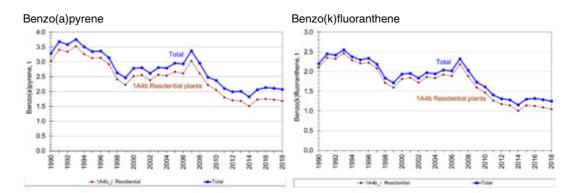
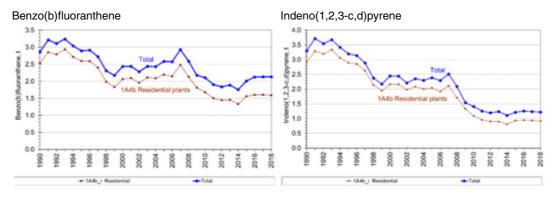




Figure 31 PAH emissions from residential combustion plants (stationary), fuel origin.

Combustion of wood in residential plants

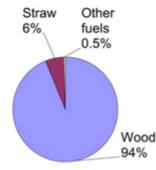
Figure 32 PAH emission time series, stationary combustion plants. Comparison with wood consumption in residential plants.

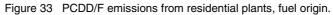
4.10 Polychlorinated dibenzodioxins and -furans (PCDD/F)

Stationary combustion plants accounted for 81 % of the national emission of polyclorinated dibenzodioxins and –furans (PCDD/F) in 2018.

Table 18 presents the PCDD/F emission inventories for the stationary combustion subcategories. In 2018, the emission from residential plants accounted for 90 % of the emission. Combustion of wood is the predominant source accounting for 94 % of the emission from residential plants (Figure 33).

The time series for PCDD/F emissions are presented in Figure 34. The PCDD/F emissions have decreased 39 % since 1990 mainly due to installation of dioxin filters in waste incineration plants.


The emission from residential plants has increased due to increased wood consumption in this source category. The dioxin emission factors for residential wood combustion are dependent on the wood origin but independent of stove technology (Chapter 6.13). Thus, the dioxin emissions from residential


wood combustion has not decreased similar to e.g. the PM and PAH emissions due to implementation of new improved stoves and boilers.

	PCDD/ F,	1A1a Public electricity and heat production, 4%	1A1b Petroleum refining 0.00216	1A1c_II Oil and gas extraction 0.002% 1A2 industry
	g I-teq	1A4c_i Agriculture /,		0.2%
1A1a Public electricity and heat production	1.24	Forestry 4%	V	1A4a_i Commercial/
1A1b Petroleum refining	0.001			2%
1A1c Oil and gas extraction	0.001			
1A2 Industry	0.07			
1A4a Commercial/institutional	0.65		144	b i
1A4b Residential	26.05	-	Res 901	idential
1A4c Agriculture/forestry	0.99			
Total	29.00			

Table 18 PCDD/F emissions from stationary combustion plants, 2018¹).

1) Only emission from stationary combustion plants in the source categories is included.

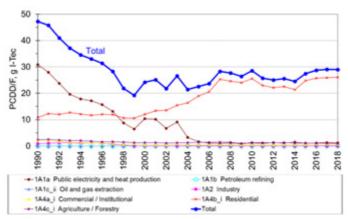
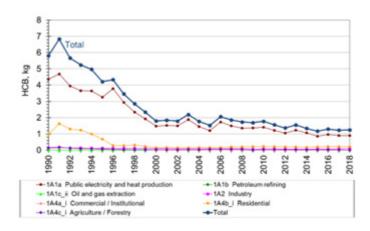


Figure 34 PCDD/F emission time series, stationary combustion plants.

4.11 Hexachlorobenzene (HCB)

Stationary plants accounted for 50 % of the estimated national emission of hexachlorobenzene (HCB) in 2018.


Table 19 shows the HCB emission inventory for the stationary combustion subcategories. Public electricity and heat production account for 72 % of the emission. Residential plants account for 18 % of the emission.

The time series for HCB emission is presented in Figure 35. The HCB emission has decreased 79 % since 1990 mainly due to improved flue gas cleaning in waste incineration plants. The high emission from residential plants in 1990-1995 is related to combustion of coal in residential plants.

Table 19 HCB emission from stationary combustion plants, 2018¹).

	HCB, 1A4a j 1A4b j 1A4c j Residential Agriculture /
	kg Institutional 18% Forestry 2%
1A1a Public electricity and heat production	0.905
1A1b Petroleum refining	0.0001
1A1c Oil and gas extraction	0.0000 1A2 industry
1A2 Industry	0.094
1A4a Commercial/institutional	0.009 Infring
1A4b Residential	0.221 (141a Public
1A4c Agriculture/forestry	0.019 heat production 72%
Total	1.249

 Only the emission from stationary combustion plants in the source categories is included.

4.12 Polychlorinated biphenyls (PCB)

Polychlorinated biphenyls (PCBs) can be emitted in any chemical process involving chloride and organic carbon or emitted due to incomplete combustion of PCBs in fuel (waste incineration). In Denmark, waste with high levels of PCBs is only incinerated in plants with permission to incinerate this waste fraction, as it requires a high combustion temperature.

Different references for PCBs emissions are not directly comparable because some PCB emission data are reported for individual PCB congeners, some as a sum of a specified list of PCB congeners and some PCB emission data are reported as toxic equivalence (teq) based on toxicity equivalence factors (TEF) for 12 dioxin-like PCB congeners. The emission measurements reported by Thistlethwaite (2001a and 2001b) show that the emission of non-dioxin-like PCBs is high compared to the emission of dioxin-like PCBs.

Furthermore, teq values based on TEF are reported as WHO_{2005} -teq or WHO_{1998} -teq. This difference is however typically less than 50%⁸.

For stationary combustion, the emission inventory is a sum of dioxin-like PCBs (dl-PCBs) emission, no teq values applied.

Stationary plants accounted for 83 % of the estimated national PCB emissions in 2018.

⁸ Data have been compared for a few datasets in which each dioxin-like PCB congeners were specified.

Table 20 shows the dl-PCB emission inventory for the stationary combustion subcategories. Public electricity and heat production accounted for 65 % of the emission in 2018. Residential plants accounted for 19 % of the emission.

The time series for dl-PCB emissions are presented in Figure 36. The dl-PCB emissions have decreased 63 % since 1990. The decrease is mainly a result of the flue gas cleaning devices that have been installed in waste incineration plants for dioxin reduction.

	PCB, 1A4b i Agriculture /
	kg 19% Forestry 2%
1A1a Public electricity and heat production	0.282
1A1b Petroleum refining	0.000
1A1c Oil and gas extraction	0.000
1A2 Industry	0.055
1A4a Commercial/institutional	0.005 142 industry
1A4b Residential	0.084 1A1b Petroleum
1A4c Agriculture/forestry	0.010 0.1% electricity and heat production
Total	0.436

1) Only the emission from stationary combustion plants in the source categories is included.

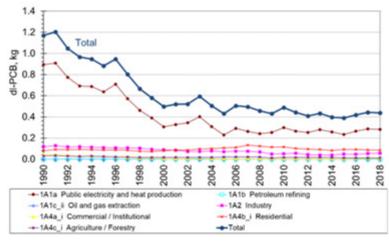
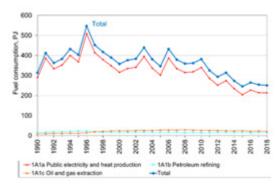


Figure 36 PCB emission time series, stationary combustion plants.

5 Trend for subsectors

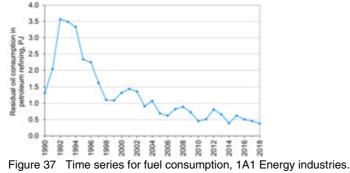
In addition to the data for stationary combustion, this chapter presents and discusses data for each of the subcategories in which stationary combustion is included. Time series are presented for fuel consumption and emissions.

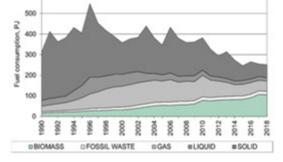

5.1 1A1 Energy industries

The emission source category 1A1 Energy industries consists of the subcategories:

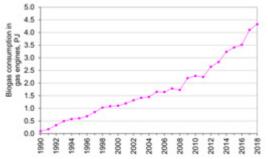
- 1A1a Public electricity and heat production
- 1A1b Petroleum refining
- 1A1c Oil and gas extraction

Figure 37-42 present time series for the Energy industries. Public electricity and heat production is the largest subcategory accounting for the main part of all emissions. Time series are discussed below for each subcategory.


600



Natural gas fuelled engines



Residual oil in petroleum refining

Biogas fuelled engines (biogas, bio gasification gas and bio natural gas)

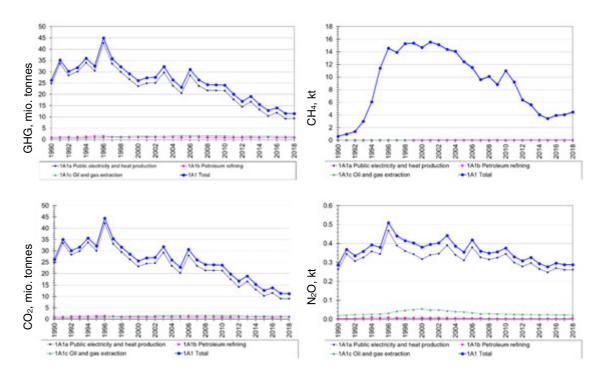


Figure 38 Time series for greenhouse gas emissions, 1A1 Energy industries.

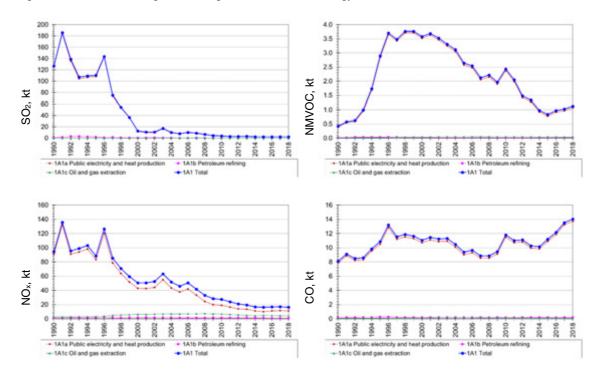


Figure 39 Time series for emission of SO₂, NO_x, NMVOCs and CO, 1A1 Energy industries.

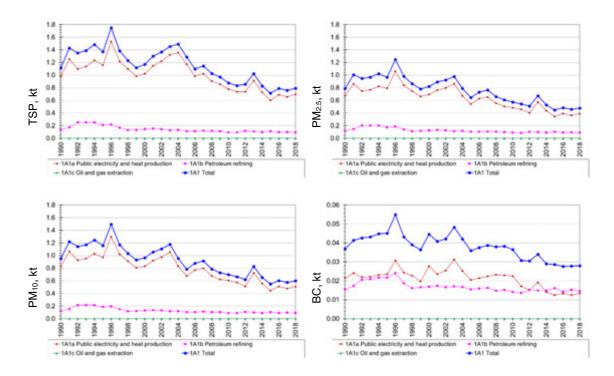


Figure 40 Time series for PM and BC emission, 1A1 Energy industries.

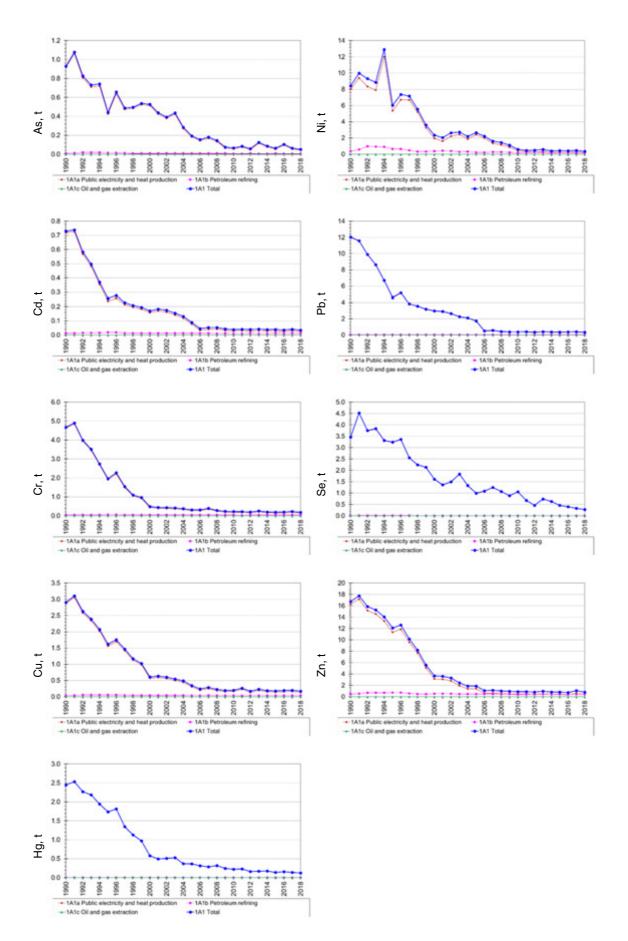


Figure 41 Time series for HM emissions, 1A1 Energy industries.

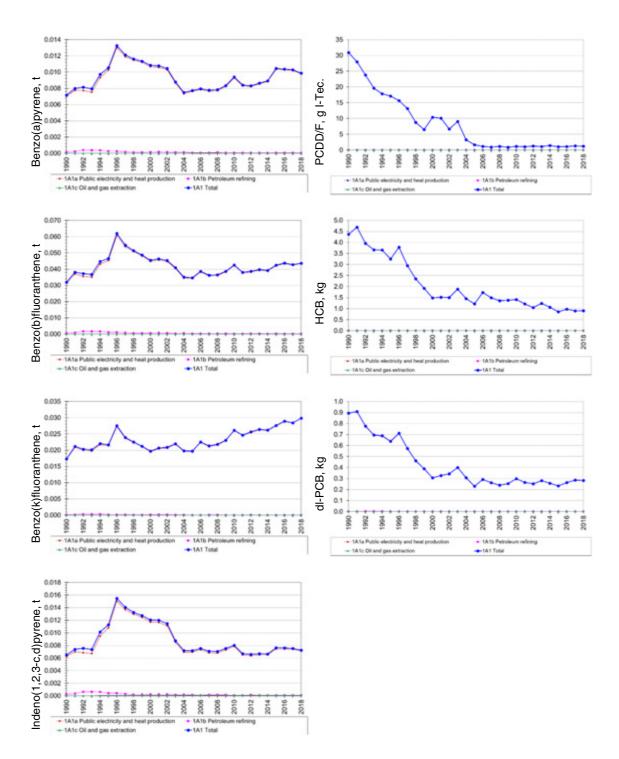


Figure 42 Time series for emission of PAH, PCDD/Fs, HCB and dl-PCBs, 1A1 Energy industries.

5.1.1 1A1a Public electricity and heat production

Public electricity and heat production is the largest source category regarding both fuel consumption and greenhouse gas emissions for stationary combustion. Figure 43 and Figure 44 show the time series for fuel consumption and emissions.

The fuel consumption in public electricity and heat production was 26 % lower in 2018 than in 1990. In addition to fuel type changes, the total fuel consumption is also influenced by the fact that the Danish wind power production has increased.

As discussed in Chapter 2, the fuel consumption fluctuates mainly because of electricity trade. Coal is the fuel that is affected the most by the fluctuating electricity trade.

Coal is the main fuel in the source category even in years with electricity import. The coal consumption in 2018 was 74 % lower than in 1990. Natural gas is also an important fuel and the consumption of natural gas increased in 1990-2000 but has decreased since 2010. A considerable part of the natural gas is combusted in gas engines (Figure 37). The consumption of waste and biomass has increased.

The CO₂ emission was 63 % lower in 2018 than in 1990. This decrease – in spite of only a 26 % decrease in fuel consumption - is a result of the change of fuel types used.

The CH_4 emission increased until the mid-nineties as a result of the considerable number of lean-burn gas engines installed in CHP plants in Denmark in this period. The decline after 2004 is due to structural changes in the Danish electricity market, which means that the fuel consumption in gas engines has been decreasing (Figure 37). The emission in 2018 was 7.4 times the 1990 emission level.

The N_2O emission in 2018 was 1 % lower than the 1990 emission level. The emission fluctuates similar to the fuel consumption.

The SO_2 emission has decreased 98 % from 1990 to 2018. This decrease is a result of both lower sulphur content in fuels and installation and improved performance of desulphurisation plants. The emission was 4 % higher in 2018 than in 2017.

The NO_x emission has decreased 88 % since 1990 due to installation of low NO_x burners, selective catalytic reduction (SCR) units and selective non-catalytic reduction (SNCR) units. The fluctuations in time series follow the fluctuations in fuel consumption and electricity trade. The NO_x emission was 3 % lower in 2018 than in 2017.

The emission of NMVOCs in 2018 was 2.7 times the emission in 1990. The emission increased until 1996 and decreased after 2002. This is a result of the large number of gas engines installed in Danish CHP plants. The decreasing emission after 2004 is results of the decreasing fuel consumption for natural gas engines (Figure 37). In addition, the NMVOC emission factor for engines

decreased in 1995-2007 due to introduction of an emission limit value for unburned hydrocarbon⁹ (DEPA, 2005).

The CO emission was 74 % higher in 2018 than in 1990. The fluctuations follow the fluctuations of the fuel consumption. In addition, the emission from gas engines is considerable. The increase in later years is caused by an increase in the use of biogas fuelled gas engines.

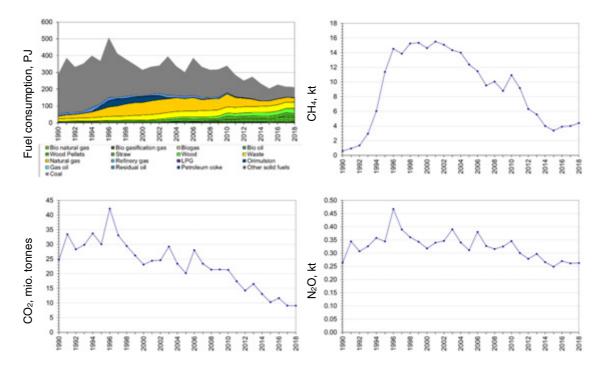


Figure 43 Time series for fuel consumption and GHG emissions from 1A1a Public electricity and heat production.

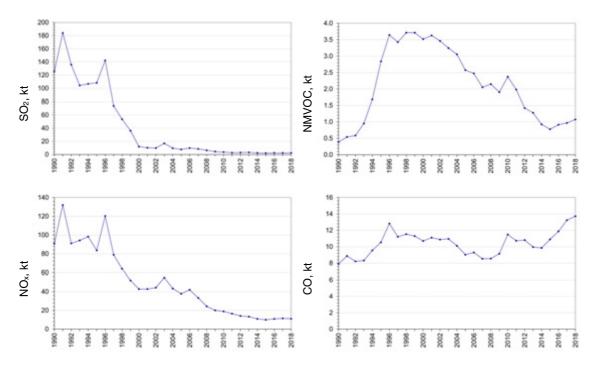


Figure 44 Time series for fuel consumption and for emission of SO_2 , NO_x , NMVOCs and CO from 1A1a Public electricity and heat production.

9 Including methane.

5.1.2 1A1b Petroleum refining

Petroleum refining is a small source category regarding both fuel consumption and emissions for stationary combustion. There are presently two refineries operating in Denmark. Figure 45 and Figure 46 shows the time series for fuel consumption and emissions.

The significant decrease in both fuel consumption and emissions in 1996 is a result of the closure of a third refinery.

The fuel consumption has increased 4 % since 1990 and the $\rm CO_2$ emission has decreased 2 %.

The CH_4 emission has increased 1 % since 1990 and decreased 1 % since 2017. The reduction in CH_4 emission from 1995 to 1996 is caused by the closure of a refinery.

The N_2O emission was 83 % higher in 2018 than in 1990. The emission increased in 1993 as a result of the installation of a gas turbine in one of the refineries (DEA, 2019b).

The N_2O emission factor for the refinery gas fuelled gas turbine has been assumed equal to the emission factor for natural gas fuelled turbines and thus the emission factor have been decreasing since 2001. The time series for the emission factor cause the decreasing N_2O emission since 2001.

The emission of SO₂ has shown a pronounced decrease (86 %) since 1990, mainly because decreased consumption of residual oil (71 %) also shown in Figure 37. The increase in SO₂ emission in 1990-1992 also follows the residual oil consumption. The NO_x emission in 2018 was 29 % lower in 2018 than in 1990. Since 2005, data for both SO₂ and NO_x are plant-specific data stated by the refineries.

The NMVOC emission time series follows the time series for fuel consumption.

A description of the Danish emission inventory for fugitive emissions from fuels is given in Plejdrup et al. (2015).

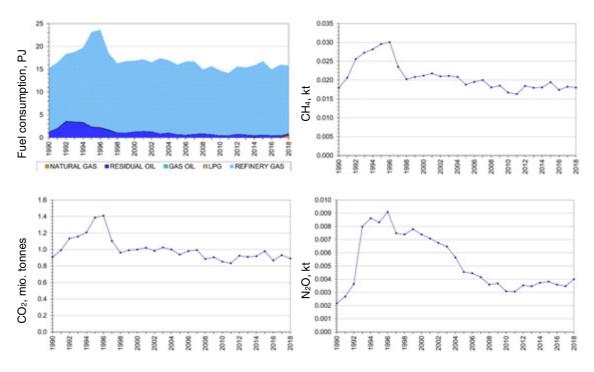


Figure 45 Time series for fuel consumption and GHG emissions from 1A1b Petroleum refining.

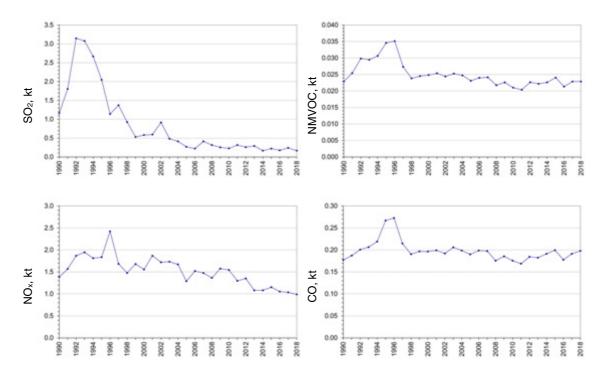


Figure 46 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A1b Petroleum refining.

5.1.3 1A1c Oil and gas extraction

The source category Oil and gas extraction comprises natural gas consumption in the offshore industry and in addition a small consumption in the Danish gas treatment plant¹⁰. Gas turbines are the main plant type.

Fugitive emissions from fuels are not included in the sector. Venting and flaring are included in the sector 1B2c Venting and flaring.

Figure 47 and Figure 48 show the time series for fuel consumption and emissions.

The fuel consumption in 2018 was 2.3 times the consumption in 1990. The fuel consumption has decreased since 2008. The CO_2 emission follows the fuel consumption and the emission in 2018 was 2.3 times the emission in 1990.

The time series for N_2O emission follows the decreasing emission factor for gas turbines applied in CHP plants.

The emissions follow the increase of fuel consumption.

The decrease of CO emission in 2005 – 2007 is a result of a lower emission factor. This decrease of emission factor is valid for gas turbines in cogeneration plants, but might not be valid for offshore gas turbines. However, the same emission factors have been assumed for CO emission due to the lack of data from offshore gas turbines.

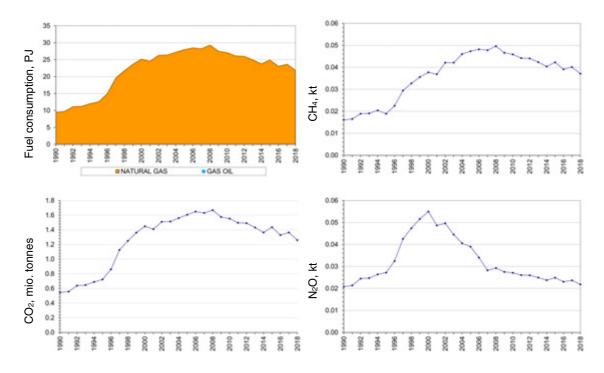


Figure 47 Time series for fuel consumption and GHG emissions from 1A1c Oil and gas extraction.

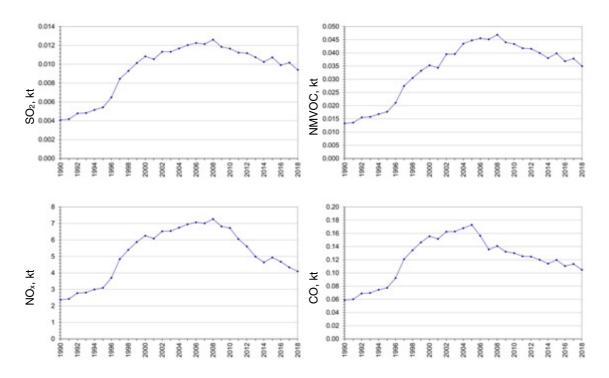


Figure 48 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A1c Oil and gas extraction.

5.2 1A2 Industry

Manufacturing industries and construction (Industry) consists of both stationary and mobile sources. In this report, only stationary sources are included. Emissions from industrial processes e.g. calcination are not included in the sector stationary combustion.

The emission source category 1A2 Industry consists of the subcategories:

- 1A2a Iron and steel
- 1A2b Non-ferrous metals
- 1A2c Chemicals
- 1A2d Pulp, paper and print
- 1A2e Food processing, beverages and tobacco
- 1A2f Non-metallic minerals
- 1A2 g viii Other manufacturing industry

The figures 49-54 show the time series for fuel consumption and emissions. The subsectors Non-metallic minerals, Other manufacturing industry and Food processing, beverages and tobacco are the main subsectors for fuel consumption and emissions.

The total fuel consumption in industrial combustion was 13 % lower in 2018 than in 1990. The consumption of natural gas has increased since 1990 whereas the consumption of coal has decreased. The consumption of residual oil has decreased, but the consumption of petroleum coke increased. The biomass consumption in 2018 was 2.2 times the consumption in 1990.

The greenhouse gas emission and the CO_2 emission are both rather stable until 2006 following the small fluctuations in fuel consumption. The emission decreased in 2006-2009. Due to change of applied fuels, the greenhouse gas and CO_2 emissions have decreased more than the fuel consumption since 1990; The GHG emission has decreased 30 % since 1990 and the CO_2 emission has decreased 31%.

The CH₄ emission has increased from 1994-2001 and decreased again from 2001 - 2007. In 2018, the emission was 3.2 times the emission level in 1990. The CH₄ emission follows the consumption of natural gas and biogas in gas engines (Figure 49). Most industrial CHP plants based on gas engines came in operation in the years 1995 to 1999. The decrease after 2004 is a result of the liberalisation of the electricity market. The increased emission after 2013 is related to new biogas fuelled gas engines in the food industry. The CH₄ emission factor for gas engines is higher than for other plant technologies, see Chapter 7.3.1. The CH₄ emission factor for natural gas fuelled engines is higher than for biogas-fuelled engines due to different engine technologies applied for the two fuels. A high share of natural gas is combusted in large prechamber engines whereas smaller open chamber lean-burn engines is the main technology for biogas-fuelled engines.

The N_2O emission has increased 11 % since 1990. The emission from mineral wool production¹¹ is a large emission source, and the production of mineral

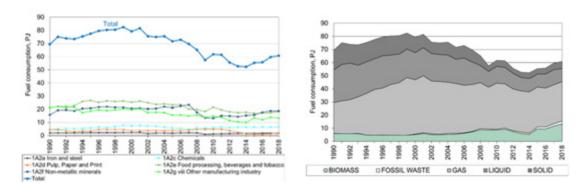
¹¹ Included in sector 1A2g viii Other manufacturing industry.

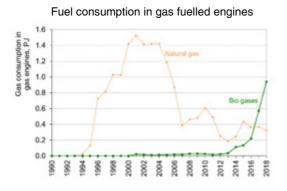
wool production has increased in later years. This cause the increase of the N_2O emission in recent years.

The increase of N_2O emission from 1994 to 1995 is related to combustion of coke oven coke in mineral wool production. Plant-specific fuel consumption data are only available from 1995 onwards for the mineral wool production plants.

The SO_2 emission has decreased 84 % since 1990. This is mainly a result of lower consumption of residual oil in the industrial sector (Figure 49). Further, the sulphur content of residual oil and several other fuels has decreased since 1990 due to legislation and tax laws.

The NO_x emission has decreased 57 % since 1990 due to the reduced emission from industrial boilers in general. Cement production is the main emission source accounting for more than 30 % of the industrial emission in 1990-2018¹².


The NO_x emission from cement production was reduced considerably in 2009-2013. The emission increased in 2013-2018. The NO_x emission from cement industry was 42 % of the total emission from manufacturing industries and construction in 2018. The NO_x emission from cement production was reduced 42 % since 1990. The reduced emission is a result of installation of SCR on all production units at the cement production plant in 2004-2007¹³ and improved performance of the SCR units in recent years. A NO_x tax was introduced in 2010 (DMT, 2008). The increase in 2015-2018 is related to a reduction of the NO_x tax from 2015 (DMT, 2015).


The NMVOC emissions has decreased 36 % since 1990. The decrease is mainly a result of decreased emission factor for combustion of wood in industrial boilers. The emission from gas engines has however increased considerably after 1995 due to the increased fuel consumption that is a result of the installation of a large number of industrial CHP plants (Figure 49). The NMVOC emission factor for gas engines is much higher than for boilers regardless of the fuel.

The CO emission in 2018 was 40 % higher than in 1990. The main sources of CO emission are combustion of wood and cement production. The CO emission from mineral wool production is included in the industry sector (2A6). The increased of emission in 1998 is related to the cement production plant in Denmark. The CO emission increased due to combustion of more paper pulp. In the following years, the combustion of this fuel was improved to decrease the CO emission (Annual environmental reports from Aalborg Portland, 1998-2002).

¹² More than 73 % of sector 1A2f i.

¹³ To meet emission limit.

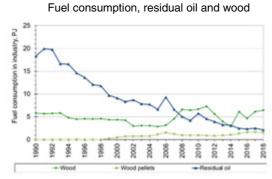


Figure 49 Time series for fuel consumption, 1A2 Industry.

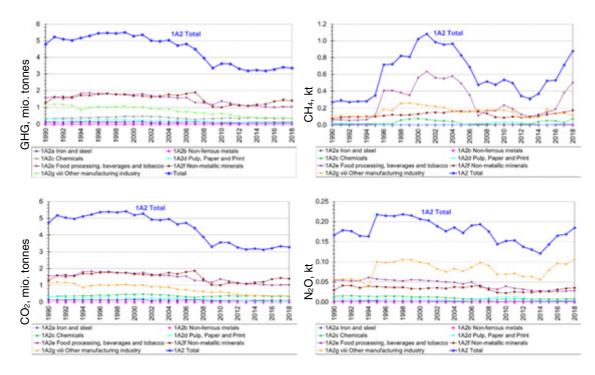


Figure 50 Time series for greenhouse gas emissions, 1A2 Industry.

Figure 51 Time series for emission of SO₂, NO_x, NMVOC and CO, 1A2 Industry.

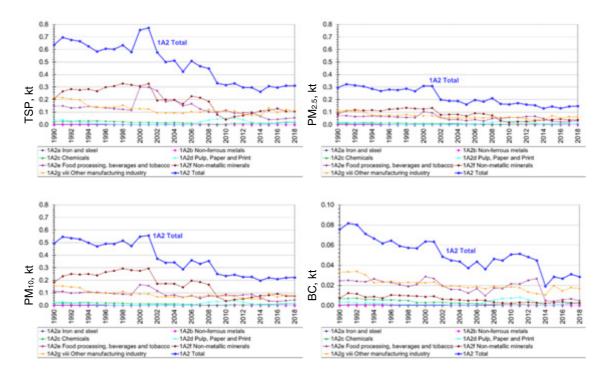


Figure 52 Time series for PM and BC emission, 1A2 Industry.

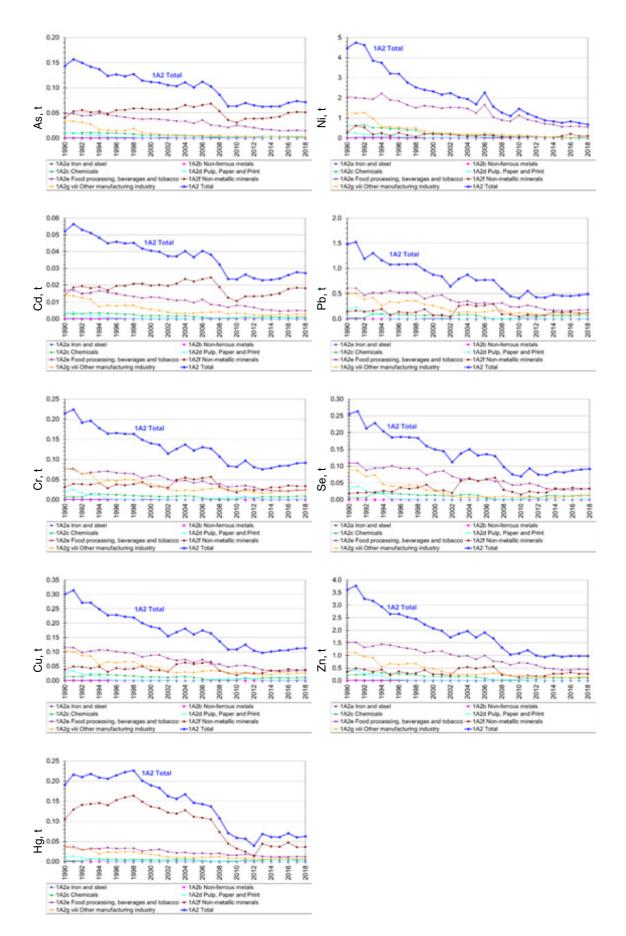


Figure 53 Time series for HM emissions, 1A2 Industry.

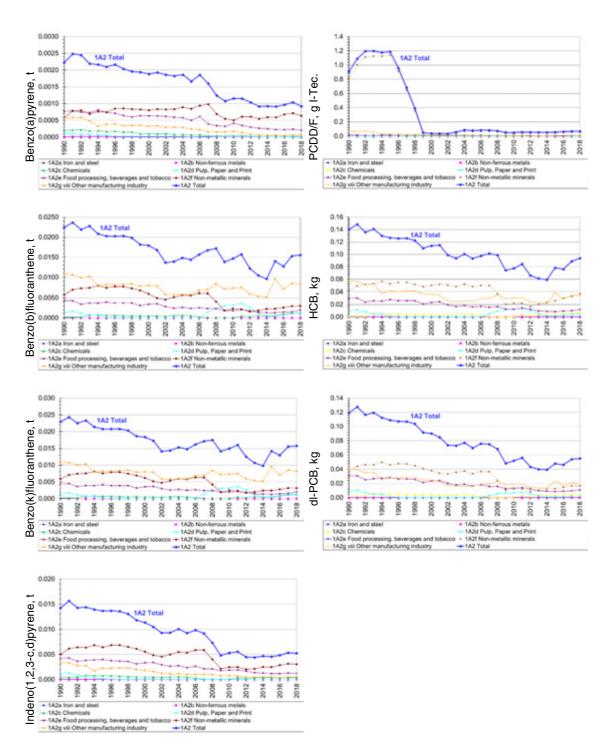
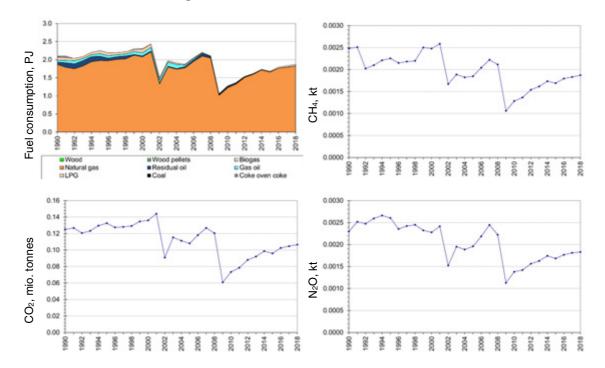



Figure 54 Time series for emission of PAHs, PCDD/Fs, HCB and dioxin-like PCBs, 1A2 Industry.

5.2.1 1A2a Iron and steel

Iron and steel is a very small emission source category. Figure 55 and Figure 56 show the time series for fuel consumption and emissions.

Natural gas is the main fuel in the subsector.

Figure 55 Time series for fuel consumption and GHG emissions from 1A2a Iron and steel.

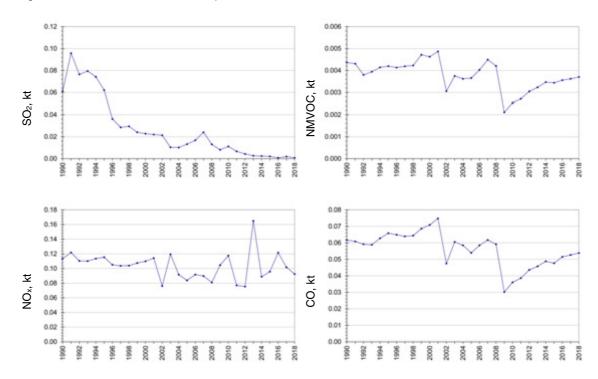


Figure 56 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A2a Iron and steel.

5.2.2 1A2b Non-ferrous metals

The energy statistics have been recalculated and now no fuel consumption is reported for non-ferrous metals.

5.2.3 1A2c Chemicals

Chemicals is a minor emission source category. Figure 57 and Figure 58 show the time series for fuel consumption and emissions.

Natural gas is the main fuel in this subsector. The CO_2 emission time series follow the time series for fuel consumption. The time series for CH_4 emission 1997-2006 is related to consumption of natural gas in gas engines. The increased CH_4 emission in 2014 to 2018 is related to one biogas fuelled engine. The decreasing time series for N_2O emission is related to the decreasing consumption of residual oil.

Natural gas is the main fuel in this subsector. The consumption of residual oil has decreased and the SO_2 emission follows this fuel consumption. The increased emission of NMVOCs and CO in 2016-2018 is related to the consumption of wood.

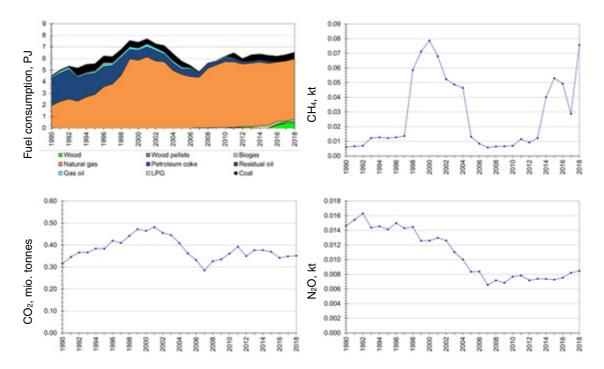


Figure 57 Time series for fuel consumption and GHG emissions from 1A2c Chemicals.

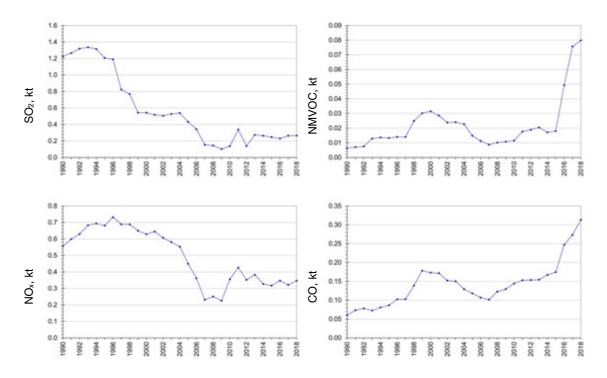


Figure 58 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A2c Chemicals.

5.2.4 1A2d Pulp, paper and print

Pulp, paper and print is a minor emission source category. Figure 59 and Figure 60 show the time series for fuel consumption and emissions.

The fuel consumption decreased 51 % from 1990. The time series is related to both closure of plants and new combustion units in exiting plants. In addition, the liberalisation of the electricity market caused less operational hours of a natural gas fuelled gas turbine. Natural gas, and in 2007-2013 also wood, are the main fuels in the subsector. The increased use of wood from 2007 is reflected in the CO_2 emission time series.

The increased consumption of wood in 2007-2013 is also reflected in the $\rm CH_4$ and $\rm N_2O$ emission time series.

The consumption of coal and residual oil has decreased and this is reflected in the SO_2 emission time series. The increased consumption of wood in 2007-2012 has resulted in a considerable increase and decrease in NMVOCs and CO emission in 2007-2012.

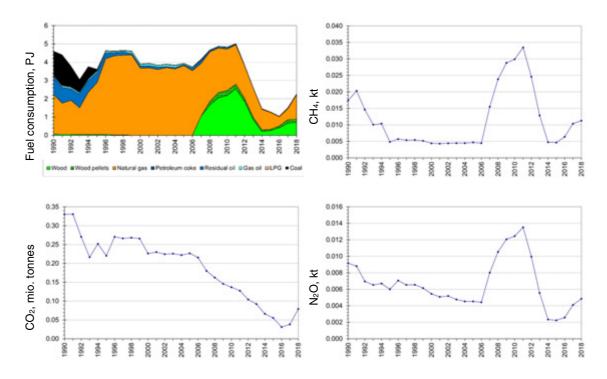


Figure 59 Time series for fuel consumption and GHG emissions from 1A2d Pulp, paper and print.

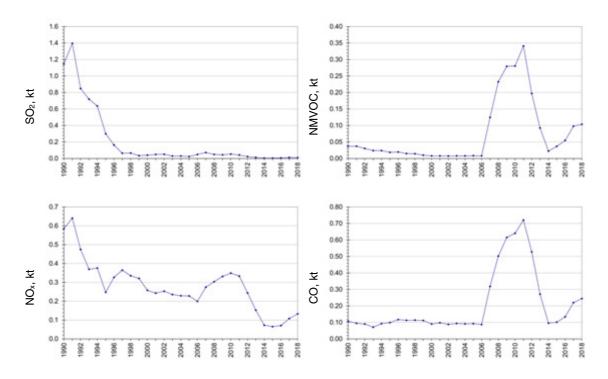


Figure 60 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A2d Pulp, paper and print.

5.2.5 1A2e Food processing, beverages and tobacco

Food processing, beverages and tobacco is a considerable industrial subsector. Figure 61 and Figure 62 show the time series for fuel consumption and emissions.

Natural gas, residual oil and coal are the main fuels in the subsector. The consumption of coal and residual oil has decreased whereas the consumption of natural gas has increased.

The time series for CH_4 emission follows the consumption of natural gas in gas engines.

The decreased consumption of residual oil and coal is reflected in the SO_2 emission time series.

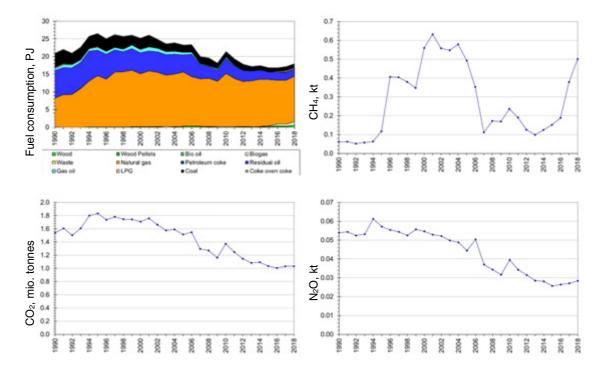


Figure 61 Time series for fuel consumption and GHG emissions from 1A2e Food processing, beverages and tobacco.

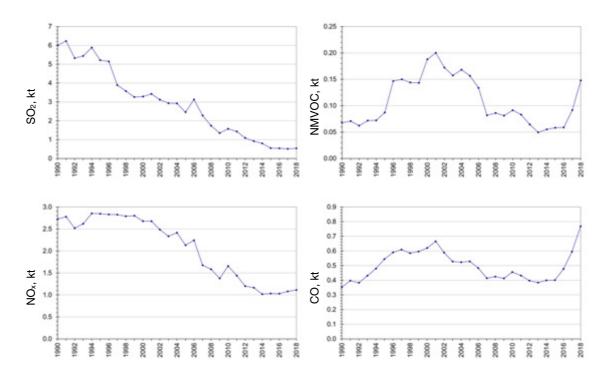


Figure 62 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A2e Food processing, beverages and tobacco.

5.2.6 1A2f Non-metallic minerals

Non-metallic minerals is a considerable industrial subsector. The subsector includes cement production that is a major industrial emission source in Denmark. Figure 63 and Figure 64 shows the time series for fuel consumption and emissions.

Petroleum coke, natural gas, industrial waste and coal are the main fuels in the subsector in recent years. The consumption of coal and residual oil has decreased.

Due to the global recession, cement production decreased in 2008 and 2009, but has slightly increased since then. This is reflected in the time series.

Emissions from industrial processes e.g. calcination are not included in the sector stationary combustion. Thus, the CO_2 time series for cement production shown in Figure 63 is only for combustion of fossil fuels in the cement industry. The calcination in cement industry is included in the emission inventory sector 2A Industrial processes and product use, Mineral industry.

The reduced NO_x emission is a result of installation of SCR on all production units at the cement production plant in $2004-2007^{14}$ and improved performance of the SCR units in the following years. A NO_x tax was introduced in 2010 (DMT, 2008). The NO_x-tax was reduced after 2015 (DMT, 2015).

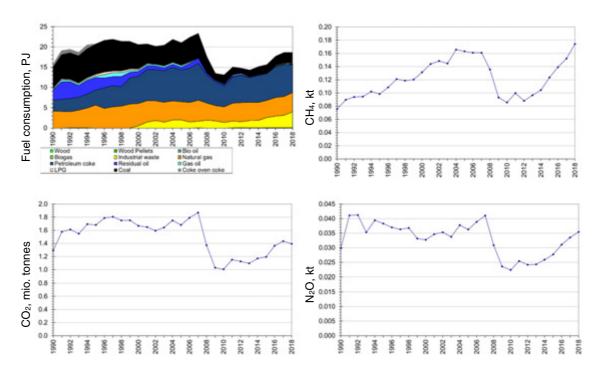


Figure 63 Time series for fuel consumption and GHG emissions from 1A2f Non-metallic minerals.

¹⁴ To meet emission limit.

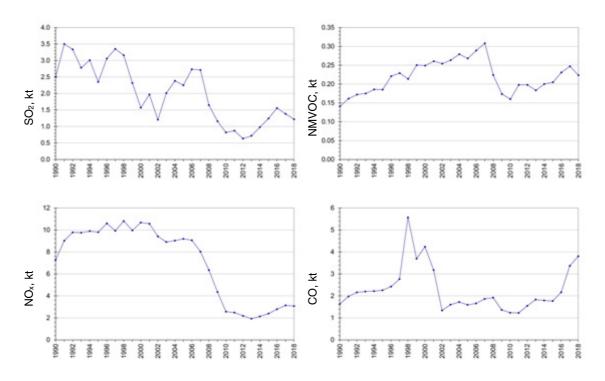


Figure 64 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A2f Non-metallic minerals.

5.2.7 1A2g Other manufacturing industry

Other manufacturing industry is a considerable industrial subsector including Process furnaces without contact, Food and tobacco industry, Textile and leather industry, Transport Equipment, Machinery, Wood and wood products, Construction and Non-specified industry. Figure 65 and Figure 66 show the time series for fuel consumption and emissions.

Natural gas and wood are the main fuels in the subsector in recent years. The consumption of coal and residual oil has decreased.

The time series for CH₄ is related to the consumption of natural gas in gas engines.

Combustion of coke oven coke in mineral wool production is a large emission source for N_2O . Plant-specific fuel consumption rates for the mineral wool production plants are available from 1995. This causes the increase in N_2O emission between 1994 and 1995.

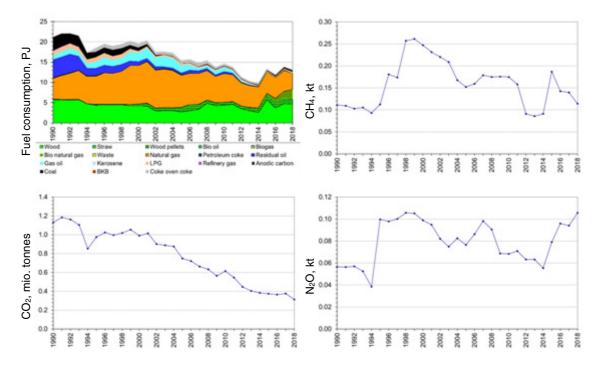


Figure 65 Time series for fuel consumption and GHG emissions from 1A2g Industry - other.

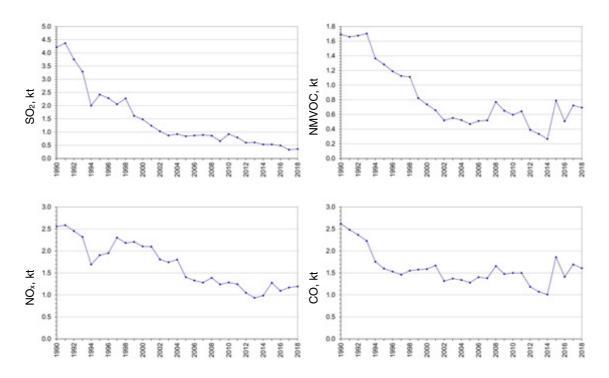


Figure 66 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A2g Other manufacturing industry.

5.3 1A4 Other sectors

The emission source category 1A4 Other sectors consists of the subcategories:

- 1A4a Commercial/institutional plants.
- 1A4b Residential plants.
- 1A1c Agriculture/forestry.

The Figures 67-72 present time series for this emission source category. Residential plants are the dominant subcategory accounting for the largest part of all emissions. Time series for GHGs, SO_2 , NO_x , NMVOCs and CO are discussed below for each subcategory.

The PM emissions increased until 2007 and decreased after 2007. The increase until 2007 was caused by the increased wood combustion in residential plants. However, the PM emission factors have decreased for this emission source category due to installation of modern stoves and boilers (see Chapter 6.13). The stabilisation of wood consumption in residential plants in 2007-2014 has resulted in a decrease of PM emission from stationary combustion between 2007 and 2014. The PM emission data for residential wood combustion include condensable particles.

The emission of BC was 16 % higher in 2018 than in 1990. The largest emission sources for BC is combustion of wood and straw in residential plants and in agricultural/forestry plants. The combustion of wood in residential plants has increased since 1990, but the emission factor has decreased due to implementation of new improved stoves and boilers, see Chapter 6.13.

The emission of some HMs has increased since 1990, whereas the emission of other HMs has decreased. The decreased emissions are related to lower consumption of solid and liquid fossil fuels and waste. The emissions of Zn and Cd have increased due to a considerable emission from residential wood combustion even in 1990. The emission factors for HMs from residential wood combustion are not considered dependent of combustion technology (Chapter 6.13), and thus the increasing consumption of wood is reflected in the HM emissions.

Residential wood combustion is the predominant emission source for PAH emissions. The emission factors applied for residential wood combustion are technology dependent (Chapter 6.13) and thus the PAH emissions decrease in spite of the increasing consumption of wood.

The emission of PCDD/F has increased since 1990. The main emission source is residential wood combustion. The dioxin emission factors for residential wood combustion are dependent on the wood origin but independent of stove technology (Chapter 6.13). Thus, the dioxin emission from residential wood combustion has not decreased similar to e.g. the PM and PAH emissions due to replacements of old stoves and boilers.

The emission of dl-PCBs have decreased mainly due to decreased emission from Commercial/institutional plants. This is a result of decreased consumptions of solid and liquid fuels and waste in this sector.

The HCB emission time series follows the fuel consumption of coal in residential plants. The HCB emission factor for coal used in residential plants is high compared to other fuels.

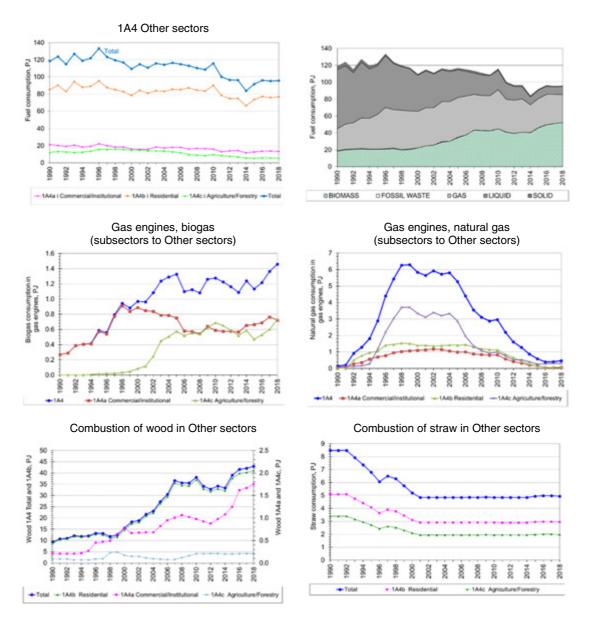


Figure 67 Time series for fuel consumption, 1A4 Other sectors.

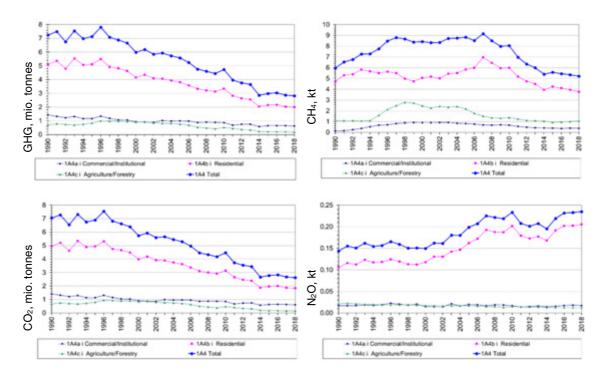


Figure 68 Time series for greenhouse gas emission, 1A4 Other sectors.

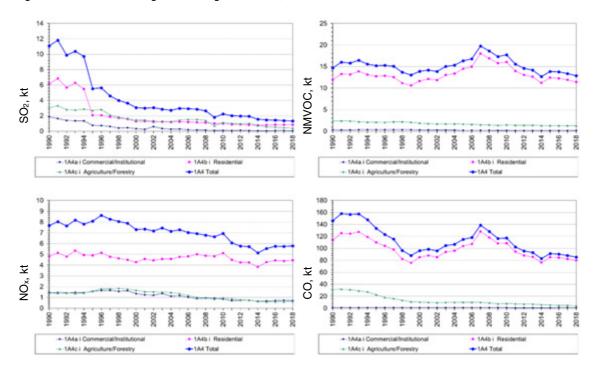


Figure 69 Time series for emission of SO₂, NO_x, NMVOCs and CO emission, 1A4 Other sectors.

Figure 70 Time series for PM and BC emission, 1A4 Other sectors.

Figure 71 Time series for HM emissions, 1A4 Other sectors.

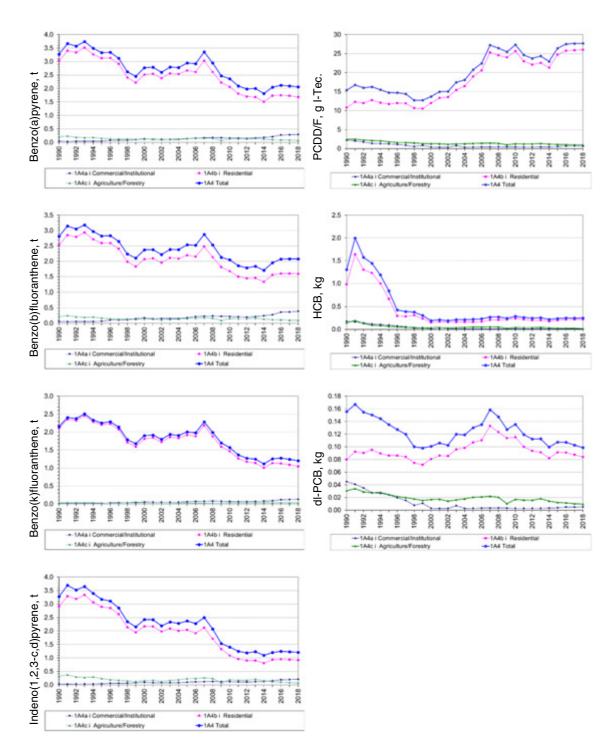


Figure 72 Time series for emission of PAHs, PCDD/F, HCB and dioxin-like PCBs, 1A4 Other sectors.

5.3.1 1A4a Commercial and institutional plants

The subcategory Commercial and institutional plants consists of both stationary and mobile sources. In this chapter, only stationary sources are included. Figure 73 and Figure 74 show the time series for fuel consumption and emissions.

The subcategory Commercial and institutional plants has low fuel consumption and emissions compared to the other stationary combustion emission source categories.

The fuel consumption in commercial/institutional plants has decreased 37 % since 1990 and the fuels applied have changed. The fuel consumption consists mainly of gas oil and natural gas. The consumption of gas oil has decreased since 1990. The consumption of wood and biogas has increased. The wood consumption in 2018 was 8.6 times the consumption in 1990.

The CO_2 emission has decreased 57 % since 1990. Both the decrease of fuel consumption and the change of fuels contribute to the decreased CO_2 emission.

The CH_4 emission in 2018 was 2.9 times the 1990 level. The increase is mainly a result of the increased emission from natural gas fuelled engines. The emissions from biogas fuelled engines and from combustion of wood also contribute to the increase. The time series for consumption of natural gas and biogas are shown in Figure 67.

The N_2O emission in 2018 was 2 % higher than in 1990. The fluctuations of the N_2O emission are mainly a result of fluctuations in consumption of natural gas and waste.

The SO_2 emission has decreased 97 % since 1990. The decrease is a result of both the change of fuel from gas oil to natural gas and of the lower sulphur content in gas oil and in residual oil. The lower sulphur content (0.05 % for gas oil since 1995 and 0.7 % for residual oil since 1997) is a result of Danish tax laws (DEPA, 1998).

The NO_x emission was 51 % lower in 2018 than in 1990. The decrease is mainly a result of the lower fuel consumption but also the change from gas oil to natural gas has contributed to the decrease. The emission from wood combustion has increased.

The NMVOC emissions in 2018 was 52 % lower than the 1990 emission level. The combustion of wood has increased but the emission factor has decreased. The increase and decrease of natural gas consumption in gas engines (Figure 67) is also reflected in the time series for NMVOC emissions.

The CO emission has decreased 12 % since 1990. This is a result of the change of fuels used in the sector. The emission from wood has increased whereas the emission from gas oil has decreased.

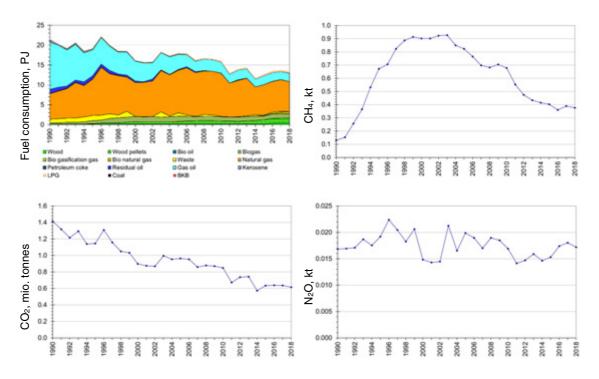


Figure 73 Time series for fuel consumption and GHG emissions from 1A4a Commercial /institutional.

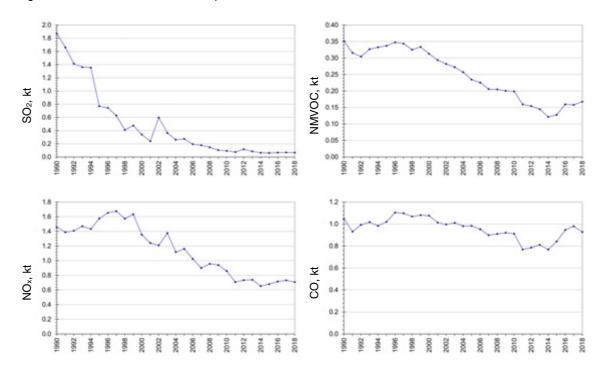


Figure 74 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A4a Commercial /institutional.

5.3.2 1A4b Residential plants

The emission source category Residential plants consists of both stationary and mobile sources. In this chapter, only stationary sources are included. Figure 75 and Figure 76 show the time series for fuel consumption and emissions.

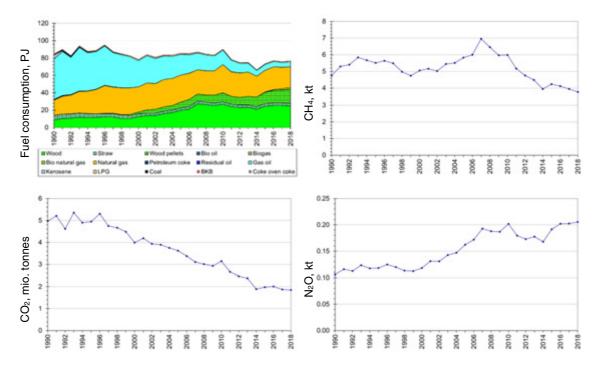
For residential plants, the total fuel consumption was 10 % lower in 2018 than in 1990. The large decrease from 2010 to 2011 was caused by high temperature in the winter season of 2011 compared to the cold winter of 2010. The consumption of gas oil has decreased since 1990 whereas the consumption of wood has increased considerably (4.6 times the 1990 level). The consumption of natural gas has also increased since 1990.

Residential wood combustion is a large emission source for several pollutants. Replacement of older stoves and boilers with new improved stoves and boilers has been implemented in the emission inventory for residential wood combustion, see also Chapter 6.13.

The CO_2 emission has decreased by 63 % since 1990. This decrease is mainly a result of the considerable change in fuels used from gas oil to wood and natural gas.

The CH_4 emission from residential plants was 21 % lower in 2018 than in 1990. Residential wood combustion is a large source of CH_4 emission and the consumption of wood has increased whereas the emission factor has decreased since 1990.

The change of fuel from gas oil to wood has resulted in a 94 % increase of N_2O emission since 1990 due to a higher emission factor for wood than for gas oil.


The large decrease (86 %) of SO_2 emission from residential plants is mainly a result of a change of sulphur content in gas oil since 1995. The lower sulphur content (less than 0.05 %) is a result of Danish tax laws (DEPA, 1998). In addition, the consumption of gas oil has decreased and the consumption of natural gas that results in very low SO_2 emissions has increased.

The NO_x emission has decreased by 8 % since 1990. As mentioned above the fuel consumption has also decreased. The emission factor for wood is higher than for natural gas and gas oil and both consumption and the emission factor for wood have increased¹⁵. However, the NO_x emission factor for natural gas has decreased.

The emission of NMVOCs has decreased 4 % since 1990. The consumption of wood has increased but the emission factor for wood has decreased since 1990. The emission factors for wood and straw are higher than for liquid or gaseous fuels.

The CO emission has decreased 30 % since 1990. The use of wood that is the main source of emission has increased whereas the emission factor has decreased. The emission from combustion of straw has decreased since 1990.

 $^{^{15}}$ The NOx emission factor for residential wood is technology dependent. The emission factor for new stoves is higher than for old stoves, see Chapter 6.13.2.

Time series for emission of PM, BC, HMs, PAHs, PCDD/F, PCBs, HCB are shown in Figure 70-72 in Chapter 5.3.

Figure 75 Time series for fuel consumption and GHG emissions from 1A4b Residential plants.

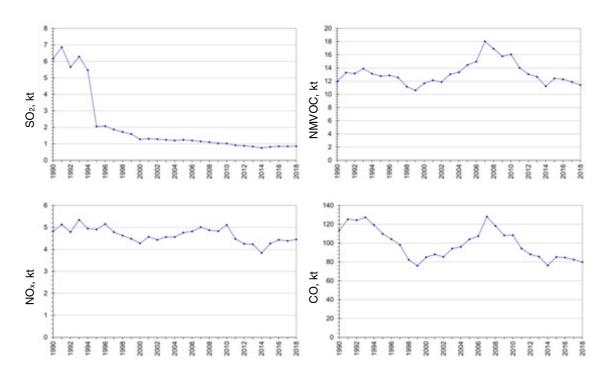


Figure 76 Time series for emission of SO₂, NO_x, NMVOCs and CO from 1A4b Residential plants.

