

DANISH EMISSION INVENTORIES FOR AGRICULTURE

No. 250

Inventories 1985 - 2015

Scientific Report from DCE - Danish Centre for Environment and Energy

2017

[Blank page]

DANISH EMISSION INVENTORIES FOR AGRICULTURE

Inventories 1985 - 2015

Scientific Report from DCE – Danish Centre for Environment and Energy

No. 250

2017

Rikke Albrektsen Mette Hjorth Mikkelsen Steen Gyldenkærne

Aarhus University, Department of Environmental Science

Data sheet

Series title and no.:	Scientific Report from DCE - Danish Centre for Environment and Energy No. 250
Title: Subtitle:	Danish emission inventories for agriculture Inventories 1985 - 2015
Authors: Institution:	Rikke Albrektsen, Mette Hjorth Mikkelsen, Steen Gyldenkærne Department of Environmental Science
Publisher: URL:	Aarhus University, DCE - Danish Centre for Environment and Energy © http://dce.au.dk/en
Year of publication: Editing completed: Referee: Quality assurance, DCE:	December 2017 November 2017 Peter Lund, Department of Animal Science, Aarhus University Vibeke Vestergaard Nielsen - DCE - Danish Centre for Environment and Energy
Financial support:	No external financial support
Please cite as:	Albrektsen, R., Mikkelsen, M.H. & Gyldenkærne, S. 2017. Danish emission inventories for agriculture. Inventories 1985 – 2015. Aarhus University, DCE – Danish Centre for Environment and Energy, 190 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 250 http://dce2.au.dk/pub/SR250.pdf
	Reproduction permitted provided the source is explicitly acknowledged
Abstract:	Regulations in international conventions obligate Denmark to prepare annual emission inventories and document the methodologies used to calculate emissions. The responsibility for preparing the emission inventories for agriculture is undertaken by the Danish Centre for Environment and Energy (DCE), Aarhus University, Denmark. This report contains a description of the emissions from the agricultural sector from 1985 to 2015 and includes a detailed description of methods and data used to calculate the emissions, which is based on international guidelines as well as national methodologies. The emissions (IDA). IDA covers all aspects of the agricultural inputs and estimates both greenhouse gases and air pollutants, methane (CH ₄), nitrous oxide (N ₂ O), ammonia (NH ₃), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other pollutants, which mainly are related to the field burning of agricultural residue such as NO _x , CO ₂ , CO, SO ₂ , heavy metals, dioxins, PAHs, HCB and PCBs. The largest contribution to agricultural emissions originates from livestock production, which is dominated by production of cattle and swine. The agricultural NH ₃ emission from 1985 to 2015 has decreased from 128 800 tonnes NH ₃ to 69 000 tonnes NH ₃ , corresponding to a reduction of approximately 46 %. The emission of greenhouse gases in 2015 is estimated at 10.4 million tonnes CO ₂ equivalents and reduced from 13.2 million tonnes CO ₂ equivalents in 1985. Since 1990, which is the base year of the Kyoto protocol a reduction of 18 % is obtained. Improvements in feed efficiency, the utilisation of nitrogen in livestock manure and a significant decrease in the consumption of inorganic N-fertiliser are the most important explanations for the reduction of NH ₃ . This has furthermore resulted in a significant reduction of N ₂ O emission, which is the main reason for a considerable decline in the total greenhouse gas.
Keywords:	Agriculture, NH ₃ , CH ₄ , N ₂ O, emission, ammonia, methane, nitrous oxide, particulate matter, greenhouse gas, inventory, inventories, Denmark.
Layout: Front page photo:	Ann-Katrine Holme Christoffersen Ann-Katrine Holme Christoffersen
ISBN: ISSN (electronic):	978-87-7156-300-9 2245-0203
Number of pages:	190
Internet version:	The report is available in electronic format (pdf) at http://dce2.au.dk/pub/SR250.pdf