5.3.3 1A4c Agriculture/forestry

The emission source category Agriculture/forestry consists of both stationary and mobile sources. In this chapter, only stationary sources are included. Figure 77 and Figure 78 show the time series for fuel consumption and emissions.

For plants in agriculture/forestry, the fuel consumption has decreased 54 % since 1990. A remarkable decrease of fuel consumption has taken place since year 2000.

The type of fuel that has been applied has changed since 1990. In the years 1994-2004, the consumption of natural gas was high, but after 2004, the consumption decreased again. A large part of the natural gas consumption has been applied in gas engines (Figure 67). Most CHP plants in agriculture/forestry based on gas engines came in operation in 1995-1999. The decrease after 2004 is a result of the liberalisation of the electricity market.

The consumption of coal, residual oil and straw has decreased since 1990. The consumption of biogas has increased.

The CO_2 emission in 2018 was 77 % lower than in 1990. The CO_2 emission increased from 1990 to 1996 due to increased fuel consumption. Since 1996, the CO_2 emission has decreased in line with the decrease in fuel consumption.

The CH_4 emission in 2018 was 1 % lower than in 1990. The emission follows the time series for natural gas combusted in gas engines (Figure 67). The emission from combustion of straw has decreased as a result of the decreasing consumption of straw in the sector.

The emission of N_2O has decreased by 42 % since 1990. The decrease is a result of the lower fuel consumption as well as the change of fuel. The decreasing consumption of straw contributes considerably to the decrease of emission.

The SO_2 emission was 87 % lower in 2018 than in 1990. The emission decreased mainly in the years 1996-2002.

The emission of NO_x was 55 % lower in 2018 than in 1990.

The emission of NMVOCs has decreased 46 % since 1990.

The CO emission has decreased 85 % since 1990. The major emission source is combustion of straw. In addition to the decrease of straw consumption, the emission factor for straw has also decreased since 1990.

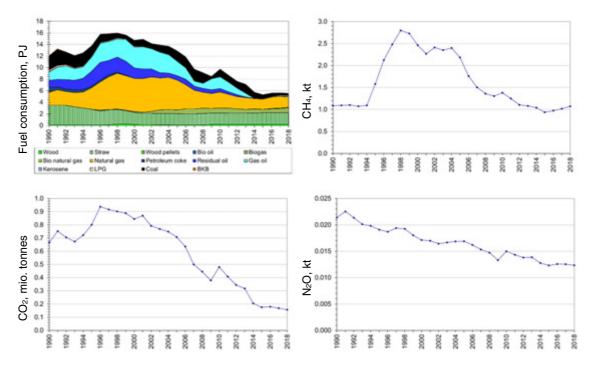


Figure 77 Time series for fuel consumption and GHG emissions from 1A4c Agriculture/forestry.

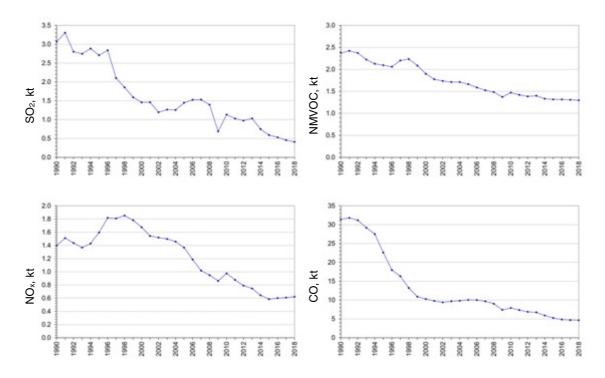


Figure 78 Time series for emission of SO₂, NO_x, NMVOC and CO from 1A4c Agriculture/forestry.

6 Methodological issues

The Danish emission inventory is based on the CORINAIR (CORe INventory on AIR emissions) system, which is a European program for air emission inventories. CORINAIR includes methodology structure and software for inventories. The methodology is described in the EEA Guidebook (EEA, 2016). Emission data are stored in MS Access databases, from which data are transferred to the reporting formats.

In the Danish emission database all activity rates and emissions are defined in SNAP sector categories (Selected Nomenclature for Air Pollution) according the CORINAIR system. The emission inventories are prepared from a complete emission database based on the SNAP source categories. Aggregation to the source category codes used in CRF is based on a correspondence list enclosed in Annex 1.

The emission inventory for stationary combustion is based on activity rates from the Danish energy statistics. General emission factors for various fuels, plants and sectors have been determined. Some large plants, such as power plants, are registered individually as large point sources and plant-specific emission data are used.

Recalculations and improvements are shown in Chapter 13.

6.1 Tiers

The type of GHG emission factor and the applied tier level for each emission source are shown in Table 21 below. The tier levels have been determined based on the IPCC Guidelines (IPCC, 2006). The fuel consumption data for transformation are technology specific. For end-use of fuels, the disaggregation to specific technologies is less detailed. However, for residential wood combustion technology specific fuel consumption rates have been estimated.

The tier level definitions have been interpreted as follows:

- Tier 1: The emission factor is an IPCC default tier 1 value.
- Tier 2: The emission factors are country-specific and based on a limited number of emission measurements or a technology specific IPCC tier 2 emission factor.
- Tier 3: Emission data are based on:
 - plant-specific emission measurements or
 - technology specific fuel consumption data and country-specific emission factors based on a considerable number of emission measurements from Danish plants.

Table 21 gives an overview of the calculation methods and type of emission factor. The table also shows which of the source categories are key in any of the key category analysis (including LULUCF, approach 1/approach 2, level/trend)¹⁶.

 $^{^{16}}$ Key category according to the KCA approach 1 or approach 2 for Denmark (excluding Greenland and Faroe Islands), including LULUCF, level 1990/ level 2018/ trend.

Emissions from four emission source categories that have been identified as key sources have been based on a tier 1 approach. If possible, the emission estimate for all key categories should be based on a tier 2 or tier 3 approach. The total emission from the four emission sources adds up to 240 kton CO_2 equivalent or 0.4 % of the national total in 2018. In 1990, the emission from the four emission sources adds up to 630 kton or 0.8 % of national total. Data are shown in Table 22. If sufficient data are available, a tier 2 approach will be applied next year.

		Tier	EMF ¹⁾	Кеу
				category ²⁾
1A Stationary combustion, Coal, ETS data	CO_2	Tier 3	PS	Yes
1A Stationary combustion, Coal, no ETS data	CO_2	Tier 3 ³⁾	CS	Yes
1A Stationary combustion, BKB	CO_2	Tier 1	D	No
1A Stationary combustion, Coke oven coke	CO_2	Tier 1/Tier 3	D/PS	No
1A Stationary combustion, Fossil waste, ETS data	CO_2	Tier 3	PS	Yes
1A Stationary combustion, Fossil waste, no ETS data	CO_2	Tier 2	CS	Yes
1A Stationary combustion, Petroleum coke, ETS data	CO_2	Tier 3	PS	Yes
1A Stationary combustion, Petroleum coke, no ETS data	CO_2	Tier 2	CS	Yes
1A Stationary combustion, Residual oil, ETS data	CO_2	Tier 3	PS	Yes
1A Stationary combustion, Residual oil, no ETS data	CO_2	Tier 2 ⁴⁾	CS	Yes
1A Stationary combustion, Gas oil	CO_2	Tier 2/Tier 3 5)	CS / PS	Yes
1A Stationary combustion, Kerosene	CO_2	Tier 1	D	Yes
1A Stationary combustion, LPG	CO_2	Tier 1/Tier 3 ⁶⁾	D/PS	Yes
1A1b Stationary combustion, Petroleum refining, Refinery gas	CO_2	Tier 3	CS	Yes
1A Stationary combustion, Natural gas, onshore	CO ₂	Tier 3	CS	Yes
1A1c_ii Stationary combustion, Oil and gas extraction, Offshore gas turbines,	CO ₂	Tier 3	CS	Yes
Natural gas				
1A1 Stationary combustion, solid fuels	CH₄	Tier 2	D(2)	No
1A1 Stationary combustion, liquid fuels	CH₄	Tier/Tier 2	D / D(2) / CS	No
1A1 Stationary combustion, not engines, gaseous fuels	CH₄	Tier 2	CS / D(2)	No
1A1 Stationary combustion, waste	CH ₄	Tier 2	CS	No
1A1 Stationary combustion, not engines, biomass	CH ₄	Tier 3/Tier 2/Tier 1	CS / D(2) / D	No
1A2 Stationary combustion, solid fuels	CH ₄	Tier 1	D	No
1A2 Stationary combustion, liquid fuels	CH ₄	Tier 1/Tier 2	D / D(2) / CS	No
1A2 Stationary combustion, not engines, gaseous fuels	CH₄	Tier 2	CS / D(2)	No
1A2 Stationary combustion, waste	CH ₄	Tier 1	D	No
1A2 Stationary combustion, not engines, biomass		Tier 2/Tier 1	D(2) / D	No
1A4 Stationary combustion, solid fuels	CH ₄	Tier 1	D(2) / D	No
1A4 Stationary combustion, liquid fuels	CH₄ CH₄	Tier 1/Tier 2	D / D(2)	No
1A4 Stationary combustion, not engines, gaseous fuels	CH ₄ CH ₄	Tier 2	D / D(2) D(2)	No
			_	No
1A4 Stationary combustion, waste	CH₄	Tier 1 Tier 1/Tier 0		
1A4 Stationary combustion, not engines, not residential wood and not resi-	CH₄	Tier 1/Tier 2	D / D(2) / CS	No
dential/agricultural straw, biomass	~	Tion O	00	Vee
1A4b_i Stationary combustion, Residential wood combustion	CH₄	Tier 2	CS	Yes
1A4b_i/1A4c_i Stationary combustion, Residential and agricultural straw	CH_4	Tier 1	D	Yes
combustion	011	Tion O	<u></u>	NI-
1A Stationary combustion, Natural gas fuelled engines, gaseous fuels	CH₄	Tier 3	CS	No
1A Stationary combustion, Biogas fuelled engines, biomass	CH₄	Tier 3	CS	No
1A1 Stationary combustion, solid fuels	N ₂ O	Tier 2	CS / D(2)	Yes
1A1 Stationary combustion, liquid fuels	N₂O	Tier 2/Tier 1	D(2) / CS / D	No
1A1 Stationary combustion, gaseous fuels	N₂O	Tier 3/Tier 2	CS / D(2)	Yes
1A1 Stationary combustion, waste	N₂O	Tier 2	CS	Yes
1A1 Stationary combustion, biomass	N₂O	Tier 2/Tier 1	CS / D(2) / D	Yes
1A2 Stationary combustion, solid fuels	N₂O	Tier 1/Tier 3	D/PS	Yes
1A2 Stationary combustion, liquid fuels	N ₂ O	Tier 2/Tier 1	D(2) / CS / D	Yes
1A2 Stationary combustion, gaseous fuels	N ₂ O	Tier 3/Tier 2	CS / D(2)	Yes
1A2 Stationary combustion, waste	N ₂ O	Tier 1	D	No
1A2 Stationary combustion, biomass	N ₂ O	Tier 1/Tier 2	D/CS	No
1A4 Stationary combustion, solid fuels	N_2O	Tier 1	D	No
1A4 Stationary combustion, liquid fuels	N_2O	Tier 2/Tier 1	D(2) / CS / D	Yes
1A4 Stationary combustion, gaseous fuels	N_2O	Tier 3/Tier 2	CS / D(2)	Yes
1A4 Stationary combustion, waste	N_2O	Tier 1	D	No
1A4 Stationary combustion, not residential wood and not residential/	N_2O	Tier 1/Tier 2	D/CS	No
agricultural straw, biomass				
1A4b_i Stationary combustion, Residential wood combustion	N_2O	Tier 1	D	Yes
1A4b_i/1A4c_i Stationary combustion, Residential and agricultural straw	N_2O	Tier 1	D	No
combustion				

combustion
1. D: IPCC (2006) default, tier 1. D(2): IPCC (2006) default, tier 2. CS: Country-specific. PS: Plant-specific.

2. KCA approach 1 or approach 2 for Denmark (excluding Greenland and Faroe Islands), including LULUCF, level 1990 or level 2018 or trend 1990-2018.

3. Only 3.4 % of the total coal consumption is included in the non-ETS category in 2018.

4. Only 8 % of the total residual oil consumption is included in the non-ETS category in 2018.

5. Tier 3 for 0.8 % of the gas oil consumption in 2018.

6. Tier 3 for 0.1 % of the LPG consumption in 2018.

Table 22 Emission data for key sources for which the estimated emissions are based on the tier 1 approach.

Source category	CO ₂ emission 1990,	CO ₂ emission 2018,	Key source
	kton CO2 equivalent	kton CO ₂ equivalent	(KCA approach)
1A Stationary combustion, Kerosene, CO ₂	368	13	Level 1990 (KCA 1),
			Trend (KCA 1)
1A Stationary combustion, LPG, CO ₂	188	141	Level 2018 (KCA 1)
1A4b_i/1A4c_i Stationary Combustion, Residential and ag-	64	37	Level 1990 (KCA 2)
ricultural straw combustion, CH ₄			
1A4b_i Stationary combustion, Residential wood combus-	11	49	Level 2018 (KCA 2),
tion, N ₂ O			Trend (KCA 2)
Key sources for which the estimated emissions are based	630	240	
on the tier 1 approach, total			

6.2 Large point sources

Large emission sources such as power plants, industrial plants and refineries are included as large point sources in the Danish emission database. Each point source may consist of more than one part, e.g. a power plant with several units. By registering the plants as point sources in the database, it is possible to use plant-specific emission factors.

In the inventory for the year 2018, 74 stationary combustion plants are specified as large point sources. Plant-specific emission data¹⁷ are available from 62 of the plants. The point sources include:

- Power plants and decentralised CHP plants.
- Waste incineration plants.
- Large industrial combustion plants.
- Petroleum refining plants.

The criteria for selection of point sources are:

- All centralized power plants, including smaller units.
- All units with a capacity of above 25 MW_e.
- All district heating plants with an installed effect of 50 MW_{th} or above and significant fuel consumption.
- All waste incineration plants obligated to report environmental data annually according to Danish law (DEPA, 2010b; DEPA, 2015).
- Industrial plants,
 - $\circ\,$ with an installed effect of 50 MW_{th} or above and significant fuel consumption.
 - o with a significant process related emission.

The fuel consumption of stationary combustion plants registered as large point sources in the 2018 inventory was 206 PJ. This corresponds to 51 % of the overall fuel consumption for stationary combustion.

A list of the large point sources for 2018 is provided in Annex 5. The number of large point sources registered in the databases increased from 1990 to 2018. Aggregated fuel consumption rates for the large point sources are also shown in Annex 5.

The emissions from a point source are based either on plant-specific emission data or, if plant-specific data are not available, on fuel consumption data and

¹⁷ For CO₂ or other pollutants.

the general Danish emission factors. Which emission data are plant-specific is shown in Annex 5.

The plant-specific emission data from the EU ETS data represent 61 % of the total CO_2 emission from stationary combustion. CO_2 emission factors are plant-specific for the major power plants, refineries, offshore gas turbines, large municipal waste incineration plants and for cement production. Plant-specific emission data are obtained from CO_2 data reported under the EU Emission Trading Scheme (ETS). The EU ETS data are discussed below.

Emission measurement data for CH_4 and N_2O are applied for estimating emission factors but not implemented as plant-specific data.

Annual environmental reports for the plants include a considerable number of emission data sets. In general, emission data from annual environmental reports are based on emission measurements, but some emissions have potentially been calculated from general emission factors.

If plant-specific emission factors are not available, emission factors for area sources are used.

6.3 Area sources

Fuels not combusted in large point sources are included as source category specific area sources in the emission database. Plants such as residential boilers, small district heating plants, small CHP plants and some industrial boilers are defined as area sources. Emissions from area sources are based on fuel consumption data and emission factors. Further information on emission factors is provided below in Chapter 7.

6.4 Fuels used for non-energy purposes

The Danish national energy statistics includes three fuels used for non-energy purposes; bitumen, white spirit and lubricants. The total consumption for non-energy purposes is relatively low, e.g. 10.3 PJ in 2018. The use of fuels for non-energy purposes is included in the inventory in sector 2D Non-energy products from fuels and solvent use.

The non-energy use of fuels is included in the reference approach for Climate Convention reporting and appropriately corrected in line with the IPCC Guidelines (IPCC, 2006). The reference approach is included in Chapter 10.

6.5 Activity rates, fuel consumption

The fuel consumption rates are based on the official Danish energy statistics prepared by the Danish Energy Agency (DEA). DCE aggregates fuel consumption rates to SNAP categories. Some fuel types in the official Danish energy statistics are added to obtain a less detailed fuel aggregation level cf. Annex 3. The calorific values on which the energy statistics are based are also enclosed in Annex 3. The correspondence list between the energy statistics and SNAP categories is enclosed in Annex 4. The fuel consumption of the CRF category Manufacturing industries and construction (corresponding to SNAP category 03) is disaggregated into industrial subsectors based on the DEA data set aggregated for the Eurostat reporting (DEA, 2019c). The fuel consumption data flow is shown in Figure 79.

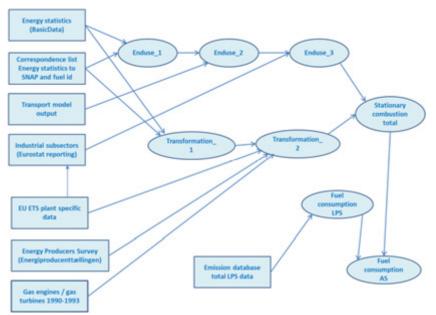


Figure 79 Fuel consumption data flow.

Both traded and non-traded fuels are included in the Danish energy statistics. Thus, for example, estimation of the annual consumption of non-traded wood is included.

Petroleum coke purchased abroad and combusted in Danish residential plants (border trade of 628 TJ in 2018) is not included in the Danish inventory. This is in agreement with the IPCC Guidelines (IPCC, 2006).

The fuel consumption data for large point sources refer to the EU Emission Trading Scheme (EU ETS) data for plants for which the CO_2 emission also refer to EU ETS.

For all other large point sources, the fuel consumption refers to an annually updated DEA database; the Energy Producers Survey (DEA, 2019b). The Energy Producers Survey includes the fuel consumption of each district heating and power-producing plant, based on data reported by plant operators. The consistency between EU ETS reporting and the Energy Producers Survey database (DEA, 2019b) is checked by the DEA and discrepancies are corrected prior to the use in the emission inventory.

The fuel consumption of area sources is calculated as total fuel consumption in the energy statistics minus fuel consumption included in the emission inventory database in large point sources.

In Denmark, all waste incineration are utilised for heat and power production. Thus, incineration of waste is included as stationary combustion in the source category Fuel combustion (subcategories *1A1*, *1A2* and *1A4*).

Fuel consumption data are presented in Chapter 2.

6.6 Fuel consumption for 1A1c Oil and gas extraction

The consumption of natural gas reported in the EU ETS data are not in agreement with the energy statistics. This is because the energy statistics is based on the default net calorific value (NCV) for natural gas applied in Denmark whereas the EU ETS data are based on fuel analysis of the natural gas applied offshore at each individual platform. The total consumption of natural gas in 1A1c Oil and gas extraction applied in the emission inventories is based on the EU ETS data.

6.7 Fuel consumption for 1A1b Petroleum refining

The EU ETS data for fuel consumption reported by the two Danish refineries are not always in agreement with the energy statistics due to the use of default values for net calorific value (NCV) in the energy statistics. The EU ETS data are based on fuel analysis. Refinery gas is only applied in the two refineries. The total consumption of refinery gas applied in the emission inventories is based on the EU ETS data.

6.8 Upgraded biogas distributed in the natural gas grid

Biogas upgraded for distribution in the natural gas grid (bio natural gas or bio methane) has been included as a separate fuel in the energy statistics and in the emission inventory.

6.9 Biogas distributed in the town gas grid

The energy statistics includes a consumption of biogas for town gas production. This biogas is distributed in the town gas grid (119 TJ in 2018). This fuel consumption has been included in the fuel category town gas in the fuel consumption data of the energy statistics. In the emission inventory biogas distributed in the town gas grid have been included in the fuel category biogas.

6.10 Town gas

Town gas (the fossil part) has been included in the fuel category natural gas. The consumption of town gas in Denmark is very low, e.g. 0.6 PJ in 2018. In 1990, the town gas consumption was 1.6 PJ and the consumption has been steadily decreasing throughout the time series.

In Denmark, town gas is produced based on natural gas. The use of coal for town gas production ceased in the early 1980s.

An indicative composition of town gas in 2015 according to the largest supplier of town gas in Denmark is shown in Table 23 (KE, 2015).

	<u> </u>
Component	Town gas, % (mol.)
Methane	43.9
Ethane	2.9
Propane	1.1
Butane	0.5
Carbon dioxide	0.4
Nitrogen	40.5
Oxygen	10.7

Table 23 Composition of town gas currently used (KE, 2015).

The lower heating value of the town gas is 20.31 MJ per Nm³ and the CO₂ emission factor 56.1 kg per GJ. This is very close to the emission factor used for natural gas in 2015 (57.06 kg per GJ). According to the supplier, both the composition and heating value will change during the year. It has not been possible to obtain a yearly average.

Biogas has been added to the town gas grid since 2014. This biogas distributed in the town gas grid is treated as a separate fuel in the emission inventories and thus not included in the data for town gas.

In earlier years, the composition of town gas was somewhat different. Table 24 shows data for town gas composition in 2000-2005. These data are constructed with the input from Københavns Energi (KE) (Copenhagen Energy) and Danish Gas Technology Centre (DGC), (Jeppesen, 2007; Kristensen, 2007). The data refer to three measurements performed several years apart, the first in 2000 and the latest in 2005.

Component	Town gas,	
	% (mol.)	
Methane	22.3-27.8	
Ethane	1.2-1.8	
Propane	0.5-0.9	
Butane	0.13-0.2	
Higher hydrocarbons	0-0.6	
Carbon dioxide	8-11.6	
Nitrogen	15.6-20.9	
Oxygen	2.3-3.2	
Hydrogen	35.4-40.5	
Carbon monoxide	2.6-2.8	

Table 24Composition of town gas, data from 2000-2005.

The lower calorific value was been between 15.6 and 17.8 MJ per Nm³. The CO_2 emission factors - derived from the few available measurements - are in the range of 52-57 kg per GJ.

The Danish sectoral approach includes town gas as part of the fuel category natural gas and thus indirectly assumes the same CO_2 emission factor. This is a conservative approach ensuring that the CO_2 emissions are not underestimated.

Due to the scarce data available and the very low consumption of town gas compared to consumption of natural gas (< 0.5 %), the methodology will be applied unchanged in future inventories.

6.11 Waste

All waste incineration in Denmark is utilised for heat and/or power production and thus included in the energy sector. The waste incinerated in Denmark for energy production consists of the waste fractions shown in Figure 80. In 2017^{18} , 3 % of the incinerated waste was hazardous waste.

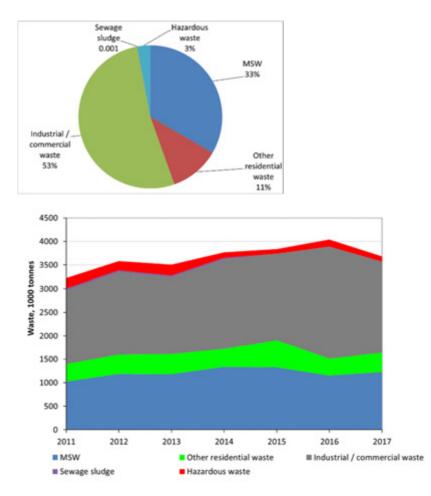


Figure 80 Waste fractions (weight) for incinerated waste in 2017 and the corresponding time series 2011-2017 (ADS, 2019)¹⁹.

In connection to the project estimating an improved CO_2 emission factor for waste (Astrup et al., 2012), the fossil energy fraction was calculated. The fossil fraction was not measured or estimated as part of the project, but the flue gas measurements combined with data from Fellner & Rechberger (2010) indicated a fossil energy part of 45 %. The energy statistics also applies this fraction in the national statistics.

6.12 Biogas

Biogas includes landfill gas, sludge gas and manure/organic waste gas²⁰. The Danish energy statistics specifies production and consumption of each of the biogas types. In 2018, 91 % of the applied biogas was based on manure /or-ganic waste. An increasing part of the biogas based on manure / organic waste is upgraded to bio natural gas.

Biogas upgraded for distribution in the natural gas grid reported as bio natural gas and is not included in the fuel category "biogas" in the rest of this report. This is also the case for bio gasification gas.

¹⁹ Data for 2018 have not yet been published, January 2020.

²⁰ Based on manure with addition of other organic waste. In the Danish energy statistics this biogas is called *Biogas, other*.

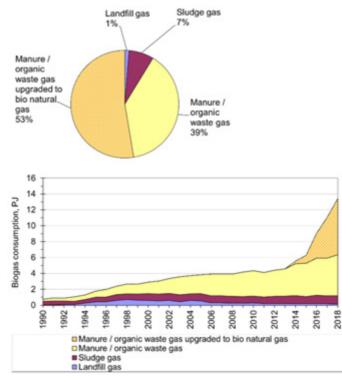


Figure 81 Biogas types (including bio natural gas) 2018 and the corresponding time series 1990-2018 (DEA, 2019a).

6.13 Residential wood combustion

Residential wood combustion is the main emission source for some pollutants. The model applied for estimating emissions from residential wood combustion takes into account the replacement of old units, the different fuel consumption rates and emission factors of the applied technologies. The model for residential wood combustion emissions was revised in 2019 and will be reported in detail in Nielsen et al. (2020c).

6.13.1 Residential wood combustion, fuel consumption

The total wood consumption is provided in the official energy statistics published by the DEA. However, for the purposes of calculating emissions from residential wood combustion, it is necessary to break down the wood consumption to different technologies, as different technologies have widely different emission factors.

In the Danish emission inventory, there is a differentiation between different types of stoves and boiler. In addition, there is a category for open fireplaces and similar and one for masonry stoves and similar. Wood pellets considered a separate fuel. The categories used in the inventory are provided in Table 25 below.

Table 25Overview of the wood burning technologies.								
Technology								
Stoves (-1989)								
Stoves (1990-2007)								
Stoves (2008-2014)								
Stoves (2015-2016)								
Stoves (2017-)								
Eco labelled stoves / new advanced stoves (-2014)								
Eco labelled stoves / new advanced stoves (2015-2016)								
Eco labelled stoves / new advanced stoves (2017-)								
Open fireplaces and similar								
Masonry heat accumulating stoves and similar								
Boilers with accumulation tank (-1979)								
Boilers without accumulation tank (-1979)								
Boilers with accumulation tank (1980-)								
Boilers without accumulation tank (1980-)								
Pellet boilers / pellet stoves								

The total number of wood burning appliances has been estimated based on data from the Danish Chimneysweepers Association (SFL) supplemented with data from the Danish Building and Dwelling Register and data for replacement of older units. For further information, please see Nielsen et al. (2020c). The estimated wood consumption rates for each category are shown in Table 26 and Figure 82 below.

Table 26 Time series for fuel consumption in residential wood combustion, TJ

Technology	1985	1990	1995	2000	2005	2010	2015	2018
Stoves (-1989)	5555	5059	5505	4684	4829	4390	2069	1170
Stoves (1990-2007)	0	189	1456	3004	6476	8545	7389	6944
Stoves (2008-2014)	0	0	0	0	0	172	350	354
Stoves (2015-2016)	0	0	0	0	0	0	48	97
Stoves (2017-)	0	0	0	0	0	0	0	97
Eco labelled stoves / new advanced stoves (-2014)	0	0	0	0	1079	4003	5400	5466
Eco labelled stoves / new advanced stoves (2015-2016)	0	0	0	0	0	0	432	875
Eco labelled stoves / new advanced stoves (2017-)	0	0	0	0	0	0	0	875
Open fireplaces and similar	244	215	276	289	439	581	533	539
Masonry heat accumulating stoves and similar	58	51	65	69	104	138	126	128
Boilers with accumulation tank (-1979)	1571	1108	1064	745	566	1	0	0
Boilers without accumulation tank (-1979)	1571	1108	1064	745	566	1	0	0
Boilers with accumulation tank (1980-)	377	681	1355	1965	3866	6307	6195	6353
Boilers without accumulation tank (1980-)	251	426	773	1012	1786	2661	2029	1970
Pellet boilers / pellet stoves	0	117	201	2112	6690	10105	12999	16197

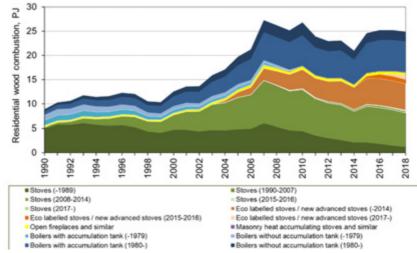


Figure 82 Technology specific wood consumption rates in residential plants.

6.13.2 Residential wood combustion, technology specific EMFs

For the pollutants CH_4 , NO_x , NMVOC, CO, NH_3 , TSP, PM_{10} , $PM_{2.5}$, BC, PCDD/F, PCB and PAH emission factors have been based on fuel consumption data and technology specific emission factors for 15 different technologies. Technology specific emission factors and implied emission factors for 2018 are shown in Table 27.

Emission measurements performed in Denmark applying dilution tunnel have been prioritised. Thus, condensable particles are included in the emission factors.

The emission factors for dioxins are dependent on the applied wood but independent of stove technology. Four different emission factors are applied for: stoves, open fireplaces, boilers and pellet stoves/boilers.

For pollutants not included in Table 27, technology specific emission factors and time series have not been estimated and the emission factors are included in Chapter 7.

Technology	NO _x , N	MVOCs	CH ₄ ,	CO,	NH ₃ ,	TSP,	PM ₁₀ ,	PM _{2.5} ,	BC, I	PCDD/Fs	dl-PCBs,	Benzo	Benzo	Benzo	Indeno
	g/GJ	,	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	, ng/GJ	ng/GJ	(a)	(b)	(k)	(1.2.3-
		g/GJ										pyrene,	fluoran-	fluoran-	c,d)
												mg/GJ	thene,	thene,	pyrene,
													mg/GJ	mg/GJ	mg/GJ
Stoves (-1989)	50	1200	430	8000	70	1000	950	930	18	1048	7049	116	55	119	62
Stoves (1990-2007)	50	600	215	4000	70	500	475	465	17	1048	7049	48	59	50	27
Stoves (2008-2014)	80	350	125	1900	37	389	370	362	23	1048	931	43	65	19	31
Stoves (2015-2016)	80	350	125	1900	37	317	301	295	44	1048	931	43	65	19	31
Stoves (2017-)	80	350	125	1900	37	253	240	235	44	1048	931	43	65	19	31
Eco labelled stoves / new advanced stoves (-2014)	75	175	2	1900	37	253	240	235	31	1048	466	43	65	19	31
Eco labelled stoves / new advanced stoves (2015-2016)	75	175	2	1900	37	190	181	177	31	1048	466	43	65	19	31
Eco labelled stoves / new advanced stoves (2017-)	75	175	2	1900	37	127	121	118	31	1048	466	43	65	19	31
Open fireplaces and similar	50	600	430	4000	74	882	838	820	34	55	60	35	25	29	21
Masonry heat accumulating stoves and similar	50	600	215	2402	70	63	60	59	18	282	7049	17	8	10	25
Boilers with accumulation tank (-1979)	80	350	211	9001	74	588	559	547	24	282	7049	991	926	632	1092
Boilers without accumulation tank (-1979)	80	350	256	10890	74	736	699	684	24	282	7049	991	926	632	1092
Boilers with accumulation tank (1980-)	95	175	50	1613	37	64	61	60	6	282	466	90	60	40	40
Boilers without accumulation tank (1980-)	95	350	50	1952	37	335	318	312	6	282	931	120	80	50	60
IEF residential log wood/wood chips, 2018	73	371	111	2752	49	324	307	301	18	766	2686	65.6	61.6	40.3	35.7
Pellet boilers / pellet stoves	80	10	3	300	12	51	48	47	7	333	466	0.9	1.3	1.3	1.2

Table 27 Technology specific emission factors for residential wood combustion and IEF for log wood/wood chips, 2018.

References for the technology specific emission factors are shown in Table 28.

The emission factors for dioxins are dependent on the applied wood but independent of stove technology. Four different emission factors are applied for stoves, open fireplaces, boilers and pellet stoves/boilers.

Table 28 Emission factors for residential wood combustion.

	Pollutant	Emission	Unit Reference
		factor	
Stoves (-1989)	NOx	50	g/GJ EEA (2016), Small combustion, Table 3.40, conventional stoves
Stoves (1990-2007)	NOx	50	g/GJ EEA (2016), Small combustion, Table 3.40, conventional stoves
Stoves (2008-2014)	NO _x	80	g/GJ EEA (2016), Small combustion, Table 3.41, energy efficient stoves
Stoves (2015-2016)	NOx	80	g/GJ Same as Stoves (2008-2014)
Stoves (2017-)	NO _x	80	g/GJ Same as Stoves (2008-2014)
Eco labelled stoves / new advanced stoves (-2014)	NO _x	75	_{g/GJ} Andersen & Hvidbjerg (2017)
Eco labelled stoves / new advanced stoves (2015-2016)	NOx	75	_{g/GJ} Andersen & Hvidbjerg (2017)
Eco labelled stoves / new advanced stoves (2017-)	NO _x	75	_{g/GJ} Andersen & Hvidbjerg (2017)
Open fireplaces and similar	NO _x	50	_{g/GJ} EEA (2019), Open fireplaces, Table 3.39
Masonry heat accumulating stoves and similar	NOx	50	g/GJ EEA (2016), Small combustion, table 3.40, conventional stoves
Boilers with accumulation tank (-1979)	NO _x	80	g/GJ EEA (2016), Small combustion, table 3.43, conventional boilers
Boilers without accumulation tank (-1979)	NO _x	80	g/GJ EEA (2016), Small combustion, table 3.43, conventional boilers
Boilers with accumulation tank (1980-)	NOx	95	g/GJ EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Boilers without accumulation tank (1980-)	NO _x	95	g/GJ EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Pellet boilers / pellet stoves	NO _x	80	g/GJ EEA (2016), Small combustion, table 3.44, pellet stoves and boilers.
Stoves (-1989)	NMVOC	1200	g/GJ Assumed two times Stoves (1990-2007). EEA (2016), Small combustion, table 3.40, conventional
			stoves; 600 g/GJ (20 g/GJ - 3000 g/GJ)
Stoves (1990-2007)	NMVOC	600	g/GJ EEA (2016), Small combustion, table 3.40, conventional stoves
Stoves (2008-2014)	NMVOC	350	g/GJ EEA (2016), Small combustion, table 3.41, energy efficient stoves
Stoves (2015-2016)	NMVOC	350	g/GJ Same as Stoves (2008-2014)
Stoves (2017-)	NMVOC	350	g/GJ Same as Stove (2008-2014)
Eco labelled stoves / new advanced stoves (-2014)	NMVOC	175	g/GJ Assumed ½ stoves (2008-2014). The EEA (2016) emission factor for advanced / ecolabelled stoves and boilers is 250 g/GJ, but this emission factor has not been revised since the 2009 version of the Guidebook
Eco labelled stoves / new advanced stoves (2015-2016)	NMVOC	175	g/GJ Same as ecolabelled stoves (-2014)
Eco labelled stoves / new advanced stoves (2017-)	NMVOC	175	g/GJ Same as ecolabelled stoves (-2014)
Open fireplaces and similar	NMVOC	600	_{g/GJ} EEA (2019), Open fireplaces, Table 3.39
Masonry heat accumulating stoves and similar	NMVOC	600	g/GJ EEA (2016), Small combustion, table 3.40, conventional stoves
Boilers with accumulation tank (-1979)	NMVOC	350	g/GJ EEA (2016), Small combustion, table 3.43, conventional boilers
Boilers without accumulation tank (-1979)	NMVOC	350	g/GJ EEA (2016), Small combustion, table 3.43, conventional boilers
Boilers with accumulation tank (1980-)	NMVOC	175	g/GJ Assumed equal to ecolabelled stoves (2014)
Boilers without accumulation tank (1980-)	NMVOC	350	g/GJ Assumed 2 times the emission from boilers with accumulation tank (1980-)
Pellet boilers / pellet stoves	NMVOC	10	g/GJ EEA (2016), Small combustion, table 3.44, pellet stoves and boilers

	Pollutant	Emission	Unit Reference
		factor	
Stoves (-1989)	CH_4	430	g/GJ Methane emissions from residential biomass combustion, Paulrud et al. (2005) (SMED report, Swe
			den)
Stoves (1990-2007)	CH ₄	215	g/GJ Assumed ½ the emission factor for stoves (-1989)
Stoves (2008-2014)	CH ₄	125	g/GJ Estimated based on the emission factor for stoves (1990-2007) and the emission factors for NMVOCs
Stoves (2015-2016)	CH_4	125	g/GJ Same as stoves (2008-2014)
Stoves (2017-)	CH_4	125	g/GJ Same as stoves (2008-2014)
Eco labelled stoves / new advanced stoves (-2014)	CH ₄	2	g/GJ Low emissions from wood burning in an ecolabelled residential boiler. Olsson & Kjällstrand (2005)
Eco labelled stoves / new advanced stoves (2015-2016)		2	g/GJ Same as advanced / ecolabelled stoves
Eco labelled stoves / new advanced stoves (2017-)	CH ₄	2	g/GJ Same as advanced / ecolabelled stoves
Open fireplaces and similar		430	g/GJ Assumed equal to stoves (-1989)
Masonry heat accumulating stoves and similar	CH₄	215	g/GJ Assumed equal to stoves (-1989)
Boilers with accumulation tank (-1979)	CH ₄	211	g/GJ Methane emissions from residential biomass combustion, Paulrud et al 2005 (SMED report, Swe- den)
Boilers without accumulation tank (-1979)	CH ₄	256	g/GJ Methane emissions from residential biomass combustion, Paulrud et al 2005 (SMED report, Swe- den)
Boilers with accumulation tank (1980-)	CH₄	50	g/GJ Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Johansson et al. (2004)
Boilers without accumulation tank (1980-)	CH ₄	50	g/GJ Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Johansson et al. (2004)
Pellet boilers / pellet stoves	CH₄	3	g/GJ Methane emissions from residential biomass combustion, Paulrud et al 2005 (SMED report, Swe- den)
Stoves (-1989)	CO	8000	g/GJ Assumed two times stoves (1990-2007). EEA (2016), Small combustion, table 3.40, conventional
			stoves; 4000 g/GJ (1000 g/GJ - 10,000 g/GJ)
Stoves (1990-2007)	CO	4000	g/GJ EEA (2016), Small combustion, table 3.40, conventional stoves.
Stoves (2008-2014)	CO	1900	g/GJ Andersen & Hvidbjerg (2017) and Kindbom et al. (2017)
Stoves (2015-2016)	CO	1900	g/GJ Andersen & Hvidbjerg (2017) and Kindbom et al. (2017)
Stoves (2017-)	СО	1900	g/GJ Andersen & Hvidbjerg (2017) and Kindbom et al. (2017)
Eco labelled stoves / new advanced stoves (-2014)	СО	1900	g/GJ Andersen & Hvidbjerg (2017) and Kindbom et al. (2017)
Eco labelled stoves / new advanced stoves (2015-2016)	со	1900	g/GJ Andersen & Hvidbjerg (2017) and Kindbom et al. (2017)
Eco labelled stoves / new advanced stoves (2017-)	CO	1900	g/GJ Andersen & Hvidbjerg (2017) and Kindbom et al. (2017)
Open fireplaces and similar	co	4000	g/GJ EEA (2019), Small Combustion, Table 3.39 Open fireplaces
Masonry heat accumulating stoves and similar	co	2402	g/GJ Kindbom et al. (2017)
Boilers with accumulation tank (-1979)	co	2402 9001	g/GJ Winther (2008)
		10890	g/GJ Winther (2008)
Boilers without accumulation tank (-1979)	CO	1613	g/GJ Winther (2008)
Boilers with accumulation tank (1980-)	CO	1952	g/GJ Winther (2008)
Boilers without accumulation tank (1980-)	CO	1902	g/GJ ************************************

	Pollutant	Emission	Un	it Reference
		factor		
Pellet boilers / pellet stoves	CO	300	g/GJ	EEA (2019), Small Combustion, Table 3.44 Pellet stoves and boilers
Stoves (-1989)	NH₃	70	g/GJ	EEA (2016), Small combustion, table 3.40, conventional stoves
Stoves (1990-2007)	NH₃	70	g/GJ	EEA (2016), Small combustion, table 3.40, conventional stoves
Stoves (2008-2014)	NH₃	37	g/GJ	EEA (2016), Small combustion, table 3.41, energy efficient stoves
Stoves (2015-2016)	NH₃	37	g/GJ	Same as stoves (2008-2014)
Stoves (2017-)	NH₃	37	g/GJ	Same as stoves (2008-2014)
Eco labelled stoves / new advanced stoves (-2014)	NH₃	37	g/GJ	EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Eco labelled stoves / new advanced stoves (2015-2016)	NH₃	37	g/GJ	EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Eco labelled stoves / new advanced stoves (2017-)	NH₃	37	g/GJ	EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Open fireplaces and similar	NH₃	74	g/GJ	EEA (2019), Open fireplaces, Table 3.39
Masonry heat accumulating stoves and similar	NH₃	70	g/GJ	EEA (2016), Small combustion, table 3.40, conventional stoves
Boilers with accumulation tank (-1979)	NH₃	74	g/GJ	EEA (2016), Small combustion, table 3.43, conventional boilers
Boilers without accumulation tank (-1979)	NH₃	74	g/GJ	EEA (2016), Small combustion, table 3.43, conventional boilers
Boilers with accumulation tank (1980-)	NH₃	37	g/GJ	EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Boilers without accumulation tank (1980-)	NH₃	37	g/GJ	EEA (2016), Small combustion, table 3.42, advanced / ecolabelled stoves and boilers
Pellet boilers / pellet stoves	NH₃	12	g/GJ	EEA (2016), Small combustion, table 3.44, pellet stoves and boilers
Stoves (-1989)	TSP	1000	g/GJ	Glasius et al. (2005)
Stoves (1990-2007)	TSP	500	g/GJ	Glasius et al. (2005), Glasius et al. (2007), Kindbom et al. (2017) and Schleicher (2018)
Stoves (2008-2014)	TSP	389	g/GJ	Kindbom et al. (2017)
Stoves (2015-2016)	TSP	317	g/GJ	MST (2015). Limit value 5 g/kg
Stoves (2017-)	TSP	253	g/GJ	MST (2015). Limit value 4 g/kg
Eco labelled stoves / new advanced stoves (-2014)	TSP	253	g/GJ	Nordic Ecolabelling limit 2012 update for hand fed stove for temporary firing or inset stove (4 g/kg)
Eco labelled stoves / new advanced stoves (2015-2016)	TSP	190	g/GJ	Nordic Ecolabelling limit update for hand fed stove for temporary firing or inset stove (3 g/kg)
Eco labelled stoves / new advanced stoves (2017-)	TSP	127	g/GJ	Nordic Ecolabelling limit update
Open fireplaces and similar	TSP	882	g/GJ	Alves et al. (2011)
Masonry heat accumulating stoves and similar	TSP	63	g/GJ	Tissari et al. (2009)
Boilers with accumulation tank (-1979)	TSP	588	g/GJ	Winther (2008)
Boilers without accumulation tank (-1979)	TSP	736	g/GJ	Winther (2008)
Boilers with accumulation tank (1980-)	TSP	64	g/GJ	Winther (2008)
Boilers without accumulation tank (1980-)	TSP	335	g/GJ	Winther (2008)
Pellet boilers / pellet stoves	TSP	51	g/GJ	Kindbom et al. (2017)
Stoves (-1989)	PM ₁₀	950	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (1990-2007)	PM ₁₀	475	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (2008-2014)	PM ₁₀	370	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP

-	Pollutant	Emission	Uni	it Reference
		factor		
Stoves (2015-2016)	PM ₁₀	301	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (2017-)	PM ₁₀	240	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Eco labelled stoves / new advanced stoves (-2014)	PM ₁₀	240	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Eco labelled stoves / new advanced stoves (2015-2016)	PM ₁₀	181	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Eco labelled stoves / new advanced stoves (2017-)	PM ₁₀	121	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Open fireplaces and similar	PM ₁₀	838	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Masonry heat accumulating stoves and similar	PM ₁₀	60	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers with accumulation tank (-1979)	PM ₁₀	559	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers without accumulation tank (-1979)	PM ₁₀	699	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers with accumulation tank (1980-)	PM ₁₀	61	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers without accumulation tank (1980-)	PM ₁₀	318	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Pellet boilers / pellet stoves	PM ₁₀	48	g/GJ	95% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (-1989)	PM _{2.5}	930	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (1990-2007)	PM _{2.5}	465	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (2008-2014)	PM _{2.5}	362	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (2015-2016)	PM _{2.5}	295	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (2017-)	PM _{2.5}	235	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Eco labelled stoves / new advanced stoves (-2014)	PM _{2.5}	235	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Eco labelled stoves / new advanced stoves (2015-2016)	PM _{2.5}	177	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Eco labelled stoves / new advanced stoves (2017-)	PM _{2.5}	118	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Open fireplaces and similar	PM _{2.5}	820	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Masonry heat accumulating stoves and similar	PM _{2.5}	59	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers with accumulation tank (-1979)	PM _{2.5}	547	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers without accumulation tank (-1979)	PM _{2.5}	684	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers with accumulation tank (1980-)	PM _{2.5}	60	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Boilers without accumulation tank (1980-)	PM _{2.5}	312	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Pellet boilers / pellet stoves	PM _{2.5}	47	g/GJ	93% of TSP. Boman et al. (2011), Pettersson et al. (2011) and the TNO CEPMEIP
Stoves (-1989)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)
Stoves (1990-2007)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)
Stoves (2008-2014)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)
Stoves (2015-2016)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017.
Stoves (2017-)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)
Eco labelled stoves / new advanced stoves (-2014)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)
Eco labelled stoves / new advanced stoves (2015-2016)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)

	Pollutant	Emission	Uni	it Reference
		factor		
Eco labelled stoves / new advanced stoves (2017-)	PCDD/F	1048	ng/GJ	Schleicher (2018), Glasius et al. (2005), Glasius et al. (2007) and Andersen & Hvidbjerg (2017)
Open fireplaces and similar	PCDD/F	55	ng/GJ	Gullet et al. (2005)
Masonry heat accumulating stoves and similar	PCDD/F	282	ng/GJ	Assumed equal to boilers
Boilers with accumulation tank (-1979)	PCDD/F	282	ng/GJ	Glasius et al. (2005), Glasius et al. (2007), Hübner et al. (2005) and Hedman et al. (2006)
Boilers without accumulation tank (-1979)	PCDD/F	282	ng/GJ	Glasius et al. (2005), Glasius et al. (2007), Hübner et al. (2005) and Hedman et al. (2006)
Boilers with accumulation tank (1980-)	PCDD/F	282	ng/GJ	Glasius et al. (2005), Glasius et al. (2007), Hübner et al. (2005) and Hedman et al. (2006)
Boilers without accumulation tank (1980-)	PCDD/F	282	ng/GJ	Glasius et al. (2005), Glasius et al. (2007), Hübner et al. (2005) and Hedman et al. (2006)
Pellet boilers / pellet stoves	PCDD/F	333	ng/GJ	Hedman et al. (2006)
Stoves (-1989)	Benzo(a)	116	µg/GJ	Glasius et al. (2005)
Stoves (1990-2007)	Benzo(a)	48	µg/GJ	Glasius et al. (2005) except for Benzo(b)fluoranthene that refers to Schleicher (2018)
Stoves (2008-2014)	Benzo(a)	43	µg/GJ	Schleicher (2018)
Stoves (2015-2016)	Benzo(a)	43	µg/GJ	Schleicher (2018)
Stoves (2017-)	Benzo(a)	43	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (-2014)	Benzo(a)	43	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2015-2016)	Benzo(a)	43	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2017-)	Benzo(a)	43	µg/GJ	Schleicher (2018)
Open fireplaces and similar	Benzo(a)	35	µg/GJ	Gullet et al. (2003)
Masonry heat accumulating stoves and similar	Benzo(a)	17	µg/GJ	Tissari et al. (2007)
Boilers with accumulation tank (-1979)	Benzo(a)	991	µg/GJ	Winther (2008)
Boilers without accumulation tank (-1979)	Benzo(a)	991	µg/GJ	Winther (2008)
Boilers with accumulation tank (1980-)	Benzo(a)	90	µg/GJ	Johansson et al. (2006)
Boilers without accumulation tank (1980-)	Benzo(a)	120	µg/GJ	Johansson et al. (2006)
Pellet boilers / pellet stoves	Benzo(a)	0.9	µg/GJ	Orasche et al. (2012), distribution between Benzo(b)fluoranthene and Benzo(k)fluoranthene accor-
				ding to Lamberg et al. (2011)
Stoves (-1989)	Benzo(b)	55	µg/GJ	Glasius et al. (2005)
Stoves (1990-2007)	Benzo(b)	59	µg/GJ	Glasius et al. (2005) except for Benzo(b)fluoranthene that refers to Schleicher (2018)
Stoves (2008-2014)	Benzo(b)	65	µg/GJ	Schleicher (2018)
Stoves (2015-2016)	Benzo(b)	65	µg/GJ	Schleicher (2018)
Stoves (2017-)	Benzo(b)	65	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (-2014)	Benzo(b)	65	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2015-2016)	Benzo(b)	65	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2017-)	Benzo(b)	65	µg/GJ	Schleicher (2018)
Open fireplaces and similar	Benzo(b)	25	µg/GJ	Gullet et al. (2003)
Masonry heat accumulating stoves and similar	Benzo(b)	7.6	µg/GJ	Tissari et al. (2007)
Boilers with accumulation tank (-1979)	Benzo(b)	926	µg/GJ	Winther (2008)

	Pollutant	Emission	Uni	t Reference
		factor		
Boilers without accumulation tank (-1979)	Benzo(b)	926	µg/GJ	Winther (2008)
Boilers with accumulation tank (1980-)	Benzo(b)	60	µg/GJ	Johansson et al. (2006)
Boilers without accumulation tank (1980-)	Benzo(b)	80	µg/GJ	Johansson et al. (2006)
Pellet boilers / pellet stoves	Benzo(b)	1.3	µg/GJ	Orasche et al. (2012), distribution between Benzo(b)fluoranthene and Benzo(k)fluoranthene accor-
				ding to Lamberg et al. (2011)
Stoves (-1989)	Benzo(k)	119	µg/GJ	
Stoves (1990-2007)	Benzo(k)	50	µg/GJ	Glasius et al. (2005) except for Benzo(b)fluoranthene that refers to Schleicher (2018)
Stoves (2008-2014)	Benzo(k)	19	µg/GJ	Schleicher (2018)
Stoves (2015-2016)	Benzo(k)	19	µg/GJ	Schleicher (2018)
Stoves (2017-)	Benzo(k)	19	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (-2014)	Benzo(k)	19	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2015-2016)	Benzo(k)	19	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2017-)	Benzo(k)	19	µg/GJ	Schleicher (2018)
Open fireplaces and similar	Benzo(k)	29	µg/GJ	Gullet et al. (2003)
Masonry heat accumulating stoves and similar	Benzo(k)	9.5	µg/GJ	Tissari et al. (2007)
Boilers with accumulation tank (-1979)	Benzo(k)	632	µg/GJ	Winther (2008)
Boilers without accumulation tank (-1979)	Benzo(k)	632	µg/GJ	Winther (2008)
Boilers with accumulation tank (1980-)	Benzo(k)	40	μg/GJ	Johansson et al. (2006)
Boilers without accumulation tank (1980-)	Benzo(k)	50	µg/GJ	Johansson et al. (2006)
Pellet boilers / pellet stoves	Benzo(k)	1.3	µg/GJ	Orasche et al. (2012), distribution between Benzo(b)fluoranthene and Benzo(k)fluoranthene accor-
	. ,			ding to Lamberg et al. (2011)
Stoves (-1989)	Indeno	62	µg/GJ	Glasius et al. (2005)
Stoves (1990-2007)	Indeno	27	µg/GJ	Glasius et al. (2005) except for Benzo(b)fluoranthene that refers to Schleicher (2018)
Stoves (2008-2014)	Indeno	31	µg/GJ	Schleicher (2018)
Stoves (2015-2016)	Indeno	31	µg/GJ	Schleicher (2018)
Stoves (2017-)	Indeno	31	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (-2014)	Indeno	31	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2015-2016)	Indeno	31	µg/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (2017-)	Indeno	31	µg/GJ	Schleicher (2018)
Open fireplaces and similar	Indeno	21	µg/GJ	Gullet et al. (2003)
Masonry heat accumulating stoves and similar	Indeno	25	µg/GJ	Tissari et al. (2007)
Boilers with accumulation tank (-1979)	Indeno	1092	µg/GJ	Winther (2008)
Boilers without accumulation tank (-1979)	Indeno	1092	µg/GJ	Winther (2008)
Boilers with accumulation tank (1980-)	Indeno	40	µg/GJ	Johansson et al. (2006)
Boilers without accumulation tank (1980-)	Indeno	60	µg/GJ	Johansson et al. (2006)

	Pollutant	Emission	Uni	it Reference
		factor		
Pellet boilers / pellet stoves	Indeno	1.2	µg/GJ	
		7040		ding to Lamberg et al. (2011)
Stoves (-1989)	dl-PCBs	7049	ng/GJ	Hedman (2006), old boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (Thistlethwaite, 2001)
Stoves (1990-2007)	dl-PCBs	7049	ng/GJ	Hedman (2006), old boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (Thistlethwaite, 2001)
Stoves (2008-2014)	dl-PCBs	931	ng/GJ	Hedman (2006), modern boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (This- tlethwaite, 2001)
Stoves (2015-2016)	dl-PCBs	931	ng/GJ	Same as stoves (2008-2014)
Stoves (2017-)	dl-PCBs	931	ng/GJ	Same as stoves (2008-2014)
Eco labelled stoves / new advanced stoves (-2014)	dl-PCBs	466	ng/GJ	Hedman (2006), assumed ½ stoves (2017-)
Eco labelled stoves / new advanced stoves (2015-2016)	dl-PCBs	466	ng/GJ	Same as Eco labelled stoves / new advanced stoves (-2014)
Eco labelled stoves / new advanced stoves (2017-)		466	ng/GJ	Same as Eco labelled stoves / new advanced stoves (-2014)
Open fireplaces and similar	dl-PCBs	60	ng/GJ	EEA (2019), Open fireplaces, Table 3.39
Masonry heat accumulating stoves and similar		7049	ng/GJ	Hedman (2006), old boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (Thistlethwaite, 2001)
Boilers with accumulation tank (-1979)	dl-PCBs	7049	ng/GJ	Hedman (2006), old boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (Thistlethwaite, 2001)
Boilers without accumulation tank (-1979)	dl-PCBs	7049	ng/GJ	Hedman (2006), old boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (Thistlethwaite, 2001)
Boilers with accumulation tank (1980-)	dl-PCBs	466	ng/GJ	Assumed equal to Eco labelled stoves / new advanced stoves (-2014)
Boilers without accumulation tank (1980-)	dl-PCBs	931	ng/GJ	Hedman (2006), modern boiler. Recalculation from TEQ to sum of dioxin-like PCBs *133 (This- tlethwaite, 2001)
Pellet boilers / pellet stoves	dl-PCBs	466	ng/GJ	Hedman (2006), assumed ½ modern boiler
Stoves (-1989)	BC	18	g/GJ	Alves et al. (2011)
Stoves (1990-2007)	BC	17	g/GJ	Schleicher (2018)
Stoves (2008-2014)	BC	23	g/GJ	Schleicher (2018)
Stoves (2015-2016)	BC	44	g/GJ	Schleicher (2018)
Stoves (2017-)	BC	44	g/GJ	Schleicher (2018)
Eco labelled stoves / new advanced stoves (-2014)	BC	31	g/GJ	Andersen & Hvidbjerg (2017)
Eco labelled stoves / new advanced stoves (2015-2016)	BC	31	g/GJ	Andersen & Hvidbjerg (2017)
Eco labelled stoves / new advanced stoves (2017-)		31	g/GJ	Andersen & Hvidbjerg (2017)
Open fireplaces and similar	BC	34	g/GJ	Alves et al. (2011)
Masonry heat accumulating stoves and similar		18	g/GJ	Tissari et al. (2007)
Boilers with accumulation tank (-1979)	BC	24	g/GJ	Kindbom et al. (2017)
Boilers without accumulation tank (-1979)	BC	24	g/GJ	Kindbom et al. (2017)
Boilers with accumulation tank (1980-)	BC	6	g/GJ	Kindbom et al. (2017)

	Pollutant	Emission	Unit	it Reference
		factor		
Boilers without accumulation tank (1980-)	BC	6	g/GJ	Kindbom et al. (2017)
Pellet boilers / pellet stoves	BC	7	g/GJ	Kindbom et al. (2017)

7 Emission factors

For each fuel and SNAP category (sector and e.g. type of plant), a set of general area source emission factors has been determined. The GHG emission factors are either nationally referenced or based on the IPCC Guidelines (2006). The emission factors for other pollutants are either nationally referenced or based on the EMEP/EEA Guidebook (EEA, 2016)²¹.

An overview of the type of CO_2 emission factor is shown in Table 37. A complete list of emission factors including time series and references is provided in Chapter 7.2 – 7.16 and Annex 4.

7.1 EU ETS data for CO₂

The CO_2 emission factors for some large power plants and for combustion in the cement industry and refineries are plant-specific and based on the reporting to the EU Emission Trading Scheme (EU ETS). In addition, emission factors for offshore gas turbines and refinery gas are based on EU ETS data. The EU ETS data have been applied for the years 2006 - 2018.

The Danish emission inventory for stationary combustion only includes CO_2 emission data from plants using higher tier methods as defined in the EU decision (EU Commission, 2018), where the specific methods for determining carbon contents, oxidation factor and calorific value are specified. The EU decision includes rules for measuring, reporting and verification.

Fuel consumption data from EU ETS are included for some additional plants and fuels, e.g. biomass fuels.

For each of the plants included with plant and fuel specific CO_2 emission factors in the Danish inventory all applied methodologies are specified in individual monitoring plans that are approved by Danish authorities (DEA) prior to the reporting of the emissions. The plant and fuel specific CO_2 emission factors included in the Danish inventory are all based on fuel quality measurements²², not default values from the Danish UNFCCC reporting. All fuel analyses are performed according to ISO 17025²³.

7.1.1 EU ETS data presentation

The EU ETS data include plant-specific emission factors for coal, residual oil, gas oil, natural gas, refinery gas, petroleum coke, coke oven coke and fossil waste. The EU ETS data accounted for 61 % of the CO₂ emission from stationary combustion in 2018.

²¹ Or EEA (2019) or former updates of the Guidebook.

²² Applying specific methods defined in the EU decision.

²³ General requirements for the competence of testing and calibration laboratories

EU ETS data for coal

EU ETS data for 2018 were available from 18 coal fired plant (or units). The plant-specific information accounts for 97 % of the Danish coal consumption and 36 % of the total fossil CO_2 emission from stationary combustion plants.

Data from 17 of the 18 plants have been applied for estimating an average CO_2 emission factor for coal²⁴. The average CO_2 emission factor for coal for these 17 units was 94.04 kg per GJ (Table 29). The plants all apply bituminous coal.

Table 29 EU ETS data for 17 coal fired plants, 2018.

	Average	Min	Max
Heating value, GJ per tonne	24.3	23.0	31.3
CO ₂ implied emission factor, kg per GJ ¹⁾	94.04	89.46	95.89
Oxidation factor	0.997	0.989	1.000

1) Including oxidation factor.

Table 30	CO ₂ implied emission factor time series for coal fired plants based on EU ETS
data.	

Year	CO ₂ implied emission factor, kg per GJ ¹		
2006	94.4		
2007	94.3		
2008	94.0		
2009	93.6		
2010	93.6		
2011	94.7		
2012	94.25		
2013	93.95		
2014	94.17		
2015	94.46		
2016	94.95		
2017	94.37		
2018	94.04		

1) Including oxidation factor.

EU ETS data for residual oil

EU ETS data for 2018 based on higher tier methodologies were available from 10 plants (or units) combusting residual oil. The EU ETS data accounts for 92 % of the residual oil consumption in stationary combustion.

Data from 9 of the 10 plants have been applied for estimating an average CO_2 emission factor for residual oil²⁵. Aggregated data and time series are shown in Table 31 and Table 32.

Table 31 EU ETS data for 10 plants combusting residual oil.			
	Average	Min	Max
Heating value, GJ per tonne	40.7	40.5	40.9
CO ₂ implied emission factor, kg per GJ	79.42	78.35	79.67
Oxidation factor	1.000	1.000	1.000

²⁵ Fuel consumption of the 9 plants adds up to 74% of the fuel consumption of the 10 plants. The remaining plant is not considered representative for the residual oil consumption in Denmark.

 $^{^{24}}$ Fuel consumption of the 17 plants adds up to more than 99.9% of the fuel consumption of the 18 plants. One plant is not considered representative for the coal consumption in Denmark.

based of	Daseu on EU ETS uala.				
Year	CO ₂ implied emission factor, kg per GJ ¹⁾				
2006	78.2				
2007	78.1				
2008	78.5				
2009	78.9				
2010	79.2				
2011	79.25				
2012	79.21				
2013	79.28				
2014	79.49				
2015	79.17				
2016	79.29				
2017	79.19				
2018	79.42				

Table 32 CO₂ implied emission factor time series for residual oil fired power plant units based on EU ETS data.

1) Including oxidation factor.

EU ETS data for gas oil

EU ETS data for 2018 based on higher tier methodologies were included from 2 plants combusting gas oil. Aggregated data and time series are shown in Table 33 and Table 34. The EU ETS data accounts for 0.8 % of the gas oil consumption in stationary combustion.

	Average	Min	Max
Heating value, GJ per tonne	36.7	35.9	40.6
CO ₂ implied emission factor, kg per GJ	74.25	73.99	74.31
Oxidation factor	1.000	1.000	1.000

Year	CO_2 implied emission factor,
2006	75.1
2007	74.9
2008	73.7
2009	75.1
2010	74.8
2011	74.7
2012	73.9
2013	72.7
2014	74.2
2015	73.8
2016	74.4
2017	74.7
2018	74.2

1) Including oxidation factor.

EU ETS data for waste

EU ETS data for 2018 based on higher tier methodologies were included from 18 waste incineration plants (or units). The EU ETS data for waste incineration are based on emission measurements. The average emission factor value for the plants is 43.5 kg per GJ. The emission factors are in the interval 34.9 kg per GJ to 61.2 kg per GJ. The EU ETS data accounts for 74 % of the incinerated waste.

Table 35 EU ETS data for waste incineration.

	Average	Min	Max
Heating value, GJ per tonne	10.7	10.6	13.7
CO ₂ implied emission factor, kg per GJ	43.5	34.9	61.2
Oxidation factor	1.000	1.000	1.000

 Table 36
 CO2 implied emission factor time series for waste incineration.

Year	CO ₂ implied emission factor, kg per GJ					
2013	43.0					
2014	40.8					
2015	43.3					
2016	43.0					
2017	41.4					
2018	43.5					

EU ETS data for petroleum coke, coke oven coke, industrial waste and natural gas

The implemented EU ETS data set also includes CO_2 emission factors for industrial waste, petroleum coke and coke oven coke. The industrial plants with additional EU ETS data include cement industry, sugar production, glass wool production, lime production, and vegetable oil production.

EU ETS data for natural gas applied in offshore gas turbines

EU ETS data have been applied to estimate an average CO₂ emission factor for natural gas combusted in offshore gas turbines, see Chapter 7.2.13.

EU ETS data for refinery gas

EU ETS data are also applied for the two refineries in Denmark. The emission factor for refinery gas is based on EU ETS data, see Chapter 7.2.12.

7.2 CO₂ emission factors

The CO_2 emission factors that are not included in EU ETS data or that are included but based on lower tier methodologies are not plant-specific in the Danish inventory. The emission factors that are not plant-specific accounts for 39 % of the fossil CO_2 emission.