Contents

Pre	eface	5
Su	mmary	6
Sa	mmenfatning	8
1	Introduction	10
2	Trends in agricultural emissions 1985-2015	12
	2.1 Air pollutants2.2 Greenhouse gases	13 20
3	Description of the model IDA	24
	3.1 Methodology	24
	3.2 Data references – sources of information	24
	3.3 Integrated database model for agricultural emissions	25
4	Livestock population data	28
	4.1 Livestock population	28
	4.2 Housing system	38
	4.3 Number of days in housing and on pasture	39
5	NH₃ emission	40
	5.1 Animal manure	40
	5.2 Inorganic N-fertilisers	49
	5.3 Crops	50
	5.4 Sewage sludge	50
	5.5 NH ₃ treated straw	51
6	PM emission	52
	6.1 Livestock production	52
	6.2 Field operations	54
7	Field burning of agricultural residues	57
8	HCB emission from use of pesticides	61
	8.1 Calculation method	61
	8.2 Activity data	61
	8.3 Emission factors	62
9	NMVOC emission	63
	9.1 Manure management	63
	9.2 Growing crops	65
10	NO _x	67
	10.1 Manure management	67
	10.2 Agricultural soils	68
11	CH₄ emission	70
	11.1 Enteric fermentation	70
	11.2 Manure management	77

	11.3 Biogas treatment of slurry	82
12	N ₂ O emission	99
	12.1 Manure management	99
	12.2 Agriculture soils - direct emissions	101
	12.3 Agricultural soils - indirect emissions	106
13	CO ₂ emission	110
	13.1 Liming	110
	13.2 Fertiliser	111
14	Quality assurance and quality control	113
	14.1 QA/QC plan	114
15	Uncertainties	116
	15.1 Uncertainty values for agricultural air pollutants	116
	15.2 Uncertainty values for agricultural greenhouse gases	119
16	Conclusion	122
	16.1 Agricultural emissions from 1985 to 2015	122
	16.2 Methodology and documentation	122
Ref	erences	124
App	pendix	132

Preface

On behalf of the Ministry of Environment and Food of Denmark and the Ministry of Energy, Utilities and Climate, the Danish Centre for Environment and Energy (DCE) at Aarhus University (AU) is responsible for the calculation and reporting of the Danish national emission inventories. The inventories are compiled to fulfil the Danish obligations under EU directives, the United Nations Framework Convention on Climate Change (UNFCCC) and the United Nations Economic Commission for Europe's Convention on Long Range Transboundary Air Pollution (UNECE CLRTAP). This documentation report for agricultural emissions has been externally reviewed as a key part of the general national inventory QA/QC plan.

The report has been reviewed by Peter Lund, Department of Animal Science, Aarhus University.

Summary

International conventions obligate Denmark to prepare annual emission inventories and document the methodologies used to calculate emissions. The responsibility for preparing the emission inventories for agriculture in Denmark is undertaken by DCE - the Danish Centre for Environment and Energy, Aarhus University (AU). This report is an updated version of DCE Technical Report No. 108 published in 2013. The following chapters of the report include a detailed description of methods and data used to calculate the emissions.

The emissions from the agricultural sector include the greenhouse gases: methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂), as well as the air pollutants: ammonia (NH₃), particulate matter (PM), non-methane volatile organic compounds (NMVOC), nitrogen oxides (NO_x) and other pollutants specifically related to the field burning of agricultural residues, such as carbon monoxide (CO), sulphur dioxide (SO₂), heavy metals, dioxins, polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs).

The agricultural emissions are calculated by using the data based model *Integrated Database model for Agricultural emissions* (IDA). The model covers all aspects of the agricultural inputs and estimates both greenhouse gases and air pollutants. The largest contribution to agricultural emissions originates from livestock production and most of the input data are sourced from Statistics Denmark and from DCA - Danish Centre for Food and Agriculture, Aarhus University and DAA - the Danish Agricultural Agency under the Ministry for Environment and Food. These data include the extent of the livestock production, land use, use of inorganic fertilisers and Danish standards for feed consumption and excretion. The emission inventories reflects the actual conditions for the Danish agricultural production. In cases where no Danish data are available, default values recommended by the Intergovernmental Panel on Climate Change (IPCC) and the European Monitoring and Evaluation Programme (EMEP) are used.

The agricultural sector is the main contributor of the NH_3 emission and accounts for approximately 95 % of the total NH_3 emission in 2015. Most of the ammonia emission is related to the livestock production (animal manure) and mainly from the production of swine and cattle. The agricultural NH_3 emission account for 129 kt (kilo tonnes) NH_3 in 1985 decreasing to 69 kt NH_3 in 2015, corresponding to a reduction of approximately 46 %. Improvements in feed efficiency, improvement of the utilisation of nitrogen in livestock manure combined with a significant decrease in the consumption of inorganic N-fertiliser, are the most important explanations for the reduction of the NH_3 emission.