The CO_2 emission factors applied for 2018 are presented in Table 37. Time series have been estimated for:

- Coal
- Residual oil
- Refinery gas
- Natural gas applied in offshore gas turbines
- Natural gas, other
- Waste, fossil part
- Industrial waste, biomass part

For all other fuels, the same emission factor has been applied for 1990-2018.

In the reporting to the UNFCCC, the CO_2 emission is aggregated to six fuel types: solid fuels, liquid fuels, gaseous fuels, other fossil fuels, peat, and biomass. Peat is not combusted in Denmark. The correspondence list between the DCE fuel categories and the IPCC fuel categories is also provided in Table 37.

Only emissions from fossil fuels are included in the total national CO_2 emission. The biomass emission factors are also included in the table, because emissions from biomass are reported to the UNFCCC as a memo item²⁶.

²⁶ Data are reported, but not included in the national total.

The CO_2 emission from incineration of waste (42.5 + 63.3 kg per GJ) is divided into two parts: The emission from combustion of the fossil content of the waste, which is included in the national total, and the emission from combustion of the biomass part, which is reported as a memo item. In the CRF, the fuel consumption and emissions from the fossil content of the waste is reported in the fuel category Other fossil fuels.

Table 37 CO₂ emission factors, 2018.

Fuel	Emission factor, kg per GJ		Reference type	IPCC fuel category
	Biomass	Fossil fuel		
Coal		94.04 ¹⁾	Country-specific	Solid
Brown coal briquettes		97.5	IPCC (2006)	Solid
Coke oven coke		107 ³⁾	IPCC (2006)	Solid
Other solid fossil fuels 6)		118 ¹⁾	Country-specific	Solid
Fly ash fossil (from coal)		94.04	Country-specific	Solid
Petroleum coke		93 ³⁾	Country-specific	Liquid
Residual oil		79.42 ¹⁾	Country-specific	Liquid
Gas oil		74.1 ¹⁾	Country-specific	Liquid
Kerosene		71.9	IPCC (2006)	Liquid
Orimulsion		80 ²⁾	Country-specific	Liquid
LPG		63.1	IPCC (2006)	Liquid
Refinery gas		56.144	Country-specific	Liquid
Natural gas, offshore gas turbines		57.639	Country-specific	Gaseous
Natural gas, other		56.89	Country-specific	Gaseous
Waste	63.3 ³⁾⁴⁾	+ 42.5 ¹⁾³⁾⁴⁾	Country-specific	Biomass and Other fuels
Straw	100		IPCC (2006)	Biomass
Wood	112		IPCC (2006)	Biomass
Wood pellets	112		IPCC (2006)	Biomass
Bio oil	70.8		IPCC (2006)	Biomass
Biogas	84.1		Country-specific	Biomass
Biomass gasification gas	142.9 ⁵⁾		Country-specific	Biomass
Bio natural gas	55.55		Country-specific	Biomass

1) Plant-specific data from EU ETS incorporated for individual plants.

2) Not applied in 2018. Orimulsion was applied in Denmark in 1995 – 2004.

3) Plant-specific data from EU ETS incorporated for cement industry and sugar, lime and mineral wool production.

4) The emission factor for waste is (42.5+63.3) kg CO₂ per GJ waste. The fuel consumption and the CO₂ emission have been disaggregated to the two IPCC fuel categories Biomass and Other fossil fuels in CRF. The corresponding IEF for CO₂, Other fuels is 94.44 kg CO₂ per GJ fossil waste (not including plant-specific data).

5) Includes a high content of CO_2 in the gas.

6) Anodic carbon. Not applied in Denmark in 2018.

7.2.1 Coal

As mentioned above, EU ETS data have been utilised for the years 2006 - 2018 in the emission inventory. The emission factor for coal is the implied emission factor for plants that report EU ETS data that are based on fuel analysis. Data for industrial plants have been included. In 2018, the implied emission factor (including oxidation factor) was 94.04 kg per GJ. The implied emission factor values were between 89.46 and 95.89 kg per GJ.

The emission factors for coal in the years 2006-2018 refer to the implied emission factors of the EU ETS data estimated for each year. For the years 1990-2005, the emission factor for coal (94 kg/GJ) refers to the average IEF for 2006-2010.

Time series for net calorific value (NCV) of coal are available in the Danish energy statistics. NCV for Electricity plant coal fluctuates in the interval 24.1-25.8 GJ per tonne.

The correlation between NCV and CO_2 IEF (including the oxidation factor) in the EU ETS data (2006-2009) have been analysed and the results are shown in Annex 9. However, a significant correlation between NCV and IEF have not been found in the dataset and thus an emission factor time series based on the NCV time series was not relevant. In addition, the correlation of NCV and CO_2 emission factors has been analysed. This analysis is also shown in Annex 9. As expected, the correlation was better in this dataset, but still insufficient for estimating a time series for the CO_2 emission factor based on the NCV time series. All coal applied in Denmark is bituminous coal (DEA, 2019c) and within the range of coal qualities applied in the plants reporting data to EU ETS a correlation could not be documented.

In 2018, the CO_2 emission from coal consumption was based on the emission factor (94.04 kg per GJ) for 3.4% of the coal consumption. The remaining 96.6 % was covered by EU ETS data.

Time series for the CO_2 emission factor are shown in Table 38.

Year	CO ₂ emission factor
	kg per GJ
1990-2005	94.0
2006	94.4
2007	94.3
2008	94.0
2009	93.6
2010	93.6
2011	93.73
2012	94.25
2013	93.95
2014	94.17
2015	94.46
2016	94.95
2017	94.37
2018	94.04

Table 38CO2 emission factor time series for coal.

7.2.2 Brown coal briquettes

The emission factor for brown coal briquettes, 97.5 kg per GJ refers to the IPCC Guidelines, 2006 (IPCC, 2006). The oxidation factor has been assumed equal to 1. The same emission factor has been applied for 1990-2018.

7.2.3 Coke oven coke

The emission factor for coke oven coke, 107 kg per GJ, refers to the IPCC Guidelines 2006 (IPCC, 2006). The oxidation factor has been assumed equal to 1. The same emission factor has been applied for 1990-2018.

7.2.4 Other solid fossil fuels (Anodic carbon)

Anodic carbon was not applied in 2018. Anodic carbon has been applied in Denmark in 2009-2013 in two mineral wool production units. The emission factor 118 kg per GJ refer to EU ETS data from one of the plants in 2012.

The emission factor is not applied because plant-specific data are available from the EU ETS dataset.

7.2.5 Fly ash fossil (from coal)

Fly ash from coal combustion is applied in some power plants. The emission factor has been assumed equal to the emission factor for coal. The emission factor is not applied because plant-specific data are available from the EU ETS dataset.

7.2.6 Petroleum coke

The emission factor 93 kg per GJ is based on EU ETS data for 2006-2010. The data includes one power plant and the cement production plant.

Plant-specific EU ETS data have been utilised for the cement production for the years 2006 - 2018.

7.2.7 Residual oil

The emission factor for residual oil is based on EU ETS data.

EU ETS data have been utilised for the 2006 - 2018 emission inventories. In 2018, the implied emission factor (including oxidation factor) for the plants combusting residual oil was 79.42 kg per GJ. The implied emission factor values were between 78.35 and 79.67 kg per GJ.

The emission factors for residual oil in the years 2006-2018 refer to the implied emission factors of the EU ETS data estimated for each year. For the years 1990-2005, the emission factor for residual oil refers to the average IEF for 2006-2010.

In 2018, 8 % of the CO_2 emission from residual oil consumption was based on the emission factor, whereas 92 % of the residual oil consumption was covered by EU ETS data.

Time series for the CO_2 emission factor are shown in Table 39.

Year	CO ₂ emission factor				
	kg per GJ				
1990-2005	78.7				
2006	78.6				
2007	78.5				
2008	78.5				
2009	78.9				
2010	79.2				
2011	79.25				
2012	79.21				
2013	79.28				
2014	79.49				
2015	79.17				
2016	79.29				
2017	79.19				
2018	79.42				

Table 39CO2 emission factor time series for residual oil.YearCO2 emission factor

7.2.8 Gas oil

The emission factor for gas oil, 74.1 kg per GJ, is based on EU ETS data for the years 2008-2016. The emission factor is consistent with the IPCC default emission factor for gas oil (74.1 kg per GJ). The same emission factor has been applied for 1990-2018.

Plant-specific EU ETS data have been utilised for a few plants each year in the 2006 - 2018 emission inventories. In 2018, the implied emission factor for the power plants using gas oil was 74.25 kg per GJ. The EU ETS CO_2 emission factors were in the interval 73.99 – 74.31 kg per GJ. In 2018, only 0.8 % of the CO_2 emission from gas oil consumption was based on EU ETS data.

7.2.9 Kerosene

The emission factor for kerosene, 71.9 kg per GJ, refers to IPCC Guidelines (IPCC, 2006). The same emission factor has been applied for 1990-2018.

7.2.10 Orimulsion

The emission factor for orimulsion, 80 kg per GJ, refers to the Danish Energy Agency (DEA, 2019a). The IPCC default emission factor is almost the same: 80.7 kg per GJ assuming full oxidation. The CO_2 emission factor has been confirmed by the only major power plant operator using orimulsion (Andersen, 1996). The same emission factor has been applied for all years. Orimulsion was used in Denmark in 1995-2004.

7.2.11 LPG

The emission factor for LPG, 63.1 kg per GJ, refers to IPCC Guidelines (IPCC, 2006). The same emission factor has been applied for 1990-2018.

7.2.12 Refinery gas

The emission factor applied for refinery gas refers to EU ETS data for the two refineries in operation in Denmark. Since 2006, implied emission factors for Denmark have been estimated annually based on the EU ETS data. The average implied emission factor for 2006-2009 (57.6 kg per GJ) have been applied for the years 1990-2005. This emission factor is consistent with the emission factor stated in the IPCC Guidelines (IPCC, 2006). The time series is shown in Table 40.

Year	CO ₂ emission factor, kg per GJ
1990-2005	57.6
2006	57.812
2007	57.848
2008	57.948
2009	56.817
2010	57.134
2011	57.861
2012	58.108
2013	58.274
2014	57.620
2015	57.508
2016	57.335
2017	57.109
2018	56.144

Table 40 CO₂ emission factors for refinery gas, time series.

7.2.13 Natural gas, offshore gas turbines

EU ETS data for the fuel consumption and CO_2 emission for offshore gas turbines are available for the years 2006-2018. Based on data for each oilfield, implied emission factors have been estimated for 2006-2018. The average value for 2006-2009 has been applied for the years 1990-2005. The time series is shown in Table 41.

Year	CO ₂ emission factor, kg per GJ
1990-2005	57.469
2006	57.879
2007	57.784
2008	56.959
2009	57.254
2010	57.314
2011	57.379
2012	57.423
2013	57.295
2014	57.381
2015	57.615
2016	57.704
2017	57.628
2018	57.639

Table 41 CO₂ emission factors for offshore gas turbines, time series.

7.2.14 Natural gas, other source categories

The emission factor for natural gas is estimated by the Danish gas transmission company, Energinet.dk²⁷. The calculation is based on gas analysis carried out daily by Energinet.dk at Egtved.

In 2018, the natural gas import was 15 PJ, the natural gas export 58 PJ and the consumption added up to 113 PJ. Before 2010, only natural gas from the Danish gas fields was utilised in Denmark. If the import of natural gas increases further, the methodology for estimating the CO_2 emission factor might have to be revised in future inventories. However, Energinet.dk have stated that the difference between the emission factor for 2011 based on measurements at Egtved and the average value at Froeslev very close to the border differed less than 0.3 % for 2011 (Bruun, 2012).

Energinet.dk and the Danish Gas Technology Centre have calculated emission factors for 2000-2018. The emission factor applied for 1990-1999 refers to Fenhann & Kilde (1994). This emission factor was confirmed by the two major power plant operators in 1996 (Christiansen, 1996 and Andersen, 1996). The time series for the CO_2 emission factor is provided in Table 42.

²⁷ Former Gastra and before that part of DONG. Historical data refer to these companies.

Table 42	CO ₂ emission factor time series for natura
Year	CO ₂ emission factor, kg per GJ
1990-199	99 56.9
2000	57.1
2001	57.25
2002	57.28
2003	57.19
2004	57.12
2005	56.96
2006	56.78
2007	56.78
2008	56.77
2009	56.69
2010	56.74
2011	56.97
2012	57.03
2013	56.79
2014	56.95
2015	57.06
2016	57.01
2017	57.00
2018	56.89

Table 42 CO₂ emission factor time series for natural gas.

7.2.15 Waste

The CO_2 emission from incineration of waste is divided into two parts: The emission from combustion of the fossil content of the waste, which is included in the national total, and the emission from combustion of the rest of the waste – the biomass part, which is reported as a memo item.

The fossil CO_2 emission factor is based on EU ETS data for 2013-2016. The annual average emission factors for the plants that applied plant-specific data are shown in Table 43 below. The emission factor applied for 2013-2018 is the average value for 2013-2016 (42.5 kg per GJ). The emission factor corresponds to 94.44 kg per GJ fossil waste.

As mentioned, plant-specific EU ETS data have been reported by CHP plants incinerating waste for 2013-2018. In the inventory for 2018, plant-specific emission factors have been implemented for 18 plants or units. In 2018, the average emission factor for 17 plants (the cement production plant not included) was 43.48 kg fossil CO_2 per GJ total waste. The emission factors vary between plants – 34.9 kg per GJ to 61.2 kg per GJ. The 18 plants reporting data to EU ETS represent 74 % of the incinerated waste.

The emission factor for 1990-2010 is based on the project, *Biogenic carbon in Danish combustible waste* that included emission measurements from five Danish waste incineration plants (Astrup et al., 2012). The average of the fossil emission factors for waste was estimated to be 37 kg per GJ waste and the interval for the five plants was 25 – 51 kg per GJ. The five plants represented 44 % of the incinerated waste in 2010. The emission factor 37 kg per GJ waste corresponds to 82.22 kg per GJ fossil waste.

The emission factor for biogenic CO_2 from waste refers to Astrup et al. (2012). The average value for five plants is 63.3 kg biogenic CO_2 per GJ total waste. This emission factor has been applied all years. The emission factor corresponds to 115 kg biogenic CO_2 per GJ biogenic waste.

The time series for the fossil CO_2 emission factor is shown in Table 44.

Table 43	Average fossil CO ₂ emission factors based on EU ETS data for waste.
Vear	Fossil CO ₂ emission factor ka

Year	Fossil CO ₂ emission factor, kg
	fossil CO ₂ per GJ waste (total)
2013	43.0
2014	40.8
2015	43.3
2016	43.0
2017	41.4
2018	43.5
Average 2013-2016	42.5

Table 44 Time series for the fossil CO₂ emission factor for waste.

Year	CO ₂ emission factor, kg per GJ
1990-2010	37.0
2011	37.5
2012	40.0
2013-2018	42.5

Data from the waste statistics have been analysed with the purpose to improve the time series of the fossil waste emission factor. However, the data analysis has shown that is difficult to relate the available waste fraction data and the measured fossil CO_2 emission. Thus, currently it is not possible to estimate an improved time series for the emission factor for the years 1990-2012.

7.2.16 Wood

The emission factor for wood, 112 kg per GJ refers IPCC (2006). The same emission factor has been applied for 1990-2018.

7.2.17 Straw

The emission factor for wood, 100 kg per GJ refers IPCC (2006) for other primary solid biomass. The same emission factor has been applied for 1990-2018.

7.2.18 Bio oil

The emission factor, 70.8 kg per GJ refers to the IPCC (2006). The consumption of bio oil is below 1 PJ.

7.2.19 Biogas

In Denmark, three different types of biogas are applied: Manure/organic waste based biogas, landfill based biogas and wastewater treatment biogas (sludge gas). Manure / organic waste based biogas represent 91 % of the biogas production, see Chapter 6.12. Most of the biogas based on manure / organic waste is however upgraded to bio natural gas. The CO_2 emission factor for bio natural gas differs from the emission factor for biogas.

The emission factor for biogas, 84.1 kg per GJ refer to Kristensen (2015a) and the emission factor is based on a biogas with 65 % (vol.) CH₄ and 35 % (vol.) CO₂. Danish Gas Technology Centre has stated that this is a typical manure-based biogas as utilised in stationary combustion plants (Kristensen, 2015a). The same emission factor has been applied for 1990-2018.

7.2.20 Biomass gasification gas

Biomass gasification gas applied in Denmark is based on wood. The gas composition is known for three different plants and the applied emission factor have been estimated by Danish Gas Technology Centre (Kristensen, 2010) based on the gas composition measured on the plant with the highest consumption.

The consumption of biomass gasification gas is below 2 PJ for all years.

7.2.21 Bio natural gas

Biogas upgraded for distribution in the natural gas grid is referred to as bio natural gas in this report. Other references might refer to this fuel as bio-methane or upgraded biogas. Bio natural gas has been applied in Denmark since 2014. The emission factor is based on the gas composition of bio natural gas: 98.5 % CH₄ and 1.5 % CO₂. These data refer to Danish Gas Technology Centre (Kristensen, 2015b).

7.3 CH₄ emission factors

The CH₄ emission factors applied for 2018 are presented in Table 45. In general, the same emission factors have been applied for 1990-2018. However, time series have been estimated for both natural gas fuelled engines and biogas fuelled engines, residential wood combustion, natural gas fuelled gas turbines²⁸ and waste incineration plants.

Emission factors for CHP plants < 25 MW_{e} refer to emission measurements carried out on Danish plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003; Nielsen et al., 2008). The emission factors for residential wood combustion are based on technology dependent data.

Emission factors that are not nationally referenced all refer to the IPCC Guidelines (IPCC, 2006).

Gas engines combusting natural gas or biogas accounted for 49% of the CH₄ emission from stationary combustion plants in 2018. The relatively high emission factor for gas engines is well documented and further discussed below.

²⁸ A minor emission source.

Fuel group	Fuel	CRF source category	CRF source category	SNAP	Emission factor, g per GJ	Reference
SOLID	Coal	1A1a	Public electricity and heat production	0101 0102	0.9	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Pulverised bituminous coal com- bustion, Wet bottom
		1A2 a-g	Industry	03	10	IPCC (2006), Tier 1, Table 2-3, Manufacturing industries
		1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2.5, Residential, Bituminous coal
		1A4c i	Agriculture/forestry	0203	10	IPCC (2006), Tier 1, Table 2-4, Commercial, coal ¹⁾
	ВКВ	1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2-5, Residential, brown coal briquettes
	Coke oven coke	1A2 a-g	Industry	03	10	IPCC (2006), Tier 1, Table 2-4, Commercial, coke oven coke
		1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2-5, Residential, coke oven coke
	Anodic carbon	1A2 a-g	Industry	03	10	IPCC (2006), Tier 1, Table 2-3, Manufacturing industries
	Fossil fly ash	1A1a	Public electricity and heat production	0101	0.9	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Pulverised bituminous coal com- bustion, Wet bottom
IQUID	Petroleum coke	1A2 a-g	Industry	03	3	IPCC (2006), Tier 1, Table 2-3, Industry, petroleum coke
		1A4a	Commercial/ Institutio- nal	0201	10	IPCC (2006), Tier 1, Table 2-4, Commercial, Petroleum coke
		1A4b	Residential	0202	10	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, Petroleum cok
		1A4c	Agriculture/forestry	0203	10	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, Petroleum cok
	Residual oil	1A1a	Public electricity and heat production	010101	0.8	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Residual fuel oil
			•	010102 010103	1.3	Nielsen et al. (2010a)
				010104	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual oil
				010105	4	IPCC (2006), Tier 3, Table 2-6, Utility, Large diesel engines
				010203	0.8	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Residual fuel oil
		1A1b	Petroleum refining	010306	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual fuel oil
		1A2 a-g	Industry	03	1.3	Nielsen et al. (2010a)
				Engines	4	IPCC (2006), Tier 3, Table 2-6, Utility, Large diesel engines
		1A4a	Commercial/ Institutio- nal	0201	1.4	IPCC (2006), Tier 3, Table 2-10, Commercial, residual fuel oil boilers
		1A4b	Residential	0202	1.4	IPCC (2006), Tier 3, Table 2-9, Residential, residual fuel oil
		1A4c	Agriculture/forestry	0203	1.4	IPCC (2006), Tier 3, Table 2-10, Commercial, residual fuel oil boilers ¹⁾ .
	Gas oil	1A1a	Public electricity and heat production	010101 010102 010103	0.9	IPCC (2006), Tier 3, Table 2-6, Utility, g oil, boilers
				010104	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil
				010105	24	Nielsen et al. (2010a)
				010202 010203	0.9	IPCC (2006), Tier 3, Table 2-6, Utility, g oil, boilers
		1A1b	Petroleum refining	010306	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil
		1A1c	Oil and gas extraction	010504	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil
		1A2 a-g	Industry	03	0.2	IPCC (2006), Tier 3, Table 2-7, Industry, gas oil, boilers
				Turbi- nes	3	IPCC (2006), Tier 1, Table 2-3, Industry gas oil
				Engines	24	Nielsen et al. (2010a)

Table 45 CH₄ emission factors, 2018.

Fuel group	Fuel	CRF source	CRF source category	SNAP	factor,	Reference
		category 1A4a	Commercial/ Institutio-	0201	g per GJ 0.7	IPCC (2006), Tier 3, Table 2-10,
			nal	000/05	~	Commercial, gas oil
		1A4b i	Decidential	020105	24	Nielsen et al. (2010a)
		1A4D I	Residential	0202	0.7	IPCC (2006), Tier 3, Table 2.9, Residential, gas oil
				020204	24	Nielsen et al. (2010a)
		1A4c	Agriculture/forestry	0203	0.7	IPCC (2006), Tier 3, Table 2-10, Commercial, gas oil ¹⁾
				020304	24	Nielsen et al. (2010a)
	Kerosene	1A2 a-g	Industry	03	3	IPCC (2006), Tier 1, Table 2-3, Industry, other kerosene
		1A4a	Commercial/ Institutio- nal	0201	10	IPCC (2006), Tier 1, Table 2-4, Commercial, other kerosene
		1A4b i	Residential	0202	10	IPCC (2006), Tier 1, Table 2-5, Residential/agricultural, other kerosene
		1A4c i	Agriculture/forestry	0203	10	IPCC (2006), Tier 1, Table 2-5, Residential/agricultural, other kerosene
	LPG	1A1a	Public electricity and	0101	1	IPCC (2006), Tier 1, Table 2-2,
			heat production	0102		Energy industries, LPG
		1A1b	Petroleum refining	0103	1	IPCC (2006), Tier 1, Table 2-2, Energy industries, LPG
		1A2 a-g	Industry	03	1	IPCC (2006), Tier 1, Table 2-3, Industry, LPG
		1A4a	Commercial/ Institutio- nal	0201	5	IPCC (2006), Tier 1, Table 2-4, Commercial, LPG
		1A4b i	Residential	0202	5	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, LPG
		1A4c i	Agriculture/forestry	0203	5	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, LPG
	Refinery gas	1A1b	Petroleum refining	010304	1.7	Assumed equal to natural gas fuelled gas turbines. Nielsen et al. (2010a)
				010306	1	IPCC (2006), Tier 1, Table 2-2, refinery gas
GAS	Natural gas	1A1a	Public electricity and	010101	1	IPCC (2006), Tier 3, Table 2-6,
UND	Natural gas	IATA	heat production	010102	I	Utility, natural gas, boilers
				010103	17	Nieleen et el (2010e)
				010104 010105	1.7 481	Nielsen et al. (2010a) Nielsen et al. (2010a)
				010202	1	IPCC (2006), Tier 3, Table 2-6,
				010202	1	Utility, natural gas, boilers
		1A1b	Petroleum refining	010306	1	Assumed equal to industrial boilers
		1A1c	Oil and gas extraction	010503	1	Assumed equal to industrial boilers
			Ū	010504	1.7	Nielsen et al. (2010a)
		1A2 a-g	Industry	Other	1	IPCC (2006), Tier 3, Table 2-7,
						Industry, natural gas boilers
				Gas tur- bines	1.7	Nielsen et al. (2010a)
				Engines	481	Nielsen et al. (2010a)
		1A4a	Commercial/ Institutio-	0201	1	IPCC (2006), Tier 3, Table 2-10, Commer-
			nal			cial, natural gas boilers
		4 6 41. 1	Desidential	020105	481	Nielsen et al. (2010a)
		1A4b i	Residential	0202	1	IPCC (2006), Tier 3, Table 2-9. Residen- tial, natural gas boilers
				020204	481	Nielsen et al. (2010a)
		1A4c i	Agriculture/forestry	0203	1	IPCC (2006), Tier 3, Table 2-10, Commercial, natural gas boilers ¹⁾
				020304	481	Nielsen et al. (2010a)
WA- STE	Waste	1A1a	Public electricity and heat production	0101 0102	0.34	Nielsen et al. (2010a)
		1A2 a-g	Industry	03	30	IPCC (2006), Tier 1, Table 2-3, Industry, municipal wastes
		1A4a	Commercial/ Institutio- nal	0201	30	IPCC (2006), Tier 1, Table 2-3, Industry, municipal wastes ²⁾
	Industrial waste	1A2f	Industry	0316	30	IPCC (2006), Tier 1, Table 2-3, Industry, industrial wastes
BIO-	Wood	1A1a	Public electricity and	0101	3.1	Nielsen et al. (2010a)
MASS		inid	heat production	0101	0.1	

р	Fuel	CRF source category	CRF source category	SNAP	Emission factor, g per GJ	Reference
				0102	11	IPCC (2006), Tier 3, Table 2-6, Utility boilers, wood
		1A2 a-g	Industry	03	11	IPCC (2006), Tier 3, Table 2-7, Industry, wood, boilers
		1A4a	Commercial/ Institutio- nal	0201	11	IPCC (2006), Tier 3, Table 2-10, Commercial, wood
		1A4b i	Residential	0202	110.77	DCE estimate based on technology dis bution, Nielsen et al. (2020) ³⁾
		1A4c i	Agriculture/forestry	0203	11	IPCC (2006), Tier 3, Table 2-10, Commercial, wood. ¹⁾
	Straw	1A1a	Public electricity and heat production	0101	0.47	Nielsen et al. (2010a)
				0102	30	IPCC (2006), Tier 1, Table 2-2, Energy industries, other primary solid b mass
		1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2-5, Residential, other primary solid biomas
		1A4c i	Agriculture/forestry	020300	300	IPCC (2006), Tier 1, Table 2-5, Agriculture, other primary solid biomas
				020302	30	IPCC (2006), Tier 1, Table 2-2, Energy industries, other primary solid t mass (large agricultural plants conside equal to this plant category)
	Wood pellets	1A1a	Public electricity and heat production	0101	3.1	Nielsen et al. (2010a)
				0102	11	IPCC (2006), Tier 3, Table 2-6, Utility boilers, wood
		1A2 a-g	Industry	03	11	IPCC (2006), Tier 3, Table 2-7, Industry, wood, boilers
		1A4a	Commercial/ Institutio- nal	0201	11	IPCC (2006), Tier 3, Table 2-10, Commercial, wood
		1A4b i 1A4c i	Residential Agriculture/forestry	0202 0203	<u>3</u> 11	Paulrud et al. (2005) IPCC (2006), Tier 3, Table 2-10,
	Bio oil	1A1a	Public electricity and	010102	3	Commercial, wood. ¹⁾ IPCC (2006), Tier 1, Table 2-2,
			heat production	010105	24	Energy industries, biodiesels Nielsen et al. (2010a) assumed same emission factor as for gas oil fuelled er gines
				0102	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, biodiesels
		1A2 a-g	Industry	03	3	IPCC (2006), Tier 1, Table 2-3, Industry, biodiesels
				030902	0.2	-
		1A4b i	Residential	0202	10	IPCC (2006), Tier 1, Table 2-5, Residential, biodiesels
	Biogas	1A1a	Public electricity and heat production	0101	1	IPCC (2006), Tier 1, Table 2-2, Energy ndustries, other biogas
				010105	434	Nielsen et al. (2010a)
				0102	1	IPCC (2006), Tier 1, Table 2-2, Energy industries, other biogas
		1A2 a-g	Industry	03	1	IPCC (2006), Tier 1, Table 2-3, Industry, other biogas
				Engines		Nielsen et al. (2010a)
		1A4a	Commercial/ Institutio- nal	0201	5	IPCC (2006), Tier 1, Table 2-4, Commercial, other biogas
				020105	434	Nielsen et al. (2010a)
		1A4b	Residential	0202	1	Assumed equal to natural gas
		1A4c i	Agriculture/forestry	0203	5	IPCC (2006), Tier 1, Table 2-5, Agriculture, other biogas
				020304	434	Nielsen et al. (2010a)
	Bio gasification gas	1A1a	Public electricity and heat production	010101	1	Assumed equal to biogas
				010105	13	Nielsen et al. (2010a)
		1A4a	Commercial/institutional		13	Nielsen et al. (2010a)
	Bio natural gas	1A1a	Public electricity and	0101	1	Assumed equal to natural gas
			heat production	0102	•	

Fuel group	Fuel	CRF source category	CRF source category	SNAP	Emission factor, g per GJ	Reference
		1A2 a-g	Industry	03 0201	1	Assumed equal to natural gas
		1A4a	Commercial/ Institutio- nal	0201		Assumed equal to natural gas
		1A4b	Residential	0202	1	Assumed equal to natural gas
		1A4c	Agriculture/forestry	0203	1	Assumed equal to natural gas

1) Assumed same emission factors as for commercial plants. Plant capacity and technology are similar for Danish plants.

2) Assumed same emission factor as for industrial plants. Plant capacity and technology is similar to industrial plants rather than to residential plants.

3) Aggregated emission factor based on the technology distribution in the sector (Nielsen et al., 2020) and technology specific emission factors that refer to Paulrud et al. (2005), Johansson et al. (2004) and Olsson & Kjällstrand (2005). The emission factor is within the IPCC (2006) interval for residential wood combustion (100-900 g per GJ).

7.3.1 CHP plants

A considerable part of the electricity production in Denmark is based on decentralised CHP plants, and well-documented emission factors for these plants are, therefore, of importance. In a project carried out for the electricity transmission company, Energinet.dk, emission factors for CHP plants <25MW_e have been estimated. The work was reported in 2010 (Nielsen et al., 2010a).

The work included waste incineration plants, CHP plants combusting wood and straw, natural gas and biogas-fuelled (reciprocating) engines, natural gas fuelled gas turbines, gas oil fuelled engines, gas oil fuelled gas turbines, steam turbines fuelled by residual oil and engines fuelled by biomass gasification gas. CH_4 emission factors for these plants all refer to Nielsen et al. (2010a). The estimated emission factors were based on existing emission measurements as well as on emission measurements carried out within the project. The number of emission data sets was comprehensive. Emission factors for subgroups of each plant type were estimated, e.g. the CH_4 emission factors for different gas engine types were determined.

Time series for the CH₄ emission factors are based on a similar project estimating emission factors for year 2000 (Nielsen & Illerup, 2003).

Natural gas, gas engines

The emission factor for natural gas engines refers to the Nielsen et al. (2010a). The emission factor includes the increased emission during start/stop of the engines estimated by Nielsen et al. (2008). Emission factor time series for the years 1990-2007 have been estimated based on Nielsen & Illerup (2003). These three references are discussed below.

Nielsen et al. (2010a):

CH₄ emission factors for gas engines were estimated for 2003-2006 and for 2007-2010. The dataset was split in two, due to new emission limits for engines from October 2006. The emission factors were based on emission measurements from 366 (2003-2006) and 157 (2007-2010) engines respectively. The engines from which emission measurements were available for 2007-2010 represented 38 % of the gas consumption. The emission factors were estimated based on fuel consumption for each gas engine type and the emission factor for each engine type. The majority of emission measurements that were not performed within the project related solely to the emission.

sion of total unburned hydrocarbon (CH_4 + NMVOC). A constant disaggregation factor was estimated based on 9 emission measurements including both CH_4 and NMVOC.

Nielsen & Illerup (2003):

The emission factor for natural gas engines was based on 291 emission measurements in 114 different plants. The plants from which emission measurements were available represented 44 % of the total gas consumption in gas engines in year 2000.

Nielsen et al. (2008):

This study calculated a start/stop correction factor. This factor was applied to the time series estimated in Nielsen & Illerup (2003). Further, the correction factors were applied in Nielsen et al. (2010a).

The emission factor for lean-burn gas engines is relatively high, especially for pre-chamber engines, which account for more than half the gas consumption in Danish gas engines. However, the emission factors for different pre-chamber engine types differ considerably.

The installation of natural gas engines in decentralised CHP plants in Denmark has taken place since 1990. The first engines installed were relatively small open-chamber engines but later mainly pre-chamber engines were installed. As mentioned above, pre-chamber engines have a higher emission factor than open-chamber engines; therefore, the emission factor has increased during the period 1990-1995. After that, technical improvements of the engines have been implemented as a result of upcoming emission limits that most installed gas engines had to meet in late 2006 (DEPA, 2005).

The time series were based on:

- Full load emission factors for different engine types in year 2000 (Nielsen & Illerup, 2003), 2003-2006 and 2007-2010 (Nielsen et al., 2010a).
- Data for year of installation for each engine and fuel consumption of each engine 1994-2002 from the Danish Energy Agency (DEA, 2003).
- Research concerning the CH₄ emission from gas engines carried out in 1997 (Nielsen & Wit, 1997).
- Correction factors including increased emission during start/stop of the engines (Nielsen et al., 2008).

Table 40	
Year	Emission factor, g p
1990	266
1991	309
1992	359
1993	562
1994	623
1995	632
1996	616
1997	551
1998	542
1999	541
2000	537
2001	522
2002	508
2003	494
2004	479
2005	465
2006	473
2007-201	8 481

 $\begin{array}{c|c} \hline Table \ 46 & Time \ series \ for \ the \ CH_4 \ emission \ factor \ for \ natural \ gas \ fuelled \ engines. \\ \hline Year & Emission \ factor, \ g \ per \ GJ \end{array}$

Gas engines, biogas

The emission factor for biogas engines was estimated to 434 g per GJ in 2007-2018. The emission factor is lower than the factor for natural gas mainly because most biogas-fuelled engines are lean-burn open-chamber engines - not pre-chamber engines.

Time series for the emission factor have been estimated. The emission factors for biogas engines were based on Nielsen et al. (2010a) and Nielsen & Illerup (2003). The two references are discussed below. The time series are shown in Table 47.

Nielsen et al. (2010a):

 CH_4 emission factors for gas engines were estimated for 2006 based on emission measurements performed in 2003-2010. The emission factor was based on emission measurements from 10 engines. The engines from which emission measurements were available represented 8 % of the gas consumption. The emission factor was estimated based on fuel consumption for each gas engine type and the emission factor for each engine type. The majority of emission measurements that were not performed within the project related solely to the emission of total unburned hydrocarbon (CH₄ + NMVOC). A constant disaggregation factor was estimated based on 3 emission measurements including both CH₄ and NMVOC.

Nielsen & Illerup (2003):

The emission factor for natural gas engines was based on 18 emission measurements from 13 different engines. The engines from which emission measurements were available represented 18 % of the total biogas consumption in gas engines in year 2000.

Table 47	Time series for the CH ₄ emission factor for
Year	Emission factor, g per GJ
1990	239
1991	251
1992	264
1993	276
1994	289
1995	301
1996	305
1997	310
1998	314
1999	318
2000	323
2001	342
2002	360
2003	379
2004	397
2005	416
2006	434
2007-201	8 434
	Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

able 47 Time series for the CH₄ emission factor for biogas-fuelled engines.

Gas turbines, natural gas

The emission factor for gas turbines was estimated to be below 1.7 g per GJ in 2005 (Nielsen et al., 2010a). The emission factor was based on emission measurements on five plants. The emission factor in year 2000 was 1.5 g per GJ (Nielsen & Illerup, 2003). A time series have been estimated.

CHP, wood

The emission factor for CHP plants combusting wood was estimated to be below 3.1 g per GJ (Nielsen et al., 2010a) and the emission factor 3.1 g per GJ has been applied for all years. The emission factor was based on emission measurements on two plants.

CHP, straw

The emission factor for CHP plants combusting straw was estimated to be below 0.47 g per GJ (Nielsen et al., 2010a) and the emission factor 0.47 g per GJ has been applied for all years. The emission factor was based on emission measurements on four plants.

CHP, waste

The emission factor for CHP plants combusting waste was estimated to be below 0.34 g per GJ in 2006 (Nielsen et al., 2010a) and 0.59 g per GJ in year 2000 (Nielsen & Illerup, 2003). A time series have been estimated. The emission factor was based on emission measurements on nine plants.

The emission factor has also been applied for district heating plants.

7.3.2 Residential wood combustion

The emission factor for residential wood refers to Nielsen et al. (2020c), see Chapter 6.13. The emission factor for residential wood combustion (not including wood pellets) is based on technology specific data. The emission factor time series is shown in Table 48.

l able 48	CH ₄ emission fac
Year E	mission factor, g p
1990	327
1991	321
1992	314
1993	308
1994	302
1995	296
1996	289
1997	283
1998	276
1999	270
2000	263
2001	256
2002	248
2003	240
2004	227
2005	215
2006	206
2007	197
2008	188
2009	178
2010	167
2011	160
2012	152
2013	145
2014	138
2015	131
2016	124
2017	117
2018	111

Table 48CH4 emission factor time series for residential wood combustion1).YearEmission factor, g per GJ

1) Wood pellets not included.

7.3.3 Other stationary combustion plants

Emission factors for other plants refer to the IPCC Guidelines (IPCC, 2006).

7.4 N₂O emission factors

The N_2O emission factors applied for the 2018 inventory are listed in Table 49. Time series have been estimated for natural gas fuelled gas turbines and refinery gas fuelled turbines. All other emission factors have been applied unchanged for 1990-2018.

Emission factors for natural gas fuelled reciprocating engines, natural gas fuelled gas turbines, CHP plants < 300 MW combusting wood, straw or residual oil, waste incineration plants, engines fuelled by gas oil and gas engines fuelled by biomass gasification gas all refer to emission measurements carried out on Danish plants, Nielsen et al. (2010a).

The emission factor for coal-powered plants in public power plants refers to research conducted by Elsam (now part of Ørsted).

Plant-specific emission factors have been included for two industrial plants.

The emission factor for offshore gas turbines has been assumed to follow the time series for natural gas fuelled gas turbines in Danish CHP plants. There is

no evidence to suggest that offshore gas turbines have different emission characteristics for N_2O compared to on-shore natural gas turbines and the emission factor is considered applicable.

The emission factor for natural gas fuelled gas turbines has been applied for refinery gas fuelled gas turbines. Refinery gas has similar properties as natural gas, i.e. similar nitrogen content in the fuel, which means that N_2O formation will be similar under similar combustion conditions.

All emission factors that are not nationally referenced refer to the IPCC Guidelines (IPCC, 2006).

Fuel group	Fuel	CRF source category	CRF source category	SNAP	factor, g per GJ	Reference
SOLID	Coal	1A1a	Public electricity and heat production	0101	0.8	Henriksen (2005)
				0102	1.4	IPCC (2006), Tier 3, Table 2.6, Utility source, pulverised bituminous coal, wet bottom boiler
		1A2 a-g	Industry	03	1.5	IPCC (2006), Tier 1, Table 2-3, Manufac turing industries, coal
		1A4b i	Residential	0202	1.5	IPCC (2006), Tier 1, Table 2-5, Residential, coal
		1A4c i	Agriculture/forestry	0203	1.5	IPCC (2006), Tier 1, Table 2-4, Commercial, coal ¹⁾
	ВКВ	1A4b i	Residential	0202	1.5	IPCC (2006), Tier 1, Table 2-5, Residential, brown coal briquettes
	Coke oven coke	1A2 a-g	Industry	03	1.5	IPCC (2006), Tier 1, Table 2-3, Industry coke oven coke
		1A4b i	Residential	020200	1.5	IPCC (2006), Tier 1, Table 2-5, Residential, coke oven coke
	Anodic carbon	1A2 a-g	Industry	03	1.5	IPCC (2006), Tier 1, Table 2-3, manufac turing industries, other bituminous coal
	Fossil fly ash	1A1a	Public electricity and heat production	0101	0.8	Assumed equal to coal
LI- QUID	Petroleum coke	1A2 a-g	Industry – other	03	0.6	IPCC (2006), Tier 1, Table 2-3, Industry petroleum coke
				031600	1.5	-
		1A4a	Commercial/ Institutional	0201	0.6	IPCC (2006), Tier 1, Table 2-4, Commercial, petroleum coke
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5, Residential, petroleum coke
		1A4c i	Agriculture/forestry	0203	0.6	IPCC (2006), Tier 1, Table 2-5, Residential/Agricultural, petroleum coke
	Residual oil	1A1a	Public electricity and heat production	010101	0.3	IPCC (2006), Tier 3, Table 2-6, Utility, residual fuel oil
				010102	5	Nielsen et al. (2010a)
				010104 010105	0.6	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual fuel oil
				010203	0.3	IPCC (2006), Tier 3, Table 2-6, Utility, residual fuel oil
		1A1b	Petroleum refining	010306	0.6	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual fuel oil
		1A2 a-g	Industry	03	5	Nielsen et al. (2010a)
		., <u> </u>		Engines		IPCC (2006), Tier 1, Table 2-3, Manufacturing industries and construction
		1040	Commorpial/Institution-1	0201	0.0	residual fuel oil.
		1A4a	Commercial/ Institutional	0201	0.3	IPCC (2006), Tier 3, Table 2-10, Commercial, fuel oil boilers
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5, Residential, residual fuel oil
		1A4c i	Agriculture/forestry	0203	0.3	IPCC (2006), Tier 3, Table 2-10, Commercial, fuel oil boilers ¹⁾
	Gas oil	1A1a	Public electricity and heat production	010102	0.4	IPCC (2006), Tier 3, Table 2-6, Utility, gas oil boilers
				010103 010104	0.6	IPCC (2006), Tier 1, Table 2-2,
				010105	0.1	Energy industries, gas oil
				010105	2.1	Nielsen et al. (2010a)
				0102	0.4	IPCC (2006), Tier 3, Table 2-6, Utility, gas oil boilers

Fuel	Fuel	CRF	CRF source category	SNAP		Reference
group		source category			factor, g per GJ	
		1A1b	Petroleum refining	010306	0.6	IPCC (2006), Tier 1, Table 2-2,
						Energy industries, gas oil
		1A1c	Oil and gas extraction	010504	0.6	IPCC (2006), Tier 1, Table 2-2,
						Energy industries, gas oil
		1A2 a-g	Industry	03	0.4	IPCC (2006), Tier 3, Table 2-7,
						Industry, gas oil boilers
				Turbi-	0.6	IPCC (2006), Tier 1, Table 2-3,
				nes Engines	2.1	Industry, gas oil Nielsen et al. (2010a)
		1A4a	Commercial/ Institutional	0201	0.4	IPCC (2006), Tier 3, Table 2-10,
		174a		0201	0.4	Commercial, gas oil boilers
				Engines	2.1	Nielsen et al. (2010a)
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5, Residen-
						tial, gas oil
				Engines	2.1	Nielsen et al. (2010a)
		1A4c	Agriculture/forestry	0203	0.4	IPCC (2006), Tier 3, Table 2-10,
						Commercial, gas oil boilers ¹⁾
				Engines	2.1	Nielsen et al. (2010a)
	Kerosene	1A2 a-g	Industry	03	0.6	IPCC (2006), Tier 1, Table 2-3,
						Industry, other kerosene
		1A4a	Commercial/ Institutional	0201	0.6	IPCC (2006), Tier 1, Table 2-4,
		4.4.4.	Desidential	0000	0.0	Commercial, other kerosene
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5,
		1A4c i	Agriculture/forestry	0203	0.6	Residential, other kerosene IPCC (2006), Tier 1, Table 2-4,
		1A401	Agriculture/loresity	0203	0.0	Commercial, other kerosene ¹⁾
	LPG	1A1a	Public electricity and heat	0101	0.1	IPCC (2006), Tier 1, Table 2-2,
	LIG	intia	production	0102	0.1	Energy industries, LPG
		1A1b	Petroleum refining	010306	0.1	IPCC (2006), Tier 1, Table 2-2,
			0			Energy industries, LPG
		1A2 a-g	Industry	03	0.1	IPCC (2006), Tier 1, Table 2-3, Industry,
						LPG
		1A4a	Commercial/ Institutional	0201	0.1	IPCC (2006), Tier 1, Table 2-4,
						Commercial, LPG
		1A4b i	Residential	0202	0.1	IPCC (2006), Tier 1, Table 2-5,
		1440	A gri aultura /faraatra	0000	0.1	Residential, LPG
		1A4c i	Agriculture/forestry	0203	0.1	IPCC (2006), Tier 1, Table 2-5, Residential/Agricultural, LPG
	Refinery gas	1A1b	Petroleum refining	010304	1	Assumed equal to natural gas fuelled tur-
	riennery gas		r choicann reinning	010004		bines. Based on Nielsen et al. (2010a).
				010306	0.1	IPCC (2006), Tier 1, Table 2-2,
						Energy industries, refinery gas
AS	Natural gas	1A1a	Public electricity and heat	010101	1	IPCC (2006), Tier 3, Table 2-6,
			production	010102		Natural gas, Utility, boiler
				010103		
				010104	1	Nielsen et al. (2010a)
				010105	0.58	Nielsen et al. (2010a)
				0102	1	IPCC (2006), Tier 3, Table 2-6,
		4 4 4 6	Detrolours within the	010000		Natural gas, Utility, boiler
		1A1b	Petroleum refining	010306	1	IPCC (2006), Tier 3, Table 2-6,
		1A1c	Oil and gas oversation	010504	4	Natural gas, Utility, boiler
		1A1c 1A2 a-g	Oil and gas extraction Industry	010504 03	1 1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7,
		inz a-y	muusuy	00	I	Industry, natural gas boilers
				Gas tur-	1	Nielsen et al. (2010a)
				bines	•	
				Engines	0.58	Nielsen et al. (2010a)
		1A4a	Commercial/ Institutional	020100	1	IPCC (2006), Tier 3, Table 2-10,
				020103		Commercial, natural gas boilers

Fuel group	Fuel	CRF source	CRF source category	SNAP	factor,	Reference
		category			g per GJ	
				Engines	0.58	Nielsen et al. (2010a)
		1A4b i	Residential	0202	1	IPCC (2006), Tier 3, Table 2-9,
						Residential, natural gas boilers
				Engines	0.58	Nielsen et al. (2010a)
		1A4c i	Agriculture/forestry	0203	1	IPCC (2006), Tier 3, Table 2-10,
						Commercial, natural gas boilers 1)
				Engines		Nielsen et al. (2010a)
NA-	Waste	1A1a	Public electricity and heat		1.2	Nielsen et al. (2010a)
STE			production	0102		
		1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3,
						Industry, wastes
		1A4a	Commercial/ Institutional	0201	4	IPCC (2006), Tier 1, Table 2-4,
						Commercial, municipal wastes
	Industrial waste	1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3,
						Industry, industrial wastes
BIO- NASS	Wood	1A1a	Public electricity and heat production	0101	0.8	Nielsen et al. (2010a)
				0102	4	IPCC (2006), Tier 1, Table 2-2,
						Energy industries, wood
		1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3,
						Industry, wood
		1A4a	Commercial/ Institutional	0201	4	IPCC (2006), Tier 1, Table 2-4,
						Commercial, wood
		1A4b i	Residential	0202	4	IPCC (2006), Tier 1, Table 2-5,
						Residential, wood
		1A4c i	Agriculture/forestry	0203	4	IPCC (2006), Tier 1, Table 2-5,
						Agriculture, wood
	Straw	1A1a	Public electricity and heat production	0101	1.1	Nielsen et al. (2010a)
				0102	4	IPCC (2006), Tier 1, Table 2-2,
						Energy industries, other primary solid bio
						mass
		1A4b i	Residential	0202	4	IPCC (2006), Tier 1, Table 2-5,
						Residential, other primary solid biomass
		1A4c i	Agriculture/forestry	0203	4	IPCC (2006), Tier 1, Table 2-5,
			<u> </u>			Agriculture, other primary solid biomass
	Wood pellets	1A1a	Public electricity and heat	0101	0.8	Nielsen et al. (2010a)
	•		production			
				0102	4	IPCC (2006), Tier 1, Table 2-2,
				-		Energy industries, wood
		1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3,
		- 9	,			Industry, wood
		1A4a	Commercial/ Institutional	0201	4	IPCC (2006), Tier 1, Table 2-4,
					-	Commercial, wood
		1A4b i	Residential	0202	4	IPCC (2006), Tier 1, Table 2-5,
				-		Residential, wood
	Bio oil	1A1a	Public electricity and heat	0101	0.6	IPCC (2006), Tier 3, Table 2-2,
	•		production	0102		Utility, biodiesels
				Engines	2.1	Assumed equal to gas oil.
						Based on Nielsen et al. (2010a)
		1A2 a-g	Industry	03	0.4	Assumed equal to gas oil.
		1A4b i	Residential	0202	0.4	IPCC (2006), Tier 1, Table 2-5,
		ו עדי יי		5202	0.0	Residential, biodiesels
	Biogas	1A1a	Public electricity and heat	0101	0.1	IPCC (2006), Tier 1, Table 2-2,
	ыоуаз	inia	production	0101	0.1	Energy industries, other biogas
			production		1.6	
		140	Industry	Engines	1.6	Nielsen et al. (2010a)
		1A2 a-g	Industry	03	0.1	IPCC (2006), Tier 1, Table 2-3,
				Family	1.0	Industry, other biogas
				Engines	1.6	Nielsen et al. (2010a)

uel	Fuel	CRF	CRF source category	SNAP	Emission	Reference
roup		source			factor,	
		category			g per GJ	
		1A4a	Commercial/ Institutional	0201	0.1	IPCC (2006), Tier 1, Table 2,4,
						Commercial, other biogas
				Engines	1.6	Nielsen et al. (2010a)
		1A4b	Residential	0202	1	Assumed equal to natural gas.
		1A4c i	Agriculture/forestry	0203	0.1	IPCC (2006), Tier 1, Table 2-5,
						Agriculture, other biogas
				Engines	1.6	Nielsen et al. (2010a)
	Bio gasification	1A1a	Public electricity and heat	010101	0.1	Assumed equal to biogas
	gas		production			
				010105	2.7	Nielsen et al. (2010a)
		1A4a	Commercial/Institutional	020105	2.7	Nielsen et al. (2010a)
	Bio natural gas	1A1a	Public electricity and heat	0101 or	1	Assumed equal to natural gas
			production	0102		
		1A2 a-g	Industry	03	1	Assumed equal to natural gas
		1A4a	Commercial/ Institutional	0201	1	Assumed equal to natural gas
		1A4b	Residential	0202	1	Assumed equal to natural gas
		1A4c	Agriculture/forestry	0203	1	Assumed equal to natural gas

1) In Denmark, plants in Agriculture/forestry are similar to Commercial plants.

7.5 SO₂ emission factors

The SO_2 emission factors and references are shown in Table 50. Further details are included in Nielsen et al. (2018).

Time series are shown in Annex 4. Time series have been estimated for:

- Combustion of coal in power plants.
- Combustion of coal in other plants (including district heating).
- Combustion of coal in food industry.
- Combustion of coal, petroleum coke and industrial waste in cement industry.
- Combustion of BKB in residential and industrial plants.
- Combustion of coke oven coke in power plants.
- Combustion of coke oven coke in residential and industrial plants.
- Combustion of petroleum coke in other sectors than cement industry.
- Combustion of residual oil in power plants.
- Combustion of residual oil in refineries.
- Combustion of residual oil in other plants.
- Combustion of gas oil.
- Combustion of orimulsion.
- Waste incineration in CHP plants.
- Waste incineration in district heating and other plants.

Fuel type	Fuel	NFR	NFR_name	SNAP	SO₂ emis- Reference sion factor,
					g/GJ
Solid	Anodic carbon	1A2g	Industry - other	032002	855 DCE estimate based on plant-specific data
	Coal	1A1a	Public electricity and heat production	0101	10 DCE estimate based on emission data reported by plant owners and fuel consumption data from EU ETS (2019)
				0102	438 DCE estimate based on country-specific coal data from Dong Energy (Jensen, 2017) and coal import data from DEA (2019c)
		1A2a-g	Industry	03 ex- cept	438 DCE estimate based on country-specific coal data from Dong Energy (Jensen, 2017) and coal import data from
				0309 and 0316	DEA (2019c)
		1A2e	Industry, food, beverages and tobacco	0309	231 DCE estimate based on plant-specific data for 2010.
		1A2f	Cement industry	0316	67 DCE estimate based on plant-specific data for 2011-2015
		1A2g	Mineral wool production	Mineral wool 032002	861 DCE estimate based on plant-specific data for 2010-2015
		1A4b i	Residential	020200	438 DCE estimate based on country-specific coal data from Dong Energy (Jensen, 2017) and coal import data from DEA (2019c)
		1A4c i	Agriculture/forestry	0203	438 DCE estimate based on country-specific coal data from Dong Energy (Jensen, 2017) and coal import data from DEA (2019c)
	Fly ash fossil	1A1a	Public electricity and heat production	010101	10 Assumed equal to coal
	BKB	1A4b	Residential	0202	438 Assumed equal to coal. DCE assumption
	Coke oven coke	1A2a-g	Industry	03	438 Assumed equal to coal. DCE assumption
		1A2e	Industry, food, beverages and tobacco	0309	231 DCE estimate based on plant-specific data for 2010
		1A2g	Mineral wool production	Mineral wool 032002	861 DCE estimate based on plant-specific data for 2010-2015
		1A4b	Residential	0202	438 Assumed equal to coal. DCE assumption
Liquid	Petroleum coke			03	605 DCE calculation based on DEPA (2001b), DEPA (2014), DEA (2016a) and EMEP (2006)
		1A2g	Cement industry	0316	67 DCE estimate based on plant-specific data for 2011-2015
		1A4a	Commercial/ Institutional	0201	605 DCE calculation based on DEPA (2001b), DEPA (2014), DEA (2016a) and EMEP (2006)
		1A4b	Residential	0202	605 DCE calculation based on DEPA (2001b), DEPA (2014), DEA (2016a) and EMEP (2006)
		1A4c	Agriculture/forestry	0203	605 DCE calculation based on DEPA (2001b), DEPA (2014), DEA (2016a) and EMEP (2006)
	Residual oil	1A1a	Public electricity and heat production	0101	100 DCE estimate based on plant-specific data for 2008 and 2009
				0102	344 DCE estimate based on EOF (2017) and DEA (2016a)
		1A1b	Petroleum refining	010306	339 DCE estimate based on plant-specific data for year 2019

Table 50 SO₂ emission factors and references, 2018.

Fuel type	Fuel	NFR	NFR_name	SNAP	SO₂ emis- Reference sion factor, g/GJ
		1A2a-g	Industry	03	344 DCE estimate based on EOF (2017) and DEA (2016a)
		1A4a	Commercial/ Institutional	0201	344 DCE estimate based on EOF (2017) and DEA (2016a)
		1A4b	Residential	0202	344 DCE estimate based on EOF (2017) and DEA (2016a)
		1A4c i	Agriculture/forestry	0203	344 DCE estimate based on EOF (2017) and DEA (2016a)
	Gas oil	1A1a	Public electricity and heat production	0101 0102	6.7 DCE estimate based on DEA (2018e)
		1A1b	Petroleum refining	010306	6.7 DCE estimate based on DEA (2018e)
		1A1c	Oil and gas extraction	0105	6.7 DCE estimate based on DEA (2018e)
		1A2a-g	Industry	03	6.7 DCE estimate based on DEA (2018e)
		1A4a	Commercial/ Institutional	0201	6.7 DCE estimate based on DEA (2018e)
		1A4b i	Residential	0202	6.7 DCE estimate based on DEA (2018e)
		1A4c	Agriculture/forestry	0203	6.7 DCE estimate based on DEA (2018e)
	Kerosene	1A2g	Industry - other	03	5 DCE estimate based on Tønder (2004) and Shell (2013)
		1A4a	Commercial/ Institutional	0201	5 DCE estimate based on Tønder (2004) and Shell (2013)
		1A4b i	Residential	0202	5 DCE estimate based on Tønder (2004) and Shell (2013.
		1A4c i	Agriculture/forestry	0203	5 DCE estimate based on Tønder (2004) and Shell (2013)
	LPG	1A1a	Public electricity and heat production	All	0.13 DCE estimate based on Augustesen (2003), Krebs (2003) and DEA (2016a)
		1A2a-g	Industry	03	0.13 DCE estimate based on Augustesen (2003), Krebs (2003) and DEA (2016a)
		1A4a	Commercial/ Institutional	0201	0.13 DCE estimate based on Augustesen (2003), Krebs (2003) and DEA (2016a)
		1A4b i	Residential	0202	0.13 DCE estimate based on Augustesen (2003), Krebs (2003) and DEA (2016a)
		1A4c i	Agriculture/forestry	0203	0.13 DCE estimate based on Augustesen (2003), Krebs (2003) and DEA (2016a)
	Refinery gas	1A1b	Petroleum refining	0103	1 DCE estimate based on plant-specific data for one plant, average value for 1995-2002
Gas	Natural gas	1A1a	Public electricity and heat production	0101, 0102, except engines	0.43 DCE estimate based on data from Energinet.dk (2017) and Energinet.dk (2013)
				010105,	0.5 Kristensen (2003)
		1A1b	Petroleum refining	engines 0103	0.43 DCE estimate based on data from Energinet.dk (2017) and Energinet.dk (2013)
		1A1c	Oil and gas extraction	0105	0.43 DCE estimate based on data from Energinet.dk (2017) and Energinet.dk (2013)
		1A2a-g	Industry	03 ex- cept en- gines	0.43 DCE estimate based on data from Energinet.dk (2017) and Energinet.dk (2013)
				Engines	0.5 Kristensen (2003)

Fuel type	Fuel	NFR	NFR_name	SNAP	SO₂ emis- Reference sion factor, g/GJ
		1A4a	Commercial/ Institutional	0201 ex-	0.43 DCE estimate based on data from Energinet.dk (2017) and
		1A4a		cept en-	Energinet.dk (2013)
				gines	
				Engines	0.5 Kristensen (2003)
		1A4b i	Residential	0202 ex-	0.43 DCE estimate based on data from Energinet.dk (2017) and
		17401	lesidentia	cept en-	Energinet.dk (2013)
				gines	
				Engines	0.5 Kristensen (2003)
		1A4c i	Agriculture/forestry	0203 ex-	0.43 DCE estimate based on data from Energinet.dk (2017) and
			, ighoditaro, forocary	cept en-	Energinet.dk (2013)
				gines	
				Engines	0.5 Kristensen (2003)
Waste	Waste	1A1a	Public electricity and heat production	0101	8.3 Nielsen et al. (2010a)
W doto	Wable	intra	Tublic clockloky and heat production	0102	14 DCE estimate based on plant-specific data for four plants,
				0102	2009 data
		1A2a-g	Industry	03	14 Assumed equal to district heating plants DCE assumption
		1A4a	Commercial/ Institutional	0201	14 Assumed equal to district heating plants DCE assumption
	Industrial waste	1A2f	Industry – non-metallic minerals	031600	67 DCE estimate based on plant-specific data for 2011-2015
Bio- mass	Wood	1A1a	Public electricity and heat production	0101	1.9 Nielsen et al. (2010a)
mace				0102	11 EEA (2019), Energy industries Table 3.13 Wood
		1A2a-g	Industry	03	11 EEA (2019), Manufacturing industries and construction (combustion)
		1A4a	Commercial/Institutional	0201	11 EEA (2019), Small combustion Table 3.10 and Table 3.45 – Table 3.48
		1A4b i	Residential	0202	11 EEA (2019), Small combustion Table 3.6 Residential wood
		1A4c i	Agriculture/forestry	0203	11 EEA (2019), Small combustion Table 3.10 and Table 3.45 – Table 3.48
	Straw	1A1a	Public electricity and heat production	0101	49 Nielsen et al. (2010a)
			·····	0102	115 Assumed equal to farmhouse boilers.
		1A4b i	Residential	0202	115 Jensen et al. (2017)
		1A4c i	Agriculture/forestry	0203	115 Jensen et al. (2017)
	Wood pellets	1A1a	Public electricity and heat production	0101	1.9 Nielsen et al. (2010a)
			Industry	03	11 EEA (2019), Manufacturing industries and construction (combustion)
		1A4a	Commercial/ Institutional	0201	11 EEA (2019), Small combustion Table 3.10 and Table 3.45 – Table 3.48
		1A4b i	Residential	0202	11 EEA (2019), Small combustion Table 3.6 Residential wood
		1A4c i	Agriculture/forestry	0203	11 EEA (2019), Small combustion Table 3.10 and Table 3.45 – Table 3.48
	Bio oil	1A1a	Public electricity and heat production	0101	0.3 DCE estimate based on Folkecenter for Vedvarende Energi (2000) and DEA (2016a).
				0102	0.3 DCE estimate based on Folkecenter for Vedvarende Energi (2000) and DEA (2016a)

Fuel	NFR	NFR_name	SNAP	SO₂ emis- Reference sion factor, q/GJ
	1A2a-g	Industry	03	0.3 DCE estimate based on Folkecenter for Vedvarende Energ (2000) and DEA (2016a)
	1A4b i	Residential	0202	0.3 DCE estimate based on Folkecenter for Vedvarende Energ (2000) and DEA (2016a)
Biogas	1A1a	Public electricity and heat production	0101, except engines	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2016a)
			Engines	19.2 Nielsen & Illerup (2003)
			0102	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2016a)
	1A2a-g	Industry	03, ex- cept en- gines	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2016a)
			03, engi- nes	19.2 Nielsen & Illerup (2003)
	1A4a	Commercial/ Institutional	0201, except engines	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2016a)
			020105	19.2 Nielsen & Illerup (2003)
	1A4b	Residential	0202	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2016a)
	1A4c i	Agriculture/forestry	0203, except engines	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2016a)
			020304	19.2 Nielsen & Illerup (2003)
Bio gasification ga	as 1A1a	Public electricity and heat production	010105	7 Kristensen (2016a) and Kristensen (2017b)
Bio natural gas	1A1a	Public electricity and heat production	0101	0.43 Assumed equal to natural gas
_	1A2a-g	Industry	03	0.43 Assumed equal to natural gas
	1A4a	Commercial/ Institutional	0201	0.43 Assumed equal to natural gas
	1A4b	Residential	0202	0.43 Assumed equal to natural gas
	1A4c	Agriculture/forestry	0203	0.43 Assumed equal to natural gas

7.6 NO_x emission factors

The NO_x emission factors and references are shown in Table 51. Further details are included in Nielsen et al. (2018).

Time series are included in Annex 4. Time series have been estimated for:

- Combustion of coal in power plants.
- Combustion of coal in district heating and non-industrial plants.
- Combustion of coal in industrial plants.
- Combustion of coal, petroleum coke, residual oil and industrial waste in cement industry.
- Combustion of BKB in industrial and residential plants.
- Combustion of coke oven coke in industrial and residential plants.
- Combustion of fossil fly ash.
- Combustion of petroleum coke in public electricity and heat production.
- Combustion of petroleum coke in industrial plants.
- Combustion of residual oil in power plants.
- Combustion of residual oil in industrial plants.
- Combustion of gas oil in power plants.
- Combustion of gas oil in offshore gas turbines.
- Combustion of orimulsion in power plants.
- Combustion of refinery gas.
- Combustion of natural gas in power plants.
- Combustion of natural gas in gas turbines.
- Combustion of natural gas in gas engines.
- Combustion of natural gas in district heating plants, large industrial boilers, large boilers in commercial/institutional plants and large boilers in agriculture/forestry.
- Combustion of natural gas in offshore gas turbines.
- Combustion of natural gas in residential boilers.
- Combustion of natural gas in non-metallic minerals (bricks and tiles).
- Waste incineration in CHP plants.
- Combustion of wood in residential plants.
- Combustion of bio oil in power plants.
- Combustion of biogas in gas engines.
- Combustion of biogas in power plants.
- Combustion of biogas in large boilers.
- Combustion of biogas in residential boilers.
- Combustion of bio natural gas in power plants, district heating plants, large boilers and residential boilers.