Regarding the emission of NH₃, Denmark has applied for and been granted adjustments under the UNECE (United Nations Economic Commission for Europe) Convention on Long-Range Transboundary Air Pollution (CLRTAP).

The adjustments are related to the emission factors for inorganic N-fertiliser that have been changed in the EMEP/EEA Guidebook since the establishment of the reduction commitments. Another adjustment is related to the NH_3 emissions from growing crops, which is a source not covered by the EMEP/EEA Guidebook and not considered when establishing the emission ceiling for Denmark. Furthermore, Denmark has also an adjustment for NMVOC emission from manure management, which is a source introduced in the EMEP/EEA Guidebook in 2013.

Under the National Emissions Ceilings Directive (NECD), Denmark has applied for the same adjustments as under CLRTAP. The European Commission will review the application during 2017.

The agricultural emission of greenhouse gases (GHG) contributes with approximately 21 % of the total GHG from Denmark in 2015. The emission is closely related to the livestock production. Especially the CH_4 emission from the enteric fermentation process, which accounts for 36 % of the total agricultural GHG emission in 2015, is related to the cattle production.

The GHG emission from the agricultural sector is estimated to 13.3 million tonnes CO_2 equivalents in 1985 decreasing to 10.4 million tonnes CO_2 equivalents in 2015. Since 1990, which is the base year of the United Nations Framework Convention on Climate Change, the emission has decreased from 12.7 million tonnes CO_2 equivalents and a reduction of 18 % has been obtained. The main reason for the reduced emission is a decrease in number of cattle, and thus a decrease in CH₄ emission from enteric fermentation. Another important decreasing driver is the use of inorganic N fertilisers, which is a consequence of improved utilisation of nitrogen in animal manure, forced by environmental regulation.

Sammenfatning

Danmark har via konventioner forpligtet sig til årligt at opgøre udledninger af drivhusgasser og luftforurenende stoffer. Udarbejdelsen af de årlige danske emissionsopgørelser og dokumentationen for hvorledes emissionerne opgøres, varetages af DCE - Nationalt Center for Miljø og Energi ved Aarhus Universitet (AU). Metodebeskrivelsen opdateres jævnligt, og denne rapport er en opdatering af DCE videnskabelig rapport nr. 108 publiceret i 2013.

Rapporten omfatter en opgørelse af landbrugets emissioner i perioden 1985 – 2015 af drivhusgasserne: metan (CH₄), lattergas (N₂O) og kuldioxid (CO₂) og luftforureningskomponenterne: ammoniak (NH₃), partikler (PM), flygtige organiske forbindelser (NMVOC), kvælstofilter (NO_x), og andre stoffer, der er relateret til markafbrænding af afgrøderester fra landbruget som kulilte (CO), svovldioxid (SO₂), tungmetaller, dioxiner, polycykliske aromatiske kulbrinter (PAH'er), hexaklorbenzen (HCB) og polyklorerede bifenyler (PCB'er). Derudover omfatter rapporten en beskrivelse af metoden for, hvordan emissionerne beregnes.

Landbrugets emissioner er beregnet på grundlag af en databasebaseret model kaldet IDA - Integrated Database model for Agricultural emissions. Størstedelen af emissionerne er relateret til husdyrproduktionen og langt de fleste inputdata er hentet fra Danmarks Statistik, DCA - Nationalt Center for Fødevarer og Landbrug ved Aarhus Universitet og Landbrugsstyrelsen under Miljø- og Fødevareministeriet. Disse data omfatter bl.a. omfanget af husdyrproduktionen, arealanvendelse, handelsgødningsforbruget, normdata for foderindtag og dyrenes nitrogenudskillelse via gødningen, som er nogle af de vigtigste parametre for emissionsberegningen. Emissionsopgørelsen tager således højde for de faktiske forhold, der gør sig gældende for den danske landbrugsproduktion. For de forhold, hvor der ikke forefindes nationale data, anvendes standardværdier fra IPCC - The Intergovernmental Panel on Climate Change og EMEP - The European Monitoring and Evaluation Programme.