Fuel type	Fuel	NFR	NFR_name	SNAP	NO _x emis- Reference sion factor, q/GJ
Solid	Anodic carbon	1A2g	Industry - other	032000	183 Assumed equal to coal. DCE assumption.
	Coal	1A1a	Public electricity and heat production	0101	25 DCE estimate based on plant-specific emission data and EU ETS (2019)
				0102	95 DEPA (2001a)
		1A2a-g	Industry	03 except cement produc-	183 DCE estimate based on plant-specific data for four plants ir 2015
				tion	
		1A2f	Industry, cement production	0316	195 DCE estimate based on plant-specific data for 2018
		1A4b i	Residential	020200	95 DEPA (2001a)
		1A4c i	Agriculture/forestry	0203	95 DEPA (2001a)
	Fly ash fossil	1A1a	Public electricity and heat production	0101	25 Assumed equal to the emission factor for coal
	BKB	1A4b	Residential	0202	95 Assumed equal to coal. DCE assumption
	Coke oven coke	1A2a-g	Industry	03	183 Assumed equal to coal. DCE assumption
		1A4b	Residential	0202	95 Assumed equal to coal. DCE assumption
Liquid	Petroleum coke	1A2a-g		03	129 Assumed equal to residual oil. DCE assumption
			Industry, non-metallic minerals, cement	0316	195 DCE estimate based on plant-specific data for 2018
		1A4a	Commercial/ Institutional	0201	51 EEA (2016). Tier 1, Small combustion, liquid fuels applied in residential plants
		1A4b	Residential	0202	51 EEA (2016). Tier 1, Small combustion, liquid fuels applied in residential plants
		1A4c	Agriculture/forestry	0203	51 EEA (2016). Tier 1, Small combustion, liquid fuels applied in residential plants
	Residual oil	1A1a	Public electricity and heat production	0101	138 DCE estimate based on plant-specific data for 2008, 2009 and 2010. Plant-specific data refer to: Energinet.dk (2009); Energinet.dk (2010); Energinet.dk (2011): EU ETS (2009- 2011)
				0102	142 DEPÁ (2001a)
		1A1b	Petroleum refining	010306	142 EEA (2019), Energy industries, Table 4-4 Tier 2 emission factors for source category 1.A.1.b, process furnaces using residual oil
		1A2a-g	Industry	03	129 DCE estimate based on plant-specific data for 2015
		1A2f	Industry, non-metallic minerals, cement	0316	195 DCE estimate based on plant-specific data for 2018
		1A4a	Commercial/ Institutional	0201	142 DEPA (2001a)
		1A4b	Residential	0202	142 DEPA (2001a)
		1A4c i	Agriculture/forestry	0203	142 DEPA (2001a)
	Gas oil	1A1a	Public electricity and heat production	010101,	114 DCE estimate based on plant-specific data for 2011
			· ·	010102,	
				010103	
				010104	230 DCE estimate based on plant-specific data year 2015
				010105	942 Nielsen et al. (2010a)

Fuel type	Fuel	NFR	NFR_name	SNAP	NO _x emis- Reference sion factor,
					g/GJ
				0102	130 DEPA (2016b), DEPA (2012b), DEPA (2003b) and DEPA (1990)
		1A1b	Petroleum refining	010306	65 EEA (2019), Energy industries, Table 4-5 Tier 2 emission factors for source category 1.A.1.b, process furnaces, us- ing gas oil
		1A1c	Oil and gas extraction	010504	188 Assumed equal to natural gas combustion applied in off- shore gas turbines. DCE assumption.
		1A2a-g	Industry	03 except engines and tur-	130 DEPA (2016b), DEPA (2012b), DEPA (2003b) and DEPA (1990)
				bines Turbines	230 DCE estimate based on plant-specific data year 2015
				Engines	942 Nielsen et al. (2010a)
		1A4a	Commercial/ Institutional	0201	52 DEPA (2001a)
				Engines	942 Nielsen et al. (2010a)
		1A4b i	Residential	0202	52 DEPA (2001a)
				Engines	942 Nielsen et al. (2010a)
		1A4c	Agriculture/forestry	0203	52 DEPA (2001a)
				Engines	942 Nielsen et al. (2010a)
	Kerosene	1A2g	Industry - other	03	51 EEA (2016). The emission factor is for liquid fuels com- busted in residential plants
		1A4a	Commercial/Institutional	0201	51 EEA (2016). The emission factor is for liquid fuels com- busted in residential plants
		1A4b i	Residential	0202	51 EEA (2016). The emission factor is for liquid fuels com- busted in residential plants
		1A4c i	Agriculture/forestry	0203	51 EEA (2016). The emission factor is for liquid fuels com- busted in residential plants
	LPG	1A1a	Public electricity and heat production	All	96 IPCC (1996).
		1A2a-g		03	96 IPCC (1996).
		1A4a	Commercial/ Institutional	0201	71 IPCC (1996).
		1A4b i	Residential	0202	47 IPCC (1996)
		1A4c i	Agriculture/forestry	0203	71 IPCC (1996)
	Refinery gas	1A1b	Petroleum refining	010304	170 DCE estimate based on plant-specific data for a gas tur- bine in year 2000
				010306	56 DCE estimate based on plant-specific data for year 2015.
Gas	Natural gas	1A1a	Public electricity and heat production	010101, 010102	28 DEPA (2012b); DEPA (2015); DEPA (2016b)
				010103	32.02 Schweitzer & Kristensen (2015)
				010104	48 Nielsen et al. (2010a)
				010105	135 Nielsen et al. (2010a)
				0102	32.02 Schweitzer & Kristensen (2015)
		1A1b	Petroleum refining	0103	32.02 Schweitzer & Kristensen (2015)
		1A1c	Oil and gas extraction	010504	188 Estimate based on plant-specific data. Madsen (2019)

Fuel type	Fuel	NFR	NFR_name	SNAP	NO _x emis- Reference sion factor, q/GJ
		1 <u>4</u> 2a-a	Industry	03	32.02 Schweitzer & Kristensen (2015)
		inted g	madatiy	Engines	135 Nielsen et al. (2010a)
				Turbines	48 Nielsen et al. (2010a)
		1A2f		030700	87 DCE estimate based on plant-specific data for 11 clay pro- duction plants, EU ETS (2011-2012); DEPA (2012b)
		1A4a	Commercial/ Institutional	0201	32.02 Schweitzer & Kristensen (2015)
				Engines	135 Nielsen et al. (2010a)
		1A4b i	Residential	0202	20.4 Schweitzer & Kristensen (2014)
				Engines	135 Nielsen et al. (2010a)
		1A4c i	Agriculture/forestry	0203	32.02 Schweitzer & Kristensen (2015)
			g	Engines	135 Nielsen et al. (2010a)
Waste	Waste	1A1a	Public electricity and heat production	0101	75 DCE estimate based on plant-specific data for year 2018
				0102	164 DCE estimate based on plant-specific data for year 2000
		1A2a-g	Industry	03	164 DCE estimate based on plant-specific data for district heat- ing plants in year 2000
		1A4a	Commercial/ Institutional	0201	164 DCE estimate based on plant-specific data for district heat- ing plants in year 2000
	Industrial waste	1A2f	Industry – non-metallic minerals, cement	031600	195 DCE estimate based on plant-specific data for 2018
Bio- mass	Wood	1A1a	Public electricity and heat production	0101	81 Nielsen et al. (2010a)
				0102	90 Serup et al. (1999)
		1A2a-g	Industry	03	90 Serup et al. (1999)
		1A4a	Commercial/ Institutional	0201	90 Serup et al. (1999)
		1A4b i	Residential	0202	73.0 Nielsen et al. (2020). The methodology for estimating this emission factor is included in Chapter 6.13
		1A4c i	Agriculture/forestry	0203	90 Serup et al. (1999)
	Straw	1A1a	Public electricity and heat production	0101	125 Nielsen et al. (2010a)
			2	0102	90 Nikolaisen et al. (1998)
		1A4b i	Residential	0202	154 Jensen et al. (2017)
		1A4c i	Agriculture/forestry	0203	154 Jensen et al. (2017)
	Wood pellets	1A1a	Public electricity and heat production	0101	81 Nielsen et al. (2010a)
			· · · · ·	0102	90 Serup et al. (1999)
		1A2a-g	Industry	03	90 Serup et al. (1999)
		1A4a	Commercial/ Institutional	0201	90 Serup et al. (1999)
		1A4b i	Residential	0202	80 Nielsen et al. (2020).
		1A4c i	Agriculture/forestry	0203	90 Serup et al. (1999)
	Bio oil	1A1a	Public electricity and heat production	0101	114 Assumed equal to gas oil. DCE assumption
				0102	130 Assumed equal to gas oil. DCE assumption
		1A2a-q	Industry	03	130 Assumed equal to gas oil. DCE assumption
		5		Engines	942 Assumed equal to gas oil. DCE assumption
		1A4b i	Residential	0202	52 Assumed equal to gas oil. DCE assumption
	Biogas	1A1a	Public electricity and heat production	0101, not engi- nes	28 Assumed equal to large natural gas fuelled boilers

uel	Fuel	NFR	NFR_name	SNAP	NO _x emis- Reference
уре					sion factor,
					g/GJ
				Engines	202 Nielsen et al. (2010a)
				0102	28 DEPA (2001a)
		1A2a-g	Industry	03, not	28 Assumed equal to large natural gas fuelled boilers
				engines	
				03, engi-	202 Nielsen et al. (2010a)
				nes	
				030902	32.02 Assumed equal to large natural gas fuelled boilers
		1A4a	Commercial/ Institutional	0201,	28 DEPA (2001a)
				not engi-	
				nes	
				020105	202 Nielsen et al. (2010a)
		1A4b	Residential	0202	20.4 Assumed equal to natural gas (upgraded biogas)
		1A4c i	Agriculture/forestry	0203,	28 DEPA (2001a)
				not engi-	
				nes	
				020304	202 Nielsen et al. (2010a)
	Bio gasification gas	1A1a	Public electricity and heat production	010105	173 Nielsen et al. (2010a)
	Bio natural gas	1A1a	Public electricity and heat production	0101	28 Assumed equal to natural gas. DCE assumption
	•			0102	32.02 Assumed equal to natural gas. DCE assumption
		1A2a-g	Industry	03	32.02 Assumed equal to natural gas. DCE assumption
		1A4a	Commercial/ Institutional	0201	32.02 Assumed equal to natural gas. DCE assumption
		1A4b	Residential	0202	20.4 Assumed equal to natural gas. DCE assumption
		1A4c	Agriculture/forestry	0203	32.02 Assumed equal to natural gas. DCE assumption

7.7 NMVOC emission factors

The NMVOC emission factors and references are shown in Table 52.

The emission factors for NMVOC refer to:

- An emission measurement program for decentralised CHP plants (Nielsen et al., 2010a).
- The EEA Guidebook (EEA, 2016) and former editions.
- Aggregated emission factor based on the technology distribution for residential wood combustion (Nielsen et al., 2020).
- DGC Danish Gas Technology Centre 2001, Naturgas Energi og miljø (DGC, 2001).
- Gruijthuijsen & Jensen (2000). Energi- og miljøoversigt, Danish Gas Technology Centre, 2000 (In Danish).

The time series are included in Annex 4. Time series have been estimated for:

- Natural gas applied in gas engines.
- Natural gas applied in gas turbines.
- Natural gas applied in gas turbines offshore.
- Waste incineration plants.
- Industrial waste incineration.
- Wood applied in the industrial sector.
- Wood applied in residential plants.
- Wood applied in institutional/commercial plants.
- Wood applied in agricultural plants.
- Biogas applied in gas engines.

Table 52 NMVOC emission factors and references, 2018	actors and references, 2018.
--	------------------------------

Fuel	Fuel	NFR	NFR_name	SNAP	NMVOC, Reference
type					g/GJ
Solid	Anodic carbon	1A2g	Industry - other	0320	10 Assumed equal to coal. DCE assumption
	Coal	1A1a	Public electricity and heat production	0101	1.0 EEA (2016), Tier 1, Energy industries Table 3-2
				0102	
		1A2a-g	Industry	03	10 EEA (2016), Tier 1, Industry Table 3-2, assumed lower
					interva.
		1A4c i	Agriculture/forestry	0203	88.8 EEA (2016), Tier 1, Small combustion Table 3-7
	Fly ash fossil	1A1a	Public electricity and heat production	0101	1.0 Assumed equal to coal. DCE assumption
	BKB	1A4b i	Residential	0202	484 EEA (2016), Tier 1, Small combustion Table 3-3
	Coke oven coke	1A2a-g	Industry	03	10 EEA (2016), Tier 1, Industry Table 3-2, assumed lower
					interval
		1A4b	Residential	0202	484 EEA (2016), Tier 1, Small combustion Table 3-3 (and
					Table 3-2)
Liquid	Petroleum coke	1A2a-g	Industry	03	25 EEA (2016) Tier 1, Industry Table 3-4
		1A4a	Commercial/Institutional	0201	20 EEA (2016), Tier 1, Small combustion Table 3-9
		1A4b	Residential	0202	20 EEA (2016), Tier 1 for 1A4a/1A4c have been applied
					(DCE assumption). Small combustion Table 3-9
		1A4c	Agriculture/forestry	0203	20 EEA (2016), Tier 1, Small combustion Table 3-9
	0.8 Nielsen et al. (2010a)				
				010102	
				010103	
				010104	2.3 EEA (2016), Tier 1, Energy industries Table 3-5
				010105	2.3 EEA (2016), Tier 1, Energy industries Table 3-5
				010203	2.3 EEA (2016), Tier 1, Energy industries Table 3-5
		1A1b	Petroleum refining	010306	2.3 EEA (2016), Tier 2, Energy industries Table 4-4
		1A2a-g	Industry	03 except engines	0.8 Nielsen et al. (2010a)
				Engines	25 EEA (2016), Tier 1, Industry Table 3-4
		1A4a	Commercial/Institutional	0201	20 EEA (2016), Tier 1, Small combustion Table 3-9
		1A4b	Residential	0202	20 EEA (2016), Tier 1, Small combustion Table 3-9, as-
					sumed equal to 1A4a/1A4c
		1A4c i	Agriculture/forestry	0203	20 EEA (2016), Small combustion Tier 1, Table 3-9
	Gas oil	1A1a	Public electricity and heat production	010101	0.8 EEA (2016), Tier 1, Energy industries Table 3-6
				010102	
				010103	
				010104	0.19 EEA (2016), Tier 2, Energy industries Table 3-18
				010105	37.1 EEA (2016), Tier 2, Energy industries Table 3-19
				0102	0.8 EEA (2016), Tier 1, Energy industries Table 3-6
		1A1b	Petroleum refining	010306	0.8 EEA (2016), Tier 1, Energy industries Table 3-6 (and
					Table 4.1)

uel /pe	Fuel	NFR	NFR_name	SNAP	NMVOC, Reference g/GJ
1		1A1c	Oil and gas extraction	010504	0.19 EEA (2016), Tier 2, Energy industries Table 3-18
		1A2a-g	Industry	03 boilers	0.8 EEA (2016), Tier 1, Energy Industries Table 3-6
		Gas turbines	0.19 EEA (2016), Tier 2, Energy industries Table 3-18		
				Engines	37.1 EEA (2016), Tier 2, Energy industries Table 3-19
		1A4a	Commercial/Institutional	0201 except engines	20 EEA (2016), Tier 1, Small Combustion Table 3-9
				Engines	37.1 EEA (2016), Tier 2, Energy Industries Table 3-19
		1A4b i	Residential	0202	20 EEA (2016), Tier 1, Small Combustion Table 3-9
				Engines	37.1 EEA (2016), Tier 2, Energy industries Table 3-19
		1A4c	Agriculture/forestry	0203	20 EEA (2016), Tier 1, Small Combustion Table 3-9
	Kerosene	1A2a-g	Industry	03	0.8 EEA (2016), Tier 1, Energy industries Table 3-6
		1A4a	Commercial/ Institutional	0201	20 EEA (2016), Tier 1, Small Combustion Table 3-9
		1A4b i	Residential	0202	20 EEA (2016), Tier 1, Small Combustion Table 3-9
		1A4c i	Agriculture/forestry	0203	20 EEA (2016), Tier 1, Small Combustion Table 3-9
	LPG	0.8 EEA (2016), Tier 1, Energy industries Table 3-6			
			Public electricity and heat production	0102	
		1A2a-g	Iron and steel	03	0.8 EEA (2016), Tier 1, Energy industries Table 3-6
		1A4a	Commercial/Institutional	0201	20 EEA (2016), Tier 1, Small Combustion Table 3-9
		1A4b i	Residential	0202	20 EEA (2016), Tier 1, Small Combustion Table 3-9
		1A4c i	Agriculture/forestry	0203	20 EEA (2016), Tier 1, Small Combustion Table 3-9
	Refinery gas	1A1b	Petroleum refining	0103	1.4 Assumed equal to natural gas fuelled gas turbine DCE assumption
;	Natural gas	1A1a	Public electricity and heat production	010101	2 Danish Gas Technology Centre (2001)
	Ū			010102	
				010103	
				010104	1.6 Nielsen et al. (2010a)
				010105	92 Nielsen et al. (2010a)
				0102	2 Danish Gas Technology Centre (2001)
		1A1b	Petroleum refining	0103	2 Danish Gas Technology Centre (2001)
		1A1c	Oil and gas extraction	0105	1.6 Nielsen et al. (2010a)
		1A2a-g	Industry	03 except engines	2 Danish Gas Technology Centre (2001)
				and turbines	
				Turbines	1.6 Nielsen et al. (2010a)
				Engines	92 Nielsen et al. (2010a)
		1A4a	Commercial/Institutional	0201 except engines	2 Danish Gas Technology Centre (2001)
				Engines	92 Nielsen et al. (2010a)
		1A4b i	Residential	0202 except engines	4 Gruijthuijsen & Jensen (2000)
				Engines	92 Nielsen et al. (2010a)
		1A4c i	Agriculture/forestry	0203 except engines	2 Danish Gas Technology Centre (2001)
				Engines	92 Nielsen et al. (2010a)

Fuel	Fuel	NFR	NFR_name	SNAP	NMVOC, Reference
type					g/GJ
Waste	Waste	1A1a	Public electricity and heat production	0101	0.56 Nielsen et al. (2010a)
				0102	0.56 Nielsen et al. (2010a). The CHP emission factor has
					been applied for other plant categories
		1A2a-g	Industry	03	0.56 Nielsen et al. (2010a). The CHP emission factor has
					been applied for other plant categories
		1A4a	Commercial/ Institutional	0201	0.56 Nielsen et al. (2010a). The CHP emission factor has
					been applied for other plant categories
	Industrial waste	1A2f	Industry	0316	0.56 Nielsen et al. (2010a). The CHP emission factor has
					been applied for other plant categories
Bio-	Wood	1A1a	Public electricity and heat production	0101	5.1 Nielsen et al. (2010a)
mass				0102	7.3 EEA (2016), Tier 1, Energy industries Table 3-7
		1A2a-q	Industry	03	141 Estimate based on country-specific data, see (1)
		1A4a	Commercial/ Institutional	0201	175 Estimate based on country-specific data, see (1)
		1A4b i	Residential	0202	371 Nielsen et al. (2020) The methodology for estimating
				0_0_	this emission factor is included in Chapter 6.13
		1A4c i	Agriculture/forestry	0203	175 Estimate based on country-specific data, see (1)
	Straw	1A1a	Public electricity and heat production	0.78 Nielsen et al. (2010a)	
	0.10.11			0101 0102	7.3 EEA (2016), Tier 1, Energy industries Table 3-7
		1A4b i	Residential	0202	600 EEA (2016), Tier 1, Small Combustion Table 3-6
			Agriculture/forestry	0203	600 EEA (2016). Plants are assumed equal to residential
			, ghoaltaro, for ook y	0200	plants
				020302	12 EEA (2016), Tier 2, Small Combustion Table 3-45
	Wood pellets	1A1a	Public electricity and heat production	0101	5.1 Nielsen et al. (2010a)
			· · · · · · · · · · · · · · · · · · ·	0102	7.3 EEA (2016), Tier 1, Energy industries Table 3-7
		1A2a-g	Industry	03	10 Nielsen et al. (2020)
		1A4a	Commercial/ Institutional	0201	10 Nielsen et al. (2020)
		1A4b i	Residential	0202	10 Nielsen et al. (2020)
		1A4c i	Agriculture/forestry	0203	10 Nielsen et al. (2020)
	Bio oil	1A1a	Public electricity and heat production	010102	0.8 EEA (2016), Tier 1, Energy industries Table 3-6 (gas
					oil)
				010105	37 EEA (2016), Tier 2, Energy industries Table 3-19 (gas
				010100	oil, large stationary CI reciprocating engines)
				0102	0.8 EEA (2016), Tier 1, Energy industries Table 3-6 (gas
				0.01	oil)
		1A2a-0	Industry	03, not engines	0.8 EEA (2016), Tier 1, Energy industries Table 3-6 (gas
		. <i>.</i>	······································	55, Sriginos	oil)
				010105	37 EEA (2016), Tier 2, Energy industries Table 3-19 (gas

Fuel	NFR	NFR_name	SNAP	NMVOC, Reference
				g/GJ
	1A4b i	Residential	0202	20 EEA (2016), Tier 1, Small combustion Table 3-9 (liquid
				fuels)
Biogas	1A1a	Public electricity and heat production	0101	2 Assumed equal to natural gas. DCE assumption
			010105	10 Nielsen et al. (2010a)
			0102	2 Assumed equal to natural gas. DCE assumption
	1A2a-g	Industry	03 except engines	2 Assumed equal to natural gas. DCE assumption
			Engines	10 Nielsen et al. (2010a)
	1A4a	Commercial/ Institutional	0201 except engines	2 Assumed equal to natural gas. DCE assumption
			Engines	10 Nielsen et al. (2010a)
	1A4b	Residential	0202	4 Assumed equal to natural gas. DCE assumption
	1A4c i	Agriculture/forestry	0203 except engines	2 Assumed equal to natural gas. DCE assumption
			Engines	10 Nielsen et al. (2010a)
Bio gasification gas	1A1a	Public electricity and heat production	010105	2 Nielsen et al. (2010a)
			0101 except engines	2 Assumed equal to natural gas. DCE assumption
Bio natural gas	1A1a	Public electricity and heat production	0101 and 0102	2 Assumed equal to natural gas. DCE assumption
	1A2a-g	Industry	03	2 Assumed equal to natural gas. DCE assumption
	1A4a	Commercial/ Institutional	0201	2 Assumed equal to natural gas. DCE assumption
	1A4b	Residential	0202	4 Assumed equal to natural gas. DCE assumption
	1A4c	Agriculture/forestry	0203	2 Assumed equal to natural gas. DCE assumption

 The emission factor for combustion of wood in commercial/institutional plants, agricultural plants and industrial plants have been aggregated based on technology specific emission factors: industrial plants with production of electricity or district heating: 12 g/GJ (EEA, 2016) and other plants 350 g/GJ (EEA, 2016) in 1990-1995 and 175 g/GJ (EEA, 2016) since 2002. The aggregated emission factors for 2018 are 141 g/GJ for industrial plants and 175 g/GJ for commercial/institutional/agricultural plants. A time series have been applied in the inventory.

7.8 CO emission factors

The CO emission factors 2018 and references are shown in Table 53.

The emission factors for CO refer to:

- The EEA Guidebook (EEA, 2016)²⁹.
- An emission measurement program for decentralised CHP plants (Nielsen et al., 2010a).
- Danish legislation (DEPA, 2001a)
- Nielsen et al. (2020). Aggregated emission factor based on the technology distribution for residential wood combustion and technology specific emission factors. See Chapter 6.13.
- DCE estimate based on annual environmental reports for Danish waste incineration plants without power production, year 2000.
- Nikolaisen et al. (1998).
- Jensen & Nielsen (1990).
- Bjerrum (2002).
- Sander (2002).
- Gruijthuijsen & Jensen (2000).
- Kristensen & Kristensen (2004).

The time series are included in Annex 4. Time series have been estimated for:

- Natural gas fuelled engines.
- Natural gas fuelled gas turbines.
- Waste incineration, CHP plants.
- Waste incineration, other plants.
- Wood and wood pellet combustion in district heating plants.
- Wood and wood pellet combustion in industrial plants.
- Wood and wood pellet combustion in commercial/institutional plants.
- Wood combustion in agricultural plants.
- Wood combustion in residential plants.
- Straw combustion in district heating plants.
- Straw combustion in residential / agricultural plants.

Fuel	Fuel	NFR	NFR_name	SNAP	CO emis- Reference
type					sion factor,
					g/GJ
Solid	Anodic carbon	1A2a-g	Industry	03	10 Assumed the same emission factor as for coal. DCE
	<u> </u>		-		assumption
	Coal	1A1a	Public electricity and heat production	0101 and 0102	10 Sander (2002)
		1A2a-g	Industry	03	10 Assumed equal to boilers in public electricity and heat production. DCE assumption
		1A4b i	Residential	0202	4787 EEA (2016), Tier 2, Small Combustion Table 3.15, residential boilers, solid fuels
		1A4c i	Agriculture/forestry	0203	931 EEA (2016), Tier 1, Small Combustion Table 3.7
	Fly ash fossil	1A1a	Public electricity and heat production	0101	10 Assumed equal to coal. DCE assumption
	ВКВ	1A4b i	Residential	0202	4787 EEA (2016), Tier 2, Small Combustion Table 3.15, residential boilers, solid fuels
	Coke oven coke	1A2a-g	Industry	03	10 Assumed the same emission factor as for coal. DCE assumption
		1A4b	Residential	0202	4787 EEA (2016), Tier 2, Small Combustion Table 3.15, residential boilers, solid fuels
Liquid	Petroleum coke	1A1a	Public electricity and heat production	0101	66 EEA (2016), Tier 1, Manufacturing industries and construction Table 3.4 for liquid fuels
		1A2a-g	Industry	03	66 EEA (2016), Tier 1, Manufacturing industries and construction Table 3.4 for liquid fuels
		1A4a	Commercial/institutional	0201	93 EEA (2016), Tier 1, Small Combustion Table 3.9
		1A4b	Residential	0202	93 EEA (2016), Tier 1, Small Combustion Table 3.9 (as- sumed equal to the emission factor for 1A4a/1A4c).
		1A4c	Agriculture/ forestry	0203	93 EEA (2016), Tier 1, Small Combustion Table 3.9
	Residual oil	1A1a	Electricity and heat production	010101	15 Sander (2002)
				010104	
				010105	
				010102	2.8 Nielsen et al. (2010a)
				010103	
				0102	15.1 EEA (2016), Tier 1, Energy industries Table 3.5.
		1A1b	Petroleum refining	010306	6 EEA (2016), Tier 2, Energy industries Table 4.4.
		1A2a-g	Industry	03 except engines	2.8 Nielsen et al. (2010a)
				Engines	130 EEA (2016). Tier 2 emission factor for gas oil fuelled
					engines in Energy industries. Refers to Nielsen et al. (2010a)
		1A4a	Commercial/institutional	0201	40 EEA (2016). Tier 2, Small Combustion Table 3.25
		1A4b	Residential	0202	57 EEA (2016), Tier 1, Small Combustion Table 3.5
		1A4c i	Agriculture/ forestry	0203	40 EEA (2016). Tier 2, Small Combustion Table 3.25

Fuel type	Fuel	NFR	NFR_name	SNAP	CO emis- Reference sion factor, g/GJ
	Gas oil	1A1a	Public electricity and heat production	0101 except engines	15 Sander (2002)
			, , , , , , , , , , , , , , , , , , ,	Engines	130 Nielsen et al. (2010a)
				0102	16.2 EEA (2016), Tier 1, Energy industries Table 3.6
		1A1b	Petroleum refining	010306	16.2 EEA (2016), Tier 1, Energy industries Table 4.5
		1A1c	Oil and gas extraction	0105	15 Sander (2002)
		1A2a-g	Industry	03 except gas tur-	66 EEA (2016), Tier 1, Manufacturing industries and
		-	-	bines and engines	construction Table 3.4 for liquid fuels
				Gas turbines	15 Sander (2002)
				Engines	130 Nielsen et al. (2010a)
		1A4a	Commercial/ Institutional	0201 except engines	40 EEA (2016). Tier 2, Small Combustion Table 3.24
				Engines	130 Nielsen et al. (2010a)
		1A4b i	Residential	0202 except engines	3.7 EEA (2016). Tier 2, Small Combustion Table 3.18.
					Gas oil applied in small residential boilers
				Engines	130 Nielsen et al. (2010a)
		1A4c	Agriculture/forestry	0203	40 EEA (2016). Tier 2, Small Combustion Table 3.24
Gas oil a Engines 130 Nielsen 1A4c Agriculture/forestry 0203 40 EEA (20 Kerosene 1A2a-g Industry 03 66 EEA (20 1A4a Commercial/ Institutional 0201 40 EEA (20 1A4b i Residential 0202 3.7 EEA (20 Gas oil a Gas oil a Gas oil a					66 EEA (2016), Tier 1, Manufacturing industries and construction Table 3.4 for liquid fuels
		1A4a	Commercial/Institutional	0201	40 EEA (2016). Tier 2, Small Combustion Table 3.24
		1A4b i	Residential	0202	3.7 EEA (2016). Tier 2, Small Combustion Table 3.18
					Gas oil applied in small residential boilers
		1A4c i	Agriculture/forestry	0203	40 EEA (2016). Tier 2, Small Combustion Table 3.24
	LPG	1A1a	Public electricity and heat production	0101 and 0102	16.2 EEA (2016), Tier 1, Energy industries Table 3.6
		1A2a-g	Industry	03	66 EEA (2016), Tier 1, Manufacturing industries and construction Table 3.4 for liquid fuels
		1A4a	Commercial/Institutional	0201	40 EEA (2016). Tier 2, Small Combustion Table 3.24
		1A4b i	Residential	0202	3.7 EEA (2016). Tier 2, Small Combustion Table 3.18
				Gas oil applied in small residential boilers	
		1A4c i	Agriculture/forestry	0203	40 EEA (2016). Tier 2, Small Combustion Table 3.24
	Refinery gas	1A1b	Petroleum refining	0103	12.1 EEA (2016). Tier 1, Energy industries Table 4.2 for refinery gas applied in petroleum refining
Gas	Natural gas	1A1a	Public electricity and heat production	010101 and 010102	15 Sander (2002)
				010103	28 DEPA (2001a)
				010104	4.8 Nielsen et al. (2010a)
				010105	58 Nielsen et al. (2010a)
				0102	28 DEPA (2001a)
		1A1b	Petroleum refining	0103	28 Assumed equal to district heating plants
		1A1c	Oil and gas extraction	0105	4.8 Nielsen et al. (2010a)

Fuel	Fuel	NFR	NFR_name	SNAP	CO emis- Reference
type					sion factor,
		-			g/GJ
		1A2a-g	Industry	03 except gas tur-	28 DEPA (2001a)
				bines and engines	
				Gas turbines	4.8 Nielsen et al. (2010a)
				Engines	58 Nielsen et al. (2010a)
		1A4a	Commercial/Institutional	0201 except engines	28 DEPA (2001a)
				Engines	58 Nielsen et al. (2010a)
		1A4b i	Residential	0202 except engines	20 Gruijthuijsen & Jensen (2000)
				Engines	58 Nielsen et al. (2010a)
		1A4c i	Agriculture/forestry	0203 except engines	28 DEPA (2001a)
				Engines	58 Nielsen et al. (2010a)
Waste	Waste	1A1a	Public electricity and heat production	0101	3.9 Nielsen et al. (2010a)
				0102	10 DCE calculation based on annual environmental re-
					ports for Danish plants year 2000.
		1A2a-g	Industry	03	10 DCE calculation based on annual environmental re-
		-	-		ports for Danish plants year 2000
		1A4a	Commercial/ Institutional	0201	10 DCE calculation based on annual environmental re-
					ports for Danish plants year 2000
	Industrial waste	1A2f	Industry	0316	10 Assumed equal to waste, district heating plants. DCE
					assumption
Biomass	Wood	1A1a	Public electricity and heat production	0101	90 Nielsen et al. (2010a)
				010203	240 DEPA (2001a)
		1A2a-g	Industry	03	240 DEPA (2001a)
		1A4a	Commercial/ Institutional	020100	240 DEPA (2001a)
		1A4b i	Residential	0202	2752 Nielsen et al. (2020). The methodology for estimating
					this emission factor is included in Chapter 6.13
		1A4c i	Agriculture/forestry	020300	240 DEPA (2001a)
	Straw	1A1a	Public electricity and heat production	0101	67 Nielsen et al. (2010a)
			·	0102	325 DEPA (2001a); Nikolaisen et al (1998)
		1A4b i	Residential	0202	2000 EEA (2007); Jensen & Nielsen (1990) and Bjerrum
			Hooldonnah	0202	(2002), Kristensen & Kristensen (2004). Time series
		1A4c i	Agriculture/forestry	0203	2000 EEA (2007); Jensen & Nielsen (1990) and Bjerrum
			, ignound of for oonly	0200	(2002), Kristensen & Kristensen (2004). Time series
				020302	325 DEPA (2001a); Nikolaisen et al (1998)
	Wood pellets	1A1a	Public electricity and heat production	0101	90 Nielsen et al. (2010a)
		17114	· usile electricity and near production	010203	240 DEPA (2001a)
		1A2a-g	Industry	03	240 DEPA (2001a)
		1A2a-y 1A4a	Commercial/ Institutional	020100	240 DEFA (2001a) 240 DEPA (2001a)
		1A4a 1A4b i	Residential	020100	300 Nielsen et al. (2020)
		1A401	nesiuenilai	0202	500 mersen et al. (2020)

Fuel	NFR	NFR_name	SNAP	CO emis- Reference
				sion factor,
				g/GJ
	1A4c i	Agriculture/forestry	020300	240 DEPA (2001a)
Bio oil	1A1a	Public electricity and heat production	0101	15 Assumed same emission factor as for gas oil. DCE
				assumption
			0102	16.2 Assumed same emission factor as for gas oil. DCE
				assumption
	1A2a-g	Industry	03	66 Assumed same emission factor as for gas oil. DCE
				assumption
	1A4b i	Residential	0202	3.7 Assumed same emission factor as for gas oil. DCE
				assumption
Biogas	1A1a	Public electricity and heat production	0101 except engines	36 DEPA (2001a)
			Engines	310 Nielsen et al. (2010a)
			0102	36 DEPA (2001a)
	1A2a-g	Industry	03 except engines	36 DEPA (2001a)
			Engines	310 Nielsen et al. (2010a)
	1A4a	Commercial/ Institutional	0201 except engines	36 DEPA (2001a)
			Engines	310 Nielsen et al. (2010a)
	1A4b	Residential	0202	20 Assumed equal to natural gas. DCE assumption
	1A4c i	Agriculture/forestry	0203 except engines	36 DEPA (2001a)
			Engines	310 Nielsen et al. (2010a)
Bio gasification gas	1A1a	Public electricity and heat production	010105	586 Nielsen et al. (2010a)
			010101	36 DEPA (2001a)
Bio natural gas	1A1a	Public electricity and heat production	0101	15 Assumed equal to natural gas. DCE assumption
			0102	28 Assumed equal to natural gas. DCE assumption
	1A2a-g	Industry	03	28 Assumed equal to natural gas. DCE assumption
	1A4a	Commercial/ Institutional	0201	28 Assumed equal to natural gas. DCE assumption
	1A4b i	Residential	0202	20 Assumed equal to natural gas. DCE assumption
	1A4c i	Agriculture/forestry	0203	28 Assumed equal to natural gas. DCE assumption

7.9 NH₃ emission factors

NH₃ emissions have been estimated for:

- Combustion of wood and wood pellets in residential plants.
- Combustion of wood and wood pellets in commercial/institutional, agricultural and industrial plants.
- Straw combustion in residential and agricultural plants.
- Straw combustion in commercial/institutional and industrial plants.
- Waste incineration in public power and heat production.
- Residential combustion of coal.
- Residential combustion of BKB.
- Residential combustion of coke oven coke.

The NH_3 emission factors 2018 and references are shown in Table 54.

The emission factor for waste incineration plants refers to a Danish emission measurement programme (Nielsen et al., 2010a). The emission factor for residential wood combustion is based on Nielsen et al. (2020). All other emission factors refer to the EEA (2016).

Time series have been estimated for residential wood combustion, see Chapter 6.13 and Annex 4.

Fuel	NFR (SNAP)	Emission fac- Reference
		tor,
		g/GJ
Coal	1A4b	0.3 EEA (2016), Tier 1, Small combus-
		tion Table 3-3
BKB	1A4b	0.3 EEA (2016), Tier 1, Small combus-
		tion Table 3-3
Coke oven coke	1A4b	0.3 EEA (2016), Tier 1, Small combus-
		tion Table 3-3
Wood	1A4b	48.7 Nielsen et al. (2020). The methodol-
		ogy for estimating this emission fac-
		tor is included in Chapter 6.13
Wood	1A4a, 1A4c,	37 EEA (2016), Tier 1, Small combus-
	1A2	tion Table 3-10
Wood pellets	1A4b	12 Nielsen et al. (2020)
Wood pellets	1A4a, 1A4c,	37 EEA (2016), Tier 1, Small combus-
	1A2	tion Table 3-10
Waste	1A1a	0.29 Nielsen et al. (2010a)
Straw	1A4b, 1A4c	70 EEA (2016), Tier 1, Small combus-
		tion Table 3-6
Straw	1A4a, 1A2	37 EEA (2016), Tier 1, Small combus-
		tion Table 3-10

Table 54 NH₃ emission factors and references, 2018.

7.10 Particulate matter (PM) emission factors

The PM emission factors and references are shown in Table 55. The emission factors for PM refer to

- The TNO/CEPMEIP emission factor database (TNO, 2001).
- Danish legislation:
 - DEPA (2001a), The Danish Environmental Protection Agency, Luftvejledningen (legislation from Danish Environmental Protection Agency).

- DEPA (1990), The Danish Environmental Protection Agency, Bekendtgørelse 698 (legislation from Danish Environmental Protection Agency).
- Calculations based on plant-specific emission data from a considerable number of waste incineration plants.
- Nielsen et al. (2020). See Chapter 6.13.
- Two emission measurement programs for decentralised CHP plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003).
- An emission measurement program for large power plants (Livbjerg et al., 2001).
- Additional personal communication concerning straw combustion in residential plants (Kristensen, 2017c).

Emission factor time series have been estimated for residential wood combustion and waste incineration. All other emission factors have been considered constant in 1990-2018. The time series are included in Annex 4.

fuel_type	fuel	fuel	nfr	snap_id	TSP, g/GJ	Reference for TSP	PM ₁₀ , g/GJ	PM _{2.5} , g/GJ	Reference for PM ₁₀ and PM _{2.5} emission factors or for the PM ₁₀ and the PM _{2.5} fraction
Solid	101A	Anodic carbon	1A2g iii	0320	17	DEPA (1990), DEPA (1995)	12	7	TNO (2001)
	102A	Coal	1A1a	0101	3	Livbjerg et al. (2001)	2.6	2.1	Livbjerg et al. (2001)
				0102	6	TNO (2001)	6	5	TNO (2001)
			1A2 a-g	03	17	DEPA (1990), DEPA (1995)	12	7	TNO (2001)
			1A4c i	0203	17	DEPA (1990), DEPA (1995)	12	7	TNO (2001)
	103A	Fly ash fossil	1A1a	0101	3	Livbjerg et al. (2001)	2.6	2.1	Livbjerg et al. (2001)
	106A	BKB	1A4b i	0202	17	Same emission factor as for coal is	12	7	Same emission factor as for coal is
						assumed (DCE assumption)			assumed. DCE assumption
	107A	Coke oven coke	1A2 a-g	03	17	Same emission factor as for coal is	12	7	Same emission factor as for coal is
						assumed (DCE assumption)			assumed. DCE assumption
			1A4b	0202	17	Same emission factor as for coal is	12	7	Same emission factor as for coal is
						assumed (DCE assumption)			assumed. DCE assumption
Liquid	110A	Petroleum coke	1A2 a-g	03	10	TNO (2001)	7	3	TNO (2001)
			1A4a	0201	100	TNO (2001)	60	30	TNO (2001)
			1A4b	0202	100	TNO (2001)	60	30	TNO (2001)
			1A4c	0203	100	TNO (2001)	60	30	TNO (2001)
	203A	Residual oil	1A1a	010101	3	Nielsen & Illerup (2003)	3	2.5	Nielsen & Illerup (2003)
				010102	9.5	Nielsen et al. (2010a)	9.5	7.9	TNO (2001)
				010103	9.5	Nielsen et al. (2010a)	9.5	7.9	TNO (2001)
				010104	3	TNO (2001)	3	2.5	TNO (2001)
				010105	3	TNO (2001)	3	2.5	TNO (2001)
				0102	3	TNO (2001)	3	2.5	TNO (2001)
			1A1b	010306	50	TNO (2001)	40	35	TNO (2001)
			1A2 a-g	03	9.5	Nielsen et al. (2010a)	7.1	4.8	TNO (2001)
			1A4a	0201	14	DEPA (1990), DEPA (1995)	10.5	7	TNO (2001)
			1A4b	0202	14	DEPA (1990), DEPA (1995)	10.5	7	TNO (2001)
			1A4c i	0203	14	DEPA (1990), DEPA (1995)	10.5	7	TNO (2001)
	204A	Gas oil	1A1a	0101	5	TNO (2001)	5	5	TNO (2001)
				0102	5	TNO (2001)	5	5	TNO (2001)
			1A1b	010306	5	TNO (2001)	5	5	TNO (2001)
			1A1c	0105	5	TNO (2001)	5	5	TNO (2001)
			1A2a-g	03	5	TNO (2001)	5	5	TNO (2001)
			1A4a i	0201	5	TNO (2001)	5	5	TNO (2001)
			1A4b i	0202	5	TNO (2001)	5	5	TNO (2001)
			1A4c i	0203	5	TNO (2001)	5	5	TNO (2001)
	206A	Kerosene	1A2 a-g	all	5	TNO (2001)	5	5	TNO (2001)
			1A4a i	0201	5	TNO (2001)	5	5	TNO (2001)

Table 55 PM emission factors and references, 2018.

fuel_type	fuel	fuel	nfr	snap_id	TSP, g/GJ	Reference for TSP	PM₁₀, g/GJ	РМ _{2.5} , g/GJ	Reference for PM ₁₀ and PM _{2.5} emission factors or for the PM ₁₀ and the PM _{2.5} fraction
			1A4b i	0202	5	TNO (2001)	5	5	TNO (2001)
			1A4c i	0203	5	TNO (2001)	5	5	TNO (2001)
	303A	LPG	1A1a	0101, 0102	0.2	TNO (2001)	0.2	0.2	TNO (2001)
			1A2 a-g	03	0.2	TNO (2001)	0.2	0.2	TNO (2001)
			1A4a i	0201	0.2	TNO (2001)	0.2	0.2	TNO (2001)
			1A4b i	0202	0.2	TNO (2001)	0.2	0.2	TNO (2001)
			1A4c i	0203	0.2	TNO (2001)	0.2	0.2	TNO (2001)
	308A	Refinery gas	1A1b	0103	5	TNO (2001)	5	5	TNO (2001)
Gas	301A	Natural gas	1A1a	0101	0.1	TNO (2001)	0.1	0.1	TNO (2001)
				Gas turbi- nes	0.1	Nielsen & Illerup (2003)	0.061	0.051	Nielsen & Illerup (2003)
				Engines	0.76	Nielsen & Illerup (2003)	0.189	0.161	Nielsen & Illerup (2003)
				0102	0.1	TNO (2001)	0.1	0.1	TNO (2001)
			1A1b	0103	0.1	TNO (2001)	0.1	0.1	TNO (2001)
			1A1c	0105	0.1	Nielsen & Illerup (2003)	0.061	0.051	Nielsen & Illerup (2003)
			1A2a-g	Engines	0.76	Nielsen & Illerup (2003)	0.189	0.161	Nielsen & Illerup (2003)
				Turbines	0.1	Nielsen & Illerup (2003)	0.061	0.051	Nielsen & Illerup (2003)
				Other	0.1	TNO (2001)	0.1	0.1	TNO (2001)
			1A4a i	0201	0.1	TNO (2001)	0.1	0.1	TNO (2001)
				Engines	0.76	Nielsen & Illerup (2003)	0.189	0.161	Nielsen & Illerup (2003)
			1A4b i	0202	0.1	TNO (2001)	0.1	0.1	TNO (2001)
				Engines	0.76	Nielsen & Illerup (2003)	0.189	0.161	Nielsen & Illerup (2003)
			1A4c i	0203	0.1	TNO (2001)	0.1	0.1	TNO (2001)
				Engines	0.76	Nielsen & Illerup (2003)	0.189	0.161	Nielsen & Illerup (2003)
Waste	114A	Waste	1A1a	0101	0.29	Nielsen et al. (2010a)	0.29	0.29	Nielsen & Illerup (2003)
				0102	4.2	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008	3.2	2.1	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008
			1A2 a-g	03	4.2	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008	3.2	2.1	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008
			1A4a i	0201	4.2	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008	3.2	2.1	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008

fuel_type	fuel	fuel	nfr	snap_id	TSP, g/GJ	Reference for TSP	PM₁₀, g/GJ	РМ _{2.5} , g/GJ	Reference for PM ₁₀ and PM _{2.5} emission factors or for the PM ₁₀ and the PM _{2.5} fraction	
	115A	Industrial waste	1A2f	0316	4.2	The emission factor have been esti- mated by DCE based on plant-spe- cific data from MSW incineration plants, district heating, 2008	3.2	2.1	The emission factor have been est mated by DCE based on plant-spe cific data from MSW incineration plants, district heating, 2008	
Biomass	111A	Wood	1A1a	0101	10	Nielsen et al. (2010a)	7.45	4.82	Estimated based on the TSP emis- sion factor	
				0102	19	DEPA (2001a)	13	10	DEPA (2001a), TNO (2001)	
			1A2 a-g	03	19	DEPA (2001a)	13	10	DEPA (2001a), TNO (2001)	
			1A4a i	0201	143	DEPA (2001a)	143	135	TNO (2001)	
			1A4b i	0202	323	Nielsen et al. (2020). See Chapter 6.13.	307	301	Nielsen et al. (2020). See Chapter 6.13	
			1A4c i	0203	143	DEPA (2001a)	143	135	TNO (2001)	
	117A	Straw	1A1a i	0101	2.3	Nielsen et al. (2010a)	1.71	1.11	Nielsen & Illerup (2003)	
				0102	21	DEPA (2001a)	15	12	TNO (2001)	
			1A4b i	0202	433	Kristensen (2017c)	433	433	Zefeng (2011)	
			1A4c i	0203	433	Kristensen (2017c)	433	433	Zefeng (2011)	
				020302	21	DEPA (2001a)	15	12	TNO (2001)	
		Wood pellets	1A1a	0101	10	Nielsen et al. (2010a)	7.45	4.82	Estimated based on the TSP emis- sion factor	
				0102	19	DEPA (2001a)	13	10	DEPA (2001a), TNO (2001)	
			1A2 a-g	03	19	DEPA (2001a)	13	10	DEPA (2001a), TNO (2001)	
			1A4a i	0201	143	DEPA (2001a)	143	135	TNO (2001)	
			1A4b i	0202	51	Nielsen et al. (2020). See Chapter 6.13.	48	47	Nielsen et al. (2020). See Chapter 6.13	
			1A4c i	0203	143	DEPA (2001a)	143	135	TNO (2001)	
	215A	Bio oil	1A1a	0101	5	Assuming same emission factors as for gas oil (DCE assumption)	5	5	Assuming same emission factors as for gas oil. DCE assumption	
				0102	5	Assuming same emission factors as for gas oil (DCE assumption)	5	5	Assuming same emission factors as for gas oil. DCE assumption	
			1A2a-g	03	5	Assuming same emission factors as for gas oil (DCE assumption)	5	5	Assuming same emission factors as for gas oil. DCE assumption	
			1A4b i	0202	5	Assuming same emission factors as for gas oil (DCE assumption)	5	5	Assuming same emission factors as for gas oil. DCE assumption	
	309A	Biogas	1A1a	0101, not engines	1.5	DEPA (1990), DEPA (1995)	1.5	1.5	All TSP emission is assumed to be <2,5µm. DCE assumption	
				010105	2.63	Nielsen & Illerup (2003)	0.451	0.206	Nielsen & Illerup (2003)	
				0102	1.5	DEPA (1990), DEPA (1995)	1.5	1.5	All TSP emission is assumed to be <2,5µm. DCE assumption	

fuel_type	fuel	fuel	nfr	snap_id	TSP, g/GJ	Reference for TSP	PM₁₀, g/GJ	РМ _{2.5} , g/GJ	Reference for PM ₁₀ and PM _{2.5} emission factors or for the PM ₁₀ and the PM _{2.5} fraction
			1A2a-g	Engines	2.63	Nielsen & Illerup (2003)	0.451	0.206	Nielsen & Illerup (2003)
				Other	1.5	DEPA (1990), DEPA (1995)	1.5	1.5	All TSP emission is assumed to be <2,5µm. DCE assumption
			1A4a i	0201	1.5	DEPA (1990), DEPA (1995)	1.5	1.5	All TSP emission is assumed to be <2,5µm. DCE assumption
				Engines	2.63	Nielsen & Illerup (2003)	0.451	0.206	Nielsen & Illerup (2003)
			1A4b	0202	0.1	Biogas upgraded for the town gas grid. Assumed equal to natural gas	0.1	0.1	Biogas upgraded for the town gas grid. Assumed equal to natural gas
			1A4c i	0203	1.5	DEPA (1990), DEPA (1995)	1.5	1.5	All TSP emission is assumed to be <2,5µm. DCE assumption
				Engines	2.63	Nielsen & Illerup (2003)	0.451	0.206	Nielsen & Illerup (2003)
	310A	Bio gasification gas	1A1a	010105	2.63	Same emission factor as for biogas assumed (DCE assumption)	0.451	0.206	Same emission factor as for biogas assumed. DCE assumption
				010101	0.2	Assumed equal to LPG	0.2	0.2	Assumed equal to LPG
	315A	Bio natural gas	1A1a	0101 and 0102	0.1	Assumed equal to natural gas	0.1	0.1	Assumed equal to natural gas
			1A2a-g	03	0.1	Assumed equal to natural gas	0.1	0.1	Assumed equal to natural gas
			1A4a	0201	0.1	Assumed equal to natural gas	0.1	0.1	Assumed equal to natural gas
			1A4b	0202	0.1	Assumed equal to natural gas	0.1	0.1	Assumed equal to natural gas
			1A4c	0203	0.1	Assumed equal to natural gas	0.1	0.1	Assumed equal to natural gas

7.11 Black carbon (BC) emission factors

The BC fractions of $PM_{2.5}$ and the references for the fractions are shown in Table 56. The BC fractions depend on fuel and sector.

Emission factor fractions for BC all refer to EEA (2013). All emission factors are shown as percentage of $PM_{2.5}$ and in g per GJ.

The time series are included in Annex 4. Time series have been estimated for residential wood combustion and for waste incineration. The BC fraction of $PM_{2.5}$ is considered constant for each fuel/technology.

Fuel	56 BC fraction of I Fuel	NFR	SNAP	BC share		Reference: EEA (2013)					
		of PI		of PM _{2.5}	sion factor,						
					g/GJ						
101A	Anodic carbon	1A2	03	2.2%		Energy industries, Table 3-2					
102A	Coal	1A1a	0101	2.2%		Energy industries, Table 3-2					
102A	Coal	1A1a	0102	2.2%		Energy industries, Table 3-2					
102A	Coal	1A4a	0201	6.4%		Small combustion, Table 3-7					
102A	Coal	1A4b	0202	6.4%		Small combustion, Table 3-3					
102A	Coal	1A4c	0203	6.4%		Small combustion, Table 3-7					
102A	Coal	1A2	03	6.4%		Manufacturing industries, Table 3-2					
103A	Fly ash fossil	1A1a	010104	2.2%		Assumed equal to coal. DCE assumption.					
106A	BKB	1A4a	0201	6.4%	0.448	Small combustion, Table 3-7					
106A	BKB	1A4b	0202	6.4%	0.448	Small combustion, Table 3-3					
106A	BKB	1A4c	0203	6.4%	0.448	Small combustion, Table 3-7					
106A	BKB	1A2	03	6.4%	0.448	Manufacturing industries, Table 3-2					
107A	Coke oven coke	1A4b	0202	6.4%	0.448	Small combustion, Table 3-3					
107A	Coke oven coke	1A2	0301	6.4%	0.448	Manufacturing industries, Table 3-2					
110A	Petroleum coke	1A1a	0101	5.6%	0.168	Energy industries, table 3-5					
110A	Petroleum coke	1A4a	0201	56.0%	16.8	Small combustion, Table 3-5					
110A	Petroleum coke	1A4b	0202	8.5%	2.55	Small combustion, Table 3-5					
110A	Petroleum coke	1A4c	0203	56.0%	16.8	Small combustion, Table 3-5					
110A	Petroleum coke	1A2	03	56.0%	1.68	Manufacturing industries, Table 3-4					
111A	Wood	1A1a	0101	3.3%		Energy industries, Table 3-7					
111A	Wood	1A1a	0102	3.3%		Energy industries, Table 3-7					
111A	Wood	1A4a	0201	28.0%		Small combustion, Table 3-10					
111A	Wood	1A4b	0202			See residential wood combustion, Chapter					
			0101			6.13					
111A	Wood	1A4c	0203	28.0%	37.8	Small combustion, Table 3-10					
111A	Wood	1A2	0301	28.0%		Manufacturing industries, Table 3-5					
114A	Waste	1A1a	0101	3.5%		Municipal waste Incineration, Table 3-1					
114A	Waste	1A1a	0102	3.5%		Municipal waste Incineration, Table 3-1					
114A	Waste	1A4a	0201	3.5%		Municipal waste Incineration, Table 3-1					
114A	Waste	1A2	03	3.5%		Municipal waste Incineration, Table 3-1					
115A	Industrial waste	1A2	03	3.5%		Municipal waste Incineration, Table 3-1					
117A	Straw	1A1a	0101	3.3%		Energy industries, Table 3-7					
117A	Straw	1A1a	0102	3.3%		Energy industries, Table 3-7					
117A	Straw	1A4a	020103	28.0%		Small combustion, Table 3-10					
	Straw	1A4b	0202	28.0%		Small combustion, Table 3-10 (Assumed					
	Ollaw	1740	0202	20.070	121	equal to agricultural plants)					
117A	Straw	1A4c	020300	28.0%	3 36	Small combustion, Table 3-10					
117A	Straw	1A40	020300	28.0%		Manufacturing industries, Table 3-5					
	Wood pellets					=					
122A		1A1a	0101	3.3%		Energy industries, Table 3-7					
122A	Wood pellets	1A1a	0102	3.3%		Energy industries, Table 3-7					
122A	Wood pellets	1A4a	0201	28.0%		Small combustion, Table 3-10					
122A	Wood pellets	1A4b	0202	-		See residential wood combustion, Chapter					
122A	Wood pellets	1A4c	0203	28.0%		6.13 Small combustion, Table 3-10					
122A 122A	Wood pellets	1A4C		28.0%		Manufacturing industries, Table 3-5					
	-		0301								
203A	Residual oil	1A1a	010101	5.6%		Energy industries, Table 3-5					
203A	Residual oil	1A1a	010102, 010103	5.6%	0.4424	Energy industries, Table 3-5					
000	Desidual sil	1410		E C9/	0.14	Energy industrias Table 9.5					
203A	Residual oil	1A1a	0102	5.6%		Energy industries, Table 3-5					
203A	Residual oil	1A1b	010306	5.6%		Energy industries, Table 4-4					
203A	Residual oil	1A4a	0201	56.0%		Small combustion, Table 3-9					
	Residual oil	1A4b	0202	8.5%		Small combustion, Table 3-5					
		1A4c	0203	56.0%		Small combustion, Table 3-9					
203A	Residual oil										
203A 203A	Residual oil	1A2	03	56.0%		Manufacturing industries, Table 3-4					
203A 203A 203A 204A	Residual oil Gas oil		03 0101, 0102	56.0% 33.5%	1.675	Energy industries, Table 3-6					
203A 203A	Residual oil	1A2			1.675	-					

Fuel	Fuel	NFR	SNAP BC share BC emis-		BC emis-	Reference: EEA (2013)
			-		sion factor,	(,
					g/GJ	
204A	Gas oil	1A1a	010205	78.0%		Energy industries, Table 3-19
204A	Gas oil	1A1b	010306	33.5%	1.675	Energy industries, Table 4-5
204A	Gas oil	1A1c	010504	33.5%	1.675	Energy industries, Table 3-18
204A	Gas oil	1A1c	010505	78.0%	3.9	Energy industries, Table 3-19
204A	Gas oil	1A4a	0201	56.0%	2.8	Small combustion, Table 3-9
204A	Gas oil	1A4a	020105	78.0%	3.9	Energy industries, Table 3-37
204A	Gas oil	1A4b	0202	3.9%	0.295	Small combustion, Table 3-21
204A	Gas oil	1A4b	020204	78.0%	3.9	Energy industries, Table 3-19
204A	Gas oil	1A4c	0203	56.0%	2.8	Small combustion, Table 3-9
204A	Gas oil	1A4c	020304	78.0%	3.9	Energy industries, Table 3-37
204A	Gas oil	1A2	03	56.0%	2.8	Manufacturing industries, Table 3-4
204A	Gas oil	1A2	03 turbines	33.5%	1.675	Energy industries, Table 3-18
204A	Gas oil	1A2	03 engines	78.0%	3.9	Energy industries, Table 3-19
206A	Kerosene	1A4a	0201	56.0%	2.8	Small combustion, Table 3-9
206A	Kerosene	1A4b	0202	8.5%	0.425	Small combustion, Table 3-5
206A	Kerosene	1A4c	0203	56.0%	2.8	Small combustion, Table 3-9
206A	Kerosene	1A2	03	56.0%	2.8	Manufacturing industries, Table 3-4
215A	Bio oil	1A1a	0101	33.5%	1.675	Assumed equal to gas oil. DCE assumption.
215A	Bio oil	1A1a	010105	78.0%	3.9	Assumed equal to gas oil. DCE assumption.
215A	Bio oil	1A1a	0102	33.5%	1.675	Assumed equal to gas oil. DCE assumption.
215A	Bio oil	1A1a	020105	78.0%		Assumed equal to gas oil. DCE assumption.
215A	Bio oil	1A4b	020200	3.9%		Assumed equal to gas oil. DCE assumption.
215A	Bio oil	1A4b	020304	78.0%		Assumed equal to gas oil. DCE assumption.
215A	Bio oil	1A2	03	56.0%		Manufacturing industries, Table 3-4
215A	Bio oil	1A2	03 engines	78.0%		Assumed equal to gas oil. DCE assumption.
225A	Orimulsion	1A1a	010101	2.2%		Assumed equal to coal. DCE assumption.
301A	Natural gas	1A1a	0101	2.5%		Energy industries, Table 3-4
301A	Natural gas	1A1a	010104	2.5%		Energy industries, Table 3-17
301A	Natural gas	1A1a	010105	2.5%		Energy industries, Table 3-20
301A	Natural gas	1A1a	010200	2.5%		Energy industries, Table 3-4
301A	Natural gas	1A1c	0105	2.5%		Energy industries, Table 3-4
301A	Natural gas	1A1c	010504	2.5%		Energy industries, Table 3-17
301A	Natural gas	1A1c	010505	2.5%		Energy industries, Table 3-20
301A	Natural gas	A14a	0201	4.0%		Small combustion, Table 3-8
	Natural gas	1A4a	020104	2.5%		Small combustion, Table 3-34
301A	Natural gas	1A4a	020104	2.5%		Energy industries, Table 3-36
301A	Natural gas	1A4a 1A4b	020103	5.4%		Small combustion, Table 3-19
301A	Natural gas	1A4b	0202	2.5%		Energy industries, Table 3-20
301A	Natural gas	1A40 1A4c	020204	4.0%		Small combustion, Table 3-8
301A		1A4C	020300	2.5%		Energy industries, Table 3-17
	Natural gas					
301A	Natural gas	1A4c	020304	2.5%		Energy industries, Table 3-36
301A	Natural gas	1A2	03	4.0%		Manufacturing industries, Table 3-3
301A	Natural gas	1A2	03 turbines	2.5%		Energy industries, Table 3-17
301A	Natural gas	1A2	03 engines	2.5%		Energy industries, Table 3-20
303A	LPG	1A1a	0101	2.5%	0.005	Assumed equal to natural gas. DCE as- sumption.
303A	LPG	1A1a	010104	2.5%	0.005	Assumed equal to natural gas. DCE as- sumption.
303A	LPG	1A1a	0102	2.5%	0.005	Assumed equal to natural gas. DCE as- sumption.
303A	LPG	1A2b	010306	2.5%	0.005	Assumed equal to natural gas. DCE as- sumption.
303A	LPG	1A4a	020100	4.0%	0.008	Assumed equal to natural gas. DCE as- sumption.
303A	LPG	1A4a	020105	4.0%	0.008	Assumed equal to natural gas. DCE as- sumption.
303A	LPG	1A4b	0202	5.4%	0.0108	Assumed equal to natural gas. DCE as- sumption.

Fuel	Fuel	NFR	SNAP	BC share		Reference: EEA (2013)
				of PM _{2.5}	sion factor,	
	1.50			4.00/	g/GJ	
303A	LPG	1A4c	0203	4.0%	0.008	Assumed equal to natural gas. DCE as-
0004	1.00	140		4.00/	0.000	sumption.
303A	LPG	1A2	03	4.0%	0.008	Assumed equal to natural gas. DCE as-
	5 //					sumption.
308A	Refinery gas	1A1a	010101	18.4%		Energy industries, Table 4-2
308A	Refinery gas	1A1a	010203	18.4%		Energy industries, Table 4-2
308A	Refinery gas	1A1b	0103	18.4%		Energy industries, Table 4-2
308A	Refinery gas	1A2	03	18.4%		Energy industries, Table 4-2
309A	Biogas	1A1a	0101	3.3%		Assumed % equal to wood. DCE assumption
309A	Biogas	1A1a	010105	3.3%	0.006798	
309A	Biogas	1A1a	0102	3.3%	0.0495	Assumed % equal to wood. DCE assumption
309A	Biogas	1A1c	010505	3.3%	0.006798	Assumed % equal to wood. DCE assumption
309A	Biogas	1A4a	0201	28.0%	0.42	Assumed % equal to wood. DCE assumption
309A	Biogas	1A4c	0203	28.0%	0.0054	Assumed % equal to wood. DCE assumption
309A	Biogas	1A2	03	28.0%	0.42	Assumed % equal to wood. DCE assumption
310A	Bio gasification gas	1A1a	010105	3.3%	0.006798	Assumed % equal to wood. DCE assumption
310A	Bio gasification gas	1A4a	020105	3.3%	0.006798	Assumed % equal to wood. DCE assumption
310A	Bio gasification gas	1A4c	020304	28.0%	0.05768	Assumed % equal to wood. DCE assumption
310A	Bio gasification gas	1A2	03 engines	28.0%	0.05768	Assumed % equal to wood. DCE assumption
315A	Bio natural gas	1A1a	0101	2.5%	0.0025	Assumed equal to natural gas. DCE as- sumption.
315A	Bio natural gas	1A1a	0102	2.5%	0.0025	Assumed equal to natural gas. DCE as- sumption.
315A	Bio natural gas	1A4a	0201	4.0%	0.004	Assumed equal to natural gas. DCE as- sumption.
315A	Bio natural gas	1A4b	0202	5.4%	0.0054	Assumed equal to natural gas. DCE as- sumption.
315A	Bio natural gas	1A4c	0203	4.0%	0.004	Assumed equal to natural gas. DCE as- sumption.
315A	Bio natural gas	1A2	03	4.0%	0.004	Assumed equal to natural gas. DCE as- sumption.

7.12 Heavy metals emission factors

The heavy metal emission inventory has been documented in detail in Nielsen et al. (2013c).

The HM emission factors 2018 and references are shown in Table 57.