Langt størstedelen af den samlede NH₃-emission, svarende til ca. 95 %, kan henføres til landbrugsproduktionen. Ammoniakemissionen sker i forbindelse med omsætningen af kvælstof og størstedelen af emissionen kommer fra husdyrgødning, hvor produktionen af svin og kvæg er de største bidragydere. Ammoniakemissionen fra landbrugssektoren er fra perioden 1985 til 2015 faldet fra 129 kilo tons (kt) NH₃ til 69 kt NH₃, svarende til en reduktion på 46 %. De væsentligste årsager til reduktionen er en forbedring i fodereffektivitet, en bedre udnyttelse af kvælstofindholdet i husdyrgødningen og på baggrund heraf, et markant fald i anvendelsen af kvælstof i handelsgødning.

For emissioner af NH₃ og NMVOC har Danmark ansøgt under justeringsproceduren og fået godkendt justringerne under UNECE's konvention om langtransporteret grænseoverskridende luftforurening (CLRTAP). Det betyder, at den totale emission må korrigeres for visse emissionskilder, når emissionen skal sammenholdes med de fastsatte emissionslofter. For NH_3 er korrektionerne relateret til emissionsfaktorerne for handelsgødning, fordi disse er ændret væsentligt i EMEP/EEA Guidebook siden emissionslofterne blev vedtaget. En anden korrektion omfatter NH_3 -emissionen fra voksende afgrøder, som ikke er inkluderet som emissionskilde i EMEP/EEA Guidebook, og som derfor ikke var inkluderet i forbindelse med den oprindelige forhandling af emissionsloftet for Danmark. For NMVOC-emissionen er korrektionen relateret til emissionen fra husdyr og gødningshåndtering, som er en kilde, der først blev inkluderet i EMEP/EEA Guidebook i 2013.

Under EU direktivet om nationale emissionslofter (NECD) har Danmark ansøgt om de samme justeringer som under konventionen. Ansøgningen vil blive behandlet af EU Kommissionen i løbet af 2017.

Landbrugets emissioner af drivhusgasser (GHG) bidrager med 21 % af den totale GHG-emission fra Danmark i 2015. Størstedelen af emissionen er knyttet til husdyrproduktionen og særligt fra kvægs fordøjelsesprocesser, som bidrager med 36 % af den samlede GHG-emission fra landbruget i 2015.

I 1985 er GHG-emissionen fra landbrugssektoren opgjort til 13,3 millioner tons CO_2 -ækvivalenter og er frem til 2015 faldet til 10,4 millioner. Siden 1990, som er klimakonventionens basisår, er emissionen faldet fra 12,7 millioner tons CO_2 -ækvivalenter, hvilket svarer til en reduktion på 18 %. Den mest betydende årsag til reduktion af emissionen er faldet i antallet af kvæg, som har betydet et væsentligt fald i CH_4 -emissionen fra fordøjelse. En anden forklaring er reduktion i N₂O-emissionen, som skyldes et betydeligt fald i anvendelsen af handelsgødning som følge af miljøreguleringen, der stiller krav til øget anvendelse af kvælstofindholdet i husdyrgødningen og krav til at undgå tab af kvælstof til omgivelserne (luft, jord og vand).

1 Introduction

As a signatory to international conventions, Denmark is under obligation to prepare annual emission inventories for a range of pollutants. For agriculture, the relevant emissions to be calculated are ammonia (NH₃), the greenhouse gases (GHG): methane (CH₄), nitrous oxide (N_2O) and carbon dioxide (CO₂), and other pollutants such as non-methane volatile organic compounds (NMVOC), particulate matter (PM), nitrous oxide (NO_x) and a series of other pollutants related to the burning of crop residues on fields such as carbon monoxide (CO), sulphur dioxide (SO₂), heavy metals, dioxins, polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs). DCE - the Danish Centre for Environment and Energy under Aarhus University is responsible for calculating emissions and reporting the annual emission inventories. The primary data is collected from Statistics Denmark, DCA - Danish Centre for Food and Agriculture at Aarhus University and DAA - the Danish Agricultural Agency under the Ministry for Environment and Food. In addition to the reporting of emission data, Denmark is obligated by the conventions to document the calculation methodology. This report, therefore, includes both a review of the emissions for the period 1985-2015 and a description of the methodology on which calculation of emissions is based. The report is an updated version of Scientific Report from DCE -Danish Centre for Environment and Energy No. 108 (Mikkelsen et al., 2013).