The emission factors for HM refer to:

- Two emission measurement programmes carried out on Danish decentralised CHP plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003).
- Implied Emission Factors for power plants based on plant-specific data reported by the power plant owners.
- A CONCAWE study (Gon & Kuenen, 2009).
- Data for Danish natural gas (Gruijthuijsen, 2001; Energinet.dk, 2010).

- The EEA Guidebook (EEA, 2016).
- Struschka et al. (2008).
- Hedberg et al. (2002).

The time series are included in Annex 4. Time series have been estimated for:

- Coal combustion in electricity and district heat production plants.
- Waste incineration plants in public electricity and heat production.
- Waste incineration in other combustion plants.

Table 57	HM emission	factors and	references,	2018.
----------	-------------	-------------	-------------	-------

fuel_type	fuel_gr_abbr	nfr	nfr_name	snap	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn	Reference
					mg/GJ									
Solid	Anodic carbon	1A2g	Industry	All	4	1.8	13.5	17.5	7.9	13	134	1.8		EEA (2016), Tier 1, Industry Table 3-2
	Coal		Public electricity and heat production	All	0.51	0.07	0.86	0.48	1.3	0.97	0.62	5.9		Implied emission factor 2008 es- timated by DCE based on plant- specific emission data for power plants
		All other	All other	All	4		13.5	17.5	7.9	13	134	23		EEA (2016), Tier 1, Industry Ta- ble 3-2. For Se: Tier 1, Energy industries Table 3-2. See also Nielsen et al. (2013c)
	Fly ash fossil		Public electricity and heat production	0101	0.51	0.07	0.86	0.48	1.3	0.97	0.62	5.9		Implied emission factor 2008 es- timated by DCE based on plant- specific emission data for power plants
	ВКВ	1A4b i	Residential	0202	2.5	1.5	11.2	22.3	5.1	12.7	130	1.8		EEA (2016), Tier 1, Small Com- bustion Table 3-3. For Se Tier 1, Small Combustion Table 3-7 (for 1A4a/c)
	Coke oven coke	1A2 a-g	Industry	All	4	_	13.5	17.5	7.9	13	134	1.8		EEA (2016), Tier 1, Industry Table 3-2
		1A4b	Residential	0202	2.5	1.5	11.2	22.3	5.1	12.7	130	1.8		EEA (2016), Tier 1, Small Com- bustion Table 3-3. For Se Tier 1, Small Combustion Table 3-7 (for 1A4a/c)
Liquid	Petroleum coke		All	All	3.98		2.55	5.31	0.341	255	4.56	2.06		EEA (2016), Tier 1, Energy in- dustries Table 3-5 (for heavy fuel oil)
	Residual oil		Public electricity and heat production	All	2.1	0.53	2.6	2.4	0.21	362	2.6	1.2		Implied emission factor 2008 es- timated by DCE based on plant- specific emission data for power plants
		All other	All other	All	3.98	1.2	2.55	5.31	0.341	255	4.56	2.06		EEA (2016), Tier 1, Energy in- dustries Table 3-5 (for heavy fuel oil)
	Gas oil	-	Engines	all	0.055	0.011	0.2	0.3	0.11	0.013	0.15	0.22		Nielsen et al. (2010a)
		-	All other	All	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002		Gon & Kuenen (2009)
	Kerosene	All	All	All	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002		Assumed equal to gas oil. DCE assumption

fuel_type	fuel_gr_abbr	nfr	nfr_name	snap	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn	Reference
				-	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	
	LPG	All	All	All	0.002		0.2	0.13	0.12	0.005	0.012	0.002		EEA (2016), Tier 1, Small Com- bustion Table 3-5 (for 1A4b, other liquid fuels)
	Refinery gas	1A1b	Petroleum refining	All	0.343	0.712	2.74	2.22	0.086	3.6	1.79	0.42		EEA (2016), Tier 1, Energy in- dustries Table 4-2 (for refinery gas, 1A1b)
Gas	Natural gas	-	Engines	All	0.05		0.05		0.1	0.05	0.04	0.01		Nielsen et al. (2010a)
		-	All other	All		0.00025		6		0.00051	0.0015			Gruijthuijsen (2001). For Hg: Nielsen et al. (2010a), also applied in EEA (2016), Tier 1, Energy industries Table 3-4. For Se: EEA (2016), Tier 1, Energy industries Table 3-4
Waste	Waste	-	All	All	0.59	0.44	1.56	1.3	1.79	2.06	5.52	1.11		Nielsen et al. (2010a).
	Industrial waste	1A2f	Industry - Other	All	0.59		1.56	1.3	1.79	2.06	5.52	1.11		Nielsen et al. (2010a).
Biomass	Wood and wood pel- lets	-	All non-residential	All	0.19		2.34			2.34	3.62	0.5		For Cd, Hg and Zn: Nielsen et al. (2010a) For Cr, Cu, Ni and Pb: Nielsen & Illerup (2003) For As and Se: EEA (2016), Tier 1, Small Combustion Table 3-10 (for solid biomass applied in 1A4a/c) Reference for As: Struschka et al. (2008). Reference for Se: Hedberg et al. (2002)
	Straw	1A4b i 1A1a	Residential Public electricity and heat production	All	0.19		<u>23</u> 1.6	6 1.7	0.56 0.31	<u>2</u> 1.7	27 6.2	0.5	0.41	EEA (2016) For Cd, Hg and Zn: Nielsen et al. (2010a) For Cr, Cu, Ni and Pb: Nielsen & Illerup (2003) For As and Se: EEA (2016), Tier 1, Small Combustion Table 3-10
		1A4b i 1A4c i	Residential Agriculture/forestry	0202 0203	0.19 0.19		23 23	6 6	0.56 0.56	2	27 27	0.5 0.5	512	EEA (2016), Tier 1, Small Com- bustion Table 3-6 EEA (2016), Tier 1, Small Com- bustion Table 3-6 (for 1A4b)

fuel_type	fuel_gr_abbr	nfr	nfr_name	snap	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn	Reference
					mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	
	Bio oil	-	Engines	engi-	0.055	0.011	0.2	0.3	0.11	0.013	0.15	0.22	58	Assumed equal to gas oil. DCE
				nes										assumption
		-	All other	-	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	Assumed equal to gas oil. DCE
														assumption
	Biogas	-	All non-residential	All	0.04	0.002	0.18	0.31	0.12	0.23	0.005	0.21	3.95	Nielsen et al. (2010a)
		1A4b	Residential	All	0.119	0.00025	0.00076	0.00007	0.1	0.00051	0.0015	0.0112	0.0015	Assumed equal to natural gas
								6						(biogas upgraded for distribution
														in the town gas grid)
	Bio gasification gas	1A1a	Public electricity and	01010	0.12	0.009	0.029	0.045	0.54	0.014	0.022	0.18	0.058	Nielsen et al. (2010a)
			heat production	5										
				01010	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	Assumed equal to gas oil. DCE
				1										assumption
	Bio natural gas	-	All	All	0.119	0.00025	0.00076	0.00007	0.1	0.00051	0.0015	0.0112	0.0015	Assumed equal to natural gas
								6						

7.13 PAH emission factors

The PAH emission factors 2018 and references are shown in Table 58.

The emission factors for PAH refer to:

- Research carried out by TNO (Berdowski et al., 1995).
- Research carried out by Statistics Norway (Finstad et al., 2001).
- An emission measurement program performed on biomass-fuelled plants. The project was carried out for the Danish Environmental Protection Agency (Jensen & Nielsen, 1996).
- Finstad et al. (2001).
- Two emission measurement programs carried out on Danish decentralised CHP plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003).
- Additional information from the gas sector (Jensen, 2001).
- EEA (2016).
- Nielsen et al. (2020).

In general, emission factors for PAH are uncertain.

The time series are included in Annex 4. Time series have been estimated for:

- Residential wood combustion.
- Natural gas fuelled engines.
- Biogas-fuelled engines.

fuel_type	fuel_id	fuel_gr_abbr	nfr_id	snap_id	Benzo(a)-				Reference
					pyrene	fluoranthene	fluoranthene	(1,2,3-c,d)-	
								pyrene	
					µg per GJ			µg per GJ	
Solid	102A	Anodic carbon	1A2g	0320	23		929		Finstad et al. (2001)
		Coal	1A1a	All	0.7	37	29		EEA (2016). Tier 1, Energy industries Table 3-2
			1A2 a-g	All	23	929	929		Finstad et al. (2001)
			1A4c i	0203	59524	63492	1984		Finstad et al. (2001)
	103A	Fly ash fossil	1A1a	0101	0.7	37	29		EEA (2016). Tier 1, Energy industries Table 3-2
	106A	ВКВ	1A4b i	0202	59524	63492	1984	119048	Finstad et al. (2001) (Same emission factor as for coal is assumed. DCE assumption)
	107A	Coke oven coke	1A2 a-g	All	23	929	929	698	Finstad et al. (2001)
			1A4b	0202	59524	63492	1984	119048	Finstad et al. (2001)
Liquid	110A	Petroleum coke	1A2 a-g	All	80	42	66	160	Finstad et al. (2001). Assumed equal to residual oil
			1A4a i	All	80	42	66	160	Finstad et al. (2001). Assumed equal to residual oil
			1A4b i	All	80	42	66	160	Finstad et al. (2001). Assumed equal to residual oil
			1A4c i	All	80	42	66	160	Finstad et al. (2001). Assumed equal to residual oil
	203A	Residual oil	1A1a	All	109.6	475.41	93.21	177.28	Finstad et al. (2001)
			1A1b	010306	109.6	475.41	93.21	177.28	Finstad et al. (2001)
			1A2 a-g	All	80	42	66	160	Finstad et al. (2001)
			1A4a i	All	80	42	66	160	Finstad et al. (2001)
			1A4b i	All	80	42	66	160	Finstad et al. (2001)
			1A4c i	All	80	42	66	160	Finstad et al. (2001)
	204A	Gas oil	1A1a	Not engines	109.6	475.41	93.21		Finstad et al. (2001)
				Engines	1.9	15	1.7	1.5	Nielsen et al. (2010a)
			1A1b	010306	109.6	475.41	93.21	177.28	Finstad et al. (2001)
			1A1c	010504	109.6	475.41	93.21	177.28	Finstad et al. (2001)
			1A2 a-g	Not engines	80	42	66	160	Finstad et al. (2001)
				Engines	1.9	15	1.7	1.5	Nielsen et al. (2010a)
			1A4a i	Not engines	80	42	66	160	Finstad et al. (2001)
				Engines	1.9	15	1.7	1.5	Nielsen et al. (2010a)
			1A4b i	0202	80	42	66	160	Finstad et al. (2001)
			1A4c i	0203	80	42	66	160	Finstad et al. (2001)
Gas	301A	Natural gas	1A1a	010104	1	1	2	3	Nielsen & Illerup (2003)
		-		010105	1.2	9	1.7	1.8	Nielsen et al. (2010a)
			1A1c	010504	1	1	2	3	Nielsen & Illerup (2003)
			1A2 a-g	Turbines	1	1	2		Nielsen & Illerup (2003)
				Engines	1.2	9	1.7	1.8	Nielsen et al. (2010a)
			1A4a i	020105	1.2		1.7		Nielsen et al. (2010a)
			1A4b i	020202	0.133	0.663	0.265	2.653	Jensen (2001)

fuel_type	fuel_id	fuel_gr_abbr	nfr_id	snap_id	Benzo(a)-	Benzo(b)-	Benzo(k)-	Indeno-	Reference
					pyrene	fluoranthene	fluoranthene	(1,2,3-c,d)-	
								pyrene	
				020204	1.2	9	1.7	1.8	Nielsen et al. (2010a)
			1A4c i	020304	1.2	9	1.7	1.8	Nielsen et al. (2010a)
Waste	114A	Waste	1A1a	All	0.8	1.7	0.9	1.1	Nielsen et al. (2010a)
			1A4a i	0201	0.8	1.7	0.9	1.1	Nielsen et al. (2010a)
	115A	Industrial waste	1A2f	0316	0.8	1.7	0.9	1.1	Nielsen et al. (2010a)
Biomass	111A	Wood	1A1a	0101	11	15	5	10	Nielsen et al. (2010a)
				0102	6.46	1292.52	1292.52	11.56	Finstad et al. (2001)
			1A2 a-g	all	6.46	1292.52	1292.52		Finstad et al. (2001)
			1A4a i	0201	168707	221769	73469	119728	Finstad et al. (2001)
			1A4b i	All	65630	61603	40349	35691	Nielsen et al. (2020)
			1A4c i	all	168707	221769	73469	119728	Finstad et al. (2001)
	117A	Straw	1A1a	0101	0.5	0.5	0.5	0.5	Nielsen et al. (2010a)
				0102	1529	3452	1400	1029	Berdowski et al. (1995)
			1A4b i	0202	12956	12828	6912	4222	Berdowski et al. (1995)
			1A4c i	0203	12956	12828	6912	4222	Berdowski et al. (1995)
	122A	Wood pellets	1A1a	0101	11	15	5	10	Nielsen et al. (2010a)
				0102	6.46	1292.52	1292.52	11.56	Finstad et al. (2001)
			1A2 a-g	03	6.46	1292.52	1292.52	11.56	Finstad et al. (2001)
			1A4a i	0201	168707	221769	73469	119728	Finstad et al. (2001)
			1A4b i	0202	900	1300	1300	1200	Nielsen et al. (2020)
	215A	Bio oil	1A1a	All	109.6	475.41	93.21	177.28	Same emission factors as for gas oil is assumed. DCE
									assumption
			1A2 a-g	All	80	42	66	160	Same emission factors as for gas oil is assumed. DCE
									assumption).
			1A4b i	0202	80	42	66	160	Same emission factors as for gas oil is assumed (DCE
									assumption
	309A	Biogas	Engines	All	1.3	1.2	1.2	0.6	Nielsen et al. (2010a)
	310A	Bio gasification gas	Engines	010105	2	2	2	2	Nielsen et al. (2010a)
	315A	Bio natural gas	1A4b i	0202	0.133	0.663	0.265	2.653	Jensen (2001)

7.14 PCDD/F emission factors

The PCDD/F emission factors 2018 and references are shown in Table 59.

The emission factor for residential wood combustion refers to Nielsen et al. (2020). The emission factor is based on technology specific emission factors, see Chapter 6.13.

The emission factors for decentralised CHP plants³⁰ refer to an emission measurement program for these plants (Nielsen et al. 2010a).

All other emission factors refer to research regarding PCDD/F emissions carried out by NERI (now DCE) to prepare a new PCDD/F emission inventory (Henriksen et al., 2006).

In general, emission factors for PCDD/F are uncertain.

The time series are included in Annex 4. Time series have been estimated for:

- Residential wood combustion.
- Waste incineration plants.

³⁰ Natural gas fueled engines, biogas fueled engines, gas oil fueled engines, engines fueled by biomass gasification gas, CHP plants combusting straw or wood and waste incineration plants.

fuel_type	fuel_id	fuel_gr_abbr	nfr_id	snap_id	PCDD/F, Reference ng per GJ
Solid	102A	Anodic carbon	1A2g	0320	1.32 Henriksen et al., 2006
		Coal	1A1a	0101 and 0102	1.32 Henriksen et al., 2006
			1A2 a-g	03	1.32 Henriksen et al., 2006
			1A4c i	0203	300 Henriksen et al., 2006
	103A	Fly ash fossil	1A1a	0101	1.32 Henriksen et al., 2006
	106A	BKB	1A4b i	0202	800 Henriksen et al., 2006
	107A	Coke oven coke	1A2 a-g	03	1.32 Henriksen et al., 2006
	IUIA		1A4c	0203	800 Henriksen et al., 2006
_iquid	110A	Petroleum coke	1A2 a-g	03	1.32 Henriksen et al., 2006
Iquiu	110/1		1A4a i	0201	300 Henriksen et al., 2006
			1A4b i	0202	800 Henriksen et al., 2006
			1A4c i	0203	300 Henriksen et al., 2006
	203A	Residual oil	1A1a	All	0.882 Henriksen et al., 2006
	2004		1A1b	010306	0.882 Henriksen et al., 2006
			1A10 1A2 a-g	03	0.882 Henriksen et al., 2006
			1A2 a-g 1A4a i	0201	10 Henriksen et al., 2006
			1A4a i 1A4b i	0201	10 Henriksen et al., 2006 10 Henriksen et al., 2006
			1A40 I 1A4c i	0202	10 Henriksen et al., 2006 10 Henriksen et al., 2006
	204A	Gas oil			
	204A	Gas UII	1A1a	Not engines	0.882 Henriksen et al., 2006
			1.1.1.	Engines	0.99 Nielsen et al., 2010a
			1A1b 1A1c	010306	0.882 Henriksen et al., 2006
				010504	0.882 Henriksen et al., 2006
			1A2 a-g	Not engines	0.882 Henriksen et al., 2006
				Engines	0.99 Nielsen et al., 2010a
			1A4a i	Not engines	10 Henriksen et al., 2006
				Engines	0.99 Nielsen et al., 2010a
			1A4b i	Not engines	10 Henriksen et al., 2006
				Engines	0.99 Nielsen et al., 2010a
			1A4c i	0203	10 Henriksen et al., 2006
	206A	Kerosene	1A2a-g	03	0.882 Henriksen et al., 2006
			1A4a i	0201	10 Henriksen et al., 2006
			1A4b i	0202	10 Henriksen et al., 2006
			1A4c i	0203	10 Henriksen et al., 2006
	303A	LPG	1A1a	0101 and 0102	0.025 Henriksen et al., 2006
			1A2a-g	03	0.025 Henriksen et al., 2006
			1A4a i	0201	2 Henriksen et al., 2006
			1A4b i	0202	2 Henriksen et al., 2006
			1A4c i	0203	2 Henriksen et al., 2006
	308A	Refinery gas	1A1b	0103	0.025 Henriksen et al., 2006
Gas	301A	Natural gas	1A1a	Not engines	0.025 Henriksen et al., 2006
	-			Engines	0.57 Nielsen et al., 2010a
			1A1b	0103	0.025 Henriksen et al., 2006
			1A1c	010504	0.025 Henriksen et al., 2006
			1A2 a-g	03, Not engi-	0.025 Henriksen et al., 2006
			Ū.	nes	
				Engines	0.57 Nielsen et al., 2010a
			1A4a i	0201	2 Henriksen et al., 2006
				020105	0.57 Nielsen et al., 2010a
			1A4b i	0202	2 Henriksen et al., 2006
				020204	0.57 Nielsen et al., 2010a
			1A4c i	0203	2 Henriksen et al., 2006
				020304	0.57 Nielsen et al., 2010a
Waste	114A	Waste	1A1a	0101 and	5 Nielsen et al., 2010a
asic	1147	AV ABIG	inia	0101 and 0102	
			1A4a i	0201	5 Nielsen et al., 2010a
	115 ^	Industrial waste	1A4a 1 1A2f		
	115A	muusinai wasie	IAZI	0316	5 Nielsen et al., 2010a

Table 59	Emission factors for PCDD/F, 2018.
----------	------------------------------------

fuel_type	fuel_id	fuel_gr_abbr	nfr_id	snap_id	PCDD/F, Reference ng per GJ
Biomass	111A	Wood	1A1a	0101	14 Nielsen et al., 2010a
				0102	1 Henriksen et al., 2006
			1A2 a-g	03	1 Henriksen et al., 2006
			1A4a i	0201	400 Henriksen et al., 2006
			1A4b i	0202	766 Nielsen et al. (2020)
			1A4c i	0203	400 Henriksen et al., 2006
	117A	Straw	1A1a	0101	19 Nielsen et al., 2010a
				0102	22 Henriksen et al., 2006
			1A4b i	0202	500 Henriksen et al., 2006
			1A4c i	0203	400 Henriksen et al., 2006
	122A	Wood pellets	1A1a	0101	14 Nielsen et al., 2010a
				0102	1 Henriksen et al., 2006
			1A2 a-g	03	1 Henriksen et al., 2006
			1A4a i	0201	400 Henriksen et al., 2006
			1A4b i	0202	333 Nielsen et al. (2020)
			1A4c i	0203	400 Henriksen et al., 2006
	215A	Bio oil	1A1a	0101 and	0.882 Henriksen et al., 2006
				0102	,,
			1A2 a-g	03	0.882 Henriksen et al., 2006
			1A4b i	0202	10 Henriksen et al., 2006
	309A	Biogas	1A1a	Engines	0.96 Nielsen et al., 2010a
		-		Not engines	0.025 Henriksen et al., 2006
			1A2a-g	Not engines	0.025 Henriksen et al., 2006
				Engines	0.96 Nielsen et al., 2010a
			1A4a i	Not engines	2 Henriksen et al., 2006
				Engines	0.96 Nielsen et al., 2010a
			1A4b	Not engines	2 Henriksen et al., 2006
			1A4c i	Not engines	2 Henriksen et al., 2006
				Engines	0.96 Nielsen et al., 2010a
	310A	Bio gasification gas	1A1a	010105	1.7 Nielsen et al., 2010a
	315A	Bio natural gas	1A1a	0101 and	0.025 Assumed equal to natural
				0102	gas
			1A2a-g	03	0.025 Assumed equal to natural
					gas
			1A4a	0201	2 Assumed equal to natural
					gas
			1A4b	0202	2 Assumed equal to natural
					gas
			1A4c	0203	2 Assumed equal to natural
					gas

7.15 HCB emission factors

The HCB emission inventory has been documented in Nielsen et al. (2014b).

Table 60 shows the emission factors and references for the Danish emission factors.

Table 60 Emi	ssion factors for I	HCB, 2018.	
Fuel	NFR (SNAP)	Emission	Reference
		factor, ng/GJ	
Coal	1A1, 1A2	6,700	Grochowalski & Konieczyński (2008);
			EEA (2013)
Coal	1A4b	1,200,000	Syc et al. (2011)
Coal	1A4a and 1A4c	23,000	Syc et al. (2011)
Other solid	1A1, 1A2	6,700	Assumed equal to coal
fuels			
Other solid	1A4	1,200,000	Assumed equal to coal
fuels			
Liquid fuels ¹⁾	1A1, 1A2, 1A4	220	Nielsen et al. (2010a)
Gaseous	1A1, 1A2, 1A4	-	Negligible
fuels			
Waste	1A1, 1A2, 1A4	4300	Nielsen et al. (2010a). A time series
			have been estimated. The emission
			factor for 1990 (190,000 ng/GJ) refer to
			Pacyna et al. (2003)
Wood and	1A1, 1A2	5,000	EEA (2013)
wood pellets			
Wood and	1A4	5,000	EEA (2013)
wood pellets			
Straw	1A1, 1A2	113	Nielsen et al. (2010a)
Straw	1A4	5,000	EEA (2013)
Biogas	1A1, 1A2, 1A4	190	Nielsen et al. (2010a)
Producer gas	1A1, 1A2, 1A4	800	Nielsen et al. (2010a)

1) The emission factor for LPG and refinery gas is negligible.

For coal, the emission factor from Grochowalski & Konieczyński (2008) is applied for Energy industries and for industrial plants. This emission factor is also applied in the EEA Guidebook (EEA, 2013).

For residential plants, the emission factor 1,200,000 ng/GJ is applied referring to Syc et al. (2011). For commercial/institutional plants and for plants in agriculture / forestry the lower end of the value in Syc et al. (2011) (23,000 ng/GJ) is applied.

The emission factor for gas oil fuelled CHP engines (220 ng/GJ) referring to Nielsen et al. (2010a) is applied for all liquid fuels except for LPG and refinery gas.

For gaseous fuels, LPG and refinery gas no data are available and the emission is negligible.

For waste combustion, emission data from Danish plants are available and these data are applied (Nielsen et al., 2010a). The emission factor 4,300 ng/GJ is applied for 2005 onwards. The HCB emission factor for 1990 refers to Pacyna et al. (2003). The emission of HCB is related to emission of PCDD/Fs and the decline rate between 1990 and 2005 is based on the decline rate for PCDD/Fs.

Recent emission measurements from Polish industrial waste incineration plants confirms the emission factor level for waste incineration considering that the PCDD/F emission level is 15 times the PCDD/F emission level for Danish plants.

For wood combustion, the emission factors from EEA (2013) are applied for both Energy industries, industrial plants and for non-industrial plants. For residential wood combustion, it would be relevant to estimate a time series. However, the currently available data are considered insufficient for this estimate.

The chlorine (Cl) content in straw is higher than in wood (Villeneuve et al., 2013) and thus the emission from straw combustion might potentially be higher. However, the emission factor for CHP plants combusting straw reported in Nielsen et al. (2010a) is lower than the emission factor applied for wood.

The emission factor for Energy industries and industrial combustion refer to Nielsen et al. (2010a). For non-industrial plants, the EEA (2013) emission factor is applied.

The emission factors for biogas and biomass gasification gas both refer to Nielsen et al. (2010a).

7.16 PCB emission factors

The PCB emission inventory has been documented in Nielsen et al. (2014b).

The PCB emissions are strongly related to the chlorine (Cl) content of the fuel (Syc et al., 2011) and to the emission level for PCDD/Fs (Hedman et al., 2006; Syc et al., 2011; Pandelova et al., 2009).

The Cl content of straw, bark and manure is higher than for wood (Villeneuve et al., 2012). Villeneuve et al. (2012) states the Cl contents 50-60 mg/kg wood, 100-370 mg/kg bark, 1000-7000 mg/kg straw.

Different references for PCB emissions are not directly comparable because some PCB emission data are reported for individual PCB congeners, some as a sum of a specified list of PCB congeners and some PCB emission data are reported as toxic equivalence (teq) based on toxicity equivalence factors (TEF) for 12 dioxin-like PCB congeners. The emission measurements reported by Thistlethwaite (2001a and 2001b) show that the emission of non-dioxin-like PCBs are high compared to the emission of dioxin-like PCBs.

Furthermore, teq values based on TEF are reported as WHO_{2005} -teq or WHO_{1998} -teq. This difference is however typically less than $50\%^{31}$.

Table 61 shows the emission factors that have been selected for the Danish PCB emission inventory and reference for each emission factor. All emission factors are dioxin-like PCBs (but not teq values). PCB emission factors have been added for all fuels except LPG, refinery gas and natural gas. The emission from these three fuels is considered negligible.

³¹ Data have been compared for a few datasets in which each dioxin-like PCB congeners were specified.

Fuel	NFR (SNAP)	Emission fac-	Emission factor,	Reference
		tor, ∑ dI-PCBs,	PCB,	
		ng/GJ	ng WHO ₁₉₉₈ -	
			teq/GJ	
Coal	1A1	839	3.16	Grochowalski & Konieczyński (2008)
Coal	1A2	5,700	53	Thistlethwaite (2001a)
Coal	1A4	7,403	66	Syc et al. (2011)
Other solid fuels	1A1	839	3.16	Assumed equal to coal
Other solid fuels	1A2	5,700	53	Assumed equal to coal
Other solid fuels	1A4	7,403	66	Assumed equal to coal
Residual oil and	1A1, 1A2, 1A4	839	3.2	The teq value refers to Dyke et al. (2003)
orimulsion				
				The TEQ value is equal to the emission factor for coal
				combustion in power plants and the sum of dioxin-like
				PCB congeners has been assumed equal to the corre-
				sponding factor for coal
Gas oil	1A1, 1A2, 1A4	93	0.11	Nielsen et al. (2010a)
Other liquid fuels ¹⁾	1A1, 1A2, 1A4	93	0.11	Assumed equal to gas oil
Gaseous fuels	1A1, 1A2, 1A4	-	-	Negligible
Waste	1A1, 1A2, 1A4	109	0.28	Nielsen et al. (2010a). A time series have been esti-
		(time series)	(time series)	mated. The emission factor for 1990 (46,000 ng/GJ or
				117 ng WHO1998teq/GJ) have been estimated based
				on the assumption that the PCB emission factor time
				series follow the PCDD/F time series
Wood	1A1, 1A2,	2,800	21	Thistlethwaite (2001a)
	1A4a/c			
Wood	1A4b	2,686	-	Hedman et al. (2006). A time series have been esti-
		(time series)		mated based on time series for technologies applied in
				Denmark
Straw	1A1, 1A2	3,110	31.2	Assumed equal to residential plants
Straw	1A4	3,110	31.2	Syc et al. (2011)
Wood pellets	1A1, 1A2,	2,800	21	Thistlethwaite (2001a)
-	1A4a/c			
Wood pellets	1A4b	465.5	-	Hedman et al. (2006).
Biogas	1A1, 1A2, 1A4	90	0.13	Nielsen et al. (2010a)
Producer gas	1A1, 1A2, 1A4	144	0.17	Nielsen et al. (2010a)

Table 61 Emission factors for $\sum dl$ -PCBs, stationary combustion, 2018.

1) Except LPG and refinery gas.

The emission factor for waste incineration refers to recent Danish field measurements. Historical data are not available, but a time series have been estimated based on the assumption that the dl-PCB emission factor follows the PCDD/-F emission factor. The estimated emission factor for 1990 is 45,671 ng/GJ or 117 ng WHO-teq/GJ. This emission level is confirmed by other references (Kakareka & Kukharchyk, 2005; Andrijewski et al., 2004). The emission factor time series is shown in Table 62.

For residential wood combustion, technology specific emission factors in toxicological equivalence are available from Hedman et al. (2006). However, sums of dioxin-like PCBs are not included in the reference. The emission factors for dioxin-like PCBs have been estimated based on the data for toxicological equivalence and the sum of dioxin-like PCBs in Thistlethwaite (2001a). Thus, the teq factors referring to Hedman (2006) have been multiplied by 2800/21. This assumption is highly uncertain, but the resulting emission factors seem to be in agreement with other references for residential wood combustion. A technology distribution time series for residential wood combustion in Denmark is available and have been applied for estimating the time series for the aggregated emission factor shown in Table 62. Emission factor time series for waste incineration and for residential wood combustion are shown in Table 62.

Table 62	Emission factor time series for waste incineration and for residential wood com-
bustion.	

Year	Waste incineration	Residential wood com-
		bustion
	∑dl-PCBs,	∑dl-PCBs,
	ng/GJ	ng/GJ
1990	45671	6076
1991	38063	6000
1992	30433	5924
1993	22825	5849
1994	19773	5774
1995	16721	5701
1996	13690	5629
1997	10638	5560
1998	7586	5492
1999	5515	5425
2000	3423	5359
2001	3423	5293
2002	3423	5226
2003	3423	5162
2004	1766	4921
2005	109	4687
2006	109	4509
2007	109	4333
2008	109	4142
2009	109	3930
2010	109	3718
2011	109	3588
2012	109	3459
2013	109	3330
2014	109	3200
2015	109	3071
2016	109	2941
2017	109	2814
2018	109	2686

7.17 Implied emission factors

A considerable part of the emission data for waste incineration plants and large power plants are plant-specific. Thus, the area source emission factors do not necessarily represent average values for these plant categories. To attain a set of emission factors that expresses the average emission for power plants combusting coal and for waste incineration plants, implied emission factors have been calculated for these two plant categories. The implied emission factors are presented in Annex 5. The implied emission factors are calculated as total emission divided by total fuel consumption.

8 Uncertainty

8.1 Uncertainty for greenhouse gases

Uncertainty estimates include uncertainty with regard to the total emission inventory as well as uncertainty with regard to trends.

8.1.1 Methodology

The uncertainty for greenhouse gas emissions have been estimated according to the IPCC Guidelines (IPCC, 2006). This year the uncertainty has been estimated only by approach 1.

Approach 1 is based on a normal distribution and a confidence interval of 95 %.

The input data for the approach 1 are:

- Emission data for the base year and the latest year.
- Uncertainties for emission factors.
- Uncertainty for fuel consumption rates.

The emission source categories applied are listed in Table 63.

Source categories

Due to large differences in data uncertainty, some emission source categories have been further disaggregated than suggested in the IPCC Guidelines (2006):

- For five different fuels, CO₂ emissions based on ETS data and on non-ETS data have been considered two different emission sources.
- CH₄ emission from natural gas fuelled engines.
- CH₄ emission from biogas fuelled engines.
- CH₄ emission from residential wood combustion.
- CH₄ emission from residential and agricultural combustion of straw
- N₂O emission from residential wood combustion.
- N₂O emission from residential and agricultural combustion of straw.

The separate uncertainty estimation for gas engine CH_4 emission and CH_4 emission from other plants is applied, because in Denmark, the CH_4 emission from gas engines is much larger than the emission from other stationary combustion plants, and the CH_4 emission factor for gas engines is estimated with a much smaller uncertainty level than for other stationary combustion plants.

The 2018 uncertainty levels have been applied in uncertainty calculation.

Fuel consumption

The applied uncertainty rates for fuel consumption are shown below.

Table 63Uncertainties for fuel consumption 2018.

Table 63 Uncertainties for fuel consumption 2018.		
IPCC Source category	2018	Reference
1A1, 1A2, 1A4 St. comb., Coal, ETS data, CO ₂	0.5%	ETS data
1A1, 1A2, 1A4 St. comb., Coal, no ETS data, CO ₂	1.5%	Estimated based on IPCC (2006) values
1A1, 1A2, 1A4 St. comb., BKB, CO ₂	2.9%	Estimated based on IPCC (2006) values
1A1, 1A2, 1A4 St. comb., Coke oven coke, CO ₂	1.5%	Estimated based on IPCC (2006) values
1A1, 1A2, 1A4 St. comb., Fossil waste, ETS data, CO ₂	2%	DCE assumption
1A1, 1A2, 1A4 St. comb., Fossil waste, no ETS data, CO ₂	5%	DCE assumption
1A1, 1A2, 1A4 St. comb., Petroleum coke, ETS data, CO ₂	0.5%	ETS data
1A1, 1A2, 1A4 St. comb., Petroleum coke, no ETS data, CO ₂		Estimated based on IPCC (2006) values
1A1, 1A2, 1A4 St. comb., Residual oil, ETS data, CO ₂		ETS data
1A1, 1A2, 1A4 St. comb., Residual oil, no ETS data, CO ₂		Estimated based on IPCC (2006) values
1A1, 1A2, 1A4 St. comb., Gas oil, CO ₂		Estimated based on IPCC (2006) values
1A1, 1A2, 1A4 St. comb., Kerosene, CO ₂		Estimated based on IPCC (2006) values
		· · · · ·
1A1, 1A2, 1A4 St. comb., LPG, CO ₂		Estimated based on IPCC (2006) values
1A1b,St. comb., Refinery gas, CO ₂		Estimated based on IPCC (2006) values
1A1, 1A2, 1A4, Stationary combustion, Natural gas, onshore, CO_2	1.3%	Estimated based on IPCC (2006) values. Offshore
		gas turbines not included in this category
1A1c Off shore gas turbines, Natural gas, CO ₂		ETS data for 2018, IPCC (2006) for 1990
1A1, Stationary combustion, Solid, CH ₄		IPCC (2006), less than 1%
1A1, Stationary combustion, Liquid, CH ₄	1.0%	IPCC (2006), less than 1%
1A1, Stationarycombustion, not engines, GAS, CH ₄	1.0%	IPCC (2006), less than 1%
1A1, Stationary combustion, Waste, CH ₄	3.0%	DCE assumption. The uncertainty for the total con-
		sumption of waste is lower than the uncertainty for
		the fossil part
1A1, Stationary combustion, not engines, Biomass, CH ₄	3.0%	DCE assumption
1A2, Stationary combustion, Solid, CH ₄		IPCC (2006)
1A2, Stationary combustion, Liquid, CH ₄		IPCC (2006)
1A2, Stationary combustion, not engines, GAS, CH ₄		IPCC (2006)
1A2, Stationary combustion, Waste, CH ₄		DCE assumption. The uncertainty for the total con-
TAZ, Stationally compusition, Waste, On4	0.078	sumption of waste is lower than the uncertainty for
		the fossil part
142 Stationary combustion not angines BIOMASS CH	2.09/	
1A2, Stationary combustion, not engines, BIOMASS, CH ₄	3.0%	IPCC (2006)
1A4, Stationary combustion, Solid, CH ₄	3.0%	IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH4	3.0% 3.0%	IPCC (2006)
 1A4, Stationary combustion, Solid, CH₄ 1A4, Stationary combustion, Liquid, CH₄ 1A4, Stationary combustion, not engines, GAS, CH₄ 	3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH4	3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con-
 1A4, Stationary combustion, Solid, CH₄ 1A4, Stationary combustion, Liquid, CH₄ 1A4, Stationary combustion, not engines, GAS, CH₄ 	3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for
 1A4, Stationary combustion, Solid, CH₄ 1A4, Stationary combustion, Liquid, CH₄ 1A4, Stationary combustion, not engines, GAS, CH₄ 1A4, Stationary combustion, Waste, CH₄ 	3.0% 3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, not engines, not residential wood and	3.0% 3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part
 1A4, Stationary combustion, Solid, CH₄ 1A4, Stationary combustion, Liquid, CH₄ 1A4, Stationary combustion, not engines, GAS, CH₄ 1A4, Stationary combustion, Waste, CH₄ 	3.0% 3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, not engines, not residential wood and	3.0% 3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part
 1A4, Stationary combustion, Solid, CH₄ 1A4, Stationary combustion, Liquid, CH₄ 1A4, Stationary combustion, not engines, GAS, CH₄ 1A4, Stationary combustion, Waste, CH₄ 1A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH₄ 	3.0% 3.0% 3.0% 3.0% 10.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006)
 1A4, Stationary combustion, Solid, CH₄ 1A4, Stationary combustion, Liquid, CH₄ 1A4, Stationary combustion, not engines, GAS, CH₄ 1A4, Stationary combustion, Waste, CH₄ 1A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH₄ 1A4, Stationary combustion, Residential wood combustion, CH₄ 	3.0% 3.0% 3.0% 3.0% 10.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential wood combustion, CH4	3.0% 3.0% 3.0% 3.0% 3.0% 10.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010)
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4 1A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH4	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4 1A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH4 1A1, Stationary combustion, Solid, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 1.0% 1.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1%
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4 1A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH4 1A1, Stationary combustion, Solid, N2O 1A1, Stationary combustion, Liquid, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 1.0% 1.0% 1.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1%
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4 1A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH4 1A1, Stationary combustion, Solid, N2O 1A1, Stationary combustion, Liquid, N2O 1A1, Stationary combustion, Gas, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total consumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption DCE assumption DCE assumption DCE assumption IPCC (2006) IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1%
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4 1A1, Stationary combustion, Solid, N2O 1A1, Stationary combustion, Liquid, N2O 1A1, Stationary combustion, Gas, N2O 1A1, Stationary combustion, Waste, N2O	3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total consumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption DCE assumption DCE assumption DCE assumption IPCC (2006) IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Liquid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total consumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption DCE assumption DCE assumption DCE assumption IPCC (2006) IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE (2006), less than 1% DCE assumption DCE assumption
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Liquid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 1.0% 3.0% 3.0% 2.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 3.0% 3.0% 2.0% 2.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Gas, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 3.0% 2.0% 2.0% 2.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006) IPCC (2006) IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 3.0% 2.0% 2.0% 2.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Gas, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 1.0% 3.0% 2.0% 2.0% 2.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption Lindgren (2010) DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006) IPCC (2006) IPCC (2006)
1A4, Stationary combustion, Solid, CH4 1A4, Stationary combustion, Liquid, CH4 1A4, Stationary combustion, not engines, GAS, CH4 1A4, Stationary combustion, Waste, CH4 1A4, Stationary combustion, Not engines, not residential wood and not residential/agricultural straw, Biomass, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential wood combustion, CH4 1A4, Stationary combustion, Residential and agricultural straw combustion, CH4 1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH4 1A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH4 1A1, Stationary combustion, Solid, N2O 1A1, Stationary combustion, Gas, N2O 1A1, Stationary combustion, Biomass, N2O 1A1, Stationary combustion, Biomass, N2O 1A2, Stationary combustion, Solid, N2O 1A3, Stationary combustion, Biomass, N2O 1A2, Stationary combustion, Solid, N2O 1A2, Stationary combustion, Solid, N2O 1A2, Stationary combustion, Biomass, N2O 1A2, Stationary combustion, Solid, N2O	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 1.0% 3.0% 2.0% 2.0% 2.0% 3.0%	IPCC (2006)IPCC (2006)DCE assumption. The uncertainty for the total consumption of waste is lower than the uncertainty for the fossil partIPCC (2006)DCE assumptionDCE assumptionDCE assumptionLindgren (2010)DCE assumptionIPCC (2006), less than 1%IPCC (2006), less than 1%IPCC (2006), less than 1%DCE assumptionIPCC (2006), less than 1%IPCC (2006), less than 1%DCE assumptionIPCC (2006), less than 1%DCE assumptionDCE assumption
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Gas, N2O1A3, Stationary combustion, Gas, N2O1A4, Stationary combustion, Gas, N2O1A5, Stationary combustion, Gas, N2O1A6, Stationary combustion, Gas, N2O1A7, Stationary combustion, Gas, N2O1A8, Stationary combustion, Gas, N2O1A9, Stationary combustion, Gas, N2O1A1, Stationary combustion, Gas, N2O <tr< td=""><td>3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 1.0% 3.0% 3.0% 2.0% 2.0% 2.0% 3.0% 3.0%</br></br></td><td>IPCC (2006)IPCC (2006)DCE assumption. The uncertainty for the total consumption of waste is lower than the uncertainty for the fossil partIPCC (2006)DCE assumptionDCE assumptionDCE assumptionDCE assumptionIPCC (2006), less than 1%IPCC (2006), less than 1%IPCC (2006), less than 1%DCE assumptionIPCC (2006), less than 1%IPCC (2006), less than 1%DCE assumptionDCE assumption</td></tr<>	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 	IPCC (2006)IPCC (2006)DCE assumption. The uncertainty for the total consumption of waste is lower than the uncertainty for the fossil partIPCC (2006)DCE assumptionDCE assumptionDCE assumptionDCE assumptionIPCC (2006), less than 1%IPCC (2006), less than 1%IPCC (2006), less than 1%DCE assumptionIPCC (2006), less than 1%IPCC (2006), less than 1%DCE assumptionDCE assumption
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Liquid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Gas, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Gas, N2O1A2, Stationary combustion, Gas, N2O1A4, Stationary combustion, Biomass, N2O1A4, Stationary combustion, Solid, N2O1A4, Stationary comb	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 1.0% 1.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption DCE assumption IPCC (2006) IPCC (2006)
1A4, Stationary combustion, Solid, CH41A4, Stationary combustion, Liquid, CH41A4, Stationary combustion, not engines, GAS, CH41A4, Stationary combustion, Waste, CH41A4, Stationary combustion, not engines, not residential wood and not residential/agricultural straw, Biomass, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential wood combustion, CH41A4, Stationary combustion, Residential and agricultural straw combustion, CH41A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH41A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH41A1, Stationary combustion, Solid, N2O1A1, Stationary combustion, Gas, N2O1A1, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Gas, N2O1A2, Stationary combustion, Solid, N2O1A2, Stationary combustion, Biomass, N2O1A2, Stationary combustion, Gas, N2O1A2, Stationary combustion, Gas, N2O1A3, Stationary combustion, Gas, N2O1A4, Stationary combustion, Biomass, N2O1A5, Stationary combustion, Gas, N2O1A6, Stationary combustion, Biomass, N2O1A7, Stationary combustion, Biomass, N2O1A4, Stationary combustion, Biomass, N2O1A4, Stationary combustion, Biomass, N2O1A4, Stationary combustion, Bio	3.0% 3.0% 3.0% 3.0% 3.0% 10.0% 10.0% 1.0% 1.0% 1.0% 1.0% 3.0% 2.0% 2.0% 2.0% 3.0% 3.0% 3.0% 3.0%	IPCC (2006) IPCC (2006) DCE assumption. The uncertainty for the total con- sumption of waste is lower than the uncertainty for the fossil part IPCC (2006) DCE assumption DCE assumption IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% IPCC (2006), less than 1% DCE assumption DCE assumption IPCC (2006) IPCC (2006)

IPCC Source category	2018 Reference
1A4, Stationary combustion, not residential wood and not residen-	3.0% DCE assumption
tial/agricultural straw, Biomass, N2O	
1A4b, Stationary combustion, Residential wood combustion, N ₂ O	10.0% DCE assumption
1A4b/c, Stationary combustion, Residential and agricultural straw	10.0% DCE assumption
combustion, N ₂ O	

Emission factors

Uncertainties for emission factors are shown in Table 64.

IPCC Source category	2018	Reference
1A1, 1A2, 1A4 St. comb., Coal, ETS data, CO ₂	0.3%	ETS data, 2018 estimate
1A1, 1A2, 1A4 St. comb., Coal, no ETS data, CO ₂	1.0%	DCE assumption
1A1, 1A2, 1A4 St. comb., BKB, CO ₂	5.0%	IPCC (2000), chapter 2.1.1.6
1A1, 1A2, 1A4 St. comb., Coke oven coke, CO ₂	5.0%	IPCC (2000), chapter 2.1.1.6
1A1, 1A2, 1A4 St. comb., Fossil waste, ETS data, CO_2	3.0%	ETS data, DCE estimate based on Astrup et al.
,,,,,,,,,,		(2012.
1A1, 1A2, 1A4 St. comb., Fossil waste, no ETS data, CO ₂	10.0%	Non-ETS data, DCE estimate based on Astrup et al. (2012)
1A1, 1A2, 1A4 St. comb., Petroleum coke, ETS data, CO2	0.5%	ETS data, 2018 estimate
1A1, 1A2, 1A4 St. comb., Petroleum coke, no ETS data,	5.0%	IPCC (2000), chapter 2.1.1.6
CO ₂		
1A1, 1A2, 1A4 St. comb., Residual oil, ETS data, CO ₂	0.5%	ETS data, 2015 estimate
1A1, 1A2, 1A4 St. comb., Residual oil, no ETS data, CO ₂	2.0%	Jensen & Lindroth (2002)
1A1, 1A2, 1A4 St. comb., Gas oil, CO ₂	1.3%	DCE estimate
IA1, 1A2, 1A4 St. comb., Kerosene, CO ₂	3.0%	Based on interval in IPCC (2006)
1A1, 1A2, 1A4 St. comb., LPG, CO ₂	4.0%	
1A1b,St. comb., Refinery gas, CO ₂	0.5%	1990: IPCC (2000), chapter 2.1.1.6
, <u></u> ,,,, , <u></u> , <u></u> , <u></u> ,		2018: DCE assumption, EU ETS data
1A1, 1A2, 1A4, Stationary combustion, Natural gas, on-	0.4%	Lindgren (2010). Personal communication
shore, CO_2		
1A1c Offshore gas turbines, Natural gas, CO ₂	0.5%	ETS data for 2018, but not for 1990
IA1, Stationary combustion, Solid, CH ₄	100%	
IA1, Stationary combustion, Liquid, CH ₄	100%	
1A1, Stationary combustion, not engines, Gas, CH ₄	100%	Based on interval in IPCC (2006), table 2.12
1A1, Stationary combustion, Waste, CH ₄	100%	
1A1, Stationary combustion, not engines, Biomass, CH ₄	100%	
1A2, Stationary combustion, Solid, CH ₄	100%	
1A2, Stationary combustion, Liquid, CH ₄	100%	Based on interval in IPCC (2006), table 2.12
1A2, Stationary combustion, not engines, G, CH ₄	100%	
1A2, Stationary combustion, Waste, CH ₄	100%	
1A2, Stationary combustion, not engines, Biomass, CH ₄	100%	
1A4, Stationary combustion, Solid, CH ₄	100%	
1A4, Stationary combustion, Liquid, CH ₄	100%	
1A4, Stationary combustion, not engines, Gas, CH ₄	100%	
1A4, Stationary combustion, Waste, CH ₄	100%	
1A4, Stationary combustion, not engines, not residential	100%	Based on interval in IPCC (2006), table 2.12
wood and not residential/agricultural straw, Biomass, CH ₄		
1A4, Stationary combustion, Residential wood combustion, CH ₄	150%	Upper value in IPCC (2006), table 2.12
1A4, Stationary combustion, Residential and agricultural	150%	Upper value in IPCC (2006), table 2.12
straw combustion, CH ₄		
1A1, 1A2, 1A4 Natural gas fuelled engines, Gas, CH_4	2%	1990: DCE estimate based on Nielsen et al.
		(2010a). 2018: Jørgensen et al. (2010).
	100/	Uncertainty data for NMVOCs + CH ₄
1A1, 1A2, 1A4 Biogas fuelled engines, Gas, CH ₄	10%	DCE estimate based on Nielsen et al. (2010a)
1A1, Stationary combustion, Solid, N ₂ O	400%	DCE, rough estimate based on a default value of
		400 % when the emission factor is based on emis-
Continued		sion measurements from plants in Denmark

IPCC Source category	2018	Reference
1A1, Stationary combustion, Liquid, N ₂ O	1000%	IPCC (2000)
1A1, Stationarycombustion, Gas, N ₂ O	750%	DCE, rough estimate based on a default value of
		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark and
		1000 % if not
1A1, Stationary combustion, Waste, N ₂ O	400%	DCE, rough estimate based on a default value of
		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A1, Stationary combustion, Biomass, N ₂ O	400%	DCE, rough estimate based on a default value of
		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A2, Stationary combustion, Solid, N ₂ O	400%	DCE, rough estimate based on a default value of
· · · ·		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A2, Stationary combustion, Liquid, N ₂ O	1000%	IPCC (2006)
1A2, Stationary combustion, Gas, N ₂ O	750%	DCE, rough estimate based on a default value of
, <u>,</u> , , <u>-</u>		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark and
		1000 % if not
1A2, Stationary combustion, Waste, N ₂ O	400%	DCE, rough estimate based on a default value of
, , , , <u>.</u> .		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A2, Stationary combustion, Biomass, N ₂ O	400%	DCE, rough estimate based on a default value of
, <u>,</u> , , <u>-</u>		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A4, Stationary combustion, Solid, N ₂ O	400%	DCE, rough estimate based on a default value of
, , , , <u>.</u> .		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A4, Stationary combustion, Liquid, N2O	1000%	IPCC (2000)
1A4, Stationary combustion, Gas, N ₂ O	750%	DCE, rough estimate based on a default value of
, , , , - <u>-</u> - , - , - , - , - , - , - , - , - , -		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark and
		1000 % if not
1A4, Stationary combustion, Waste, N ₂ O	400%	DCE, rough estimate based on a default value of
		400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A4, Stationary combustion, not residential wood and not	400%	DCE, rough estimate based on a default value of
residential/agricultural straw, Biomass, N₂O	10070	400 % when the emission factor is based on emis-
		sion measurements from plants in Denmark
1A4b, Stationary combustion, Residential wood combus-	500%	DCE estimate
tion, N_2O	00070	
1A4b/c, Stationary combustion, Residential and agricul-	500%	DCE estimate
tural straw combustion, N_2O	500 /8	

8.1.2 Results

Approach 1 uncertainty estimates for stationary combustion emission inventories are shown in Table 65. Detailed calculation sheets are provided in Annex 7.

The uncertainty interval for the total greenhouse gas emission is estimated to be ± 2.3 % and the trend in greenhouse gas emissions is -53.9 % \pm 1.0 %-age points. The main sources of uncertainty for greenhouse gas emissions in 2018 are N₂O and CH₄ emission from residential wood combustion, N₂O emission from biomass combusted in Energy industries (1A1) and N₂O emission from gaseous fuels combusted in Energy industries (1A1). The main sources of uncertainty in the trend in greenhouse gas emission are the CO₂ emission from

coal and natural gas combustion, N_2O emission from residential wood combustion and N_2O emissions from biomass combusted in Energy industries (1A1).

Table 65	Danish uncertainty estimates, Approach 1, 2018							
Pollu-	Uncertainty	Trend	Uncertainty					
tant	Total emis-	1990-2018,	trend,					
	sion,	%	%-age points					
	%							
GHG	±2.3	-53.9	±1.0					
CO ₂	±0.6	-54.8	±0.4					
CH_4	±45	+54	±65					
N ₂ O	±173	+18.5	±247					

8.2 Uncertainty for other pollutants

According to the EEA Guidelines (EEA, 2016), uncertainty estimates should be estimated. Uncertainty estimates include uncertainty with regard to the total emission inventory as well as uncertainty with regard to trends.

8.2.1 Methodology

The Danish uncertainty estimates are based on the Tier 1 approach.

The uncertainty estimates are based on emission data for the base year and year 2018 as well as on uncertainties for fuel consumption and emission factors for each of the NFR source categories. Residential plants have however been split in two parts: Residential wood combustion and other residential plants.

For the purpose of the uncertainty estimation, the base year for all pollutants is considered to be 1990.

The uncertainty for fuel consumption in stationary combustion plants is based on EEA (2013). The uncertainties are shown in Table 66.

The applied uncertainties for emission factors are based on EEA (2013). The uncertainty for emission factors that are based on recent Danish emission measurements are however estimated lower than suggested in the Guidebook. The applied uncertainties for emission factors are listed in Table 67.

Table 66Uncertainty rates for fuel consumption, %.

Sector						
1A1a Public electricity and heat production	1					
1A1b Petroleum refining	1					
1A1c_ii Oil and gas extraction	1					
1A2 Manufacturing industries and construction	2					
1A4a_i Commercial / institutional	3					
1A4b_i Residential (excluding wood)	3					
1A4b_i Residential wood	10					
1A4c_i Agriculture / forestry / fishing	3					

Table 67 Uncertainty rates for emission factors, %.

Sector	SO ₂	NOx	NMVOC	СО	PM	НМ	PAH	НСВ	Dioxin	NH₃	PCB	BC
1A1a Public electricity and	10	15	50	20	20	50	100	1000	200	1000	1000	1000
heat production												
1A1b Petroleum refining	10	20	50	20	50	100	100	1000	1000	1000	1000	1000
1A1c_ii Oil and gas extraction	10	20	50	20	50	100	100	1000	1000	1000	1000	1000
1A2 Manufacturing industries and	10	20	50	20	30	100	100	1000	1000	1000	1000	1000
construction												
1A4a_i Commercial/institutional	20	50	50	50	50	300	1000	1000	1000	1000	1000	1000
1A4b_i Residential	20	30	50	50	50	300	1000	1000	1000	1000	1000	1000
(excluding wood)												
1A4b_i Residential wood	20	50	100	100	200	1000	1000	500	600	100	1000	1000
1A4c_i Agriculture / forestry/fishing	20	50	50	50	50	300	1000	1000	1000	1000	1000	1000

8.2.2 Results

The uncertainty estimates for stationary combustion emission inventories are shown in Table 68. Detailed calculation sheets are provided in Annex 7.

The total emission uncertainty is 6.0 % for SO_2 and 10 % for NO_x.

Table 68 Uncertainty estimates, tier 1 approach, 2018.						
Pollutant	Uncerta	inty	Trend	Uncertainty		
	Total emis	sion,	1990-2018,	Trend, %-age po-		
	%		%	ints		
SO ₂		±6.0	-96	±0.2		
NOx		±10	-76	±2		
NMVOC		±63	-10	±19		
CO		±70	-33	±22		
NH ₃		±212	+56	±300		
TSP		±143	-5	±35		
PM ₁₀		±145	-5	±36		
PM _{2.5}		±147	-4	±35		
BC		±555	+10	±358		
As		±79	-88	±9		
Cd		±485	-37	±264		
Cr		±283	-76	±65		
Cu		±431	-84	±68		
Hg		±46	-92	±3		
Ni		±79	-92	±5		
Pb		±210	-86	±29		
Se		±43	-90	±2		
Zn		±167	-18	±114		
HCB		±733	-79	±38		
PCDD/F		±511	-39	±272		
Benzo(b)fluoran	Ithene	±752	-26	±153		
Benzo(k)fluoran	Ithene	±827	-43	±87		
Benzo(a)pyrene)	±808	-37	±102		
Indeno(1,2,3-c,0	d)pyrene	±766	-63	±73		
PCBs		±681	-63	±65		

Table 68 Uncertainty estimates, tier 1 approach, 2018.

9 QA/AC and verification

An updated quality manual for the Danish emission inventories has been published in 2013 (Nielsen et al., 2013a). The quality manual describes the concepts of quality work and definitions of sufficient quality, critical control points and a list of Point for Measuring.

Documentation concerning verification of the Danish GHG emission inventories has been published by (Fauser et al., 2013). In addition, the IPCC reference approach for CO_2 emission is an important verification of the CO_2 emission from the energy sector. The reference approach for the energy sector is shown in Chapter 10.

Source specific QA/QC and Point for Measuring are shown below.

9.1 National external review

The 2004, 2006, 2009, 2014 and 2018 updates of the sector report for stationary combustion has been reviewed by external experts (Nielsen & Illerup, 2004; Nielsen & Illerup, 2006; Nielsen et al., 2009, Nielsen et al., 2014; Nielsen et al., 2018). The national external review forms a vital part of the QA activities for stationary combustion.

The 2004, 2006, 2009, 2014 and 2018 updates of this report were reviewed by Jan Erik Johnsson from the Technical University of Denmark, Bo Sander from Elsam Engineering, Annemette Geertinger from FORCE Technology, Vibeke Vestergaard Nielsen, AU DCE and energy statistics experts from the Danish Energy Agency.

9.2 Data storage, level 1

Table 69 lists the sector specific Point for Measuring for data storage level 1.

Level	ССР	ld	Description	Sectoral/	Stationary combustion
				general	
Data Storage level 1	1. Accuracy	DS.1.1.1	General level of uncer- tainty for every data set including the reasoning for the specific values	Sectoral	Uncertainties are estimated and references given in chapter 8
	2. Comparability		Comparability of the emis- sion factors / calculation parameters with data from international guidelines, and evaluation of major discrepancies	Sectoral	In general, if national referenced emission fac- tors differ considerably from IPCC Guide- line/EEA Guidebook values this is discussed in NIR chapter 7. This documentation is im- proved annually based on reviews. At CRF level, a project has been carried out comparing the Danish inventories with those of other countries (Fauser et al., 2013)
	3.Completeness	DS.1.3.1	Ensuring that the best possible national data for all sources are included, by setting down the rea- soning behind the selec- tion of datasets	Sectoral	A list of external data are shown and dis- cussed below
	4.Consistency	DS.1.4.1	The original external data has to be archived with proper reference	Sectoral	It is ensured that all original external data are archived. Subsequent data processing takes place in other spreadsheets or databases. The datasets are archived annually in order to en- sure that the basic data for a given report are always available in their original form
	6.Robustness	DS.1.6.1	Explicit agreements be- tween the external institu- tion holding the data and DCE about the conditions of delivery	Sectoral	For stationary combustion, a data delivery agreement is made with the DEA. DCE and DEA have renewed the data delivery agree- ment in 2014. Most of the other external data sources are available due to legislation. See Table below
	7.Transparency	DS.1.7.1	Listing of all archived da- tasets and external con- tacts	Sectoral	A list of external datasets and external con- tacts is shown in the table below

Table 69 List of Point for Measuring, data storage level 1.

Dataset	Description	Activity data or emission factor	Reference	Contact(s)	Data agreement/ Comment
Energy Producers Survey (Energiproducenttællingen)	Energy Producers Sur- vey. Data set for all electricity and heat pro- ducing plants	Activity data	The Danish Energy Agency (DEA)	Kaj Stær- kind	Data agreement 2014
Gas consumption for gas engines and gas turbines 1990-1994	Historical data set for gas engines and gas turbines	Activity data	The Danish Energy Agency (DEA)	Kaj Stær- kind	No data agreement. His- torical data
Basic data (Grunddata.xls)	The Danish energy sta- tistics. Data set applied for both the reference approach and the na- tional approach	Activity data	The Danish Energy Agency (DEA)	Jane Rusbjerg	Data agreement 2014. However, the data set is also published as part of national energy statistics
Energy statistics for indus- trial subsectors	Disaggregation of the industrial fuel consump- tion	Activity data	The Danish Energy Agency (DEA)	Jane Rusbjerg	Included in data delivery agreement 2014
Emission factors	Emission factors refer to a large number of sources	Emission factors	See chapter regarding emission fac- tors		Some of the annually up- dated CO ₂ emission fac- tors are based on EU ETS data, see below. For other emission fac- tors no formal data deli- very agreement
Annual environmental re- ports / environmental data	Emissions from plants defined as large point sources	Emissions	Various plants		No data agreement. Some plants are obli- gated by law to report data (DEPA, 2010b; DEPA, 2015) and data are published on the Danish EPA homepage
EU ETS data	Plant-specific CO ₂ emission factors	Emission factors and fuel con- sumption	The Danish Energy Agency (DEA)	Dorte Mai- mann/Rikke Brynaa Lin- trup	Plants are obligated by law. The availability of detailed information is part of the data agree- ment with DEA (2014 up- date)

9.2.1 Energy Producers Survey (Energiproducenttællingen). Statistic on fuel consumption from district heating and power plants (DEA)

The data set includes all plants producing power or district heating. The spreadsheet from DEA is listing fuel consumption of all plants included as large point sources in the emission inventory. The statistic on fuel consumption from district heating and power plants is regarded as complete and with no significant uncertainty since the plants are bound by law to report their fuel consumption and other information.

9.2.2 Gas consumption for gas engines and gas turbines 1990-1994 (DEA)

For the years 1990-1994, DEA has estimated consumption of natural gas and biogas in gas engines and gas turbines (DEA, 2003). Estimated fuel consumption data for 1990-1993 was based on engine specific data for year of installation and for fuel consumption in 1994. DCE assesses that the DEA estimate is the best available data.

9.2.3 Basic data (DEA)

The spreadsheet from the Danish energy statistics (DEA) is used for the CO_2 emission calculation in accordance with the IPCC reference approach and is also the first data set applied in the national approach. The data set is included in the data delivery agreement with DEA, but it is also published annually on DEA's homepage.

9.2.4 Energy statistics for industrial subsectors (DEA)

The data includes disaggregation of the fuel consumption for industrial plants. The data set is estimated for the reporting to Eurostat. The data are included in the 2014 update of the agreement with DEA.

9.2.5 Emission factors

For specific references, see the Chapter 7 regarding emission factors. Some of the annually updated $\rm CO_2$ emission factors are based on EU ETS data, see below.

9.2.6 Annual environmental reports (DEPA)

A large number of plants are obligated by law to report annual environmental data including emission data. DCE compares the data with those from previous years and large discrepancies are checked.

9.2.7 EU ETS data (DEA)

EU ETS data includes information on fuel consumption, heating values, carbon content of fuel, oxidation factor and CO_2 emissions. DCE receives the verified reports for all plants, which utilises a detailed estimation methodology. DCE's QC of the received data consists of comparing to calculation using standard emission factors as well as comparing reported values with those for previous years. The data set is included in the 2014 update of the agreement with DEA.

9.3 Data processing, level 1

Table 71 lists the sector specific Point for Measuring for data processing level1.

Level	CCP	ld	Description	Sectoral / general	Stationary combustion
Data Processino level 1	1. Accuracy	DP.1.1.1	Uncertainty assessment for every data source not part of DS.1.1.1 as input to Data Storage level 2 in relation to type and scale of variability	•	Uncertainties are estimated and references given in chapter 8
	2.Comparability	DP.1.2.1		Sectoral	The methodological approach is con- sistent with international guidelines. Ar overview of tiers is given in Chapter 6
	3.Completeness	DP.1.3.1	Identification of data gaps with regard to data sources that could improve quantitative knowledge	Sectoral	The energy statistics is considered complete
	4.Consistency	DP.1.4.1	Documentation and reasoning of meth- odological changes during the time se- ries and the qualitative assessment of the impact on time series consistency	Sectoral	The two main methodological changes in the time series; implementation of Energy Producers Survey (plant-spe- cific fuel consumption data) from 1994 onwards and implementation of EU ETS data from 2006 onwards is dis- cussed in chapter 6.1
	5.Correctness	DP.1.5.2	Verification of calculation results using time series	Sectoral	Time series for activity data on SNAP and CRF source category level are used to identify possible errors. Time series for emission factors and the emission from CRF subcategories are also examined
		DP.1.5.3	Verification of calculation results using other measures	Sectoral	The IPCC reference approach vali- dates the fuel consumption rates and CO_2 emission. Except for 2016, both differ less than 2.0 % in 1990-2018. The reference approach is further dis- cussed in Chapter 10
	7.Transparency	DP.1.7.1	The calculation principle, the equations used and the assumptions made must be described	Sectoral	This is included in chapter 6
			Clear reference to dataset at Data Stor- age level 1	Sectoral	This is included in chapter 6
		DP.1.7.3	A manual log to collect information about recalculations	Sectoral	-

9.4 Data storage, level 2

Table 72 lists the sector specific Point for Measuring for data storage level 2.

Table 72 List of Point for Measuring, data storage level 2.							
Level	CCP	ld	Description	Sectoral / general	Stationary combustion		
Data Storage level 2	5.Correctness	DS.2.5.1	Check if a correct data import to level 2 has been made	Sectoral	To ensure a correct connection be- tween data on level 2 and level 1, different controls are in place, e.g. control of sums and random tests		

9.5 Data storage level 4

Table 73 lists the sector specific Point for Measuring for data storage level 4.

Table 73 List of Point for Measuring, data storage level 4.

Level	ССР	ld	Description	Sectoral /	Stationary combustion
				general	
Data Storage level 4	4. Consistency	DS.4.4.3	The IEFs from the CRF are checked re- garding both level and trend. The level is compared to relevant emission factors to ensure correctness. Large dips/jumps in the time series are explained	Sectoral	Large dips/jumps in time series are discussed and explained in chapter 3, 4, 5 and 7

9.6 Other QC procedures

Some automated checks have been prepared for the emission databases:

- Check of units for fuel rate, emission factors and plant-specific emissions.
- Check of emission factors for large point sources. Emission factors for pollutants that are not plant-specific should be the same as those defined for area sources.
- Additional checks on database consistency.
- Emission factor references are included in this report (Chapter 7).
- Annual environmental reports are kept for subsequent control of plantspecific emission data.
- QC checks of the country-specific emission factors have not been performed, but most factors are based on input from companies that have implemented some QA/QC work. The major power plant owner/operator in Denmark, Ørsted (former DONG Energy) has obtained the ISO 14001 certification for an environmental management system. The Danish Gas Technology Centre and Force Technology both run accredited laboratories for emission measurements.
- The emission from each large point source is compared with the emission reported the previous year.

10 Reference approach

In addition to the sector specific CO_2 emission inventories (the sectoral approach - SA), the CO_2 emission from the energy sector³² is also estimated using the reference approach (RA) described in the IPCC Guidelines (IPCC, 2006). The reference approach is based on data for fuel production, import, export and stock change. The CO_2 emission inventory based on the reference approach is reported to the Climate Convention and used for verification of the sectoral approach.

Data for import, export and stock change used in the reference approach originate from the annual "basic data" table prepared by the Danish Energy Agency (DEA) and published on their home page (DEA, 2019a). The fraction of carbon oxidised has been assumed 1.00.

The applied carbon emission factors are equal to the emission factors also applied in the sectoral approach and thus include nationally referenced emission factors. This is in agreement with the 2006 IPCC Guidelines.

The Climate Convention reporting tables include a comparison of the sectoral approach and the reference approach estimates.

10.1 Non-energy use of fuels

The consumption for non-energy purposes is subtracted in the reference approach, because non-energy use of fuels is included in other sectors (Industrial processes and Solvent use) in the Danish sectoral approach. Three fuels are used for non-energy purposes: lubricants, bitumen and white spirit. The total consumption for non-energy purposes is relatively low – 10.3 PJ in 2018.

The CO₂ emission from oxidation of lube oil during use was 31.7 Gg in 2018 and this emission is reported in the sector Industrial processes and product use (sector 2.D). The reported emission corresponds to 20 % of the CO₂ emission from lube oil consumption assuming full oxidation. This is in agreement with the methodology for lube oil emissions in the 2006 IPCC Guidelines (IPCC, 2006). Methodology and emission data for lube oil are shown in the National Inventory Report (Nielsen et al., 2020a), Chapter 4.5.3.

For white spirit, the CO_2 emission is indirect as the emissions occur as NMVOC emissions from the use of white spirit as a solvent. The indirect CO_2 emission from solvent use was 60.7 Gg in 2018. The methodology and emission data for white spirit are included in the National Inventory Report (Nielsen et al., 2020a), Chapter 4.5.4.

The CO₂ emission from bitumen is included in sector 2.D.3, Road paving with asphalt and Asphalt roofing. The total CO₂ emissions for these sectors are 0.96 Gg in 2018. Methodology and emission data for non-energy use of bitumen are shown in the National Inventory Report (Nielsen et al., 2020a), Chapter 4.5.6.

³² Including energy consumption in mobile sources.

10.2 Reference approach results and comparison to the national approach

The sectoral approach and the reference approach have been compared and the differences between the two approaches are shown in Table 74 below.

Table 74 Year	Reference ap-	Reference ap-	Ind reference approach. Difference	Difference
	proach, fossil fuel	proach, fossil	Energy consumption	CO ₂ emission
	consumption,	CO ₂ emission,	[%]	[%]
	PJ	kt	[,•]	[,]
1990	644	51,129	0.28	-0.32
1991	753	60,927	-0.55	-0.96
1992	695	55,302	-0.02	-0.63
1993	724	57,459	-0.40	-1.01
1994	773	61,455	-0.31	-0.89
1995	749	58,369	-0.56	-0.94
1996	903	71,581	-0.49	-0.76
1997	803	62,332	-0.03	-0.12
1998	777	59,307	1.50	1.33
1999	731	54,884	-0.58	-0.88
2000	692	51,431	0.27	0.06
2001	715	53,345	0.75	0.62
2002	706	52,651	0.05	-0.15
2003	763	57,917	0.10	-0.07
2004	700	52,188	0.00	-0.18
2005	655	48,450	-0.88	-0.93
2006	743	56,357	-0.64	-0.87
2007	682	51,529	-0.91	-1.02
2008	655	48,890	-0.22	-0.35
2009	622	46,460	-1.69	-1.75
2010	644	47,519	0.12	-0.21
2011	567	42,115	-0.99	-1.08
2012	511	37,499	-1.54	-1.88
2013	530	39,603	-0.79	-1.08
2014	473	35,251	-1.39	-1.58
2015	449	32,940	-1.51	-1.73
2016	460	33,935	-2.79	-3.28
2017	445	32,457	-0.75	-0.87
2018	441	32,181	-1.44	-1.58

The comparison of the sectoral approach and the reference approach is illustrated in Figure 83. In 2018, the fuel consumption rates in the two approaches differ by 1.4 % and the CO_2 emission differs by 1.6 %. Both the fuel consumption and the CO_2 emission differ by less than 2 % for all years except 2016.

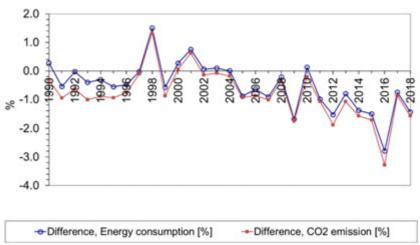


Figure 83 Comparison of the reference approach and the sectoral approach.

The fluctuations in Figure 83 follow the fluctuations of the statistical difference in the Danish energy statistics shown in Figure 84. The large differences in certain years, e.g. in 1998, 2009, 2012 and 2016 are due to high statistical differences in the Danish energy statistics in these years.

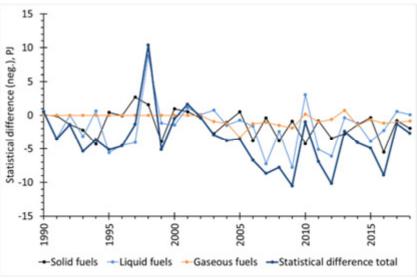


Figure 84 Statistical difference in the Danish energy statistics (DEA, 2019a).

The difference between SA and RA is above 2 % in 2016 and the reason for this difference have been further analysed.

The large difference between RA and SA in 2016 is mainly related to fuel consumption data. The fuel consumption applied in the SA was higher than in the RA for all fuel categories for 2016.

10.3 Analysis of the differences between the sectoral approach and the reference approach for each of the fuel categories

The difference between the sectoral approach and the reference approach is above 2 % in 2016 and thus the sources causing this difference have been analysed for each of the fossil fuel categories.

10.3.1 Solid fuels

The difference for <u>solid fuels</u> is 6.2 % or 5.5 PJ. The statistical difference for solid fuels in the Danish energy statistics is 5.5 PJ for 2016. This difference mainly relates to coal (5.5 PJ). Thus, the difference between approaches is a result of the statistical difference. A time series for the difference of solid fuel consumption is shown in Figure 85.

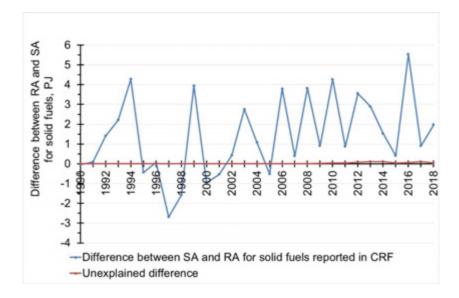


Figure 85 Difference between RA and SA for solid fuels reported in CRF and the difference not explained by statistical difference of the Danish energy statistics.

10.3.2 Liquid fuels

The difference for <u>liquid fuels</u> in 2016 is 1.7 % or 4.1 PJ. This difference have been further analysed and several sources identified.

- The statistical difference for liquid fuels in the Danish energy statistics is 2.3 PJ for 2016. This difference mainly relates to crude oil (3.7 PJ).
- The Danish energy statistics includes data for net input of blends. In 2016, the net input was 0.2 PJ.
- In the Danish energy statistics, the fuel input to refineries is not equal to the fuel output added to fuel consumption. In 2016, the difference was 2.7 PJ.
- For refinery gas, the fuel consumption applied in the SA is based on EU ETS data rather than the energy statistics (see Chapter 6.7). For 2016, the fuel consumption in EU ETS that are applied in SA is 0.5 TJ *lower* than the data from the energy statistics.

The explained differences for liquid fuels in 2016 add up to 5.2 PJ. Thus, only the remaining 1.1 PJ is not explained. The time series for reported difference for liquid fuels between SA and RA for 1990-2018 is shown in Figure 86 below. In the figure, the estimated difference taking into account the four known sources explained above is also shown.

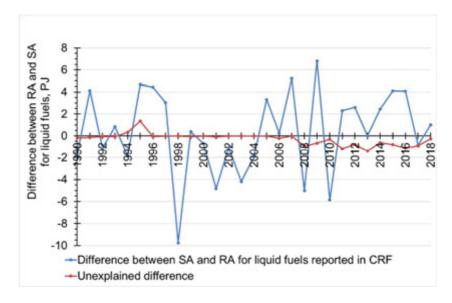


Figure 86 Difference between RA and SA for liquid fuels reported in CRF and the difference not explained by four known sources.

10.3.3 Gaseous fuels

For 2016, the difference for <u>gaseous fuels</u> is 1.8 % or 2.2 PJ. The statistical difference for gaseous fuels in the Danish energy statistics is 1.2 PJ for 2016. For off shore gas turbines the fuel consumption applied in the sectoral approach is based on EU ETS data rather than the energy statistics (see Chapter 6.6). For 2016, the consumption in EU ETS that are applied in SA was 1.0 PJ higher than the data from the energy statistics. Thus, the statistical difference and the different data sets applied for off shore gas turbines cause the difference between the two approaches for gaseous fuels.

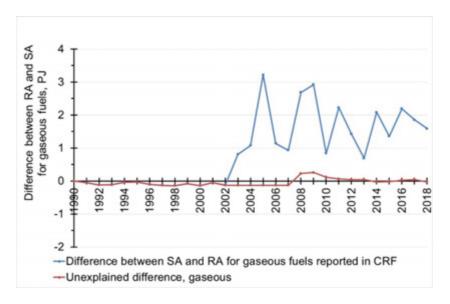


Figure 87 Difference between RA and SA for gaseous fuels reported in CRF and the difference not explained by two known sources.

10.3.4 Other fossil fuels

For 2016, the difference for other fossil fuels (fossil waste) is 7.2 % or 1.4 PJ.

The statistical difference for fossil waste in the Danish energy statistics is 0.0 PJ for 2016. The fossil part of waste applied in the Danish cement production plant is higher than for other waste applied in Danish incineration plants. The higher fossil part of waste applied in the cement production plant have been implemented in the SA but not in the RA. For 2016, this corresponds to a 0.5 PJ difference. In addition, the combustion of waste in individual plants implemented in the SA for 2016 added up to a higher total than included in the energy statistics. This difference corresponds to a difference of 0.5 PJ fossil waste. Finally, the fossil part of biodiesel reported in SA sector 1A3 is included in the fuel category other fossil fuels. This fuel consumption is included in biomass in RA. In 2016, the fossil part of biodiesel added up to 0.5 PJ.

The reason for the higher total waste consumption based on the plant-specific data than in the energy statistics will be further analysed. The recent implementation of EU ETS data as a data source for the industrial subsectors has improved transparency.

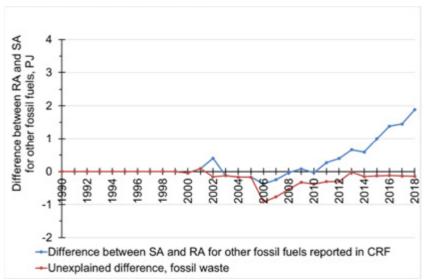


Figure 88 Difference between RA and SA for other fossil fuels reported in CRF and the difference not explained by four known sources.

10.3.5 Recalculations and improvements for the reference approach

Data for both reference approach and national approach have been updated according to the latest energy statistics.

10.3.6 Planned improvements for the reference approach

The differences mentioned above are part of the ongoing dialogue with the Danish Energy Agency.

11 Verification based on data from Eurostat

As part of the EU review of the reported GHG emission data, EU performs for each member state a comparison of Eurostat energy data in terms of TJ with energy data provided in the CRF. The comparison has been performed in accordance with the Commission implementing reulation (EU) No 749/2014 of 30 June 2014 and with the IPCC Guidelines (2006). The comparison includes comparisons of the reference approach (RA) and the sectoral approach (SA) for the years 2005 and 2008-2018.

In Denmark, the emission inventory is based on the energy statistics published by the Danish Energy Agency (DEA). DEA is also responsible for the reporting to Eurostat.

11.1 Reference approach, comparison of CRF and Eurostat data

11.1.1 Methodology

The correspondence lists for activity and fuel applied in CRF and Eurostat are shown in Table 75 and Table 76 below.

Eurostat code	Eurostat nomenclature	CRF_RA
PPRD	Primary production	Production in CRF table 1A(b)
IMP	Imports	Imports in CRF table 1A(b)
STK_CHG	Change in stock	Stock changes in CRF table 1A(b)
EXP	Exports	Exports in CRF table 1A(b)
INTMARB	International maritime bunkers	International bunkers in CRF table 1A(b)
FC_NE	Final consumption - non-energy use	Non-energy use of fuels
INTAVI	International aviation	International bunkers in CRF table 1A(b)

Table 75 Correspondence list for activity, Reference Approach (EU, 2020).

Eurostat	ndence list for fuel, Reference Approa Eurostat Product Name	CRF Reference Approach
Product Code		fuel name
C0000X0350-0370	Solid fossil fuels	
C0110	Anthracite	Anthracite
C0121	Coking coal	Coking Coal
C0129	Other bituminous coal	Other Bituminous Coal
C0210	Sub-bituminous coal	Sub-bituminous Coal
C0220	Lignite	Lignite
C0311	Coke oven coke	Coke oven/gas coke
C0312	Gas coke	Coke oven/gas coke
C0320	Patent fuel	BKB and patent fuel
C0330	Brown coal briquettes	BKB and patent fuel
C0340	Coal tar	Coal tar
C0350	Coke oven gas	Other solid
C0350-0370	Manufactured gases	Other Solid
C0360	Gas works gas	Other solid
C0300 C0371	-	Other solid
	Blast furnace gas	
C0379	Other recovered gases	Other solid
E7000	Electricity	N
G3000	Natural gas	Natural gas
H8000	Heat	
N900H	Nuclear heat	
O4000XBIO	Oil and petroleum products (exclud-	
	ing biofuel portion)	
O4100_TOT	Crude oil	Crude Oil
O4200	Natural gas liquids	Natural Gas Liquids
O4300	Refinery feedstocks	Refinery Feedstocks
O4400X4410	Additives and oxygenates (excluding biofuel portion)	Refinery Feedstocks
O4500	Other hydrocarbons	Refinery Feedstocks
O4610	Refinery gas	Other Oil
O4620	Ethane	Ethane
O4630	Liquefied petroleum gases	Liquefied Petroleum Gas
04000	Elquened perforeum gases	(LPG)
O4640	Naphtha	Naphta
O4651	Aviation gasoline	Gasoline
O4652XR5210B	Motor gasoline (excluding biofuel portion)	Gasoline
O4653	Gasoline-type jet fuel	Gasoline
O4661XR5230B	Kerosene-type jet fuel (excluding	Jet Kerosene
0.000.000000	biofuel portion)	
O4669	Other kerosene	Other Kerosene
O4671XR5220B	Gas oil and diesel oil (excluding bio-	Gas/diesel oil
	fuel portion)	
O4680	Fuel oil	Residual Fuel Oil
O4691	White spirit and special boiling point	Other Oil
0 4000	industrial spirits	1. 1. 2
O4692	Lubricants	Lubricants
04693	Paraffin waxes	Other Oil
04694	Petroleum coke	Petroleum Coke
04695	Bitumen	Bitumen
04699	Other oil products n.e.c.	Other Oil
P1000	Peat and peat products	
P1100	Peat	Peat
P1200	Peat products	Peat
R5110-	Primary solid biofuels	Solid biomass
5150_W6000RI	-	
 R5160	Charcoal	Solid biomass
	Blended biogasoline	Liquid biomass
R5210B	Diendeu biogasoline	LIQUIU DIOITIASS

Eurostat	Eurostat Product Name	CRF Reference Approach
Product Code		fuel name
R5220B	Blended biodiesels	Liquid biomass
R5220P	Pure biodiesels	Liquid biomass
R5230B	Blended bio jet kerosene	Liquid biomass
R5230P	Pure bio jet kerosene	Liquid biomass
R5290	Other liquid biofuels	Liquid biomass
R5300	Biogases	Gas biomass
RA000	Renewables and biofuels	
RA100	Hydro	
RA200	Geothermal	
RA300	Wind	
RA410	Solar thermal	
RA420	Solar photovoltaic	
RA500	Tide	
RA600	Ambient heat (heat pumps)	
S2000	Oil shale and oil sands	Oil shale and tar sand
TOTAL	Total	
W6100	Industrial waste (non-renewable)	Waste
W6100_6220	Non-renewable waste	
W6210	Renewable municipal waste	Other biomass
W6220	Non-renewable municipal waste	waste

In addition to the comparison of the fuel consumption data aggregated by the EU review team DCE have aggregated data³³ for production, import, export, international bunkers and stock change to improve transparency and explain the origin of the found differences.

11.1.2 Results

The apparent fuel consumption reported in the reference approach has been comparted as part of the EU review and results are shown in Table 77. The additional comparison of data for production, import, export, international bunkers and stock change is shown in Table 78.

The apparent fossil fuel consumption based on the Eurostat data differs 2 % (or 11642 TJ) from the apparent fossil fuel consumption stated in CRF. The differences are 9 % for solid fuels (6258 TJ), 0.2 % for liquid fuels (603 TJ), 0 % for gaseous fuels (0 TJ) and 0 % for fossil waste (0 TJ).

The Danish energy statistics include two different types of coal in the fuel category Other bituminous coal. The LCV of the two coal types differ but only one of the LCVs have been reported to Eurostat. The Danish Energy Agency that are responsible for the reporting to Eurostat have indicated that they will consider to report an average LCV to Eurostat next year (Zarnaghi, 2020a).

Fuel consumption for transport between mainland Denmark and Greenland and the Faroe Islands is not included in the reporting to the IEA and Eurostat. In the Danish emission inventory, the transport between Denmark, Greenland and the Faroe Islands is considered domestic. This causes a difference for liquid fuels used for aviation and navigation.

³³ Based on the same fuel correspondence list.

For jet kerosene, the fuel consumption to/from Greenland or Faroe Islands was 647 TJ in 2018. This is equal to the difference for international bunkers for jet kerosene.

For diesel oil, the fuel consumption to/from Greenland or Faroe Islands was 431 TJ in 2018. This is equal to the difference for international bunkers for gas-/diesel oil. The export of fossil gas-/diesel oil reported by the DEA in the Danish energy statistics (Grunddatatabellen) and in the international reporting to Eurostat does not agree. The difference is 1896 TJ. This value corresponds to the difference in export. It seems that the biodiesel have been sub-tracted from the fossil gas-/diesel oil in the international reporting. DEA has confirmed an inaccuracy in the international reporting and that this will be corrected next year (Zarnaghi, 2020c).

For residual oil, the fuel consumption to/from Greenland or Faroe Islands was 1360 TJ in 2018. This is close to the difference for international bunkers for residual oil (1453 TJ). The export of residual oil reported by the DEA in the Danish energy statistics (Grunddatatabellen) and in the international reporting to Eurostat is in agreement. However, Eurostat apply a LCV of 40.4 GJ/tonnes whereas Denmark reports the LCV 40.65 GJ/tonnes. This cause the difference 711 TJ in export, 449 TJ in import, 55 TJ in international bunkers and 43 TJ in stock change.

DCE reports white spirit in the CRF fuel category Other liquid fossil, whereas the aggregation based on data from Eurostat includes white spirit in the fuel category Other oil.

Data for production of solid biomass in the international reporting seems to include bio oil (234 TJ). DEA will correct this next year (Zarnaghi, 2020b).

Data for gaseous biomass differ for production. The production is 13414 TJ according to the Danish energy statistics of which 7060 TJ is upgraded to distribution in the natural gas grid (bio natural gas or bio methane). The Danish reporting to Eurostat are in agreement with the Danish energy statistics. The Eurostat data however, include a double counting of the upgraded biogas.

CRF Fuel	CRF Fuel Name	Eurostat TJ	Crf TJ			Source of difference	Euro-	CRF	Diffe-	Diffe-
Group						(Comments added by DCE)	stat NEU, TJ	NEU, TJ	rence NEU, TJ	rence NEU, %
Solid	Anthracite			0	0%				0	0%
	BKB and patent fuel		0	0	0%				0	0%
	Coal tar			0	0%				0	0%
	Coke oven/gas coke	370	370	0	0%				0	0%
	Coking coal			0	0%				0	0%
	Lignite			0	0%				0	0%
	Oil shale and tar sand			0	0%				0	0%
	Other bituminous coal	71,530	65,272	-6,258	-9%	The Danish energy statistics include two different types of coal in this fuel category. The LCV of the two coal types dif- fer but only one of the LCVs have been reported to Euro- stat. The Danish Energy Agency that are responsible for the reporting to Eurostat have indicated that they will con- sider to report an average LCV to Eurostat next year (Zarnaghi, 2020).			0	0%
	Other solid			0	0%				0	0%
	Sub-bituminous coal			0	0%				0	0%
Liquid	Bitumen	7,847	7,847	0	0%		7,857	7,857	0	0%
	Crude oil	324,487	324,490	3	0%	Waste oil has been included in the fuel category crude oil in the reference approach in CRF.			0	0%
	Ethane			0	0%				0	0%
	Gas/diesel oil	22,896	21,402	-1,493	-7%	Fuel consumption for transport between mainland Denmark and Greenland and the Faroe Islands is not included in the reporting to the IEA and Eurostat. In the Danish emission inventory, the transport between Denmark, Greenland and the Faroe Islands is considered domestic. This causes a difference for liquid fuels used for aviation and navigation. For diesel oil, the fuel consumption to/from Greenland or Faroe Islands was 431 TJ in 2018. This is equal to the dif- ference for international bunkers for gas-/diesel oil. The ex- port of fossil gas-/diesel oil reported by the DEA in the Dan- ish energy statistics (Grunddatatabellen) and in the interna- tional reporting to Eurostat does not agree. The difference			0	0%

Table 77 Comparison apparent consumption in 2018, EU (2020). Source of difference have been added by DCE.

CRF Fuel Group	CRF Fuel Name	Eurostat TJ	Crf TJ	Difference TJ Difference	(Comments added by DCE)	Euro- stat NEU, TJ	CRF NEU, TJ	Diffe- rence NEU, TJ	Diffe- rence NEU, %
					is 1896 TJ. This value corresponds to the difference in export. It seems that the biodiesel have been subtracted from the fossil gas-/diesel oil in the international reporting. DEA has confirmed an inaccuracy in the international reporting (Zarnaghi, 24-03-2020).				
	Gasoline	-31,678	-31,727	-50 0%	The stock change data differs 50 TJ. The international re- porting seems to be inaccurate. This is part of the ongoing dialogue with DEA.			0	0%
	Jet kerosene	-2,949	-2,302	647 -22%	Fuel consumption for transport between mainland Denmark and Greenland and the Faroe Islands is not included in the reporting to the IEA and Eurostat. In the Danish emission inventory, the transport between Denmark, Greenland and the Faroe Islands is considered domestic. This causes a difference for liquid fuels used for aviation and navigation. For jet kerosene, the fuel consumption to/from Greenland or Faroe Islands was 647 TJ in 2018. This is equal to the difference for international bunkers for jet kerosene.			0	0%
	Liquefied petroleum gas (LPG)	-3,076	-3,076	0 0%				0	0%
	Lubricants	2,150	2,150	0 0%		2,150	2,150	0	0%
	Naphta			0 0%				0	0%
	Natural gas liquids			0 0%				0	0%
	Orimulsion			0 0%				0	0%
	Other kerosene			0 0%				0	0%
	Other liquid		262	262 0%	DCE reports white spirit in the CRF fuel category Other liq- uid fossil, whereas the aggregation based on data from Eu- rostat includes white spirit in the fuel category Other oil.	-	262	262	0%
	Other oil	262		-262 -100%	DCE reports white spirit in the CRF fuel category Other liq- uid fossil, whereas the aggregation based on data from Eu- rostat includes white spirit in the fuel category Other oil.			-218	-100%
	Petroleum coke	6,916	6,916	0 0%				0	0%
	Refinery feedstocks	-26,861	-26,861	0 0%				0	0%
	Residual fuel oil	-44,322	-43,088	1,234 -3%	Fuel consumption for transport between mainland Denmark and Greenland and the Faroe Islands is not included in the reporting to the IEA and Eurostat. In the Danish emission inventory the transport between Denmark, Greenland and the Faroe Islands is considered domestic. This causes a difference for liquid fuels used for aviation and navigation.			0	0%

CRF Fuel Group	CRF Fuel Name	Eurostat TJ	Crf TJ	Difference TJ Differenc	e % Source of difference (Comments added by DCE)	Euro- stat NEU, TJ	CRF NEU, TJ	Diffe- rence NEU, TJ	Diffe- rence NEU, %
					For residual oil, the fuel consumption to/from Greenland or Faroe Islands was 1360 TJ in 2018. This is close to the dif- ference for international bunkers for residual oil (1453 TJ). The export of residual oil reported by the DEA in the Dan- ish energy statistics (Grunddatatabellen) and in the interna tional reporting to Eurostat is in agreement. However, Euro stat apply a LCV of 40.4 GJ/tonnes whereas Denmark re- ports the LCV 40.65 GJ/tonnes. This cause the difference 711 TJ in export, 449 TJ in import, 55 TJ in international bunkers and 43 TJ in stock change.				
	Shale oil			0 0%	, and the second s			0	0%
Gaseous	Natural gas	111,932	111,932	0 0%				0	0%
	Other gaseous			0 0%				0	0%
Waste	Waste	17,297	17,297	0 0%				0	0%
Other	Other fossil fuels			0 0%				0	0%
Peat	Peat			0 0%				0	0%
Biomass	Solid biomass	136,096	135,862	-234 0%	Data for production of solid biomass in the international re- porting seems to include bio oil (234 TJ). DEA will correct this next year (Zarnaghi, 2020).			0	0%
	Liquid biomass	9,314	9,315	1 0%	A 1 TJ error in the production data in CRF. Will be cor- rected in the next inventory.			0	0%
	Gas biomass	20,474	13,414	-7,060 -34%	Data for gaseous biomass differ for production. The pro- duction is 13414 TJ according to the Danish energy statis- tics. 7060 TJ of the biogas is upgraded to distribution in the natural gas grid (bio natural gas or bio methane). The Dan- ish reporting to Eurostat are in agreement with the Danish energy statistics. The Eurostat data however, include a double counting of the upgraded biogas.			0	0%
	Other biomass	21,141	21,141	0 0%				0	0%

FUEL TYPES			Unit	Production	Imports	Exports	International bunkers	Stock change	
Liquid fossil			TJ	-2.6	0.0	0.0	0.0	0.0	
	fuels	Orimulsion	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Natural gas liquids	TJ	0.0	0.0	0.0	0.0	0.0	0.0
	Secondary	Gasoline	TJ	0.0	0.0	0.0	0.0	-49.5	49.5
	fuels	Jet kerosene	TJ	0.0	0.0	0.0	647.3	0.0	-647.3
		Other kerosene	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Shale oil	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Gas/diesel oil	TJ	0.0	0.0	-1895.7	430.9	-28.7	1493.5
		Residual fuel oil	TJ	0.0	-449.0	-710.7	1453.5	42.5	-1234.3
		Liquefied petroleum gases (LPG)	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Ethane	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Naphtha	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Bitumen	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Lubricants	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Petroleum coke	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Refinery feedstocks	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Other oil	TJ	0.0	299.7	38.2	0.0	0.0	
Other liquid fossil		•		0.0	0.0	0.0	0.0	0.0	0.0
		White Spirit		0.0	-299.7	0.0	0.0	0.0	0.0
Liquid fossil totals				0.0	0.0	0.0	0.0	0.0	
Solid fossil	Primary	Anthracite(3)	TJ	0.0	0.0	0.0	0.0	0.0	
	fuels	Coking coal	TJ	0.0	0.0	0.0	0.0	0.0	
		Other bituminous coal	TJ	0.0	6490.6	29.8	0.0	202.6	6258.3
		Sub-bituminous coal	TJ	0.0	0.0	0.0	0.0	0.0	0.0
		Lignite	TJ	0.0	0.0	0.0	0.0	0.0	
		Oil shale and tar sand	TJ	0.0	0.0	0.0	0.0	0.0	
	Secondary	BKB(4) and patent fuel	TJ	0.0	0.0	-0.2	0.0	0.0	
	fuels	Coke oven/gas coke	TJ	0.0	0.0	0.0	0.0	0.0	
		Coal tar	TJ	0.0	0.0	0.0	0.0	0.0	
Other solid fossil				0.0	0.0	0.0	0.0	0.0	
Solid fossil totals				0.0	0.0	0.0	0.0	0.0	
Gaseous fossil		Natural gas (dry)	TJ	0.0	0.0	0.0	0.0	0.0	
Other gaseous fossil				0.0	0.0	0.0	0.0	0.0	
Gaseous fossil totals				0.0	0.0	0.0	0.0	0.0	
Waste (non-biomass fra	action)		TJ	0.0	0.0	0.0	0.0	0.0	
Other fossil fuels				0.0	0.0	0.0	0.0	0.0	
Peat(5,6)			TJ	0.0	0.0	0.0	0.0	0.0	0.0

Table 78 Difference between fuel data for the reference approach from CRF and Eurostat, 2018.

FUEL TYPES		Unit	Production	Imports	Exports	International	Stock	Apparent
						bunkers	change	consumption
Total			0.0	0.0	0.0	0.0	0.0	0.0
Biomass total			0.0	0.0	0.0	0.0	0.0	0.0
	Solid biomass	TJ	234.1	0.0	0.0	0.0	0.0	234.1
	Liquid biomass	TJ	-1.0	0.0	0.0	0.0	0.0	-1.0
	Gas biomass	TJ	7060.1	0.0	0.0	0.0	0.0	7060.1
	Other non-fossil fuels (biogenic waste)	TJ	0.3	-0.2	0.0	0.0	0.0	0.1

11.2 Sectoral approach, comparison of CRF and Eurostat data

Table 79 shows the total fuel consumption in the sectoral approach based on CRF and Eurostat respectively. The fossil fuel consumption is 4 % higher in the Eurostat data than reported in the CRF. The largest differences are for solid and gaseous fuels.

The fuel consumption for <u>solid fuels</u> is 9 % higher in the Eurostat data than reported in CRF. This difference is related to the LCV for coal applied in Denmark. The Danish energy statistics include two different types of coal in the fuel category Other bituminous coal. The LCV of the two coal types differ but only one of the LCVs have been reported to Eurostat. The Danish Energy Agency that are responsible for the reporting to Eurostat have indicated that they will consider to report an average LCV to Eurostat next year (Zarnaghi, 2020a).

The fuel consumption for <u>liquid fuels</u> is 1 % lower in the Eurostat data than reported in CRF.

For liquid fuels, the domestic consumption jet kerosene, gas / diesel oil and residual oil reported to Eurostat is lower than in CRF. The fuel consumption for transport between mainland Denmark and Greenland and the Faroe Islands is included in international bunkers in the reporting to Eurostat. In the Danish emission inventory, the transport between Denmark, Greenland and the Faroe Islands is considered domestic. This causes a difference for liquid fuels used for aviation and navigation. For jet kerosene, the consumption reported to Eurostat is 647 TJ lower. For diesel oil, the consumption in sector 1A3 is 8500 TJ lower in the Eurostat data than in CRF. However, the consumption of gas/diesel oil is reallocated in CRF, and thus a comparison of the consumption in sector 1A3 does not give an accurate picture of the difference for the total gas/diesel oil consumption reported in CRF and by Eurostat respectively. The difference related to the transport between mainland Denmark and Greenland and the Faroe Islands is 431 TJ. For residual oil, the difference related to Greenland and the Faroe Islands is 1360 TJ.

For <u>gaseous fuels</u>, the consumption in Eurostat is 5 % higher (6238 TJ) than the CRF data. The Eurostat data for gaseous fuels includes biogas upgraded for distribution in the natural gas grid (bio natural gas or bio methane). The consumption of this fuel adds up to 7052 TJ. In CRF, this fuel consumption is included in the fuel category biomass. In addition, the gaseous fuel consumption for offshore gas turbines is higher in CRF than in the Eurostat data. CRF data for offshore gas turbines is based on EU ETS data that are not in agreement with the energy statistics due to application of an inaccurate NCV in the energy statistics. Thus the fuel consumption in the energy statistics and in the Eurostat data are 761 TJ lower for Oil and gas extraction than reported in CRF. This adds up to a 6291 TJ difference.

For <u>fossil waste</u>, the consumption in the Eurostat data are 10 % lower (1882 TJ) than in CRF. The bottom up approach applied in the Danish emission inventory adds up to higher consumption of waste than stated in the energy statistics for 2018. Thus, the waste consumption in CRF is 1889 TJ higher than the consumption in the energy statistics and the Eurostat data. In addition, the fossil part of waste is plant-specific for some plants in the CRF data whereas a fixed fossil energy part is applied in the energy statistics.

For <u>biomass</u>, the consumption in the Eurostat data is 1 % lower (2456 TJ) than in the CRF data.

Bio natural gas has been reported in this fuel category in CRF whereas it has been included in gaseous fuels in the Eurostat data. This cause a 7052 TJ lower fuel consumption in the Eurostat data.

In addition, the bottom up approach applied in the Danish emission inventory adds up to higher consumption of waste than stated in the energy statistics for 2018. Thus, the waste consumption in CRF is 1889 TJ higher than the consumption in the energy statistics and the Eurostat data. This corresponds to a biogenic difference of 1039 TJ. Finally, the biogenic part of waste is plant-specific for some plants in the CRF data whereas a fixed fossil energy part is applied in the energy statistics.

Fuel Eurostat,	Fuel CRF,	Fuel Eurostat /	Difference,
TJ	TJ	Fuel CRF,	TJ
		%	
74021	67616	109%	6405
69358	70382	99%	-1024
119749	113518	105%	6231
17297	19179	90%	-1882
177183	179639	99 %	-2456
280425	270695	104%	9730
	TJ 74021 69358 119749 17297 177183	TJ TJ 74021 67616 69358 70382 119749 113518 17297 19179 177183 179639	TJ TJ Fuel CRF, % 74021 67616 109% 69358 70382 99% 119749 113518 105% 17297 19179 90% 177183 179639 99 %

Table 79 Total fuel consumption, sectoral approach, 2018 (EU, 2020).

12 Sum of EU ETS data compared to CRF data

The annual reporting of GHGs to EU includes a comparison of the CRF data and the total ETS data. The comparison has been made regarding the verified emissions reported under the (EU ETS Directive 2003/87/EC) and the emissions reported in the CRF tables.

12.1 The allocation of the verified emissions reported under EU ETS to CRF categories

The verification is based on the database for all EU ETS data from the Danish Energy Agency. CRF emission categories have been added to all EU ETS data.

For fuel combustion, all plants in the EU ETS database have a plant id that can be linked to another plant-specific database from DEA that includes all plants that supply power or district heating to the public grid (Energy Producers Survey). This database includes SNAP sector codes and thus CRF sector codes can be linked based on the correspondence list between SNAP and CRF sector codes. The emissions from combustion from the remaining plants (offshore gas turbines, refineries and a large number of different industrial plants) have been allocated to the relevant CRF sector manually. In addition, CRF sector codes were included in the EU ETS data set for 2016 from DEA.

For process emissions, the CRF categories have been added manually for each emission source included in the EU ETS database.

12.2 Consistency of data reported under EU ETS with the CRF inventory

In the Danish inventory the data reported under the EU ETS (Directive 2003/87/EC) are used directly in the inventory for plants using higher tier methods. For plants reporting using a lower tier method, the data are not used in the inventory. However, the data reported is checked in terms of overall sum checks of individual categories to ensure that the emissions reported under EU ETS for a source category do not exceed the emissions in the inventory.

The comparison of CRF data and EU ETS data is shown in Table 80. The following main points have been identified:

- The sum of ETS data for sector 1A1b Residential plants exceeds the emission reported in CRF for this source category. Regeneration of catalysts is included in this source category in ETS data but not in the CRF reporting.
- The sum of ETS data for sector 1A1c Manufacture of solid fuels and other Energy Iindustries exceeds the emissions reported in CRF. The consumption of gas oil reported for 1A1c in the energy statistics is not in agreement with the consumption in the ETS reports. This problem is however related to disaggregation of the gas oil consumption and do not affect the total CO₂ emission reported in CRF.
- The fuel consumption in CRF is based on the Danish energy statistics. The EU ETS data are implemented as a data source for the disaggregation to industrial subsectors in the Danish energy statistics. However, for 1A2f Non-metallic minerals there is a minor difference between the two data sets.

Table 80 Sum of EU ETS data compared to the CRF reporting, 2018.

Implementing Regulation Article 10: Reporting on consistency of reported emissions with data from the emissions trading system

1.Member States shall report the information referred to in Article 7(1)(k) of Regulation (EU) No 525/2013 in accordance with the tabular format set out in Annex V to this Regulation.

2.Member States shall report textual information on the results of the checks performed pursuant to Article 7(1)(I) of Regulation (EU) No 525/2013.

	location of verified emissions reported by installations and operators under Directive 2003/87/EC to burce categories of the national greenhouse gas inventory					
Member State:	Member State: Denmark					
Reporting year:	2018					
Basis for data: verified ETS emissions and gre						
sions as reported in inventory submission for	he year X-2					

Total emissions	(CO2 -eq)
------------------------	-----------

Category[1]	Gas	Greenhouse	Verified		Comment[2]
		gas	emissions	(Verified	
		inventory	under	emissions/	
		emissions	Directive	inventory	
		[kt CO2eq][3]	2003/87/EC	emissions)[3]	
			[kt CO2eq][3]		
Greenhouse gas emissions (total emissions without LULUCF for GHG inventory and without emissions from 1A3a Civil aviation, total emissions from installations under Arti- cle 3h of Directive 2003/87/EC)	Total GHG	54323.91	14948.4	27.5%	
CO ₂ emissions (total CO ₂ emissions without LULUCF for GHG inventory and without emissions from 1A3a Civil aviation, total emissions from installations under Article 3h of Directive 2003/87/EC)	Total GHG	34518.23	14948.4	43.3%	

CO2 emissions

Category[1]		Greenhouse	Verified		Comment[2]
		gas	emissions	(Verified	
		inventory	under	emissions/	
		emissions	Directive	inventory	
		[kt CO2eq][3]	2003/87/EC [kt CO ₂ eq][3]	emissions)[3]	
1.A Fuel combustion activities, total	CO ₂	32696.2	13451.3	41.1%	
1.A Fuel combustion activities, stationary	CO ₂	17159.0	13451.3	78.4%	
combustion [4]					
1.A.1 Energy industries	CO ₂	11263.9	10957.0	97.3%	
1.A.1.a Public electricity and heat produc- tion	CO ₂	9112.7	8761.4	96.1%	
1.A.1.b Petroleum refining	CO ₂	891.4	902.6	101.3%	Regeneration of catalysts is included in this source cat- egory in EU ETS data but not in the CRF reporting
1.A.1.c Manufacture of solid fuels and other Energy industries	CO ₂	1259.7	1293.1	102.6%	The energy statistics do not include consumption of gas oil in oil and gas extraction. The gas oil consumption is however included in other sectors.
Iron and steel total (1.A.2, 1.B, 2.C.1) [5]	CO ₂	106.6	94.3	88.4%	
1.A.2. Manufacturing industries and con- struction	CO ₂	3880.0	2456.4	63.3%	
1.A.2.a Iron and steel	CO ₂	106.6	94.3	88.4%	
1.A.2.b Non-ferrous metals	CO ₂	NO	0.0	NO	
1.A.2.c Chemicals	CO ₂	350.8	85.2	24.3%	
1.A.2.d Pulp, paper and print	CO ₂	79.3	49.1	61.9%	
1.A.2.e Food processing, beverages and	CO ₂	1030.9	755.3	73.3%	
tobacco					
1.A.2.f Non-metallic minerals	CO ₂	1394.5	1396.3	100.1%	The fuel consumption in CRF is based on the Danish energy statistics. The EU ETS data are implemented as a data source for the disaggregation to industrial subsectors in the Danish energy statistics. However, for 1A2f there is a minor difference between the two data sets.

1.A.2.g Other	CO ₂	917.8	76.3	8.3%	
1.A.3. Transport	CO ₂	13285.0	0.0	0.0%	
1.A.3.e Other transportation (pipeline	CO ₂	NO	0.0	NO	
transport)					
1.A.4 Other sectors	CO ₂	4052.3	37.9	0.9%	
1.A.4.a Commercial / Institutional	CO ₂	698.2	5.0	0.7%	
1.A.4.c Agriculture/forestry / Fisheries	CO ₂	1482.4	32.9	2.2%	
1.B Fugitive emissions from Fuels	CO ₂	232.4	232.0	99.8%	
1.C CO2 Transport and storage	CO ₂	NO	NO	NO	
1.C.1 Transport of CO2	CO ₂	NO	NO	NO	
1.C.2 Injection and storage	CO ₂	NO	NO	NO	
1.C:3 Other 2.A Mineral products	CO ₂	NO	NO	NO	
2.A Mineral products	CO ₂	1298.0	1265.1	97.5%	
2.A.1 Cement Production	CO ₂	1159.7	1159.7	100.0%	
2.A.2. Lime production	CO ₂	36.8	24.3	66.1%	
2.A.3. Glass production	CO ₂	10.4	10.4	100.0%	
2.A.4. Other process uses of carbonates	CO ₂	91.1	70.7	77.6%	
2.B Chemical industry	CO ₂	1.4	0.0	0.0%	
2.B.1. Ammonia production	CO ₂	NO	NO	NO	
2.B.3. Adipic acid production (CO2)	CO ₂	NO	NO	NO	
2.B.4. Caprolactam, glyoxal and glyoxylic acid production	CO ₂	NO	NO	NO	
2.B.5. Carbide production	CO ₂	NO	NO	NO	
2.B.6 Titanium dioxide production	CO ₂	NO	NO	NO	
2.B.7 Soda ash production	CO ₂	NO	NO	NO	
2.B.8 Petrochemical and carbon black pro- duction	CO ₂	NO	NO	NO	
2.C Metal production	CO ₂	0.1	0.0	0.0%	
2.C.1. Iron and steel production	CO ₂	NO	NO	NO	
2.C.2 Ferroalloys production	CO ₂	NO	NO	NO	
2.C.3 Aluminium production	CO ₂	NO	NO	NO	
2.C.4 Magnesium production	CO ₂	NO	NO	NO	
2.C.5 Lead production	CO ₂	0.1	0.0	0.0%	
2.C.6 Zinc production	CO ₂	NO	NO	NO	
2.C.7 Other metal production	CO ₂	NO	NO	NO	

N2O emissions					
Category[1]	Gas	Greenhouse gas inventory emissions [kt CO ₂ eq][3]	Verified emissions under Directive 2003/87/EC [kt CO ₂ eq][3]	Ratio in % (Verified emissions/ inventory emissions)[3]	Comment[2]
2.B.2. Nitric acid production	N ₂ O	NO	NO	NO	
2.B.3. Adipic acid production	N ₂ O	NO	NO	NO	
2.B.4. Caprolactam, glyoxal and glyoxylic acid production	N ₂ O	NO	NO	NO	

DEO		•	•
PFC	em	ISS	ions
	••••		

Category[1]	Gas	Greenhouse	Verified	Ratio in %	Comment[2]
		gas	emissions	(Verified	
		inventory	under	emissions/	
		emissions	Directive	inventory	
		[kt CO2eq][3]	2003/87/EC	emissions)[3]	
			[kt CO2eq][3]		
2.C.3 Aluminium production	PFC	NO	NO	NO	

[1] The allocation of verified emissions to disaggregated inventory categories at four digit level must be reported where such allocation of verified emissions is possible and emissions occur. The following notation keys should be used: NO = not occurring IE = included elsewhere C = confidential negligible = small amount of verified emissions may occur in respective CRF category, but amount is < 5% of the category

[2] The column comment should be used to give a brief summary of the checks performed and if a Member State wants to provide additional explanations with regard to the allocation reported. Member States should add a short explanation when using IE or other notation keys to ensure transparency.

[3] Data to be reported up to one decimal point for kt and % values

[4] 1.A Fuel combustion, stationary combustion should include the sum total of the relevant rows below for 1.A (without double counting) plus the addition of other stationary combustion emissions not explicitly included in any of the rows below.

[5] To be filled on the basis of combined CRF categories pertaining to 'Iron and Steel', to be determined individually by each Member State; e.g. (1.A.2.a+ 2.C.1 + 1.A.1.c and other relevant CRF categories that include emissions from iron and steel (e.g. 1A1a, 1B1))

Notation: x = reporting year

13 Source specific recalculations and improvements in the 2020 reporting

13.1 Greenhouse gases

Table 81 shows recalculations of the CO_2 , CH_4 and N_2O emissions. Emissions reported this year have been compared to emissions reported last year. Sector specific recalculations for 2017 are shown in Table 82. The main recalculations are discussed below.

Table 81 Recalculations. Emissions reported in 2020 compared to emissions reported in 2019.

2019.										
GHG	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	%	%	%	%	%	%	%	%	%	%
CO ₂	99.99	99.99	99.99	99.99	99.99	99.99	100.00	100.00	100.00	100.00
CH₄	98.40	98.43	98.59	98.82	99.18	99.47	99.59	99.62	99.75	99.75
N ₂ O	100.00	100.00	100.00	100.00	100.04	100.04	100.03	100.05	100.05	100.04
GHG	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	%	%	%	%	%	%	%	%	%	%
CO ₂	100.00	100.00	100.00	100.00	99.99	99.99	100.00	99.99	99.99	100.00
CH₄	99.72	99.66	99.60	99.48	99.08	98.66	98.45	98.47	99.04	99.07
N ₂ O	100.05	100.03	100.00	100.00	100.00	100.17	99.99	100.48	99.77	100.19
GHG	2010	2011	2012	2013	2014	2015	2016	2017		
	%	%	%	%	%	%	%	%		
CO ₂	100.00	100.01	100.00	100.00	99.97	99.90	99.94	99.79		
CH_4	99.10	98.96	98.61	98.36	98.09	97.63	97.63	97.91		
N ₂ O	100.02	100.81	101.66	102.14	100.81	103.40	109.07	108.26		

Table 82 Recalculations for stationary combustion, 2017.

	CO ₂ ,	CH ₄ ,	N ₂ O	CO ₂	CH ₄ ,	N ₂ O
	kt CO ₂	kt CO ₂	kt CO ₂	%	%	%
		eqv.	eqv.			
1A1 Energy industries	-11.4	0.3	0.0	-0.1%	0.3%	0.1%
1A1a Public electricity and heat production	-11.4	0.3	0.0	-0.1%	0.3%	0.1%
1A1b Petroleum refining	0.0	0.0	0.0	0.0%	0.0%	0.0%
1A1c Oil and gas extraction	0.0	0.0	0.0	0.0%	0.0%	0.0%
1A2 Industry	-36.0	0.3	15.0	-1.1%	2.0%	42.6%
1A2a Iron and steel	-7.8	0.0	0.0	-6.9%	-6.9%	-6.8%
1A2b Non-ferrous metals	0.0	0.0	0.0	-	-	-
1A2c Chemicals	-11.4	0.0	0.1	-3.2%	6.4%	3.9%
1A2d Pulp, paper and print	-7.1	0.1	0.5	-15.6%	97.0%	77.3%
1A2e Food processing, beverages and tobacco	-34.3	0.1	-0.2	-3.2%	0.7%	-2.1%
1A2f Non-metallic minerals	3.0	0.1	0.0	0.2%	1.5%	0.2%
1A2gviii Other manufacturing industry	21.6	0.1	14.6	6.1%	1.7%	108.6%
1A4 Other sectors	10.7	-6.1	0.6	0.4%	-4.3%	0.9%
1A4ai Commercial/institutional: Stationary	0.5	0.1	0.1	0.1%	0.8%	1.2%
1A4bi Residential: Stationary	6.3	-6.4	0.5	0.3%	-6.1%	0.9%
1A4ci Agriculture/forestry/fishing: Stationary	3.9	0.2	0.0	2.4%	0.9%	1.0%
Stationary combustion	-36.6	-5.4	15.7	-0.2%	-2.1%	8.3%

For stationary combustion plants, the emission estimates for the years 1990-2017 have been updated according to the latest energy statistics published by the Danish Energy Agency. The update included both end use and transformation and also a source category update. The changes in the energy statistics are largest for the years 2015, 2016 and 2017.

The disaggregation to industrial subsectors has been updated to the latest data set. The largest changes are for 2017 and for waste incineration in 2011.

The CO₂ emission factor for coal applied in other plants than public power and district heating plants have been revised. The emission factor applied for these plants was a default emission factor from the IPCC Guidelines (2006). However, based on an analysis of EU ETS data from 2006-2018 it was concluded that a common emission factor for coal should be applied. Plant-specific emission factors have been applied for large industrial plants, and thus the recalculation is small. The recalculation of CO₂ the emission for 1990 is -1.9 kt or -0.005 % of the CO₂ emission from stationary combustion. The recalculation of CO₂ the emission for 2017 is -0.09 kt or -0.001 % of the CO₂ emission from stationary combustion.

The CO₂ emission factor for residual oil applied in other plants than public power and district heating plants have been revised. The emission factor applied for these plants was based on ET ETS data for 2006-2009. However, based on an analysis of EU ETS data from 2006-2018 it was concluded that a common emission factor for residual oil should be applied. Plant-specific emission factors have been applied for large industrial plants, and thus the recalculation is small. The recalculation of CO₂ emission for 1990 is +1.4 kt or 0.004 % of the CO₂ emission from stationary combustion. The recalculation of CO₂ emission for 2017 is +0.03 kt or less than 0.001 % of the CO₂ emission from stationary combustion.

The disaggregation between different residential wood combustion technologies have been recalculated, and this cause minor changes in the estimated CH_4 emission from residential plants. The recalculation of CH_4 emission from residential wood combustion in 1990 is 0.11 kt or -1.6 % of the CH_4 emission from stationary combustion. The recalculation of CH_4 emission from residential wood combustion in 2017 is 0.26 kt or -2.5 % of the CH_4 emission from stationary combustion.

The N_2O emission for 2017 has been recalculated due to improved plant-specific data from two mineral wool production plants.

13.2 Other pollutants

For stationary combustion plants, the emission estimates for the years 1990-2017 have been updated according to the latest energy statistics published by the Danish Energy Agency. The update included both end use and transformation sectors as well as a source category update. The changes in the energy statistics are largest for the years 2015, 2016 and 2017.

The emission inventory for residential wood combustion has been improved based on recent emission measurements. This cause the considerable recalculations for pollutants for which residential wood combustion is the largest emission source.

The SO_2 emission factor for gas oil has been improved based on improved data for sulphur content of the applied gas oil.

Recalculations for stationary combustion as a whole are shown in Table 83.

	1990	1995	2000	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
								Perce	nt							
SO ₂	100.0	100.0	100.0	100.0	99.8	99.5	99.1	98.4	97.9	97.8	97.0	97.7	98.0	97.8	99.9	100.8
NO _x	100.0	100.0	100.0	100.1	100.0	100.0	100.0	100.0	99.9	99.9	99.8	99.8	99.7	99.6	100.0	100.1
NMVOC	98.2	98.7	99.4	97.5	97.9	98.8	100.0	100.0	100.1	99.9	99.5	99.3	99.0	98.9	98.9	99.3
CO	107.9	108.6	108.5	103.9	103.1	103.8	104.1	103.2	102.3	102.3	102.3	102.5	102.6	103.0	103.4	103.6
TSP	86.6	84.3	83.0	78.0	77.8	77.5	78.7	79.2	79.3	79.2	79.0	79.0	79.2	78.2	78.3	78.1
PM ₁₀	86.5	84.2	82.7	77.4	77.6	77.3	78.5	79.0	79.2	79.1	78.8	78.9	79.1	78.0	78.1	77.9
PM _{2.5}	86.7	84.4	82.8	77.5	77.6	77.4	78.6	79.1	79.2	79.1	78.8	78.8	79.0	78.0	78.1	77.8
BC	61.4	53.4	50.4	43.6	43.5	40.1	41.9	43.8	43.9	45.9	47.0	47.7	49.5	48.5	49.5	50.4
NH₃	99.8	99.6	99.6	98.5	98.6	99.0	99.4	99.5	99.5	99.5	99.5	99.4	99.4	99.8	100.2	101.0
As	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0	100.0	100.0	99.8	100.0	100.0	99.9	100.7	101.5
Cd	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.4	100.9	101.0
Cr	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0	100.0	100.3	101.1	101.4
Cu	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.7	100.0	100.0	100.0	101.6	102.4
Hg	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.7	100.0	100.0	99.9	101.1	101.9
Ni	100.0	100.0	100.0	100.0	100.0	100.0	100.3	100.0	100.0	99.8	99.9	100.0	100.0	99.9	100.4	99.7
Pb	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.4	100.0	100.0	100.2	102.7	103.9
Se	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.8	100.0	100.0	100.0	101.6	102.7
Zn	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0	100.0	100.4	101.1	101.3
HCB	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0	100.0	100.2	100.5	100.9
PCDD/F	101.2	103.3	109.1	127.5	133.0	137.7	142.0	149.0	153.0	155.2	156.7	161.4	164.4	173.1	177.9	180.9
Benzo(a)pyrene	245.3	223.2	179.8	135.9	127.5	123.1	116.3	108.3	99.7	100.4	100.9	101.5	101.4	102.9	104.0	105.1
Benzo(b)fluoranthene	213.8	193.1	153.3	117.0	109.4	105.3	99.1	91.6	84.6	86.4	88.0	89.6	90.2	92.4	94.3	96.0
Benzo(k)fluoranthene	468.8	423.8	330.0	254.8	237.0	231.1	214.7	196.0	178.0	174.7	172.8	169.4	163.8	163.9	160.4	158.5
Indeno(123cd)pyrene	309.6	295.8	240.9	168.3	153.2	142.7	128.5	113.8	95.2	96.2	96.6	98.4	99.1	100.9	103.0	104.7
PCB	99.8	99.6	99.3	97.9	98.2	98.1	98.3	98.4	98.5	98.5	98.3	98.5	98.5	98.3	99.0	99.5

 Table 83
 Recalculations for stationary combustion. Emissions reported in 2020 compared to emissions reported in 2019.

14 Planned improvements

For GHGs, four emission source categories based on tier 1 approach have been identified as key sources this year. If sufficient data are available, a tier 2 approach will be applied next year.

The emission factors that refer to EEA (2016) will be updated according to EEA (2019).

BC emission factors will be updated according to EEA (2019).

PM and BC emission factors for wood pellets applied in non-residential plants will be revised.

15 References

Affaldsdatasystemet (ADS), 2019: Danish waste statistics for 2011-2017. Available at:

https://www.ads.mst.dk/Forms/Reports/R003_Behandlede_Maengder.aspx (2020-01-31)

Andersen, M.A. 1996: Elkraft, personal communication letter 07-05-1996.

Andersen, J. S. & Hvidbjerg, R. L., 2017: Laboratoriemålinger af emissioner fra brændeovne ved forskellige fyringsteknikker, Teknologisk Institut, Redaktion: Miljøstyrelsen

Astrup, T., Larsen, A.W., Fuglsang, K. & Pedersen, N.H. 2012: PSO-0213, Biogenic Carbon in Danish Combustible Waste. DTU, 2012.

Augustesen. J.N. 2003: Personal communication e-mail 11-08-2003 from Jane Nørgaard Augustesen. Statoil refinery to Per G. Kristensen, Danish Gas Technology Centre. The mail was forwarded 30-09-2003.

Berdowski, J.J.M., Veldt, C., Baas, J., Bloos, J.P.J. & Klein, A.E. 1995: Technical Paper to the OSPARCOM-HELCOM-UNECE Emission Inventory of heavy Metals and Persistent Organic Pollutants, TNO-report, TNO-MEP – R 95/247.

Bruun, J. 2012: Energinet.dk, personal communication, email 03-01-2012.

Christiansen, M., 1996: Elsam, personal communication, letter 07-05-1996.

Christiansen, 2003: Personal communication, Jørgen Christiansen, Energigruppen Jylland, 2003.

Danish Energy Agency (DEA), 2003: Data for installation and fuel consumption for each gas engine 1994-2002. Estimated fuel consumption data for gas engines in 1990-1993. Unpublished.

Danish Energy Agency (DEA), 2016a: The Danish energy statistics from 2016.

Danish Energy Agency (DEA), 2016d: Notat om opdatering af elhandelskorrektion, 2016-04-04. Available at: (2020-01-31)

Danish Energy Agency (DEA), 2018e: Personal communication, Jane Rusbjerg, 2018-12-18.

Danish Energy Agency (DEA), 2019a: The Danish energy statistics, Available at: <u>https://ens.dk/en/our-services/statistics-data-key-figures-and-energy-maps/annual-and-monthly-statistics</u> (2020-01-31).

Danish Energy Agency (DEA), 2019b: The Danish energy statistics, Energy Producers Survey (Energiproducenttællingen) 1990-2018. Unpublished.

Danish Energy Agency (DEA), 2019c: The Danish energy statistics, International reporting. Available at: <u>https://ens.dk/service/statistik-data-noegle-</u> tal-og-kort/noegletal-og-internationale-indberetninger (2020-01-31). Danish Energy Agency (DEA), 2019d: Energy statistics data, e-mail from Ali Zarnaghi 2020-01-16.

Danish Environmental Protection Agency (DEPA) 1990: Bekendtgørelse om begrænsning af emissioner af svovldioxid, kvælstofoxider og støv fra store fyringsanlæg, Bekendtgørelse 689 af 15/10/1990, (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=48656</u> (2020-02-27)

Danish Environmental Protection Agency (DEPA) 1995: Bekendtgørelse om begrænsning af emissioner af svovldioxid, kvælstofoxider og støv fra store fyringsanlæg, Bekendtgørelse 518 af 20/06/1995, (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=48479</u> (2020-02-27)

Danish Environmental Protection Agency (DEPA) 1998: Bekendtgørelse af lov om afgift af svovl, Bekendtgørelse 688 af 17/09/1998 (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=13266</u> (2020-02-28).

Danish Environmental Protection Agency (DEPA) 2001a: Luftvejledningen, Begrænsning af luftforurening fra virksomheder, Vejledning fra Miljøstyrelsen nr. 2 2001 (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=12728</u> (2020-02-28).

Danish Environmental Protection Agency (DEPA), 2001b: Bekendtgørelse om begrænsning af svovlindholdet i visse flydende og faste brændstoffer. Bekendtgørelse 532 af 25/05/2001. Danish legislation. Available at: https://www.retsinformation.dk/Forms/R0710.aspx?id=12458 (2020-02-28).

Danish Environmental Protection Agency (DEPA) 2003b: Bekendtgørelse om begrænsning af visse luftforurenende emissioner fra store fyringsanlæg, Bekendtgørelse 808 af 25/09/2003, (Danish legislation). Available at: https://www.retsinformation.dk/Forms/R0710.aspx?id=12697 (2020-02-28).

Danish Environmental Protection Agency (DEPA), 2005: Bekendtgørelse om begrænsning af emission af nitrogenoxider, uforbrændte carbonhydrider og carbonmonooxid mv. fra motorer og turbiner. Bekendtgørelse 621 af 23/06/2005. (Danish legislation). Available at:

https://www.retsinformation.dk/Forms/R0710.aspx?id=12836&exp=1 (2020-02-28).

Danish Environmental Protection Agency (DEPA), 2010b: Bekendtgørelse om visse virksomheders afgivelse af miljøoplysninger. Bekendtgørelse 210 af 03/03/2010. (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=128761</u> (2020-02-28).

Danish Environmental Protection Agency (DEPA) 2011: Bekendtgørelse om anlæg, der forbrænder affald. Bekendtgørelse 1356 af 21/12/2011. Danish legislation. Available at:

https://www.retsinformation.dk/Forms/R0710.aspx?id=139530 (2020-02-28). Danish Environmental Protection Agency (DEPA) 2012b: Bekendtgørelse om begrænsning af visse luftforurenende emissioner fra store fyringsanlæg, Bekendtgørelse 1453 af 20/12/2012, (Danish legislation). Available at: https://www.retsinformation.dk/pdfPrint.aspx?id=144253 (2020-02-28).

Danish Environmental Protection Agency (DEPA), 2014: Bekendtgørelse om svovlindholdet i faste og flydende brændstoffer. Bekendtgørelse 640 af 12/06/2014. Danish legislation. Available at: <u>https://www.retsinformation.dk/pdfPrint.aspx?id=163364</u> (2020-02-28).

Danish Environmental Protection Agency (DEPA) 2015: Bekendtgørelse om begrænsning af visse luftforurenende emissioner fra store fyringsanlæg, Bekendtgørelse 162 af 16/02/2015, (Danish legislation). Available at: https://www.retsinformation.dk/pdfPrint.aspx?id=167930 (2020-02-28).

Danish Environmental Protection Agency (DEPA), 2015: Bekendtgørelse om et register over udledning og overførsel af forurenende stoffer (PRTR). Bekendtgørelse 1172 af 13/10/2015. (Danish legislation). Available at: https://www.retsinformation.dk/Forms/R0710.aspx?id=174453 (2020-01-31).

Danish Environmental Protection Agency (DEPA) 2016b: Bekendtgørelse om begrænsning af visse luftforurenende emissioner fra store fyringsanlæg, Bekendtgørelse 513 af 22/05/2016, (Danish legislation). Available at: https://www.retsinformation.dk/pdfPrint.aspx?id=180091 (2020-02-25).

Danish Environmental Protection Agency (DEPA) 2019b: Annual environmental reports / environmental reporting available on the Danish EPA home page at: <u>https://miljoeoplysninger.mst.dk/</u> (2020-02-28).

Danish Gas Technology Centre (DGC) 2001: Naturgas – Energi og miljø. (In Danish).

Danish Ministry of Taxation (DMT) 2008: Lov om afgift af kvælstofoxider. Lov nr 472 af 17/06/2008. Danish legislation. Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=120340</u> (2020-02-28).

Danish Ministry of Taxation (DMT), 2015: Lov om ændring af lov om afgift af kvælstofoxider og forskellige andre love. Danish legislation. Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=176801</u> (2020-02-28).

Energinet.dk, 2013: Personal communication, e-mail from Jesper Bruun, Energinet.dk, 2013-03-26.