The 1999 Gothenburg Protocol, under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP), and the EU's NEC Directive on national emission ceilings (2016/2284/EU) commit Denmark to reduce NH₃ emissions from all sectors by 24 % in 2020 compared to the emission level in 2005.

In 2015, 95 % of the total NH₃ emission in Denmark came from the agricultural sector, the remainder from the energy sector and industrial processes. It is important to point out that the Danish emission inventory reported under CLRTAP includes an adjustment for the NH₃ emission from growing crops and use of inorganic N-fertiliser. The same adjustments have been applied for under the NECD and the European Commission will review the application during 2017.

In 2015, the agricultural sector contributed 21 % to the total emission of greenhouse gases in Denmark, measured in CO_2 equivalents (CO_2 -eqv.). The relatively large contribution is due to the emission of CH_4 and N_2O . These gases have a higher global warming effect than CO_2 . Measured in GWP (Global Warming Potential), the effects of CH_4 and N_2O are, respectively, 25 and 298 times stronger than that of CO_2 (IPCC, 2006).

The IPCC has developed guidance documents on how greenhouse gas emissions should be calculated. The relevant documents for agriculture currently used under the UNFCCC is the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). The guidelines are prepared for use in all countries based on a division of different climatic regions into different geographic locations. The guidelines, however, do not always represent the best method at the level of the individual country due to the different national circumstances. The IPCC, therefore, advocates the use, as far as possible, of national figures where data are available.

Agricultural emissions are calculated in an integrated national model complex IDA - Integrated Database model of Agricultural emissions. This means that the calculation of emissions of NH_3 , greenhouse gases and other pollutants is based on the same activity data, i.e. the number of livestock, the distribution of types of livestock housing, fertiliser type, land use, etc.

The emission inventories is continuously being improved with the availability of new knowledge. Over time, changes will be made to reflect changes in both emission factors and in the methodology in the IPCC Guidelines, and in the national inventories. It is prioritised to use national data if these are available to reflect the Danish agricultural and climate conditions. This causes high requirements for documentation of data, especially in areas where the methodology and the national data differ significantly from the IPCC's recommended standard methods or data values.

The current report includes an introductory overview of emission from year 1985 and forward to the recent reported emission year 2015, and describing the changes in agricultural activities that have influenced the emissions. This is followed by a description of the IDA model used to calculate the emissions, and a detailed description is provided on how the emissions for the individual pollutants are calculated.

2 Trends in agricultural emissions 1985-2015

This chapter describes the development in the agricultural emissions of air pollutions and greenhouse gases from 1985 to 2015. The first group includes pollutants involved in air pollution, i.e. ammonia (NH₃), nitrogen oxides (NO_x), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other air pollutants (SO₂, CO, heavy metals, PAHs, dioxins, PCBs and HCB), which all have to be reported under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). Emissions of other air pollutants are only related to the field burning of agricultural residues. The second group includes the direct greenhouse gases, which have to be reported to the Kyoto Protocol under the Climate Convention, i.e. methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂). Pollutants that have an indirect effect on greenhouse gas emissions, i.e. NMVOC and NO_x from animal manure and growing crops, carbon monoxide (CO) and sulphur dioxide (SO₂) from field burning, have to be estimated and reported to both the UNFCCC and the CLRTAP. Table 2.1 gives an overview of the conventions, the required reporting format and which pollutants they cover.

Table 2.1 Overview of conventions and pollutants.