Energinet.dk, 2017: Personal communication, email from Signe Sonne, Energinet.dk. 2017-09-12.

EOF, 2017: Energi- og Olieforum (EOF), 2017: Energi- og Olieforum at: http://www.eof.dk/Priser-og-Forbrug/Fuelolie.aspx (2018-09-08).

EU Commission, 2018: REGULATIONS, COMMISSION IMPLEMENTING REGULATION (EU) 2018/2066 of 19 December 2018 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council and amending Commission Regulation (EU) No 601/2012 Available at: <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R2066&from=EN</u> (2020-01-31).

EU ETS, 2019: Data for 2018 reported to EU ETS. Confidential.

European Environment Agency (EEA), 2007: EMEP/CORINAIR Atmospheric Emission Inventory Guidebook – 2007, prepared by the UNECE/ EMEP Task Force on Emissions Inventories and Projections. Technical Report No 16/2007. Available at: <u>http://www.eea.europa.eu/publications/EMEP-CORINAIR5</u> (2020-02-28).

European Environment Agency (EEA), 2013: EMEP/EEA air pollutant emission inventory guidebook 2013. Available at: <u>http://www.eea.europa.eu//publications/emep-eea-guidebook-2013</u> (2020-

European Environment Agency (EEA), 2016: EMEP/EEA air pollutant emission inventory guidebook 2016. <u>https://www.eea.europa.eu/publica-tions/emep-eea-guidebook-2016</u> (2020-02-28).

European Environment Agency (EEA), 2019: EMEP/EEA air pollutant emission inventory guidebook 2019. <u>https://www.eea.europa.eu/publicati-ons/emep-eea-guidebook-2019</u> (2020-02-28).

Fauser, P., Nielsen, M., Winther, M., Plejdrup, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Hoffmann, L., Thomsen, M., Hjelgaard, K. & Nielsen, O.-K. 2013. Verification of the Danish 1990, 2000 and 2010 emission inventory data. Aarhus University, DCE – Danish Centre for Environment and Energy, 85 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 79. Available at: <u>http://dce2.au.dk/pub/SR79.pdf</u> (2020-02-28).

Fellner, J. & Rechberger, H. 2010: Biomass Content in the Waste Feed of Danish Waste-to-energy Plant, TU Wien, 2010. (Enclosed as Annex 10 in Astrup et al., 2012).

Fenhann, J. & Kilde, N.A. 1994: Inventory of Emissions to the air from Danish Sources 1972-1992, RISØ

Finstad, A., Haakonsen, G., Kvingedal, E. & Rypdal, K. 2001: Utslipp til luft av noen miljøgifter i Norge, Dokumentasjon av metode og resultater, Statistics Norway Report 2001/17 (In Norwegian). Available at: <u>http://www.ssb.no/a/publikasjoner/pdf/rapp_200117/rapp_200117.pdf</u>

(2020-02-28).

02-28).

Folkecenter for Vedvarende Energi, 2000: Notat vedrørende emissioner fra forbrændingsmotorer. planteolie sammenlignet med diesel. 28-03-2000. (In Danish) Available at: <u>http://www.folkecenter.dk/dk/folkecenter/publika-tioner/</u> (2018-03-01).

Glasius, M., Vikelsøe, J., Bossi, R., Andersen, H.V., Holst, J., Johansen, E. & Schleicher, O. 2005: Dioxin, PAH og partikler fra brændeovne. Danmarks Miljøundersøgelser. 27s – Arbejdsrapport fra DMU nr. 212. Available at: http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/AR212.pdf (2019-02-12)

Glasius, M., Konggaard, P., Stubkjær, J., Bossi, R., Hertel, O., Ketzel, M., Wahlin, P., Schleicher, O. & Palmgren, F. Danmarks Miljøundersøgelser. 42s.- Arbejdsrapport fra DMU, nr. 235.

Gon & Kuenen, J. 2009: Improvements to metal emission estimates, 10th Joint TFEIP/EIONET meeting, 11-12 May 2009, Vienna, Austria. Available at: <u>http://www.tfeip-secretariat.org/2009-tfeip-eionet-meeting-vienna/</u> (2020-02-28).

Gruijthuijsen, L.v. & Jensen, J.K. 2000: Energi- og miljøoversigt, Danish Gas Technology Centre 2000 (In Danish). Available at: <u>http://www.dgc.dk/publikation/2000/energi-og-miljoeoversigt</u> (2020-02-28).

Gruijthuijsen, L. v. 2001: Metaller i naturgas, Målerapport April 2001, Dansk Gasteknisk Center (in Danish). Available at:

http://www.dgc.dk/sites/default/files/filer/publikationer/R0104_metaller_naturgas.pdf (2020-02-28).

Henriksen, 2005: e-mail from Arne Henriksen, Elsam Engineering, 2005-08-11. Unpublished emission measurement data for N_2O from 3 power plants combusting coal.

Henriksen, T.C., Illerup, J.B. & Nielsen, O.-K. 2006: Dioxin Air Emission Inventory 1990-2004. National Environmental Research Institute, Denmark. 90 pp. – NERI Technical report no 602. Available at: http://www2.dmu.dk/Pub/FR602.pdf (2020-02-28).

Hjort-Gregersen. K.. 1999: Centralised Biogas Plants. Danish Institute of Agricultural and Fisheries Economics. 1999. Available at: <u>http://www.vi-dencenter.dk/exportcat/biogas.pdf</u> (2019-02-12).

IPCC, 1996: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual (Volume 3). Available at: <u>http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html</u> (2020-02-28).

IPCC, 2000: Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanuel, S., Buendia, L., Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K. & Tanabe, K. (Eds). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Published: IPCC/OECD/IEA/IGES, Hayama, Japan. Available at:

http://www.ipcc-nggip.iges.or.jp/public/gp/english/index.html (2020-01-31).

IPCC, 2006: Revised 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Available at:

http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (2020-01-31).

Jensen, L. & Nielsen, P.A., 1990: Emissioner fra halm- og flisfyr, dk-Teknik & Levnedsmiddelstyrelsen 1990 (In Danish).

Jensen, L. & Nielsen, P.A. 1996: Emissioner fra halm- og flisfyr, Arbejdsrapport fra Miljøstyrelsen nr. 5 1996, Bilagsrapport (In Danish).

Jensen, J. 2001: Danish Gas Technology Centre, Personal communication email 11-10-2001.

Jensen, B.G. & Lindroth, M. 2002: Kontrol af indberetning af CO₂-udledning fra el-producenter i 2001, Carl Bro for Energistyrelsens 6. Kontor (in Danish).

Jensen, T.N., Brønnum, A. S. & Andreasen, M.B., 2017: Primær reduktion af emissioner fra 400 kW portionsfyret halmkedel. Teknologisk Institut og Maskinfabrikken Faust. Udgivet af Miljøstyrelsen. Available at: <u>https://www2.mst.dk/Udgiv/publikationer/2017/04/978-87-93529-88-</u> <u>5.pdf</u> (2020-02-28).

Jensen, J.N., 2017. Dong Energy. Personal communication, email 2017-08-16.

Jeppesen, J.S. 2007: København energi (Copenhagen Energy), Jørgen Steen Jeppesen, personal communication.

Johansson, L.S., Leckner, B., Gustavsson, L., Cooper, D., Tullin, C. & Potter, A. 2004: Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets, Atmospheric Environment 38 (2004) 4183-4195.

Jørgensen, L., Andersen, S. D., Lovett, D. M. & Kristensen, P. G., 2010: Emissionskortlægning for decentral kraftvarme 2007, Måleprogram og analyse af emissioner fra gas- og oliefyrede decentrale kraftvarmeanlæg < 25 MW_e. Danish Gas Technology Centre. Available at: <u>https://www.dgc.dk/publika-</u> tion/2010/emissionskortlægning-decentral-kraftvarme-2007 (2020-01-31).

KE, 2015: Københavns Energi (KE), 2015 (Copenhagen Energy) fact sheet on town gas.

Krebs, 2003: Personal communication, email from Peter Krebs, BP Gas, 2003-09-30.

Kristensen, P.G, 2003: Kortlægning af emissioner fra decentrale kraftvarmeværker, Eltra PSO projekt 3141, Delrapport 4, Måleprogram og analyse af emissioner fra gasfyrede decentrale kraftvarmeanlæg < 25 MW_e, April 2003. Dansk Gasteknisk Center.

Kristensen, E.F. & Kristensen, J.K., 2004. Development and test of small-scale batch-fired straw boilers in Denmark. Biomass and Bioenergy 26 (2004).

Kristensen, P.G. 2007: Danish Gas Technology Centre, Per Gravers Kristensen, personal communication, town gas, email 19-04-2007.

Kristensen, P.G. 2010: Danish Gas Technology Centre, Per Gravers Kristensen, email 2010-02-10.

Kristensen, P.G. 2015a: Personal communication concerning biogas, e-mail 26-03-2014, Danish Gas Technology Centre.

Kristensen, P.G. 2015b: Personal communication concerning bio natural gas, e-mail 11-11-2015, Danish Gas Technology Centre.

Kristensen, P.G., 2017a: Danish Gas Technology Centre. Forgasningsgasanlæg og svovlkrav i MCP-direktivet. Rådgivning, notat. Not published. Forwarded by email 2017-08-07.

Kristensen, P. G., 2017b: Danish Gas Technology Centre. SO₂ emission factor estimate. Not published. Forwarded by email 2017-08-24.

Kristensen, E.F., 2017c: Personal communication, email from Erik Fløjgaard Kristensen, Institut for Ingeniørvidenskab, Aarhus Universitet, 2017-08-24 and 2017-08-28.

Lindgren, 2010: Energinet.dk, Tine Lindgren, email 2010-03-16.

Livbjerg, H. Thellefsen, M. Sander, B. Simonsen, P., Lund, C., Poulsen, K. & Fogh, C.L. 2001: Feltstudier af Forbrændingsaerosoler, EFP -98 Projekt, Aerosollaboratoriet DTU, FLS Miljø, Forskningscenter Risø, Elsam, Energi E2 (in Danish).

Madsen, 2019: Personal communication, email from Emil Bach Madsen, Miljøstyrelsen, 2019-12-03.

Nielsen, M. & Wit, J. 1997: Emissionsforhold for gasdrevne kraftvarmeænlæg < 25MW_e, Miljøstyrelsen, Arbejdsrapport Nr. 17 1997 (In Danish). Available at: <u>http://www2.mst.dk/Udgiv/publikationer/1997/87-7810-759-8/pdf/87-7810-759-8.pdf</u> (2020-01-31).

Nielsen, M. & Illerup, J.B. 2003: Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme. Eltra PSO projekt 3141. Kortlægning af emissioner fra decentrale kraftvarmeværker. Delrapport 6. Danmarks Miljøundersøgelser. 116 s. –Faglig rapport fra DMU nr. 442. (In Danish, with an English summary). Available at:

https://www.dgc.dk/publikation/2010/emissionskortlaegning-decentralkraftvarme-2007 (2020-01-31).

Nielsen, M. & Illerup, J.B. 2004: Danish emission inventories for stationary combustion plants. Inventories until year 2002. National Environmental Research Institute, Denmark. 127pp. – Research Notes from NERI no. 200. Available at:

http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rapporter/AR200.pdf (2020-01-31).

Nielsen, M. & Illerup, J.B. 2006: Danish emission inventories for stationary combustion plants. Inventories until year 2003. National Environmental Research Institute, Denmark. 162 pp. – Research Notes from NERI no. 229. Available at:

http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rapporter/AR229.pdf (2020-01-31). Nielsen, O.-K., Nielsen, M. & Illerup, J.B. 2007: Danish Emission Inventories for Stationary Combustion Plants. Inventories until year 2004. National Environmental Research Institute, University of Aarhus, Denmark. 176 pp. – NERI Technical Report no. 628. Available at:

http://www2.dmu.dk/Pub/FR628_Final.pdf (2020-01-31).

Nielsen, M., Illerup, J.B. & Birr-Petersen, K., 2008: Revised emission factors for gas engines including start/stop emissions. Sub-report 3 (NERI). National Environmental Research Institute, University of Aarhus. 69 pp. - NERI Technical Report No. 672. Available at: http://www2.dmu.dk/Pub/FR672.pdf (2020-01-31).

Nielsen, M., Nielsen, O.-K., Plejdrup, M. & Hjelgaard, K., 2009: Danish Emission Inventories for Stationary Combustion Plants. Inventories until year 2007. National Environmental Research Institute, Aarhus University, Denmark. 216 pp. – NERI Technical Report no. 744. Available at: http://www2.dmu.dk/Pub/FR744.pdf (2020-01-31).

Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010a: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. Available at: http://www.dmu.dk/Pub/FR786.pdf (2020-01-31).

Nielsen, M., Nielsen, O.-K., Plejdrup, M. & Hjelgaard, K., 2010b: Danish Emission Inventories for Stationary Combustion Plants. Inventories until 2008. National Environmental Research Institute, Aarhus University, Denmark. 236 pp. – NERI Technical Report No. 795. Available at: <u>http://www.dmu.dk/Pub/FR795.pdf</u> (2020-01-31).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Gyldenkærne, S., Thomsen, M., Fauser, P., Nielsen, M. Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L. & Bruun, H.G. 2013a. Quality manual for the Danish greenhouse gas inventory. Version 2. Aarhus University, DCE – Danish Centre for Environment and Energy, 44 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 47. Available at: http://www.dmu.dk/Pub/SR47.pdf (2020-01-31).

Nielsen, M., Nielsen, O.-K. & Hoffmann, L. 2013c. Improved inventory for heavy metal emissions from stationary combustion plants. 1990-2009. Aarhus University, DCE – Danish Centre for Environment and Energy, 111 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 68. http://dce2.au.dk/pub/SR68.pdf (2020-02-28).

Nielsen, M., Nielsen, O.-K. & Plejdrup, M. 2014a. Danish emission inventories for stationary combustion plants. Inventories until 2011. Aarhus University, DCE – Danish Centre for Environment and Energy, 188 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 102. Available at: <u>http://dce2.au.dk/pub/SR102.pdf</u> (2020-02-28).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Fauser, P., Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L., Thomsen, M., Bruun, H.G., 2014b. Danish emission inventory for hexachlorobenzene and polychlorinated biphenyls. Aarhus University, DCE – Danish Centre for Environment and Energy, 65 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 103. Available at:

https://dce2.au.dk/pub/SR103.pdf (2020-02-28).

Nielsen, M., Nielsen, O.-K. & Plejdrup, M.S. 2018. Danish emission inventories for stationary combustion plants. Inventories until 2015. Aarhus University, DCE – Danish Centre for Environment and Energy, 324 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 279. Available at: <u>http://dce2.au.dk/pub/SR279.pdf</u> (2020-01-31).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2020a: Denmark's National Inventory Report 2020a. Emission Inventories 1990-2018 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy.

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Mikkelsen, M.H., Nielsen, M., Gyldenkærne, S., Fauser, P., Albrektsen, R., Hjelgaard, K., Bruun, H.G. & Thomsen, M. 2020b. Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2018. Aarhus University, DCE – Danish Centre for Environment and Energy. Scientific Report from DCE – Danish Centre for Environment and Energy. Will be available at the AU homepage in 2020.

Nielsen, O.-K., Nielsen, M. & Plejdrup, M.S., 2020c: Updating the emission model for residential wood combustion. Will be available at: <u>https://dce.au.dk/udgivelser/vr/nr-351-400/</u> in 2021.

Nikolaisen, L., Nielsen, C., Larsen, M.G., Nielsen, V. Zielke, U., Kristensen, J.K. & Holm-Christensen, B. 1998: Halm til energiformål, Teknik – Miljø – Økonomi, 2. udgave, 1998, Videncenter for halm og flisfyring (In Danish).

Nordic Ecolabelling of stoves (2015): Nordic Ecolabelling of Stoves, Version 4.1, 11 June 2014 - 30 June 2019.

Olsson, M. & Kjällstrand, J. 2005: Low emissions from wood burning in an ecolabelled residential boiler, Atmospheric Environment 40 (2006) 1148-1158.

Paulrud, S., Kindbom, K., Cooper, K. & Gustafsson, T., 2005: Methane emissions from residential biomass combustion, SMED report 2005-10-14, IVL Swedish Environmental Research Institute and SCB, Statistics Sweden SMHI. Assignment for Swedish Environmental Protection Agency.

Plejdrup, M.S., Nielsen, O.-K., Nielsen, M. 2015. Emission inventory for fugitive emissions from fuel in Denmark. Aarhus University, DCE – Danish Centre for Environment and Energy, 52 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 173. Schweitzer, J. & Kristensen, P., 2014: Evaluation of the NOx emissions of the Danish population of gas boilers below 120 kW, Project report October 2014. Danish Gas Technology Centre, Jean Schweitzer, Per G. Kristensen. Available at: www.dgc.eu/sites/default/files/filarkiv/documents/R1406_nox_emission_boilers.pdf (2020-02-28).

Schweitzer, J. & Kristensen, P., 2015: Evaluation of the NOx emissions of the Danish population of gas boilers above 120 kW, Project report, October 2015. Danish Gas Technology Centre, Jean Schweitzer, Per G. Kristensen. Available at: <u>http://www.dgc.eu/sites/default/files/filarkiv/R1504_nox_large_boilers.pdf</u> (2020-02-28).

Serup, H., Falster, H., Gamborg, C., Gundersen, P., Hansen, L. Heding, N., Jacobsen, H.H., Kofman, P., Nikolaisen, L. & Thomsen, I.M. 1999: Træ til energiformål, Teknik – Miljø – Økonomi, 2. udgave, 1999, Videncenter for halm og flisfyring (In Danish).

Shell 2013: Shell product sheets. Available at: <u>http://www.epc.shell.com/Docs/GPCDOC_X_cbe_26724_key_14000376663</u> <u>3_201012210739.pdf</u> (2020-02-28).

Thistlethwaite, G. 2001a: Determination of Atmospheric Pollutant Emission Factors at a Small Coal-fired heating boiler, 2001. A report produced for the Department of the Environment, Transport and the Regions, the National Assembly for Wales, the Scottish Executive and the Department of the Environment for Northern Ireland by AEA Technology Environment.

Thistlethwaite, G. 2001b: Determination of Atmospheric Pollutant Emission Factors at a Small Industrial Wood-Burning Furnace, 2001. A report produced for the Department of the Environment, Transport and the Regions, the National Assembly for Wales, the Scottish Executive and the Department of the Environment for Northern Ireland by AEA Technology Environment.

TNO, 2001: The TNO CEPMEIP emission factor database 2001. Available on the internet at: www.air.sk/tno/cepmeip/ (2020-02-28).

Tønder, Søren Hvid, 2004: Shell refinery. Personal communication telephone, 2004.

Zarnaghi, 2020a: Personal communication, email from Ali Zarnaghi, Danish Energy Agency 28-02-2020.

Zarnaghi, 2020b: Personal communication, email from Ali Zarnaghi, Danish Energy Agency 24-03-2020.

Zarnaghi, 2020c: Personal communication, email from Ali Zarnaghi, Danish Energy Agency 24-03-2020.

Annexes

Annex 1:	Correspondence list between SNAP and CRF/NFR source categories
Annex 2:	Fuel rate
Annex 3:	Default Lower Calorific Value (LCV) of fuels and fuel cor- respondence list
Annex 4:	Emission factors
Annex 5:	Large point sources
Annex 6:	Adjustment of CO2 emission
Annex 7:	Uncertainty estimates
Annex 8:	Emission inventory 2018 based on SNAP sectors
Annex 9:	EU ETS data
Annex 10:	Implied emission factors for power plants and municipal waste incineration plants
Annex 11:	Time-series 1980/1985 – 2018
Annex 12:	Description of the Danish energy statistics

Annex 1 Correspondence list between SNAP and CRF/NFR source categories

Table 1.1	Correspondence list between SNAP and CRF / NFR s	ource cateo	pories for stationary combustion.
	snap_name	CRF id	CRF name
010100	Public power	1A1a	Public electricity and heat production
010101	Combustion plants >= 300 MW (boilers)	1A1a	Public electricity and heat production
010102	Combustion plants >= 50 and < 300 MW (boilers)	1A1a	Public electricity and heat production
010103	Combustion plants < 50 MW (boilers)	1A1a	Public electricity and heat production
010104	Gas turbines	1A1a	Public electricity and heat production
010105	Stationary engines	1A1a	Public electricity and heat production
010200	District heating plants	1A1a	Public electricity and heat production
010201	Combustion plants >= 300 MW (boilers)	1A1a	Public electricity and heat production
010202	Combustion plants >= 50 and < 300 MW (boilers)	1A1a	Public electricity and heat production
010203	Combustion plants < 50 MW (boilers)	1A1a	Public electricity and heat production
010204	Gas turbines	1A1a	Public electricity and heat production
010205	Stationary engines	1A1a	Public electricity and heat production
010300	Petroleum refining plants	1A1b	Petroleum refining
010301	Combustion plants >= 300 MW (boilers)	1A1b	Petroleum refining
010302	Combustion plants $>= 50$ and < 300 MW (boilers)	1A1b	Petroleum refining
010303	Combustion plants < 50 MW (boilers)	1A1b	Petroleum refining
010304	Gas turbines	1A1b	Petroleum refining
010305	Stationary engines	1A1b	Petroleum refining
010306	Process furnaces	1A1b	Petroleum refining
010400	Solid fuel transformation plants	1A1c	Oil and gas extraction
010401	Combustion plants >= 300 MW (boilers)	1A1c	Oil and gas extraction
010402	Combustion plants $>=$ 50 and $<$ 300 MW (boilers)	1A1c	Oil and gas extraction
010402	Combustion plants < 50 MW (boilers)	1A1c	Oil and gas extraction
010403	Gas turbines	1A1c	Oil and gas extraction
010404	Stationary engines	1A1c	Oil and gas extraction
010405	Coke oven furnaces	1A1c	_
010400		1A1c	Oil and gas extraction
010407	Other (coal gasification, liquefaction)	1A1c	Oil and gas extraction
	Coal mining, oil / gas extraction, pipeline compressors		Oil and gas extraction
010501	Combustion plants >= 300 MW (boilers)	1A1c	Oil and gas extraction
010502 010503	Combustion plants $>= 50$ and < 300 MW (boilers)	1A1c	Oil and gas extraction
	Combustion plants < 50 MW (boilers)	1A1c	Oil and gas extraction
010504	Gas turbines	1A1c	Oil and gas extraction
010505	Stationary engines	1A1c	Oil and gas extraction
010506	Pipeline compressors	1A3e i	Pipeline transport
020100	Commercial and institutional plants	1A4a i	Commercial/institutional: Stationary
020101	Combustion plants >= 300 MW (boilers)	1A4a i	Commercial/institutional: Stationary
020102	Combustion plants >= 50 and < 300 MW (boilers)	1A4a i	Commercial/institutional: Stationary
020103	Combustion plants < 50 MW (boilers)	1A4a i	Commercial/institutional: Stationary
020104	Stationary gas turbines	1A4a i	Commercial/institutional: Stationary
020105	Stationary engines	1A4a i	Commercial/institutional: Stationary
020106	Other stationary equipments	1A4a i	Commercial/institutional: Stationary
020200	Residential plants	1A4b i	Residential: Stationary
020201	Combustion plants >= 50 MW (boilers)	1A4b i	Residential: Stationary
020202	Combustion plants < 50 MW (boilers)	1A4b i	Residential: Stationary
020203	Gas turbines	1A4b i	Residential: Stationary
020204	Stationary engines	1A4b i	Residential: Stationary
020205	Other equipments (stoves, fireplaces, cooking)	1A4b i	Residential: Stationary
020300	Plants in agriculture, forestry and aquaculture	1A4c i	Agriculture/Forestry/Fishing: Stationary
020301	Combustion plants >= 50 MW (boilers)	1A4c i	Agriculture/Forestry/Fishing: Stationary
020302	Combustion plants < 50 MW (boilers)	1A4c i	Agriculture/Forestry/Fishing: Stationary
020303	Stationary gas turbines	1A4c i	Agriculture/Forestry/Fishing: Stationary
020304	Stationary engines	1A4c i	Agriculture/Forestry/Fishing: Stationary
020305	Other stationary equipments	1A4c i	Agriculture/Forestry/Fishing: Stationary
030100	Comb. in boilers, gas turbines and stationary	1A2g viii	Other manufacturing industry
030101	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry

Table 1.1 Correspondence list between SNAP and CRF / NFR source categories for stationary combustion.

	snap_name	CRF id	CRF name
030102	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
030103	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
030104	Gas turbines	1A2g viii	Other manufacturing industry
030105	Stationary engines	1A2g viii	Other manufacturing industry
030106	Other stationary equipments	1A2g viii	Other manufacturing industry
030200	Process furnaces without contact (a)	1A2g viii	Other manufacturing industry
030203	Blast furnace cowpers	1A2a	Iron and steel
030204	Plaster furnaces	1A2g viii	Other manufacturing industry
030205	Other furnaces	1A2g viii	Other manufacturing industry
030400	Iron and Steel	1A2a	Iron and steel
030401	Combustion plants >= 300 MW (boilers)	1A2a	Iron and steel
030402	Combustion plants >= 50 and < 300 MW (boilers)	1A2a	Iron and steel
030403	Combustion plants < 50 MW (boilers)	1A2a	Iron and steel
030404	Gas turbines	1A2a	Iron and steel
030405	Stationary engines	1A2a	Iron and steel
030406	Other stationary equipments	1A2a	Iron and steel
030500	Non-Ferrous Metals	1A2b	Non-ferrous metals
030501	Combustion plants >= 300 MW (boilers)	1A2b	Non-ferrous metals
030502	Combustion plants >= 50 and < 300 MW (boilers)	1A2b	Non-ferrous metals
030503	Combustion plants < 50 MW (boilers)	1A2b	Non-ferrous metals
030504	Gas turbines	1A2b	Non-ferrous metals
030505	Stationary engines	1A2b	Non-ferrous metals
030506	Other stationary equipments	1A2b	Non-ferrous metals
030600	Chemical and Petrochemical	1A2c	Chemicals
030601	Combustion plants >= 300 MW (boilers)	1A2c	Chemicals
030602	Combustion plants \geq 50 and $<$ 300 MW (boilers)	1A2c	Chemicals
030603	Combustion plants < 50 MW (boilers)	1A2c	Chemicals
030604	Gas turbines	1A2c	Chemicals
030605	Stationary engines	1A2c	Chemicals
030606	Other stationary equipments	1A2c	Chemicals
030700	Non-Metallic Minerals	1A2f	Non-metallic minerals
030701	Combustion plants >= 300 MW (boilers)	1A2f	Non-metallic minerals
030702	Combustion plants $>= 50$ and < 300 MW (boilers)	1A2f	Non-metallic minerals
030703	Combustion plants < 50 MW (boilers)	1A2f	Non-metallic minerals
030704	Gas turbines	1A2f	Non-metallic minerals
030705	Stationary engines	1A2f	Non-metallic minerals
030706	Other stationary equipments	1A2f	Non-metallic minerals
030800	Mining and Quarrying	1A2g viii	Other manufacturing industry
030801	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
030802	Combustion plants \geq 50 and $<$ 300 MW (boilers)	1A2g viii	Other manufacturing industry
030803	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
030804	Gas turbines	1A2g viii	Other manufacturing industry
030805	Stationary engines	1A2g viii	Other manufacturing industry
030806	Other stationary equipments	1A2g viii	Other manufacturing industry
030900	Food and Tobacco	1A2g vill	Food processing, beverages and tobacco
030901	Combustion plants >= 300 MW (boilers)	1A2e	Food processing, beverages and tobacco
030902	Combustion plants $>=$ 50 and < 300 MW (boilers)	1A2e	Food processing, beverages and tobacco
030903	Combustion plants < 50 MW (boilers)	1A2e	Food processing, beverages and tobacco
030904	Gas turbines	1A2e	Food processing, beverages and tobacco
030905	Stationary engines	1A2e	Food processing, beverages and tobacco
030906	Other stationary equipments	1A2e	Food processing, beverages and tobacco
031000	Textile and Leather	1A2g viii	Other manufacturing industry
031000	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031001	Combustion plants $>=$ 50 and $<$ 300 MW (boilers)	1A2g viii	Other manufacturing industry
031002	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031003	Gas turbines	1A2g viii	Other manufacturing industry
031004	Stationary engines	1A2g viii	Other manufacturing industry
031005	Other stationary equipments	1A2g viii	Other manufacturing industry
031000	Paper, Pulp and Print	1A2g vill 1A2d	Pulp, Paper and Print
001100	ו מיסה, ו מוף מות ו וווג	IAZU	ו מוף, ו מוסר מוסר וווו

	snap_name	CRF id	CRF name
031101	Combustion plants >= 300 MW (boilers)	1A2d	Pulp, Paper and Print
031102	Combustion plants \geq 50 and $<$ 300 MW (boilers)	1A2d	Pulp, Paper and Print
031103	Combustion plants < 50 MW (boilers)	1A2d	Pulp, Paper and Print
031104	Gas turbines	1A2d	Pulp, Paper and Print
031105	Stationary engines	1A2d	Pulp, Paper and Print
031106	Other stationary equipments	1A2d	Pulp, Paper and Print
031200	Transport Equipment	1A2g viii	Other manufacturing industry
031201	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031202	Combustion plants $>= 50$ and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031203	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031204	Gas turbines	1A2g viii	Other manufacturing industry
031205	Stationary engines	1A2g viii	Other manufacturing industry
031206	Other stationary equipments	1A2g viii	Other manufacturing industry
031300	Machinery	1A2g viii	Other manufacturing industry
031301	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031302	Combustion plants $>= 50$ and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031303	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031304	Gas turbines	1A2g viii	Other manufacturing industry
031305	Stationary engines	1A2g viii	Other manufacturing industry
031306	Other stationary equipments	1A2g viii	Other manufacturing industry
031400	Wood and Wood Products	1A2g viii	Other manufacturing industry
031401	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031402	Combustion plants $>= 50$ and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031403	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031404	Gas turbines	1A2g viii	Other manufacturing industry
031405	Stationary engines	1A2g viii	Other manufacturing industry
031406	Other stationary equipments	1A2g viii	Other manufacturing industry
031500	Construction	1A2g viii	Other manufacturing industry
031501	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031502	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031503	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031504	Gas turbines	1A2g viii	Other manufacturing industry
031505	Stationary engines	1A2g viii	Other manufacturing industry
031506	Other stationary equipments	1A2g viii	Other manufacturing industry
031600	Cement production	1A2f	Non-metallic minerals
031601	Combustion plants >= 300 MW (boilers)	1A2f	Non-metallic minerals
031602	Combustion plants >= 50 and < 300 MW (boilers)	1A2f	Non-metallic minerals
031603	Combustion plants < 50 MW (boilers)	1A2f	Non-metallic minerals
031604	Gas turbines	1A2f	Non-metallic minerals
031605	Stationary engines	1A2f	Non-metallic minerals
031606	Other stationary equipments	1A2f	Non-metallic minerals
032000	Non-specified (Industry)	1A2g viii	Other manufacturing industry
032001	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
032002	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
032003	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
032004	Gas turbines	1A2g viii	Other manufacturing industry
032005	Stationary engines	1A2g viii	Other manufacturing industry
032006	Other stationary equipment	1A2g viii	Other manufacturing industry

Sum of	_						Ye	ar				_
Fuel_rate_PJ												
fuel_type	fuel_id	fuel_gr_abbr	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
SOLID	101A	Other solid fossil										
	102A	Coal	253.4	344.3	286.8	300.8	323.4	270.3	371.9	276.3	234.3	196.
	103A	Fly ash (fossil)										
	106A	ВКВ	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.
	107A	Coke oven coke	1.3	1.4	1.2	1.2	1.2	1.3	1.2	1.3	1.3	1.
LIQUID	110A	Petroleum coke	4.5	4.4	4.3	5.7	7.5	5.3	5.9	6.0	5.3	6.
	203A	Residual oil	32.1	37.0	37.3	32.5	46.6	33.3	38.1	26.7	29.5	23.
	204A	Gas oil	63.9	67.6	58.7	64.7	56.7	56.5	60.9	54.1	51.5	50.
	206A	Kerosene	5.1	1.0	0.8	0.8	0.7	0.6	0.5	0.4	0.4	0.
	225A	Orimulsion						19.9	36.8	40.5	32.6	34.
	303A	LPG	3.0	2.8	2.5	2.6	2.6	2.8	3.1	2.6	2.8	2.
	308A	Refinery gas	14.2	14.5	14.9	15.4	16.4	20.8	21.4	16.9	15.2	15.
GAS	301A	Natural gas	76.1	86.1	90.5	102.5	114.6	132.7	156.3	164.5	178.7	187.
WASTE	114A	Waste	15.5	16.7	17.8	19.4	20.3	22.9	25.0	26.8	26.6	29.
THICK L	115A	Industrial waste	10.0	10.7	17.0	10.1	20.0		20.0	20.0	20.0	
BIOMASS	111A	Wood	16.7	17.9	18.6	20.1	19.7	19.5	20.7	20.5	19.7	20.
Diomitico	117A	Straw	12.5	13.3	13.9	13.4	12.7	13.1	13.5	13.9	13.9	13.
		Wood pellets	1.6	2.1	2.5	2.1	2.1	2.3	2.7	2.9	3.2	4.
	215A	Bio oil	0.7	0.7	0.7	0.8	0.2	0.3	0.1	0.0	0.0	
	309A	Biogas	0.7	0.9	0.9	1.1	1.3	1.8	2.0	2.4	2.7	2.
	310A		0.0	0.9	0.9	1.1			0.0	0.0		
	315A	Bio gasification gas					0.1	0.0	0.0	0.0	0.0	0.
Tatal	315A	Bio natural gas	501.4	011.0	FF4 F	500.4	<u> </u>	COO 5	700.4	055.0	617.0	500
Total			501.4	611.0	551.5	583.1	020.2	603.5	760.1	655.9	617.8	566.
Continued			Veer									
Sum of			Year									
Fuel_rate_PJ	اما اما	fuel en eleter	0000	0001	0000	0000	0004	0005	0000	0007	0000	000
fuel_type		fuel_gr_abbr	2000	2001	2002	2003	2004	2005	2006	2007	2008	200
SOLID	101A	Other solid fossil	1017	1710			100 5				170 -	0.
	102A	Coal	164.7	174.3	174.7	239.0	182.5	154.0	232.0	194.1	170.5	167.
	103A	Fly ash (fossil)										
	106A	BKB	0.0	0.0	0.0	0.0					0.0	0.
	107A	Coke oven coke	1.2	1.1	1.1	1.0	1.1	1.0	1.0	1.1	1.0	0.
LIQUID	110A	Petroleum coke	6.8	7.8	7.8	8.0	8.4	8.1	8.5	9.2	6.9	5.
	203A	Residual oil	18.0	20.2	24.8	27.3	23.5	21.1	25.4	19.3	15.3	14.
	204A	Gas oil	44.2	46.5	41.4	41.6	38.4	34.4	29.8	25.5	25.2	27.
	206A	Kerosene	0.2	0.3	0.3	0.3	0.2	0.3	0.2	0.1	0.1	0.
	225A	Orimulsion	34.1	30.2	23.8	1.9	0.0					
	303A	LPG	2.4	2.1	2.0	2.0	2.1	2.1	2.2	1.8	1.6	1.
	308A	Refinery gas	15.6	15.8	15.2	16.6	15.9	15.3	16.1	15.9	14.1	15.
GAS	301A	Natural gas	186.1	193.8	193.6	195.9	195.1	187.4	191.1	171.0	173.3	166.
WASTE	114A	Waste	29.8	31.3	33.3	35.1	35.3	35.8	36.9	38.1	39.6	37.
	115A	Industrial waste	0.5	1.4	1.9	1.5	2.0	2.0	1.5	1.6	2.0	1.
BIOMASS	111A	Wood	22.3	23.7	23.7	29.1	31.1	33.7	36.5	43.8	45.1	45.
	117A	Straw	12.2	13.7	15.7	16.9	17.9	18.5	18.5	18.8	15.9	17.
		Wood pellets	5.1	7.1	7.9	9.8	12.8	16.1	15.6	16.5	18.5	20.
	215A	Bio oil	0.0	0.2	0.1	0.4	0.6	0.8	1.1	1.2	1.8	1.
	309A	Biogas	2.9	3.0	3.4	3.6	3.7	3.8	3.9	3.9	3.9	4.
	310A	Bio gasification gas	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.
	315A	Bio natural gas	5.5	0.1	2.1		0.1	.	0.1	2.1	.	
	0.01	natarar guo	1									

Annex 2 Fuel rate

Continued												
Sum of							Ye	ar				
Fuel_rate_PJ												
fuel_type	fuel_id	fuel_gr_abbr	2010	2011	2012	2013	2014	2015	2016	2017	2018	
SOLID	101A	Other solid fossil	0.0	0.0	0.0	0.0						
	102A	Coal	163.0	135.5	106.2	135.0	107.0	76.0	88.2	65.8	67.2	
	103A	Fly ash (fossil)		0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.0	
	106A	ВКВ	0.0	0.0	0.0	0.0	0.0		0.0			
	107A	Coke oven coke	0.7	0.7	0.6	0.6	0.6	0.5	0.3	0.3	0.4	
LIQUID	110A	Petroleum coke	5.1	6.5	6.7	6.1	6.6	6.6	7.6	7.9	6.9	
	203A	Residual oil	12.8	7.8	7.2	5.5	4.5	4.2	4.1	4.1	3.2	
	204A	Gas oil	27.2	21.2	17.7	15.8	9.5	9.8	9.5	8.7	9.3	
	206A	Kerosene	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
	225A	Orimulsion										
	303A	LPG	1.5	1.5	1.7	1.5	1.2	1.8	2.0	2.2	2.2	
	308A	Refinery gas	14.3	13.7	14.8	14.8	15.4	16.2	14.4	15.6	15.0	
GAS	301A	Natural gas	186.0	157.5	147.3	139.5	119.4	120.7	122.5	116.5	113.0	
WASTE	114A	Waste	36.8	36.7	35.9	35.7	36.9	37.7	37.8	37.8	36.4	
	115A	Industrial waste	1.4	1.7	1.5	1.8	1.8	2.5	2.9	3.0	3.9	
BIOMASS	111A	Wood	51.3	48.8	48.6	46.4	45.0	53.1	53.9	57.2	61.6	
	117A	Straw	23.3	20.2	18.3	20.3	18.6	19.8	19.7	20.2	17.6	
	122A	Wood pellets	29.9	30.0	33.2	34.6	36.3	36.5	44.3	57.4	55.2	
	215A	Bio oil	2.0	0.8	1.1	0.9	0.7	0.6	0.3	0.2	0.2	
	309A	Biogas	4.3	4.1	4.4	4.6	5.2	5.3	5.9	5.9	6.4	
	310A	Bio gasification gas	0.2	0.3	0.4	0.4	0.4	0.5	0.5	1.0	1.4	
	315A	Bio natural gas					0.3	1.0	3.1	5.1	7.1	
Total			559.9	487.2	445.7	463.6	409.7	392.8	417.0	409.1	407.3	

 Table 2.2
 Detailed fuel consumption data for stationary combustion plants, 1990-2018,

 PJ. This table is available at: https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/greenhouse-gases/supporting-documentation/

Annex 3 Default Lower Calorific Value (LCV) of fuels and fuel correspondence list

Table 3.1 Time series	for calorific values of fu	eis (DEA	, 2019a)	•							
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Crude Oil, Average	GJ per tonne	42.40	42.40	42.40	42.70	42.70	42.70	42.70	43.00	43.00	43.00
Crude Oil, Golf	GJ per tonne	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80
Crude Oil, North Sea	GJ per tonne	42.70	42.70	42.70	42.70	42.70	42.70	42.70	43.00	43.00	43.00
Refinery Feedstocks	GJ per tonne	41.60	41.60	41.60	41.60	41.60	41.60	41.60	42.70	42.70	42.70
Refinery Gas	GJ per tonne	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00
LPG	GJ per tonne	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00
Naphtha (LVN)	GJ per tonne	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50
Motor Gasoline	GJ per tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
Aviation Gasoline	GJ per tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
JP4	GJ per tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
Other Kerosene	GJ per tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
JP1	GJ per tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
Gas/Diesel Oil	GJ per tonne	42.70	42.70	42.70	42.70	42.70	42.70		42.70	42.70	42.70
Fuel Oil	GJ per tonne	40.40	40.40	40.40	40.40	40.40	40.40	40.70	40.65	40.65	40.65
Orimulsion	GJ per tonne	27.60	27.60	27.60	27.60	27.60		28.02	27.72	27.84	27.58
Petroleum Coke	GJ per tonne	31.40	31.40	31.40	31.40	31.40	31.40		31.40	31.40	31.40
Waste Oil	GJ per tonne	41.90	41.90	41.90	41.90	41.90	41.90		41.90	41.90	41.90
White Spirit	GJ per tonne	43.50	43.50	43.50	43.50	43.50	43.50		43.50	43.50	43.50
Bitumen	GJ per tonne	39.80	39.80	39.80	39.80	39.80	39.80		39.80	39.80	39.80
Lubricants	GJ per tonne	41.90	41.90	41.90	41.90	41.90		41.90	41.90	41.90	41.90
Natural Gas	GJ per 1000 Nm ³	39.00	39.00	39.00	39.30	39.30	39.30		39.60	39.90	40.00
Town Gas	GJ per 1000 m ³	00.00	00.00	00.00	00.00	00.00	00.00	17.00	17.00	17.00	17.00
Electricity Plant Coal	GJ per tonne	25.30	25.40	25.80	25.20	24.50	24.50		24.96	25.00	25.00
Other Hard Coal	GJ per tonne	26.10	26.50	26.50	26.50	26.50	26.50		26.50	26.50	26.50
Coke	GJ per tonne	31.80	29.30	29.30	29.30	29.30	29.30		29.30	29.30	29.30
Brown Coal Briguettes	GJ per tonne	18.30	18.30	18.30	18.30	18.30	18.30		18.30	18.30	18.30
Straw	GJ per tonne	14.50	14.50	14.50	14.50	14.50		14.50	14.50	14.50	14.50
Wood Chips	GJ per Cubic metre	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Wood Chips	GJ per m ³	2.80 9.30	2.00 9.30	2.00 9.30	2.00 9.30	2.00 9.30	9.30	2.80 9.30	2.00 9.30	2.00 9.30	9.30
Firewood, Hardwood	GJ per m ³	9.30 10.40	10.40	10.40	10.40	10.40	10.40	10.40	9.30 10.40	10.40	10.40
Firewood, Conifer	GJ per tonne	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60
Wood Pellets	GJ per tonne	17.50	17.50	17.50	17.50	17.50	17.50		17.50	17.50	17.50
Wood Waste	GJ per Cubic metre	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70
Wood Waste	GJ per 1000 m ³	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
	GJ per tonne	5.20	5.20	5.20	0.20	5.20	5.20	5.20	23.00	23.00	23.00
Biogas		0.00	0.00	9.00	9.40	9.40	10.00	10 50	10.50		
Wastes	GJ per tonne GJ per tonne	8.20	8.20 26.70			9.40 26.70				10.50 26.70	10.50
Bioethanol		26.70		26.70	26.70 37.60	26.70	26.70		26.70 37.60		26.70
Liquid Biofuels	GJ per tonne	37.60	37.60	37.60			37.60 37.20			37.60	37.60
Bio Oil	GJ per tonne	37.20	37.20	37.20	37.20	37.20			37.20	37.20	37.20
Continued	01	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Crude Oil, Average	GJ per tonne	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
Crude Oil, Golf	GJ per tonne	41.80	41.80	41.80	41.80	41.80		41.80	41.80	41.80	41.80
Crude Oil, North Sea	GJ per tonne	43.00	43.00	43.00	43.00	43.00	43.00		43.00	43.00	43.00
Refinery Feedstocks	GJ per tonne	42.70	42.70	42.70	42.70	42.70		42.70	42.70	42.70	42.70
Refinery Gas	GJ per tonne	52.00	52.00	52.00	52.00	52.00	52.00		52.00	52.00	52.00
LPG	GJ per tonne	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00
Naphtha (LVN)	GJ per tonne	44.50	44.50	44.50	44.50	44.50		44.50	44.50	44.50	44.50
Motor Gasoline	GJ per tonne	43.80	43.80	43.80	43.80	43.80		43.80	43.80	43.80	43.80
Aviation Gasoline	GJ per tonne	43.80	43.80	43.80	43.80	43.80	43.80		43.80	43.80	43.80
JP4	GJ per tonne	43.80	43.80	43.80	43.80	43.80		43.80	43.80	43.80	43.80
Other Kerosene	GJ per tonne	43.50	43.50	43.50	43.50	43.50		43.50	43.50	43.50	43.50
JP1	GJ per tonne	43.50	43.50	43.50	43.50	43.50	43.50		43.50	43.50	43.50
Gas/Diesel Oil	GJ per tonne	42.70	42.70	42.70	42.70	42.70		42.70	42.70	42.70	42.70
Fuel Oil	GJ per tonne	40.65	40.65	40.65	40.65	40.65		40.65	40.65	40.65	40.65
Orimulsion	GJ per tonne	27.62	27.64	27.71	27.65	27.65		27.65	27.65	27.65	27.65
Petroleum Coke	GJ per tonne	31.40	31.40	31.40	31.40	31.40		31.40	31.40	31.40	31.40
Waste Oil	GJ per tonne	41.90	41.90	41.90	41.90	41.90		41.90	41.90	41.90	41.90
White Spirit	GJ per tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
Bitumen	GJ per tonne	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80

Table 3.1 Time series for calorific values of fuels (DEA, 2019a).

Continued										
Lubricants	GJ per tonne	41.90	41.90 41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90
Natural Gas	GJ per 1000 Nm ³	40.15	39.99 40.06	39.94	39.77	39.67	39.54	39.59	39.48	39.46
Town Gas	GJ per 1000 m ³	17.01	16.88 17.39	16.88	17.58	17.51	17.20	17.14	15.50	21.29
Electricity Plant Coal	GJ per tonne	24.80	24.90 25.15	24.73	24.60	24.40	24.80	24.40	24.30	24.60
Other Hard Coal	GJ per tonne	26.50	26.50 26.50	26.50	26.50	26.50	26.50	26.50	25.81	25.13
Coke	GJ per tonne	29.30	29.30 29.30	29.30	29.30	29.30	29.30	29.30	29.30	29.30
Brown Coal Briquettes	GJ per tonne	18.30	18.30 18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30
Straw	GJ per tonne	14.50	14.50 14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50
Wood Chips	GJ per Cubic metre	2.80	2.80 2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Wood Chips	GJ per m ³	9.30	9.30 9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30
Firewood, Hardwood	GJ per m ³	10.40	10.40 10.40	10.40	10.40	10.40	10.40	10.40	10.40	10.40
Firewood, Conifer	GJ per tonne	7.60	7.60 7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60
Wood Pellets	GJ per tonne	17.50	17.50 17.50	17.50	17.50	17.50	17.50	17.50	17.50	17.50
Wood Waste	GJ per Cubic metre	14.70	14.70 14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70
Wood Waste	GJ per 1000 m ³	3.20	3.20 3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
Biogas	GJ per tonne	23.00	23.00 23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00
Wastes	GJ per tonne	10.50	10.50 10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50
Bioethanol	GJ per tonne	26.70	26.70 26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70
Liquid Biofuels	GJ per tonne	37.60	37.60 37.60	37.60	37.60	37.60	37.60	37.60	37.50	37.50
Bio Oil	GJ per tonne	37.20	37.20 37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20
Continued		2010	2011 2012	2013	2014	2015	2016	2017	2018	
Crude Oil, Average	GJ per tonne	43.00	43.00 43.00	43.00	43.00	43.00	43.00	43.00	43.00	
Crude Oil, Golf	GJ per tonne	41.80	41.80 41.80	41.80	41.80	41.80	41.80	41.80	41.80	
Crude Oil, North Sea	GJ per tonne	43.00	43.00 43.00	43.00	43.00	43.00	43.00	43.00	43.00	
Refinery Feedstocks	GJ per tonne	42.70	42.70 42.70	42.70	42.70	42.70	42.70	42.70	42.70	
Refinery Gas	GJ per tonne	52.00	52.00 52.00	52.00	52.00	52.00	52.00	52.00	52.00	
LPG	GJ per tonne	46.00	46.00 46.00	46.00	46.00	46.00	46.00	46.00	46.00	
Naphtha (LVN)	GJ per tonne	44.50	44.50 44.50	44.50	44.50	44.50	44.50	44.50	44.50	
Motor Gasoline	GJ per tonne	43.80	43.80 43.80	43.80	43.80	43.80	43.80	43.80	43.80	
Aviation Gasoline	GJ per tonne	43.80	43.80 43.80	43.80	43.80	43.80	43.80	43.80	43.80	
JP4	GJ per tonne	43.80	43.80 43.80	43.80	43.80	43.80	43.80	43.80	43.80	
Other Kerosene	GJ per tonne	43.50	43.50 43.50	43.50	43.50	43.50	43.50	43.50	43.50	
JP1	GJ per tonne	43.50	43.50 43.50	43.50	43.50	43.50	43.50	43.50	43.50	
Gas/Diesel Oil	GJ per tonne	42.70	42.70 42.70	42.70	42.70	42.70	42.70	42.70	42.70	
Fuel Oil	GJ per tonne	40.65	40.65 40.65	40.65	40.65	40.65	40.65	40.65	40.65	
Orimulsion	GJ per tonne	27.65	27.65 27.65	27.65	27.65	27.65	27.65	27.65	27.65	
Petroleum Coke	GJ per tonne	31.40	31.40 31.40	31.40	31.40	31.40	31.40	31.40	31.40	
Waste Oil	GJ per tonne	41.90	41.90 41.90	41.90	41.90	41.90	41.90	41.90 43.50	41.90	
White Spirit	GJ per tonne	43.50	43.50 43.50	43.50	43.50	43.50	43.50 39.80		43.50	
Bitumen	GJ per tonne	39.80	39.80 39.80	39.80	39.80	39.80		39.80	39.80	
Lubricants	GJ per tonne	41.90	41.90 41.90	41.90	41.90	41.90	41.90	41.90	41.90	
Natural Gas Town Gas	GJ per 1000 Nm ³	39.46 21.35	39.51 39.55 21.37 19.30	38.99 19.31	39.53 20.20	39.64 19.80	39.63 20.28	39.66 20.80	39.59 20.82	
Electricity Plant Coal	GJ per 1000 m ³ GJ per tonne	24.44	24.38 24.23	24.49	20.20	24.10	24.29	20.80	20.02	
Other Hard Coal	GJ per tonne	24.44	24.38 24.23	24.49	24.70	24.10	26.10	26.88	26.64	
Coke	GJ per tonne	29.30	29.30 29.30	29.30	29.30	29.30	29.30	20.88	29.30	
Brown Coal Briquettes	GJ per tonne	29.30 18.30	18.30 18.30	18.30	18.30	18.30	18.30	18.30	18.30	
Straw	GJ per tonne	14.50	14.50 14.50	14.50	14.50	14.50	14.50	14.50	14.50	
Wood Chips	GJ per Cubic metre	2.80	2.80 2.80	2.80	2.80	2.80	2.80	2.80	2.80	
Wood Chips	GJ per m ³	2.80 9.30	9.30 9.30	2.80 9.30	2.80 9.30	2.00 9.30	2.00 9.30	2.80 9.30	2.80 9.30	
Firewood, Hardwood	GJ per m ³	9.30 10.40	9.30 9.30 10.40 10.40	10.40	10.40	10.40	10.40	10.40	10.40	
Firewood, Conifer	GJ per tonne	7.60	7.60 7.60	7.60	7.60	7.60	7.60	7.60	7.60	
Wood Pellets	GJ per tonne	17.50	17.50 17.50	17.50	17.50	17.50	17.50	17.50	17.50	
Wood Waste	GJ per Cubic metre	14.70	14.70 14.70	14.70	14.70	14.70	14.70	14.70	14.70	
Wood Waste	GJ per 1000 m ³	3.20	3.20 3.20	3.20	3.20	3.20	3.20	3.20	3.20	
Biogas	GJ per tonne	23.00	23.00 23.00	23.00	23.00	23.00	23.00	23.00	23.00	
Wastes	GJ per tonne	10.50	10.50 10.50	10.60	10.60	10.60	10.60	10.60	10.60	
Bioethanol	GJ per tonne	26.70	26.70 26.70	26.70	26.70	26.70	26.70	26.70	26.70	
Liquid Biofuels	GJ per tonne	37.50	37.50 37.50	37.50	37.50	37.50	37.50	37.50	37.50	
Bio Oil	GJ per tonne	37.20	37.20 37.20	37.20	37.20	37.20	37.20	37.20	37.20	
		-			~		,	~		

Danish Energy Agency	DCE Emission database	IPCC fuel category
Other Hard Coal	Coal	Solid
Coke	Coke oven coke	Solid
Electricity Plant Coal	Coal	Solic
Brown Coal Briquettes	BKB	Solic
-	Other solid fossil	Solic
-	Fly ash fossil	Solic
Orimulsion	Orimulsion	Liquic
Petroleum Coke	Petroleum coke	Liquic
Fuel Oil	Residual oil	Liquic
Waste Oil	Residual oil	Liquic
Gas/Diesel Oil	Gas oil	Liquio
Other Kerosene	Kerosene	Liquio
LPG	LPG	Liquio
Refinery Gas	Refinery gas	Liquio
Town Gas	Natural gas	Gas
Natural Gas	Natural gas	Gas
Straw	Straw	Biomass
Wood Waste	Wood	Biomass
Wood Pellets	Wood pellets	Biomass
Wood Chips	Wood	Biomass
Firewood, Hardwood & Conifer	Wood	Biomass
Waste Combustion (biomass)	Municipal wastes	Biomass
Bio fuels	Liquid biofuels	Biomass
Biogas	Biogas	Biomass
Biogas, other	Biogas	Biomass
Biogas, landfill	Biogas	Biomass
Biogas, sewage sludge	Biogas	Biomass
(Wood applied in gas engines)	Biomass gasification gas	Biomass
Biogas upgraded for distribution in	Bio natural gas	Biomass
the natural gas grid		
Biogas distributed in the town gas grid	Biogas	Biomass
Waste Combustion (fossil)	Fossil waste	Other fue

Table 3.2 Fuel category correspondence list, DEA, DCE and Climate Convention reporting (CRF).

Fuel	Emission factor	r, kg per GJ	Reference type	IPCC fuel category
	Biomass	Fossil fuel		
Coal		94.04 ¹⁾	Country specific	Solid
Brown coal briquettes		97.5	IPCC (2006)	Solid
Coke oven coke		107 ³⁾	IPCC (2006)	Solid
Other solid fossil fuels 6)		118 ¹⁾	Country specific	Solid
Fly ash fossil (from coal)		94.04	Country specific	Solid
Petroleum coke		93 ³⁾	Country-specific	Liquid
Residual oil		79.42 ¹⁾	Country-specific	Liquid
Gas oil		74.1 ¹⁾	Country-specific	Liquid
Kerosene		71.9	IPCC (2006)	Liquid
Orimulsion		80 ²⁾	Country-specific	Liquid
LPG		63.1	IPCC (2006)	Liquid
Refinery gas		56.144	Country-specific	Liquid
Natural gas, offshore gas turbines		57.639	Country-specific	Gas
Natural gas, other		56.89	Country-specific	Gas
Waste	63.3 ³⁾⁴⁾	+ 42.5 ¹⁾³⁾⁴⁾	Country-specific	Biomass and Other fuels
Straw	100		IPCC (2006)	Biomass
Wood	112		IPCC (2006)	Biomass
Wood pellets	112		IPCC (2006)	Biomass
Bio oil	70.8		IPCC (2006)	Biomass
Biogas	84.1		Country-specific	Biomass
Biomass gasification gas	142.9 ⁵⁾		Country-specific	Biomass
Bio natural gas	55.55		Country-specific	Biomass

Annex 4 Emission factors

Table 4.1 CO₂ emission factors, 2018.

1) Plant specific data from EU ETS incorporated for individual plants.

2) Not applied in 2018. Orimulsion was applied in Denmark in 1995 - 2004.

3) Plant specific data from EU ETS incorporated for cement industry and sugar, lime and mineral wool production.

4) The emission factor for waste is (42.5+63.3) kg CO_2 per GJ waste. The fuel consumption and the CO_2 emission have been disaggregated to the two IPCC fuel categories Biomass and Other fossil fuels in CRF. The corresponding IEF for CO_2 , Other fuels is 94.44 kg CO_2 per GJ fossil waste (not including plant specific data).

5) Includes a high content of CO_2 in the gas.

6) Anodic carbon. Not applied in Denmark in 2018.

Time series have been estimated for:

- Coal
- Residual oil
- Refinery gas
- Natural gas applied in offshore gas turbines
- Natural gas, other
- Waste, fossil part
- Industrial waste, biomass part

For all other fuels the same emission factor has been applied for 1990-2018.

Year	Coal, kg per	Residual oil,	Refinery gas,	Natural gas,	Natural gas,	Waste, fossil	Industrial
	GJ	kg per GJ	kg per GJ	offshore gas	other,	part	waste,
				turbines,	kg per GJ		biomass part
				kg per GJ			
1990	94	78.7	57.6	57.469	56.9	37	86.7
1991	94	78.7	57.6	57.469	56.9	37	86.7
1992	94	78.7	57.6	57.469	56.9	37	84.2
1993	94	78.7	57.6	57.469	56.9	37	83.0
1994	94	78.7	57.6	57.469	56.9	37	83.0
1995	94	78.7	57.6	57.469	56.9	37	81.1
1996	94	78.7	57.6	57.469	56.9	37	79.6
1997	94	78.7	57.6	57.469	56.9	37	79.6
1998	94	78.7	57.6	57.469	56.9	37	79.6
1999	94	78.7	57.6	57.469	56.9	37	79.6
2000	94	78.7	57.6	57.469	57.1	37	79.6
2001	94	78.7	57.6	57.469	57.25	37	79.6
2002	94	78.7	57.6	57.469	57.28	37	79.6
2003	94	78.7	57.6	57.469	57.19	37	79.6
2004	94	78.7	57.6	57.469	57.12	37	79.6
2005	94	78.7	57.6	57.469	56.96	37	79.6
2006	94.4	78.6	57.812	57.879	56.78	37	79.6
2007	94.3	78.5	57.848	57.784	56.78	37	79.6
2008	94.0	78.5	57.948	56.959	56.77	37	79.6
2009	93.6	78.9	56.817	57.254	56.69	37	79.6
2010	93.6	79.2	57.134	57.314	56.74	37	79.6
2011	94.73	79.25	57.861	57.379	56.97	37.5	79.6
2012	94.25	79.21	58.108	57.423	57.03	40.0	79.6
2013	93.95	79.28	58.274	57.295	56.79	42.5	79.6
2014	94.17	79.49	57.620	57.381	56.95	42.5	79.6
2015	94.46	79.17	57.508	57.615	57.06	42.5	79.6
2016	94.95	79.29	57.335	57.704	57.01	42.5	79.6
2017	94.37	79.19	57.109	57.628	57.00	42.5	79.6
2018	94.04	79.42	56.144	57.639	56.89	42.5	79.6

Table 4.2 CO₂ emission factors, time series.

Fuel group	Fuel	CRF source category	CRF source category	SNAP	factor, g per GJ	Reference
SOLID	Coal	1A1a	Public electricity and heat production	0101 0102	0.9	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Pulverised bituminous coal com- bustion, Wet bottom.
		1A2 a-g	Industry	03	10	IPCC (2006), Tier 1, Table 2-3, Manufacturing industries.
		1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2.5, Residential, Bituminous coal.
		1A4c i	Agriculture/Forestry	0203	10	IPCC (2006), Tier 1, Table 2-4, Commercial, coal. ¹⁾
	BKB	1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2-5, Residential, brown coal briquettes
	Coke oven coke	1A2 a-g	Industry	03	10	IPCC (2006), Tier 1, Table 2-4, Commercial, coke oven coke.
		1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2-5, Residential, coke oven coke.
	Anodic carbon	1A2 a-g	Industry	03	10	IPCC (2006), Tier 1, Table 2-3, Manufacturing industries.
	Fossil fly ash	1A1a	Public electricity and heat production	0101	0.9	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Pulverised bituminous coal com- bustion, Wet bottom.
IQUID	Petroleum coke	1A2 a-g	Industry	03	3	IPCC (2006), Tier 1, Table 2-3, Industry, petroleum coke.
		1A4a	Commercial/ Institutional	0201	10	IPCC (2006), Tier 1, Table 2-4, Commercial, Petroleum coke.
		1A4b	Residential	0202	10	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, Petroleum coke
		1A4c	Agriculture/Forestry	0203	10	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, Petroleum coke
	Residual oil	1A1a	Public electricity and heat production	010101	0.8	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Residual fuel oil.
				010102 010103	1.3	Nielsen et al. (2010a)
				010104	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual oil.
				010105	4	IPCC (2006), Tier 3, Table 2-6, Utility, Large diesel engines
				010203	0.8	IPCC (2006), Tier 3, Table 2-6, Utility Boiler, Residual fuel oil.
		1A1b	Petroleum refining	010306	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual fuel oil.
		1A2 a-g	Industry	03	1.3	Nielsen et al. (2010a)
				Engines	4	IPCC (2006), Tier 3, Table 2-6, Utility, Large diesel engines
		1A4a	Commercial/ Institutional	0201	1.4	IPCC (2006), Tier 3, Table 2-10, Commercial, residual fuel oil boilers.
		1A4b	Residential	0202	1.4	IPCC (2006), Tier 3, Table 2-9, Residential, residual fuel oil.
		1A4c	Agriculture/Forestry	0203	1.4	IPCC (2006), Tier 3, Table 2-10, Commercial, residual fuel oil boilers. ¹⁾ .
	Gas oil	1A1a	Public electricity and heat production	010101 010102 010103	0.9	IPCC (2006), Tier 3, Table 2-6, Utility, ga oil, boilers.
				010104	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil.
				010105	24	Nielsen et al. (2010a)
				010202 010203	0.9	IPCC (2006), Tier 3, Table 2-6, Utility, ga oil, boilers.
		1A1b	Petroleum refining	010306	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil.
		1A1c	Oil and gas extraction	010504	3	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil.
		1A2 a-g	Industry	03	0.2	IPCC (2006), Tier 3, Table 2-7, Industry, gas oil, boilers.
				Tur- bines	3	IPCC (2006), Tier 1, Table 2-3, Industry, gas oil.
				Engines	24	Nielsen et al. (2010a)

	Table 4.3	CH ₄ emission	factors and	references,	2018.
--	-----------	--------------------------	-------------	-------------	-------

Fuel group	Fuel	CRF source	CRF source category	SNAP	factor,	Reference
		category 1A4a	Commercial/	0201	g per GJ 0.7	IPCC (2006), Tier 3, Table 2-10,
		IAta	Institutional	0201	0.7	Commercial, gas oil.
				020105	24	Nielsen et al. (2010a)
		1A4b i	Residential	0202	0.7	IPCC (2006), Tier 3, Table 2.9,
				000004	0.4	Residential, gas oil.
		1A4c	Agriculture/Forestry	020204	<u>24</u> 0.7	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-10,
		TA4C	Agriculture/Porestry	0203	0.7	Commercial, gas oil^{1} .
				020304	24	Nielsen et al. (2010a)
	Kerosene	1A2 a-g	Industry	03	3	IPCC (2006), Tier 1, Table 2-3, Industry, other kerosene.
		1A4a	Commercial/ Institutional	0201	10	IPCC (2006), Tier 1, Table 2-4, Commercial, other kerosene.
		1A4b i	Residential	0202	10	IPCC (2006), Tier 1, Table 2-5, Residential/agricultural, other kerosene.
		1A4c i	Agriculture/Forestry	0203	10	IPCC (2006), Tier 1, Table 2-5, Residential/agricultural, other kerosene.
	LPG	1A1a	Public electricity and heat production	0101 0102	1	IPCC (2006), Tier 1, Table 2-2, Energy Industries, LPG.
		1A1b	Petroleum refining	0102	1	IPCC (2006), Tier 1, Table 2-2,
				0.00	•	Energy Industries, LPG.
		1A2 a-g	Industry	03	1	IPCC (2006), Tier 1, Table 2-3, Industry, LPG
		1A4a	Commercial/ Institutional	0201	5	IPCC (2006), Tier 1, Table 2-4, Commercial, LPG.
		1A4b i	Residential	0202	5	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, LPG.
		1A4c i	Agriculture/ Forestry	0203	5	IPCC (2006), Tier 1, Table 2-5, Residential / agricultural, LPG.
	Refinery gas	1A1b	Petroleum refining	010304	1.7	Assumed equal to natural gas fuelled gas turbines. Nielsen et al. (2010a)
				010306	1	IPCC (2006), Tier 1, Table 2-2, refinery gas.
GAS	Natural gas	1A1a	Public electricity and	010101 010102	1	IPCC (2006), Tier 3, Table 2-6, Utility, natural gas, boilers.
			heat production	010102		Otility, flatural gas, bollers.
				010104	1.7	Nielsen et al. (2010a)
				010105	481	Nielsen et al. (2010a)
				010202	1	IPCC (2006), Tier 3, Table 2-6,
				010203		Utility, natural gas, boilers.
		1A1b	Petroleum refining	010306	1	Assumed equal to industrial boilers.
		1A1c	Oil and gas extraction	010503	1	Assumed equal to industrial boilers.
		1A2 a-g	Industry	010504 Other	<u>1.7</u> 1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7,
		TAZ a-y	muustry	Other	1	Industry, natural gas boilers.
				Gas tur-	1.7	Nielsen et al. (2010a)
				bines		
				Engines	481	Nielsen et al. (2010a)
		1A4a	Commercial/Institu-	0201	1	IPCC (2006), Tier 3, Table 2-10, Commer-
			tional	020105	481	cial, natural gas boilers. Nielsen et al. (2010a)
		1A4b i	Residential	020103	1	IPCC (2006), Tier 3, Table 2-9. Residen- tial, natural gas boilers.
				020204	481	Nielsen et al. (2010a)
		1A4c i	Agriculture/ Forestry	0203	1	IPCC (2006), Tier 3, Table 2-10, Commercial, natural gas boilers ¹⁾ .
			-	020304	481	Nielsen et al. (2010a)
WAST E	Waste	1A1a	Public electricity and heat production	0101 0102	0.34	Nielsen et al. (2010a)
		1A2 a-g	Industry	03	30	IPCC (2006), Tier 1, Table 2-3, Industry, municipal wastes.
		1A4a	Commercial/	0201	30	IPCC (2006), Tier 1, Table 2-3,
	Industrial waste	1A2f	Institutional Industry	0316	30	Industry, municipal wastes ²⁾ . IPCC (2006), Tier 1, Table 2-3, Industry, industrial wastes.
BIO- MASS	Wood	1A1a	Public electricity and heat production	0101	3.1	Nielsen et al. (2010a)

ıb İ	Fuel	CRF source category	CRF source category	SNAP	Emission factor, g per GJ	Reference
				0102	11	IPCC (2006), Tier 3, Table 2-6, Utility boilers, wood
		1A2 a-g	Industry	03	11	IPCC (2006), Tier 3, Table 2-7, Industry, wood, boilers.
		1A4a	Commercial/ Institu- tional	0201	11	IPCC (2006), Tier 3, Table 2-10, Commercial, wood.
		1A4b i	Residential	0202	110.77	DCE estimate based on technology distribution, Nielsen et al. (2020) ³⁾
	-	1A4c i	Agriculture/ Forestry	0203	11	IPCC (2006), Tier 3, Table 2-10, Commercial, wood. ¹⁾ .
	Straw	1A1a	Public electricity and heat production	0101	0.47	Nielsen et al. (2010a)
				0102	30	IPCC (2006), Tier 1, Table 2-2, Energy industries, other primary solid bin mass
		1A4b i	Residential	0202	300	IPCC (2006), Tier 1, Table 2-5, Residential, other primary solid biomass
		1A4c i	Agriculture/ Forestry	020300	300	IPCC (2006), Tier 1, Table 2-5, Agriculture, other primary solid biomass
				020302	30	IPCC (2006), Tier 1, Table 2-2, Energy industries, other primary solid bir mass (large agricultural plants considere equal to this plant category)
	Wood pellets	1A1a	Public electricity and heat production	0101	3.1	Nielsen et al. (2010a)
				0102	11	IPCC (2006), Tier 3, Table 2-6, Utility boilers, wood
		1A2 a-g	Industry	03	11	IPCC (2006), Tier 3, Table 2-7, Industry, wood, boilers.
		1A4a	Commercial/ Institu- tional	0201	11	IPCC (2006), Tier 3, Table 2-10, Commercial, wood.
		1A4b i 1A4c i	Residential Agriculture/ Forestry	0202 0203	<u>3</u> 11	Paulrud et al. (2005) IPCC (2006), Tier 3, Table 2-10,
	Bio oil	1A1a	Public electricity and	010102	3	Commercial, wood. ¹⁾ . IPCC (2006), Tier 1, Table 2-2,
			heat production	010105	24	Energy industries, biodiesels. Nielsen et al. (2010a) assumed same emission factor as for gas oil fuelled en-
				0102	3	gines. IPCC (2006), Tier 1, Table 2-2,
						Energy industries, biodiesels.
		1A2 a-g	Industry	03	3	IPCC (2006), Tier 1, Table 2-3, Industry, biodiesels.
		1A4b i	Residential	030902 0202	0.2 10	- IPCC (2006), Tier 1, Table 2-5, Residential, biodiesels.
	Biogas	1A1a	Public electricity and heat production	0101	1	IPCC (2006), Tier 1, Table 2-2, Energy industries, other biogas.
				010105	434 1	Nielsen et al. (2010a) IPCC (2006), Tier 1, Table 2-2,
		1A2 a-g	Industry	03	1	Energy industries, other biogas. IPCC (2006), Tier 1, Table 2-3,
				Engines	434	Industry, other biogas. Nielsen et al. (2010a)
		1A4a	Commercial/	0201	5	IPCC (2006), Tier 1, Table 2-4,
			Institutional	020105	434	Commercial, other biogas. Nielsen et al. (2010a)
		1A4b	Residential	0202	1	Assumed equal to natural gas.
		1A4c i	Agriculture/ Forestry	0203	5	IPCC (2006), Tier 1, Table 2-5, Agriculture, other biogas.
		-		020304	434	Nielsen et al. (2010a)
	Bio gasification gas	1A1a	Public electricity and heat production	010101	1	Assumed equal to biogas.
		1A4a	Commercial/	010105		Nielsen et al. (2010a)
		1848	Institutional	020105	١ð	Nielsen et al. (2010a)

Fuel group	Fuel	CRF source category	CRF source category	SNAP	Emission factor, g per GJ	Reference
	Bio natural gas	1A1a	Public electricity and heat production	0101 0102	1	Assumed equal to natural gas.
		1A2 a-g	Industry	03	1	Assumed equal to natural gas.
		1A4a	Commercial/ Institutional	0201	1	Assumed equal to natural gas.
		1A4b	Residential	0202	1	Assumed equal to natural gas.
		1A4c	Agriculture/ Forestry	0203	1	Assumed equal to natural gas.

1. Assumed same emission factors as for commercial plants. Plant capacity and technology are similar for Danish plants.

2. Assumed same emission factor as for industrial plants. Plant capacity and technology is similar to industrial plants rather than to residential plants.

 Aggregated emission factor based on the technology distribution in the sector (Nielsen et al., 2020) and technology specific emission factors that refer to Paulrud et al. (2005), Johansson et al. (2004) and Olsson & Kjällstrand (2005). The emission factor is within the IPCC (2006) interval for residential wood combustion (100-900 g per GJ).

> In general, the same CH_4 emission factors have been applied for 1990-2018. However, time series have been estimated for both natural gas fuelled engines and biogas fuelled engines, residential wood combustion, natural gas fuelled gas turbines³⁴ and waste incineration plants^{Error!} Bookmark not defined.

Table 4.4 CH₄ emission factors, time series.

Year	Natural gas	Biogas fuelled	Residential wood	Waste	Natural gas fuelled
	fuelled engines	engines	combustion,	incineration	gas turbines,
	Emission factor,	Emission factor,	g per GJ	g per GJ	g per GJ
	g per GJ	g per GJ			
1990	266	239	327	0.59	1.5
1991	309	251	321	0.59	1.5
1992	359	264	314	0.59	1.5
1993	562	276	308	0.59	1.5
1994	623	289	302	0.59	1.5
1995	632	301	296	0.59	1.5
1996	616	305	289	0.59	1.5
1997	551	310	283	0.59	1.5
1998	542	314	276	0.59	1.5
1999	541	318	270	0.59	1.5
2000	537	323	263	0.59	1.5
2001	522	342	256	0.59	1.5
2002	508	360	248	0.59	1.6
2003	494	379	240	0.59	1.6
2004	479	397	227	0.51	1.7
2005	465	416	215	0.42	1.7
2006	473	434	206	0.34	1.7
2007	481	434	197	0.34	1.7
2008	481	434	188	0.34	1.7
2009	481	434	178	0.34	1.7
2010	481	434	167	0.34	1.7
2011	481	434	160	0.34	1.7
2012	481	434	152	0.34	1.7
2013	481	434	145	0.34	1.7
2014	481	434	138	0.34	1.7
2015	481	434	131	0.34	1.7
2016	481	434	124	0.34	1.7
2017	481	434	117	0.34	1.7
2018	481	434	111	0.34	1.7

³⁴ A minor emission source.

⁼ uel group	Fuel	CRF source	CRF source category	SNAP	Emission factor, g per GJ	Reference
SOLID	Coal	category 1A1a	Public electricity and heat production	0101	0.8	Henriksen (2005)
				0102	1.4	IPCC (2006), Tier 3, Table 2.6, Utility source, pulverised bituminous coal, wet bottom boiler.
		1A2 a-g	Industry	03	1.5	IPCC (2006), Tier 1, Table 2-3, Manufac- turing industries, coal
		1A4b i	Residential	0202	1.5	IPCC (2006), Tier 1, Table 2-5, Residential, coal
		1A4c i	Agriculture/ Forestry	0203	1.5	IPCC (2006), Tier 1, Table 2-4, Commercial, coal ¹⁾
	ВКВ	1A4b i	Residential	0202	1.5	IPCC (2006), Tier 1, Table 2-5, Residential, brown coal briquettes
	Coke oven coke	1A2 a-g	Industry	03	1.5	IPCC (2006), Tier 1, Table 2-3, Industry, coke oven coke
		1A4b i	Residential	020200	1.5	IPCC (2006), Tier 1, Table 2-5, Residential, coke oven coke
	Anodic carbon	1A2 a-g	Industry	03	1.5	IPCC (2006), Tier 1, Table 2-3, manufac- turing industries, other bituminous coal
	Fossil fly ash	1A1a	Public electricity and heat production	0101	0.8	Assumed equal to coal.
_IQ- JID	Petroleum coke	1A2 a-g	Industry – other	03	0.6	IPCC (2006), Tier 1, Table 2-3, Industry, petroleum coke
				031600	1.5	-
		1A4a	Commercial/ Institutional	0201	0.6	IPCC (2006), Tier 1, Table 2-4, Commercial, petroleum coke
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5, Residential, petroleum coke
		1A4c i	Agriculture/ Forestry	0203	0.6	IPCC (2006), Tier 1, Table 2-5, Residential/Agricultural, petroleum coke
	Residual oil	1A1a	Public electricity and heat production	010101	0.3	IPCC (2006), Tier 3, Table 2-6, Utility, residual fuel oil
				010102 010103	5	Nielsen et al. (2010a)
				010104 010105	0.6	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual fuel oil
				010203	0.3	IPCC (2006), Tier 3, Table 2-6, Utility, residual fuel oil
		1A1b	Petroleum refining	010306	0.6	IPCC (2006), Tier 1, Table 2-2, Energy industries, residual fuel oil
		1A2 a-g	Industry	03	5	Nielsen et al. (2010a)
				Engines	0.6	IPCC (2006), Tier 1, Table 2-3, manufacturing industries and construction
		1A4a	Commercial/ Institutional	0201	0.3	residual fuel oil. IPCC (2006), Tier 3, Table 2-10, Commercial, fuel oil boilers
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5, Residen- tial, residual fuel oil
		1A4c i	Agriculture/ Forestry	0203	0.3	IPCC (2006), Tier 3, Table 2-10, Commercial, fuel oil boilers ¹⁾
	Gas oil	1A1a	Public electricity and heat production	010101 010102 010103	0.4	IPCC (2006), Tier 3, Table 2-6, Utility, gas oil boilers
				010104	0.6	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil
				010105	2.1	Nielsen et al. (2010a)
				0102	0.4	IPCC (2006), Tier 3, Table 2-6, Utility, gas oil boilers
		1A1b	Petroleum refining	010306	0.6	IPCC (2006), Tier 1, Table 2-2, Energy industries, gas oil

Table 4.5 N₂O emission factors and references, 2018.

Fuel group	Fuel	CRF source	CRF source category	SNAP	Emission factor,	Reference
group		category			g per GJ	
		1A1c	Oil and gas extraction	010504	0.6	IPCC (2006), Tier 1, Table 2-2,
			See			Energy industries, gas oil
		1A2 a-g	Industry	03	0.4	IPCC (2006), Tier 3, Table 2-7,
					••••	Industry, gas oil boilers
				Tur-	0.6	IPCC (2006), Tier 1, Table 2-3,
				bines		Industry, gas oil
				Engines	2.1	Nielsen et al. (2010a)
		1A4a	Commercial/	0201	0.4	IPCC (2006), Tier 3, Table 2-10,
			Institutional			Commercial, gas oil boilers
				Engines	2.1	Nielsen et al. (2010a)
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5, Residen-
						tial, gas oil
				Engines	2.1	Nielsen et al. (2010a)
		1A4c	Agriculture/	0203	0.4	IPCC (2006), Tier 3, Table 2-10,
			Forestry			Commercial, gas oil boilers ¹⁾
				Engines	2.1	Nielsen et al. (2010a)
	Kerosene	1A2 a-g	Industry	03	0.6	IPCC (2006), Tier 1, Table 2-3,
						Industry, other kerosene
		1A4a	Commercial/	0201	0.6	IPCC (2006), Tier 1, Table 2-4,
			Institutional			Commercial, other kerosene
		1A4b i	Residential	0202	0.6	IPCC (2006), Tier 1, Table 2-5,
						Residential, other kerosene
		1A4c i	Agriculture/	0203	0.6	IPCC (2006), Tier 1, Table 2-4,
			Forestry			Commercial, other kerosene ¹⁾
	LPG	1A1a	Public electricity and heat		0.1	IPCC (2006), Tier 1, Table 2-2,
			production	0102		Energy industries, LPG
		1A1b	Petroleum refining	010306	0.1	IPCC (2006), Tier 1, Table 2-2,
						Energy industries, LPG
		1A2 a-g	Industry	03	0.1	IPCC (2006), Tier 1, Table 2-3, Industry,
						LPG
		1A4a	Commercial/	0201	0.1	IPCC (2006), Tier 1, Table 2-4,
			Institutional			Commercial, LPG
		1A4b i	Residential	0202	0.1	IPCC (2006), Tier 1, Table 2-5,
			A : 1. /			Residential, LPG
		1A4c i	Agriculture/	0203	0.1	IPCC (2006), Tier 1, Table 2-5,
	Definition	4.4.4.	Forestry	010001		Residential/Agricultural, LPG
	Refinery gas	1A1b	Petroleum refining	010304	1	Assumed equal to natural gas fuelled tur-
				010306	0.1	bines. Based on Nielsen et al. (2010a).
				010306	0.1	IPCC (2006), Tier 1, Table 2-2,
GAS	Natural gas	1A1a	Public electricity and heat	010101	1	Energy industries, refinery gas IPCC (2006), Tier 3, Table 2-6,
JAJ	Natural yas	IAId	production	010101	I	Natural gas, Utility, boiler
			production	010102		rational gao, otility, bolion
				010103	1	Nielsen et al. (2010a)
				010104	0.58	Nielsen et al. (2010a)
				010105	1	IPCC (2006), Tier 3, Table 2-6,
				0102		Natural gas, Utility, boiler
			Petroleum refining	010306	1	IPCC (2006), Tier 3, Table 2-6,
		1A1h		5.0000		
		1A1b	relioieum reinning			Natural gas, Utility, boiler
			_	010504	1	Natural gas, Utility, boiler Nielsen et al. (2010a)
		1A1c	Oil and gas extraction	010504	1	Nielsen et al. (2010a)
			_	010504	1 1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7,
		1A1c	Oil and gas extraction	03	1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers
		1A1c	Oil and gas extraction	03 Gas tur-		Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7,
		1A1c	Oil and gas extraction	03 Gas tur- bines	1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers Nielsen et al. (2010a)
		1A1c 1A2 a-g	Oil and gas extraction Industry	03 Gas tur- bines Engines	1 1 0.58	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers Nielsen et al. (2010a) Nielsen et al. (2010a)
		1A1c	Oil and gas extraction Industry Commercial/	03 Gas tur- bines Engines 020100	1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers Nielsen et al. (2010a) Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-10,
		1A1c 1A2 a-g	Oil and gas extraction Industry	03 Gas tur- bines Engines 020100 020103	1 1 0.58 1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers Nielsen et al. (2010a) Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-10, Commercial, natural gas boilers
		1A1c 1A2 a-g 1A4a	Oil and gas extraction Industry Commercial/ Institutional	03 Gas tur- bines Engines 020100 020103 Engines	1 1 0.58 1 0.58	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers Nielsen et al. (2010a) Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-10, Commercial, natural gas boilers Nielsen et al. (2010a)
		1A1c 1A2 a-g	Oil and gas extraction Industry Commercial/	03 Gas tur- bines Engines 020100 020103	1 1 0.58 1	Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-7, Industry, natural gas boilers Nielsen et al. (2010a) Nielsen et al. (2010a) IPCC (2006), Tier 3, Table 2-10, Commercial, natural gas boilers

Fuel group	Fuel	CRF source category	CRF source category	SNAP	Emission factor, g per GJ	Reference
		1A4c i	Agriculture/ Forestry	0203	<u>g per GJ</u> 1	IPCC (2006), Tier 3, Table 2-10, Commercial, natural gas boilers ¹⁾
			lolooliy	Engines	0.58	Nielsen et al. (2010a)
WAST E	Waste	1A1a	Public electricity and heat production		1.2	Nielsen et al. (2010a)
L		1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3, Industry, wastes
		1A4a	Commercial/ Institutional	0201	4	IPCC (2006), Tier 1, Table 2-4, Commercial, municipal wastes
	Industrial waste	1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3, Industry, industrial wastes
BIO- MASS	Wood	1A1a	Public electricity and heat production	0101	0.8	Nielsen et al. (2010a)
				0102	4	IPCC (2006), Tier 1, Table 2-2, Energy industries, wood
		1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3, Industry, wood
		1A4a	Commercial/ Institutional	0201	4	IPCC (2006), Tier 1, Table 2-4, Commercial, wood
		1A4b i	Residential	0202	4	IPCC (2006), Tier 1, Table 2-5, Residential, wood
	01.0	1A4c i	Agriculture/ Forestry	0203	4	IPCC (2006), Tier 1, Table 2-5, Agriculture, wood
	Straw	1A1a	Public electricity and heat production		1.1	Nielsen et al. (2010a)
				0102	4	IPCC (2006), Tier 1, Table 2-2, Energy industries, other primary solid bio- mass
		1A4b i	Residential	0202	4	IPCC (2006), Tier 1, Table 2-5, Residential, other primary solid biomass
		1A4c i	Agriculture/ Forestry	0203	4	IPCC (2006), Tier 1, Table 2-5, Agriculture, other primary solid biomass
	Wood pellets	1A1a	Public electricity and heat production		0.8	Nielsen et al. (2010a)
				0102	4	IPCC (2006), Tier 1, Table 2-2, Energy industries, wood
		1A2 a-g	Industry	03	4	IPCC (2006), Tier 1, Table 2-3, Industry, wood
		1A4a	Commercial/ Institutional	0201	4	IPCC (2006), Tier 1, Table 2-4, Commercial, wood
	Bio oil	1A4b i	Residential	0202	4	IPCC (2006), Tier 1, Table 2-5, Residential, wood
		1A1a	Public electricity and heat production	0101 0102 Engines	0.6 2.1	IPCC (2006), Tier 3, Table 2-2, Utility, biodiesels Assumed equal to gas oil.
		1A2 a-g	Industry	Engines 03	0.4	Assumed equal to gas oil. Based on Nielsen et al. (2010a) Assumed equal to gas oil.
		1A4b i	Residential	0202	0.4	IPCC (2006), Tier 1, Table 2-5, Residential, biodiesels
	Biogas	1A1a	Public electricity and heat production	0101 0102	0.1	IPCC (2006), Tier 1, Table 2-2, Energy industries, other biogas
				Engines	1.6	Nielsen et al. (2010a)
		1A2 a-g	Industry	03	0.1	IPCC (2006), Tier 1, Table 2-3, Industry, other biogas
				Engines	1.6	Nielsen et al. (2010a)
		1A4a	Commercial/ Institutional	0201	0.1	IPCC (2006), Tier 1, Table 2,4, Commercial, other biogas
				Engines	1.6	Nielsen et al. (2010a)
		1A4b	Residential	0202	1	Assumed equal to natural gas.
		1A4c i	Agriculture/	0203	0.1	IPCC (2006), Tier 1, Table 2-5,
			Forestry			Agriculture, other biogas

Fuel	Fuel	CRF	CRF source category	SNAP	Emission	Reference
group		source			factor,	
		category			g per GJ	
				Engines	1.6	Nielsen et al. (2010a)
	Bio gasification gas	1A1a	Public electricity and heat production	010101	0.1	Assumed equal to biogas.
				010105	2.7	Nielsen et al. (2010a)
		1A4a	Commercial/ Institutional	020105	2.7	Nielsen et al. (2010a)
	Bio natural gas	1A1a	Public electricity and heat production	0101 or 0102	1	Assumed equal to natural gas.
		1A2 a-g	Industry	03	1	Assumed equal to natural gas.
		1A4a	Commercial/ Institutional	0201	1	Assumed equal to natural gas.
		1A4b	Residential	0202	1	Assumed equal to natural gas.
		1A4c	Agriculture/ Forestry	0203	1	Assumed equal to natural gas.

1) In Denmark, plants in Agriculture/Forestry are similar to Commercial plants.

Time series have been estimated for natural gas fuelled gas turbines and refinery gas fuelled turbines. All other emission factors have been applied unchanged for 1990-2018.

Table 4.0	N_2O emission factors, time serie	5.
Year	Natural gas fuelled gas turbines.	Refinery gas fuelled gas turbines.
	Emission factor, g per GJ	Emission factor, g per GJ
1990	2.2	2.2
1991	2.2	2.2
1992	2.2	2.2
1993	2.2	2.2
1994	2.2	2.2
1995	2.2	2.2
1996	2.2	2.2
1997	2.2	2.2
1998	2.2	2.2
1999	2.2	2.2
2000	2.2	2.2
2001	2.0	2.0
2002	1.9	1.9
2003	1.7	1.7
2004	1.5	1.5
2005	1.4	1.4
2006	1.2	1.2
2007	1.0	1.0
2008	1.0	1.0
2009	1.0	1.0
2010	1.0	1.0
2011	1.0	1.0
2012	1.0	1.0
2013	1.0	1.0
2014	1.0	1.0
2015	1.0	1.0
2016	1.0	1.0
2017	1.0	1.0
2018	1.0	1.0

Table 4.6 N₂O emission factors, time series.

Technology	Emission factor,	Reference
	g per GJ	
Stoves (-1989)	430	Methane emissions from residential bio-
		mass combustion, Paulrud et al. (2005)
		(SMED report, Sweden)
Stoves (1990-2007)	215	Assumed 1/2 the emission factor for old
		stoves.
Stoves (2008-2014)	125	Estimated based on the emission factor
		for new stoves and the emission factors
		for NMVOC.
Stoves (2015-2016)	125	Same as modern stove (2008-2015)
Stoves (2017-)	125	Same as modern stove (2008-2015)
Eco labelled stoves / new advanced stoves (-	2	Low emissions from wood burning in an
2014)		ecolabelled residential boiler. Olsson &
		Kjällstrand (2005).
Eco labelled stoves / new advanced stoves	2	Same as advanced/ecolabelled stoves
(2015-2016)		
Eco labelled stoves / new advanced stoves	2	Same as advanced/ecolabelled stoves
(2017-)		
Open fireplaces and similar	430	Assumed equal to old stove.
Masonry heat accumulating stoves and similar	215	Assumed equal to old stove.
Boilers with accumulation tank (-1979)	211	Methane emissions from residential bio-
		mass combustion, Paulrud et al. 2005
		(SMED report, Sweden)
Boilers without accumulation tank (-1979)	256	Methane emissions from residential bio-
		mass combustion, Paulrud et al. 2005
		(SMED report, Sweden)
Boilers with accumulation tank (1980-)	50	Emission characteristics of modern and
		old-type residential boilers fired with wood
		logs and wood pellets. Johansson et al.
		(2004)
Boilers without accumulation tank (1980-)	50	Emission characteristics of modern and
		old-type residential boilers fired with wood
		logs and wood pellets. Johansson et al.
		(2004)

Table 4.7 Technology specific CH₄ emission factors for residential wood combustion.

Table 4.8 SO₂ emission factors time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

 Table 4.9
 NOx emission factors time series, g per GJ for the years 1990 to 2018.

 This table is available at: https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/

Table 4.10 NMVOC emission factors time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.11 CO emission factors time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.12 NH_3 emission factors time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.13 TSP emission factors, time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.14 PM₁₀ emission factors, time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.15 PM_{2.5} emission factors, time series, g per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

 Table 4.16
 BC emission factors, time series, g per GJ for the years 1990 to 2018.

 This table is available at: https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/

Table 4.17 As emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.18 Cd emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.19 Cr emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

 Table 4.20
 Cu emission factors time series, mg per GJ, for the years 1990 to 2018.

 This table is available at: https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/

Table 4.21 Hg emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.22 Ni emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.23 Pb emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.24 Se emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Table 4.25 Zn emission factors time series, mg per GJ, for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation//</u>

Table 4.26 PAH emission factors time series, µg pr GJ for the years 1990 to 2018.

This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

 Table 4.27
 HCB emission factors time series, ng per GJ for the years 1990 to 2018.

 This table is available at: https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/

Table 4.28 PCDD/F emission factors time series, ng per GJ for the years 1990 to 2018. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

 Table 4.29
 PCB emission factors time series, ng per GJ for the years 1990 to 2018.

 This table is available at: https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/

Annex 5 Large point sources

Large point sources	
AffaldPlus+, Naestved Forbrae	
Affaldplus+, Slagelse Forbr. ar	nd DONG Slagelse KVV
Affaldscenter aarhus - Forbrae	endsanlaegget
Amagerforbraending	
Amagervaerket	
Ardagh Glass Holmegaard A/S	3
Asnaesvaerket	
Avedoerevaerket	
AVV Forbraendingsanlaeg	
Bofa I/S	
Centralkommunernes Transmi	ssionsselskab F_berg
Cheminova	
Dalum Kraftvarmevaerk	
Danisco Grindsted Dupont	
DanSteel	
Enstedvaerket	
Esbjergvaerket	
Faxe Kalk	
Fjernvarme Fyn, Centrum Varr	mecentral
Frederikshavn Affaldskraftvarn	
Fynsvaerket	
H.C.Oerstedsvaerket	
Haldor Topsoee	
Hammel Fjernvarmeselskab	
-	
Helsingoer Kraftvarmevaerk	
Herningvaerket Hilleroed Kraftvarmevaerk	
/S Faelles Forbraending	
/S Kara Affaldsforbraendingsa	amaey
/S Kraftvarmevaerk Thisted	
/S Reno Nord	
/S Reno Syd	
/S Vestforbraending	
Koege Kraftvarmevaerk	
Kolding Forbraendingsanlaeg	TAS
Kommunekemi	
Kyndbyvaerket	
_90 Affaldsforbraending	
Varicogen	
Nordic Sugar Nakskov	
Nordic Sugar Nykoebing	
Nordjyllandsvaerket	
Nybro Gasbehandlingsanlaeg	
Odense Kraftvarmevaerk	
Destkraft	
Randersvaerket Verdo	
Rensningsanlaegget Lynetten	
Rockwool A/S Doense	
Rockwool A/S Vamdrup	
Saint-Gobain Isover A/S	
Shell Raffinaderi	
Silkeborg Kraftvarmevaerk	

Large point sources

Skaerbaekvaerket Soenderborg Kraftvarmevaerk Statoil Raffinaderi Studstrupvaerket Svanemoellevaerket Svendborg Kraftvarmevaerk Viborg Kraftvarme Vordingborg Kraftvarme Aalborg Portland AarhusKarlshamn Denmark A/S

Table 5.2	Large point sources,	aggregated fuel	consumption in 2018.

nfr_id_EA	fuel_id	fuel_gr_abbr	Sum of Fuel_TJ
1A1a	 102A	COAL	61849
	103A	SUB-BITUMINOUS	31
	111A	WOOD	16250
	114A	WASTE	36436
	117A	STRAW	4792
	122A	Wood Pellets	33888
	203A	RESIDUAL OIL	707
	204A	GAS OIL	502
	215A	BIO OIL	23
	301A	NATURAL GAS	14084
	303A	LPG	1
	309A	BIOGAS	113
1A1a Total			168677
1A1b	203A	RESIDUAL OIL	376
	204A	GAS OIL	4
	301A	NATURAL GAS	513
	303A	LPG	0
	308A	REFINERY GAS	14981
1A1b Total			15875
1A1c	204A	GAS OIL	0
	301A	NATURAL GAS	108
1A1c Total			108
1A2a	204A	GAS OIL	0
	301A	NATURAL GAS	1654
	303A	LPG	2
1A2a Total			1656
1A2c	204A	GAS OIL	0
	301A	NATURAL GAS	1208
	303A	LPG	1
1A2c Total			1209
1A2e	102A	COAL	452
	107A	COKE OVEN COKE	100
	111A	WOOD	538
	203A	RESIDUAL OIL	2043
	204A	GAS OIL	25
	215A	BIO OIL	2
	301A	NATURAL GAS	387
	303A	LPG	11
	309A	BIOGAS	95
1A2e Total			3654
1A2f	102A	COAL	2257
			0005
	110A 115A	PETROLEUM COKE INDUSTR. WASTES	6695 3891

	203A	RESIDUAL OIL	83
	204A	GAS OIL	117
	215A	BIO OIL	0
	301A	NATURAL GAS	7
1A2f Total			13050
1A2g viii	102A	COAL	388
	107A	COKE OVEN COKE	266
	204A	GAS OIL	0
	301A	NATURAL GAS	1334
	303A	LPG	1
1A2g viii Tota	al		1989
1A4a i	111A	WOOD	245
	114A	WASTE	0
	309A	BIOGAS	0
1A4a i Total			245
Grand Total			206463

 Table 5.3
 Large point sources, plant specific emissions¹).

 Year
 2018

Year	2018																			
nfr_id	lps_name	SO ₂	NOx	NMVOC	со	NH₃	TSP	PM 10	PM2.5	BC ²⁾	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn	PCDD /F
1A1a	AffaldPlus+, Naestved Forbraendingsan- laeg	х	х	х	х	х	х	x	х	х		х			х					х
1A1a	Affaldplus+, Slagelse Forbr. and DONG Slagelse KVV	х	х	х	x	х	х	х	х	x		х			х					х
1A1a	Affaldscenter aarhus - Forbraendsan- laegget	х	х	x			х	х	х	х		х			х					х
1A1a	Amagerforbraending	х	х		х	х	х	х	х	х	х	х	х	х	х	х	х			х
1A1a	Amagervaerket	х	х		х		х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Asnaesvaerket	х	х				х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Avedoerevaerket	х	х		х		х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	AVV Forbraendingsanlaeg	х	х		Х							х			х					х
1A1a	Bofa I/S	х	х		х						х	х	х	х	х	х	х			х
1A1a	Centralkommunernes Transmis- sionsselskab F_berg	х	х																	
1A1a	Esbjergvaerket	х	х				х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Fjernvarme Fyn, Centrum Varmecentral		х																	
1A1a	Frederikshavn Affaldskraftvarmevaerk	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х			х
1A1a	Fynsvaerket	х	х				х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	H.C.Oerstedsvaerket		х		х															
1A1a	Helsingoer Kraftvarmevaerk		х																	
1A1a	Herningvaerket	х	х				х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Hilleroed Kraftvarmevaerk		х																	
1A1a	I/S Kara Affaldsforbraendingsanlaeg	х	х		х		х	х	х	х					х					х
1A1a	I/S Reno Nord	х	х	х	х	х	х	х	х	х	х	х	х	х		х	х			
1A1a	I/S Reno Syd	х	х	х	х		х	х	х	х					х					х
1A1a	I/S Vestforbraending	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х			х
1A1a	Koege Kraftvarmevaerk		х																	
1A1a	Kolding Forbraendingsanlaeg TAS	х	х	х	х	х	х	х	х	х					х					х
1A1a	Kommunekemi	х	х	х	х		х	х	х	х										
1A1a	Kyndbyvaerket	х	х		х						х	х	х	х	х	х	х	х	х	
1A1a	L90 Affaldsforbraending	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х			х
1A1a	Nordjyllandsvaerket	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Odense Kraftvarmevaerk	х	х				х	х	х	х										
1A1a	Oestkraft	х	х				х	х	х	х										

1A1a	Silkeborg Kraftvarmevaerk		х																	
1A1a	Skaerbaekvaerket	х	х	х	х		х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Soenderborg Kraftvarmevaerk	х	х		х		х	х	х	х	х	х			х					х
1A1a	Studstrupvaerket	х	х				х	х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Svanemoellevaerket		х		х															
1A1a	Svendborg Kraftvarmevaerk	х	х		х		х	х	х	х	х	х	х	х	х	х	х			х
1A1a	Viborg Kraftvarme		х																	
1A1a	Vordingborg Kraftvarme	х	х																	
1A1a	Dalum Kraftvarmevaerk	х	х				х	х	х	х										
1A1a	Randersvaerket Verdo	х	х				х	х	х	х										
1A1a	I/S Kraftvarmevaerk Thisted	х	х		х		х	х	х	х										х
1A1a	Hammel Fjernvarmeselskab	х	х	х	х		х	х	х	х		х			х					х
1A1b	Shell Raffinaderi	х	х																	
1A1b	Statoil Raffinaderi	х	х																	
1A1c	Nybro Gasbehandlingsanlaeg		х																	
1A2a	DanSteel		х																	
1A2c	Haldor Topsoee		х																	
1A2e	Maricogen		х		х															
1A2e	Nordic Sugar Nakskov	х	х																	
1A2e	Nordic Sugar Nykoebing	х	х				х	х	х	х										
1A2e	AarhusKarlshamn Denmark A/S	х	х				х	х	х	х										
1A2e	Danisco Grindsted Dupont		х																	
1A2f	Faxe Kalk	х	х																	
1A2f	Aalborg Portland	х	х		х	х	х	х	х	х					х					
1A2g viii	Ardagh Glass Holmegaard A/S		х																	
1A2g viii	Rockwool A/S Doense	х	х																	
1A2g viii	Rockwool A/S Vamdrup	х	х																	
1A2g viii	Saint-Gobain Isover A/S		х																	
1A4a i	Rensningsanlaegget Lynetten	х	х		х		х	х	х	х		х			х		х			х
Total		2895	10789	57	6645	93	319	257	179	6	20	7	31	27	111	38	53	206	194	119
Total emis	ssion from stationary combustion	6256	28009	15251	106135	2200	12411	11672	11284	1288	138	661	1341	573	220	1151	2139	399	25414	28997
Share of t	otal emission from stationary combustion	46%	39%	0.4%	6%	4.2%	3%	2%	2%	0.5%	14%	1.1%	2%	5%	51%	3%	2%	52%	0.8%	0.4%
based on	plant specific data, %																			

1) Emissions of the pollutants marked with "x" are plant specific. Emission of other pollutants is estimated based on emission factors. The total shown *in this table* only includes plant specific data.

2) Based on particle size distribution and BC fractions.

Annex 6 Adjustment of CO_2 emission

rabio orr rajaounone or		, =0100,	•								
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Actual Degree Days	Degree days	2857	3284	3022	3434	3148	3297	3837	3236	3217	3056
Normal Degree Days	Degree days	0	0	0	6603	3285	394	-1117	-2135	-427	427
Net electricity import	PJ	25.4	-7.1	13.5	4.3	-17.4	-2.9	-55.4	-26.1	-15.6	-8.3
Actual CO2 emission	1 000 000 tonnes	0.0	0.0	Total	38.3	47.9	42.1	44.4	48.1	45.0	58.3
Adjusted CO ₂ emission	1 000 000 tonnes	0.0	0.0	0.0	44.5	46.3	45.0	45.5	44.3	44.3	45.2
Continued		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Actual Degree Days	Degree days	2902	3279	3011	3150	3113	3068	2908	2807	2853	3061
Normal Degree Days	Degree days	886.95	391.572	3360.99	4401.9	3055.05	2463.75	1642.5	1642.5	1642.5	821.25
Net electricity import	PJ	2.4	-2.1	-7.5	-30.8	-10.3	4.9	-25.0	-3.4	5.2	1.2
Actual CO2 emission	1 000 000 tonnes	48.4	44.5	41.3	37.3	38.9	38.4	43.2	37.2	33.4	41.1
Adjusted CO ₂ emission	1 000 000 tonnes	42.4	40.8	39.4	38.0	38.6	36.8	36.4	34.9	34.6	35.5
Continued		2010	2011	2012	2013	2014	2015	2016	2017	2018	
Actual Degree Days	Degree days	3742	2970	3234	3207	2664	2921	2998	2970	2900	
Normal Degree Days	Degree days	0	0	0	1807	1807	2070	1511	2595	2300	
Net electricity import	PJ	-4.1	4.7	' 18.8	3.9	10.3	21.3	18.2	16.4	18.8	
Actual CO2 emission	1 000 000 tonnes	35.6	32.9	32.0	32.5	27.7	24.0	25.9	21.6	19.1	
Adjusted CO2 emission	1 000 000 tonnes	34.9	34.0	32.3	31.6	28.7	28.2	26.6	23.4	22.6	

Table 6.1 Adjustment of CO₂ emission (DEA, 2019a).

Annex 7 Uncertainty estimates

Table 7.1 Uncertainty estimation, approach 1, GHG. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/greenhouse-gases/supporting-documentation/</u>

 Table 7.2
 Uncertainty estimation, approach 1, CO₂. This table is available at:

 https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/greenhouse-gases/supporting-documentation/

Table 7.3 Uncertainty estimation, approach 1, CH₄ This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/greenhouse-gases/supporting-documentation/</u>

Table 7.4 Uncertainty estimation, approach 1, N₂O. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/greenhouse-gases/supporting-documentation/</u>

Table 7.5 Uncertainty estimates for non-GHGs. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

CRF	SNAP	CO ₂ , kt	CH4, t	N₂O, t
IA1a	010100	0.000	1.161	1.161
	010101	6215.530	116.580	69.783
	010102	918.511	47.011	39.022
	010103	496.130	8.877	15.641
	010104	570.047	76.077	29.994
	010105	298.546	3805.547	11.516
	010200	0.000	0.975	0.975
	010201	0.000	0.000	0.000
	010202	79.901	1.467	1.382
	010203	534.063	348.002	93.044
	010205	0.000	0.000	0.000
IA1b	010304	111.027	3.334	1.961
	010306	780.396	14.673	2.043
A1c	010503	6.119	0.108	0.108
	010504	1253.580	36.973	21.749
	010505	0.000	0.000	0.000
I A2a	030400	12.353	0.000	0.000
nea	030400	94.259	1.656	1.654
IA2b	030402		0.000	0.000
		0.000		
IA2c	030600	282.062	15.823	7.048
	030602	34.819	0.612	0.611
	030603	0.000	0.000	0.000
	030604	33.943	1.014	0.597
	030605	0.000	58.298	0.215
A2d	031100	60.342	10.733	4.524
	031102	0.000	0.000	0.000
	031103	0.000	0.000	0.000
	031104	18.968	0.567	0.333
A2e	030900	719.852	18.904	12.289
	030902	143.468	11.170	9.602
	030903	97.468	3.547	4.087
	030904	55.252	1.651	0.971
	030905	14.897	465.489	1.404
IA2f	030700	341.058	11.219	5.972
	030703	22.070	2.361	0.360
	030705	0.424	3.587	0.004
	031600	1030.964	157.169	29.101
	031604	0.000	0.000	0.000
	031605	0.000	0.000	0.000
A2gviii	030104	0.000	0.000	0.000
	030105	0.000	0.000	0.000
	030106	3.991	0.070	0.070
	030800	51.502	10.602	4.396
	031000	12.313	0.555	0.337
	031005	0.000	0.000	0.000
	031200	9.938	0.300	0.217
	031205	0.000	0.000	0.000
	031300	60.471	7.799	3.377
	031305	1.691	14.301	0.017
	031400	5.511	4.386	1.652
	031403	0.000	2.494	0.907

Annex 8 Emission inventory 2018 based on SNAP sectors

Continued				
	031405	0.594	5.023	0.006
	031500	23.598	0.423	0.313
	032000	56.515	44.429	18.238
	032002	86.031	6.907	76.162
	032004	0.017	0.001	0.000
	032005	0.801	16.790	0.047
1A4ai	020100	607.108	29.835	14.941
	020103	3.885	2.869	1.037
	020105	4.234	343.307	1.213
1A4bi	020200	1837.898	3723.228	205.314
	020202	5.253	0.106	0.111
	020204	5.391	45.250	0.056
1A4ci	020300	137.934	598.278	10.878
	020302	0.007	0.630	0.084
	020303	0.001	0.000	0.000
	020304	18.262	473.493	1.363
	020305	0.000	0.000	0.000
Grand Total		17158.999	10555.877	708.070

Table 8.2 Emission inventory 2018 for non-GHGs based on SNAP sectors. This table is available at: <u>https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/air-emissions/air-pollutants/supporting-documentation/</u>

Annex 9 EU ETS data for coal

EU ETS data are available for the years 2006-2018. Corresponding values for lower calorific value (LCV) and implied emission factor (IEF) for CO_2 for 2006-2009 are shown in Figure 9.1. The IEF factors include the oxidation factors.

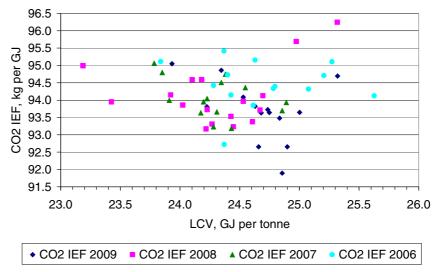
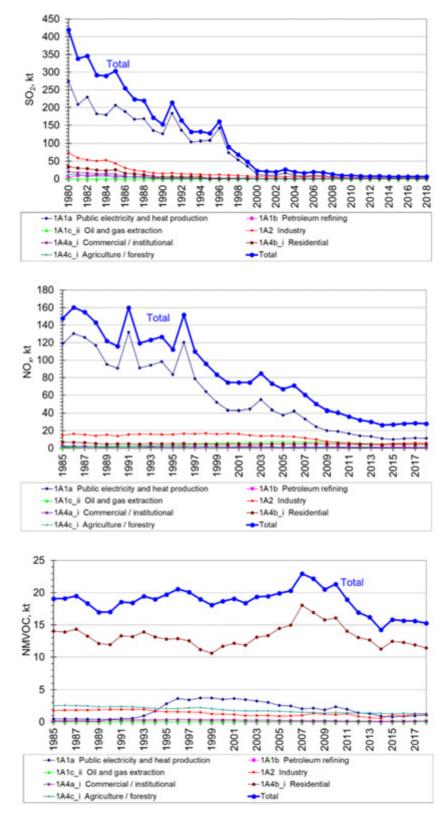


Figure 9.1 EU ETS data for LCV and CO_2 IEF (including oxidation factor) for coal. Data for the years 2006-2009.

Annex 10 Implied emission factors for power plants and municipal waste incineration plants


Table 10.1	Implied emission	factors for municipa	al waste incineration	plants, 2018.
------------	------------------	----------------------	-----------------------	---------------

Pollutant	Implied	Unit
	emission factor	
SO ₂	6.2	g /GJ
NO _x	75	g / GJ
TSP	0.51	g / GJ
PM ₁₀	0.44	g / GJ
PM _{2.5}	0.36	g / GJ
As	0.39	mg / GJ
Cd	0.29	mg / GJ
Cr	1.21	mg / GJ
Cu	1.22	mg / GJ
Hg	1.15	mg / GJ
Ni	2.20	mg / GJ
Pb	4.49	mg / GJ
Se	1.15	mg / GJ
Zn	2.48	mg / GJ

Table 10.2 Implied emission factors for power plants combusting coal, 2018.

Pollutant	Implied	Unit
	emission	
	factor	
SO ₂	10.3	g / GJ
NO _x	25	g / GJ
TSP	2.32	g / GJ
PM ₁₀	2.01	g / GJ
PM _{2.5}	1.62	g / GJ
As	0.34	mg / GJ
Cd	0.02	mg / GJ
Cr	0.25	mg / GJ
Cu	0.21	mg / GJ
Hg	0.89	mg / GJ
Ni	0.46	mg / GJ
Pb	0.23	mg / GJ
Se	3.74	mg / GJ
Zn	0.78	mg / GJ

Annex 11 Time-series 1980/1985 - 2018

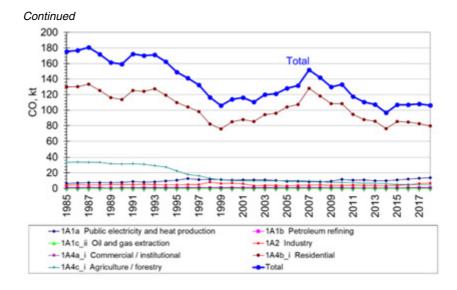


Figure 11.1 Time-series for fuel consumption and emissions, 1980/1985 - 2018.

Annex 12 Description of the Danish energy statistics

This description of the Danish energy statistics has been prepared by Denmark's National Environmental Research Institute, NERI (now DCE) in cooperation with the Danish Energy Agency (DEA) as background information to the Danish National Inventory Report (NIR).

The Danish energy statistics system

DEA is responsible for the Danish energy balance. Main contributors to the energy statistics outside DEA are Statistics Denmark and Danish Energy Association (before Association of Danish Energy Companies). The statistics is performed using an integrated statistical system building on an Access database and Excel spreadsheets.

The DEA follows the recommendations of the International Energy Agency as well as Eurostat.

The national energy statistics is updated annually and all revisions are immediately included in the published statistics, which can be found on the DEA homepage. It is an easy task to check for breaks in a series because the statistics is 100 % time-series oriented.

The national energy statistics does not include Greenland and Faroe Islands.

For historical reasons, DEA receive monthly information from the Danish oil companies regarding Danish deliveries of oil products to Greenland and Faroe Islands. However, the monthly (MOS) and annual (AOS) reporting of oil statistics to Eurostat and IEA exclude Greenland and Faroe Islands. For all other energy products, the Danish figures are also excluding Greenland and Faroe Islands.

Reporting to the Danish Energy Agency

The Danish Energy Agency receives monthly statistics for the following fuel groups:

- Crude oil and oil products.
 - Monthly data from 46 oil companies, the main purpose is monitoring oil stocks according to the oil preparedness system.
- Natural gas.
 - Fuel/flare from platforms in the North Sea.
 - Natural gas balance from the regulator Energinet.dk (National monopoly).
- Coal and coke.
 - Power plants (94 %).
 - Industry companies (4 %).
 - Coal and coke traders (2 %).
- Electricity.
 - Monthly reporting by e-mail from the regulator Energinet.dk (National monopoly).
 - The statistics covers:
 - Production by type of producer.
 - Own use of electricity.
 - Import and export by country.
 - Domestic supply (consumption + distribution loss).

- Town gas (quarterly) from two town gas producers.
- The large central power plants also report monthly consumption of biomass.

Annual data includes renewable energy including waste. The DEA conducts a biannual survey on wood pellets and wood fuel. Statistics Denmark conducts biannual surveys on the energy consumption in the service and industrial sectors. Statistics Denmark prepares annual surveys on forest (wood fuel) & straw.

Other annual data sources include:

- DEA:
- Survey on production of electricity and heat and fuels used.
- Survey on end use of oil.
- Survey on end use of natural gas.
- Survey on end use of coal and coke.
- DCE (former NERI), Aarhus University.
- Energy consumption for domestic air transport.
- Danish Energy Association (Association of Danish Energy companies).
- Survey on electricity consumption.
- Ministry of Taxation.
- Border trade.
- Centre for Biomass Technology.
- Annual estimates of final consumption of straw and wood chips.

Annual revisions

In general, DEA follows the same procedures as in the Danish national account. This means that normally only figures for the last two years are revised.

Aggregating the energy statistics on SNAP level

The sectors used in the official energy statistics have been mapped to SNAP categories, used in the Danish emission database. DCE aggregates the official energy statistics to SNAP level based on a source correspondence table.

In cooperation between DEA and DCE, a fuel correspondence table has been developed mapping the fuels used by the DEA in the official energy statistics with the fuel codes used in the Danish national emission database. The fuel correspondence table between fuel categories used by the DEA, DCE and NFR is presented in Annex 3A-3.

The mapping between the energy statistics and the SNAP and fuel codes used by DCE can be seen in the table below.

Table 12.1 Correspondence between the Danish national energy statistics and the SNAP nomenclature (only stationary combustion part shown).

tionary combustion part shown).	1				
Unit: TJ		End-	use	Т	ansformation
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
Foreign Trade					
- Border Trade					
Motor Gasoline					
Gas-/Diesel Oil					
 Petroleum Coke 	0202	Petrokoks	110A		
Vessels in Foreign Trade					
- International Marine Bunkers					
Gas-/Diesel Oil					
Fuel Oil					
Lubricants					
Energy Sector Extraction and Gasification					
- Extraction					
Natural Gas	010504	Naturgas	301A		
- Gasification	010304	Naturgas	501A		
Biogas, Landfill	091006	Bionas	309A		
Biogas, Other	091006		309A		
Refineries		- 3			
- Own Use	1			1	
Refinery Gas	010306	Raffinaderigas	308A		
LPG	010306	-	303A		
Gas-/Diesel Oil	010306	Gas & Dieselolie	204A		
Fuel Oil	010306	Fuelolie &	203A		
		Spildolie			
Transformation Sector					
Large-scale Power Units					
- Fuels Used for Power Production					
Gas-/Diesel Oil				0101	204A
Fuel Oil				0101	203A
 Electricity Plant Coal 				0101	102A
Straw				0101	117A
Large-Scale CHP Units					
- Fuels Used for Power Production					0004
Refinery Gas				0103	308A
LPG				0101	303A
 - Naphtha (LVN) - Gas-/Diesel Oil 				0101 0101	210A 204A
 Fuel Oil Petroleum Coke 				0101 0101	203A 110A
Orimulsion				0101	225A
Natural Gas				0101	301A
Electricity Plant Coal				0101	102A
Straw				0101	117A
Wood Chips				0101	111A
Wood Pellets				0101	111A
Wood Waste				0101	111A
Biogas, Landfill				0101	309A
Biogas, Others				0101	309A
Waste, Non-renewable				0101	114A
Wastes, Renewable				0101	114A
- Fuels Used for Heat Production					
Refinery Gas				0103	308A
LPG				0101	303A
Naphtha (LVN)				0101	210A
Gas-/Diesel Oil				0101	204A
Fuel Oil				0101	203A
 Petroleum Coke 				0101	110A
Orimulsion				0101	225A
 - Natural Gas 				0101	301A

Unit: TJ		End-	use	Tra	ansformation
					1980-1993
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
Electricity Plant Coal				0101	102A
Straw				0101	117A
Wood Chips				0101	111A
Wood Pellets				0101	111A
Wood Waste				0101	111A
Biogas, Landfill				0101	309A
Biogas, Other				0101	309A
Waste, Non-renewable				0101	114A
Wastes, Renewable				0101	114A
Small-Scale CHP Units					
- Fuels Used for Power Production					
Gas-/Diesel Oil				0101	204A
Fuel Oil				0101	203A
Natural Gas				0101	301A
Hard Coal				0101	102A
Straw				0101	102A 117A
Wood Chips				0101	117A 111A
Wood Chips Wood Pellets				0101	111A 111A
Wood Pellets Wood Waste				0101	111A 111A
Biogas, Landfill				0101	309A
Biogas, Other				0101 0101	309A 114A
Waste, Non-renewable					
Wastes, Renewable				0101	114A
- Fuels Used for Heat Production				0101	00.44
Gas-/Diesel Oil				0101	204A
Fuel Oil				0101	203A
Natural Gas				0101	301A
Coal				0101	102A
Straw				0101	117A
Wood Chips				0101	111A
Wood Pellets				0101	111A
Wood Waste				0101	111A
Biogas, Landfill				0101	309A
 Biogas, Other 				0101	309A
 - Waste, Non-renewable 				0101	114A
 - Wastes, Renewable 				0101	114A
District Heating Units					
 Fuels Used for Heat Production 					
 - Refinery Gas 				0103	308A
LPG				0102	303A
Gas-/Diesel Oil				0102	204A
Fuel Oil				0102	203A
Waste Oil				0102	203A
 Petroleum Coke 				0102	110A
Natural Gas				0102	301A
 - Electricity Plant Coal 				0102	102A
Coal				0102	102A
Straw				0102	117A
Wood Chips				0102	111A
Wood Pellets				0102	111A
Wood Waste				0102	111A
Biogas, Landfill				0102	309A
Biogas, Sludge				0102	309A
Biogas, Other				0102	309A
Waste, Non-renewable				0102	114A
Wastes, Renewable				0102	114A
Fish Oil				0102	215A
Autoproducers, Electricity Only					
- Fuels Used for Power Production					
Natural Gas				0320	301A
Biogas, Landfill				0320	309A
				0320	
Biogas, Sewage Sludge	1			0320	309A

Unit: TJ		End-	use		ansformation
					1980-1993
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
- Biogas, Other				0320	309A
Autoproducers, CHP Units					
Fuels Used for Power Production					0004
- Refinery Gas				0103	308A
- Gas-/Diesel Oil				0320	204A
- Fuel Oil				0320	203A
- Waste Oil				0320	203A
- Natural Gas				0320	301A
- Coal				0320	102A
- Straw				0320	117A
- Wood Chips				0320	111A
- Wood Pellets				0320	111A
- Wood Waste				0320	111A
- Biogas, Landfill				0320	309A
- Biogas, Sludge				0320	309A
Biogas, Other				0320	309A
Fish Oil				0320	215A
- Waste, Non-renewable				0320	114A
Wastes, Renewable				0320	114A
Fuels Used for Heat Production					
- Refinery Gas				0103	308A
Gas-/Diesel Oil				0320	204A
- Fuel Oil				0320	203A
- Waste Oil				0320	203A
- Natural Gas				0320	301A
- Coal				0320	102A
- Wood Chips				0320	111A
- Wood Waste				0320	111A
Biogas, Landfill				0320	309A
Biogas, Sludge				0320	309A
- Biogas, Other				0320	309A
- Waste, Non-renewable				0320	114A
- Wastes, Renewable				0320	114A
Autoproducers, Heat Only					
- Fuels Used for Heat Production					
Gas-/Diesel Oil				0320	204A
- Fuel Oil				0320	203A
- Waste Oil				0320	203A
- Natural Gas				0320	301A
- Straw				0320	117A
- Wood Chips				0320	111A
- Wood Chips				0320	111A
- Wood Waste				0320	111A
- Biogas, Landfill				0320	309A
- Biogas, Sludge				0320	309A
- Biogas, Other				0320	309A
Waste, Non-renewable				0102	114A
- Wastes, Renewable	000111	.		0102	114A
Town Gas Units		Naturgas	301A		
Fuels Used for Production of	030106	Kul (-83) /	102A / 204A		
District Heating		Gasolie (84-)			
Fransport sector					
Military Transport					
Aviation Gasoline					
Motor Gasoline					
· JP4					
· JP1					
Gas-/Diesel Oil					
Road					
· LPG					
Motor Gasoline	1				

Unit: TJ	End-use			Transformation 1980-1993	
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
- Other Kerosene	0202	Petroleum	206A		
- Gas-/Diesel Oil					
- Fuel Oil					
Rail					
- Motor Gasoline					
 Other Kerosene 					
- Gas-/Diesel Oil					
- Electricity					
Domestic Sea Transport					
- LPG					
 Other Kerosene 					
- Gas-/Diesel Oil					
- Fuel Oil					
Air Transport, Domestic					
- LPG					
 Aviation Gasoline 					
- Motor Gasoline					
- Other Kerosene	0201	Petroleum	206A		
- JP1					
Air Transport, International					
- Aviation Gasoline					
- JP1					
Agriculture and Forestry					
- LPG					
- Motor Gasoline					
- Other Kerosene	0203	Petroleum	206A		
- Gas-/Diesel Oil			,		
- Fuel Oil	0203	Fuelolie &	203A		
	0200	Spildolie	2004		
- Petroleum Coke	0203	Petrokoks	110A		
- Natural Gas	0203	Naturgas	301A		
- Coal	0203	Kul	102A		
- Brown Coal Briquettes	0203	Brunkul	102A 106A		
- Straw	0203	Halm	106A 117A		
- Wood Chips	0203	Træ	117A 111A		
- Wood Waste	0203	Træ	111A 111A		
- Biogas, Other	0203	Biogas	309A		
Horticulture	0200	Diogua	0007		
- LPG					
- LPG - Motor Gasoline					
- Gas-/Diesel Oil					
- Gas-/Diesei Oli - Fuel Oil	0203	Fuelolie &	203A		
	0203		200A		
- Petroleum Coke	0000	Spildolie Petrokoks	1104		
- Petroleum Coke - Natural Gas	0203		110A 301A		
	0203	Naturgas	301A		
CoalWood Waste	0203	Kul Træ	102A		
	0203	Пæ	111A		
Fishing					
- LPG					
- Motor Gasoline					
- Other Kerosene					
- Gas-/Diesel Oil					
- Fuel Oil					
Manufacturing Industry					
 Refinery Gas 	0320	Raffinaderigas	308A		
- LPG					
- Naphtha (LVN)					
- Motor Gasoline					
- Other Kerosene	0320	Petroleum	206A		
- Gas-/Diesel Oil					

Unit: TJ		End-u	Transformation		
	ONIAD	Fuel (in Deniah)	Fuel east-		1980-1993
Fuel Oil	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
- Fuel Oil	0320	Fuelolie &	203A		
- Waste Oil	0320	Spildolie Fuelolie &	203A		
- Waste Oli	0320	Spildolie	203A		
- Petroleum Coke	0320	Petrokoks	110A		
- Natural Gas	0320	Naturgas	301A		
- Coal	0320	Kul	102A		
- Coke	0320	Koks	107A		
- Brown Coal Briquettes	0320	Brunkul	106A		
- Wood Pellets	0320	Træ	111A		
- Wood Waste	0320	Træ	111A		
- Biogas, Landfill	0320	Biogas	309A		
- Biogas, Other	0320	Biogas	309A		
- Wastes, Non-renewable	0320	Affald	114A		
- Wastes, Renewable	0320	Affald	114A		
- Town Gas	0320	Naturgas	301A		
Construction					
- LPG	0320	LPG	303A		
- Motor Gasoline					
- Other Kerosene	0320	Petroleum	206A		
- Gas-/Diesel Oil					
- Fuel Oil	0320	Fuelolie &	203A		
		Spildolie			
- Natural Gas	0320	Naturgas	301A		
Wholesale		•			
- LPG	0201	LPG	303A		
- Motor Gasoline	0201	Petroleum	206A		
- Other Kerosene	0201	Gas & Dieselolie	204A		
- Gas-/Diesel Oil	0201	Fuelolie &	203A		
		Spildolie			
- Petroleum Coke	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
- Wood Waste	0201	Træ	111A		
Retail Trade					
- LPG	0201	LPG	303A		
 Other Kerosene 	0201	Petroleum	206A		
- Gas-/Diesel Oil	0201	Gas & Dieselolie	204A		
- Fuel Oil	0201	Fuelolie &	203A		
		Spildolie			
 Petroleum Coke 	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
Private Service					
- LPG	0201	LPG	303A		
- Other Kerosene	0201	Petroleum	206A		
- Gas-/Diesel Oil	0201	Gas & Dieselolie	204A		
- Fuel Oil	0201	Fuelolie &	203A		
		Spildolie			
- Waste Oil	0201	Fuelolie &	203A		
		Spildolie			
 Petroleum Coke 	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
- Wood Chips	0201	Træ	111A		
- Wood Waste	0201	Træ	111A		
- Biogas, Landfill	0201	Biogas	309A		
- Biogas, Sludge	0201	Biogas	309A		
- Biogas, Other	0201	Biogas	309A		
- Wastes, Non-renewable	0201	Affald	114A		
 Wastes, Renewable 	0201	Affald	114A		
- Town Gas	0201	Naturgas	301A		
Public Service					
- LPG	0201	LPG	303A		

Unit: TJ	End-use			Transformation 1980-1993	
	SNAP	Fuel (in Danish)	Fuel-code	SNAP Fuel-code	
- Other Kerosene	0201	Petroleum	206A		
- Gas-/Diesel Oil	0201	Gas & Dieselolie	204A		
- Fuel Oil	0201	Fuelolie &	203A		
		Spildolie			
- Petroleum Coke	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
- Coal	0201	Kul	102A		
 Brown Coal Briquettes 	0201	Brunkul	106A		
- Wood Chips	0201	Træ	111A		
- Wood Pellets	0201	Træ	111A		
- Town Gas	0201	Naturgas	301A		
Single Family Houses					
- LPG	0202	LPG	303A		
- Motor Gasoline					
- Other Kerosene	0202	Petroleum	206A		
- Gas-/Diesel Oil	0202	Gas & Dieselolie	204A		
- Fuel Oil	0202	Fuelolie &	203A		
		Spildolie			
 Petroleum Coke 	0202	Petrokoks	110A		
- Natural Gas	0202	Naturgas	301A		
- Coal	0202	Kul	102A		
- Coke	0202	koks	107A		
 Brown Coal Briquettes 	0202	Brunkul	106A		
- Straw	0202	Halm	117A		
- Firewood	0202	Træ	111A		
- Wood Chips	0202	Træ	111A		
- Wood Pellets	0202	Træ	111A		
- Town Gas	0202	Naturgas	301A		
Multi-family Houses					
- LPG	0202	LPG	303A		
- Other Kerosene	0202	Petroleum	206A		
- Gas-/Diesel Oil	0202	Gas & Dieselolie	204A		
- Fuel Oil	0202	Fuelolie &	203A		
		Spildolie			
- Petroleum Coke	0202	Petrokoks	110A		
- Natural Gas	0202	Naturgas	301A		
- Coal	0202	Kul	102A		
- Coke	0202	Koks	107A		
 Brown Coal Briquettes 	0202	Brunkul	106A		
- Town Gas	0202	Naturgas	301A		

[Blank page]

DANISH EMISSION INVENTORIES FOR STATIONARY COMBUSTION PLANTS

Inventories until 2018

Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO₂, NO_x, NMVOCs, CH₄, CO, CO₂, N₂O, NH₃, particulate matter, black carbon, heavy metals, PCDD/Fs, HCB, PCBs and PAHs. The CO₂ emission from stationary combustion was 54.8 % lower in 2018 than in 1990 and the total greenhouse gas emission was 53.9 % lower than in 1990. However, fluctuations in the emission level for CO_2 are large as a result of electricity import/export. A considerable decrease of the SO_2 , NO_x and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The PM emissions increased until 2007 and decreased after 2007. The increase until 2007 was caused by the increased wood combustion in residential plants. However, the PM emission factors have decreased for this emission source category due to installation of modern stoves and boilers. The stabilisation of wood consumption in residential plants in 2007-2014 has resulted in a decrease of PM emission from stationary combustion between 2007 and 2014. The PCDD/F emission decreased until 1999 due to improved flue gas cleaning on waste incineration plants. In recent years, residential wood combustion is the largest emission source.