Convention	Report format	Pollutants		
The United Nations Framework	Data:	Direct greenhouse gases; CH ₄ , N ₂ O, CO ₂ ¹		
Convention on Climate Change	CRF (Common Reporting Format)	Indirect greenhouse gases; NMVOC, NO _x , CO,		
(UNFCCC).	Report:	SO ₂ ¹		
Including the Kyoto Protocol.	NIR (National Inventory Report)			
The UNECE Convention on	Data:	Main pollutants; NH3, NOx NMVOC, SO2		
Long-Range Transboundary	NFR (Nomenclature For Reporting)	Particulate matter; TSP, PM ₁₀ , PM _{2.5} , BC		
Air Pollution.	Report:	Other pollutants; CO		
Including 8 protocols.	IIR (Informative Inventory Report)	Priority metals; Pb, Cd, Hg		
		Other metals; As, Cr, Cu, Ni, Se, Zn		
		PAHs (benzo(a)pyrene, benzo(b)fluoranthene,		
		benzo-(k)fluoranthene, Indeno(1,2,3-cd)pyrene)		
		Dioxins and furans (PCDD/-F)		
		Polychlorinated biphenyls (PCBs)		
		Hexachlorobenzene (HCB)		
EU's Directive on national emission ceilings (NECD) (2016/2284/EU)	Same as UNECE Convention	Same as UNECE Convention		

Emission ceilings 2020 and 2030 NH₃, NMVOC, NO_x, SO₂, PM_{2.5}

¹ In the present CRF format, it is not possible to report CO₂ and SO₂ from field burning of agricultural residues.

It must be noted that CO_2 removals/emissions from agricultural soils are not included in the emission inventories for the agricultural sector. According to the IPCC guidelines this removal/emission should be included in the LU-LUCF sector (Land-Use, Land-Use Change and Forestry). Emissions related to agricultural machinery (tractors, harvesters and other non-road machinery) are reported in the energy sector.

2.1 Air pollutants

Table 2.2 shows the agricultural contribution of emissions to the national total in 2015. The main part of the NH_3 emission (95 %) and TSP emission (70 %) is related to the agricultural sector.

Table 2.2 Emissions of ammonia (NH_3), particulate matter (TSP, PM_{10} , $PM_{2.5}$), non-methane volatile organic compounds (NMVOC), sulphur oxides (SO_x) and nitrogen oxides (NO_x) in 2015, reported to UNECE, January 2017.

	NH₃	TSP	PM_{10}	PM _{2.5}	NMVOC	SOx	NO _X
National total, kt	73	89	30	20	109	11	114
Agricultural total, kt	69	62	8	1	38	<1	17
Agricultural part of	05	70	27	6	25	-1	15
national total, %	90	70	21	0	35	<1	15

2.1.1 NH₃

Approximately 95 % originates from the agricultural sector and the remainder from the energy sector, industrial processes and waste. Approximately 85 % of the NH_3 emissions from agricultural activities relates to livestock production, the remaining 15 % from the use of inorganic N-fertiliser, growing crops, NH_3 treated straw, the field burning of agricultural residues and sewage sludge applied to fields as fertiliser.

Figure 2.1 shows the emissions divided into the different sources. The emission of ammonia from the agricultural sector decreased from 106 kt NH₃-N in 1985 to 57 kt NH₃-N in 2015, which corresponds to a 46 % reduction. It is important to highlight the difference between the NH₃ emission expressed in nitrogen NH₃-N and that expressed in total NH₃. The conversion factor is 17/14, corresponding to the difference in the molecular mass.

The significant decrease in NH₃ emissions is strongly correlated to a decrease in the emission from livestock production and is a consequence of an active national environmental policy over the last 30 years. A string of measures have been introduced by action plans to prevent the loss of nitrogen from agriculture to the aquatic environment, for example the NPO (Nitrogen, phosphor, organic matter) Action Plan (1986), Action Plans for the Aquatic Environment (1987, 1998, 2004), the Action Plan for Sustainable Agriculture (1991), the Ammonia Action Plan (2001), environmental Approval Act for Livestock Holdings (2007/2011) and agreement on the Green Growth (2009/2010). These actions plans and initiated measures have brought about a decrease in animal nitrogen excretion, improvement in use of nitrogen in manure and a fall in the use of inorganic N-fertiliser, all of which have helped reduce the overall NH₃ emission significantly.

Figure 2.1 NH_3 -N emissions in the agricultural sector, 1985 to 2015. Straw includes NH_3 treated straw and field burning of agricultural residues.

In Appendix A, the trend for NH_3 emission from 1985 to 2015 from different sources is expressed in both NH_3 -N and NH_3 .

NH₃ emission from animal manure

In 2015, animal manure contributed approximately 52 % to the total NH₃ emission from agriculture. From 1985 to 2015, the emission from animal manure has decreased by 33 %.

Figure 2.2 shows the annual NH_3 emissions from the main livestock categories. Most of the emission from manure originates from the production of swine and cattle. In 1985, approximately 59 % of the emission was related to the swine production, while 26 % was related to the cattle production. In 2015, the contribution from cattle production had increased to 30 % and the swine production accounted for 44 %

Figure 2.2 NH_3 -N emissions from animal manure contributed by the different livestock categories. 'Other' includes fur bearing animals, horses, sheep, goats and deer.

The emission from manure management decreases from 1985-2015 for both cattle, swine and poultry. For cattle the emissions decreases 23 % mainly due to decrease in number of cattle. The emissions from swine has decreased by 50 % despite an increase in the production of fattening pigs from 14.8 million

produced in 1985 to 19.9 million in 2015. One of the most important reasons for this is the improvement in feed efficiency. In 1985, the nitrogen excretion in manure for one produced fattening pig was estimated to 5.09 kg N (Poulsen & Kristensen, 1997). In 2015, that figure was considerably lower at 2.90 kg N per fattening pig produced (Poulsen, 2016). Due to the large contribution from the pig production, the lower level of N-excretion has a significant influence on total agricultural emissions.

Figure 2.3 shows the different emission sources, i.e. from manure handling in animal housing, manure storage, application to fields and from grazing animals. The overall decrease is a consequence of the general requirement to improve the utilisation of nitrogen in the manure - e.g. requirements to a larger part of the nitrogen in manure has to be included in the farmers' nitrogen accounting. This has lead farmers to consider the manure as a nitrogen resource instead of a waste product. Especially the emission from application and storage of manure has decreased significantly.

Regarding the field application of animal manure, considerable changes have taken place. From the beginning of the 1990s, slurry has increasingly been spread using trailing hoses. Furthermore, since the late 1990s, the practice of slurry injection or mechanical incorporation into the soil has increased. For 2015, it is estimated that 77 % for cattle slurry and 37 % for swine slurry is applied using injection/incorporation techniques (Birkmose, 2016, Pers. Comm.). This development is in addition to general environmental requirements also a consequence of a ban on broad spreading from 2003. From 2011, slurry applied on fields with grass for feeding or fields without crop cover, has to be injected directly into the soil (BEK, 2013). However, the injection requirements are not required if the slurry has been acid treated before application to soil.

From 2005 a considerable decrease in the emission from storage is seen, which is due to the requirement to cover manure heaps.

Figure 2.3 NH₃-N emissions from animal manure, 1985 to 2015.

NH₃ emissions from agricultural soils

In 2015, NH₃ emission related to the agricultural soils contributed 48 % to total agricultural emissions, and this mainly stems from manure applied to soil, the use of inorganic N-fertiliser and from growing crops as shown in Figure 2.4.

The Danish inventories includes the emission from growing crops. No methodological guidance is provided in the EMEP/EEA Guidebook. Studies have demonstrated that growing crops can emit NH_3 (Schjoerring & Mattsson, 2001). Despite the uncertainties related to this emission source due to effect from different geographic and climatic conditions, Denmark has chosen to include the emission and thus avoid an underestimation of NH_3 emission.

Due to the requirement to improve the utilisation of nitrogen in animal manure, the use of inorganic N-fertilisers has decreased dramatically. The amount of nitrogen applied to soils from inorganic N-fertilisers in 2015 is almost halved compared with the amount used in 1985.

2.1.2 PM

Emission of particulate matter (PM) originates from livestock housing, field operations such as soil cultivation and harvesting, and the field burning of agricultural residues.

The PM emissions from the agricultural sector mainly consist of larger particles. In the reporting under CLRTAP, PM is reported as the total suspended particles (TSP), PM_{10} and $PM_{2.5}$ (Particulate matter with diameter of less than 10 µm and less than 2.5 µm). TSP emission from the agricultural sector contributes 70 % to the national TSP emission in 2015 and the emission shares for PM_{10} and $PM_{2.5}$ are 27 % and 6 % respectively. For TSP 89 % of the emission is related to field operations in 2015. The emission from livestock contributes with 11 % and the field burning of agricultural residues, contributes less than

1 % to the agricultural emission. For PM_{10} field operations contribute with 68 %, livestock with 29 % and field burning of agricultural residues with 3 %. For emission of $PM_{2.5}$ the sources contributes, with 37 % from field operations, 43 % from livestock and 20 % from field burning.

Figure 2.5 shows PM emission from the agricultural sector from 1985 to 2015 given in TSP, PM_{10} and $PM_{2.5}.$

Emission from field operations originates from crop harvesting, cultivation of soil, and the cleaning and drying of crops (EMEP, 2016). Harvesting and soil cultivation is the predominant source of PM. The decrease in emission from field operations from 2001 to 2002 is due to reduction in the number of operations in soil cultivation caused by change in cultivation practice.

Since 1985, the overall emission from livestock is almost unaltered. The changes in the total emission for each livestock category mainly reflect the changes in the number of animals, but they are also effected by the distribution of animals in subcategories and changes in housing type.

The emission from field burning of agricultural residues decreases significantly from 1989 to 1990 due to a ban on burning of these residues. From 1990, burning of residues may only take place in connection with production of grass seeds on fields with repeated production and in cases of wet or broken bales of straw.

Figure 2.5 Emission of PM, given in TSP, PM_{10} and $PM_{2.5}$ from the agricultural sector, 1985 to 2015.

2.1.3 NMVOC

The NMVOC emission includes emission from animal manure, field burning of agricultural residues and from growing crops and grass. Agriculture contributed with 38 kt NMVOC in 2015, corresponding to 35 % of the national NMVOC emission. Of this, emission from animal manure contribute with 94 %, crops with 6 % and field burning less than 1 % in 2015.

The emission has decreased from 1990 to 2015, mainly due to decrease in number of cattle. As mentioned, field burning of agricultural residues was banned in 1990 and therefor a decrease in the emission is seen from 1989 to 1990.

Figure 2.6 Emission of NMVOC from the agricultural sector, 1985-2015.

2.1.4 NO_x

Emission of NO_x is estimated for animal manure in housing and storage, inorganic N-fertiliser, manure applied to soil, sewage sludge used as fertiliser and from field burning of agricultural residues. Agriculture contributed with 17 kt NO_x in 2015, corresponding to 15 % of the national NO_x emission. From 1985, the emission has decreased mainly due to decrease in use of inorganic N-fertiliser.

Figure 2.7 NO_x emission for the agricultural sector, 1985-2015.

2.1.5 Other air pollutants

Other air pollutants include BC, CO, SO₂, heavy metals, dioxins, PAHs, PCBs and HCB. These are estimated from the field burning of agricultural residues; HCB also emits from use of pesticides. In 2015, BC, CO, SO₂, heavy metals and dioxin from field burning contributed less than 1 % to the total national emission, while PAHs contributed with around 5 %. From 1989 to 1990, all emissions decreased significantly due to the banning of field burning.

Emissions related to the energy production from agricultural plants and energy consumption in machinery, such as tractors, harvesters, etc., is not included in the agricultural sector, but included in the energy sector.

2.2 Greenhouse gases

Table 2.3 shows the agricultural contribution of emissions to the national total in 2015. The agricultural emission contribution of N_2O , CH_4 and CO_2 is 89 %, 81 % and 1 %, respectively.

Table 2.3 Emission nitrous oxide (N_2O), methane (CH_4) and carbon dioxide (CO_2) 2015, reported to UNFCCC, January 2017.

	N ₂ O	CH_4	CO ₂
National total, kt	17	274	35 147
Agricultural total, kt	15	221	177
Agricultural part of national total, %	89	81	1

Table 2.4 shows the development in greenhouse gas emissions calculated in CO_2 -eqv.. The overall emission in 1985 is estimated to 13 333 kt, decreasing to 10 411 kt in 2015, corresponding to a 22 % reduction. Since 1990, the base year of the United Nations Framework Convention on Climate Change (UNFCCC) for CO_2 , CH_4 and N_2O , the emission has been reduced by 18 %, mainly caused by a decrease in the N_2O emission.

Table 2.4 Development in the emission of greenhouse gases, 1985-2015, measured in kt CO₂ equivalents. For all years and distributed on main sources see Appendix B and C.

0020	quitaioi		un your		othoutot		in ooure	000 000	, ibbourg		. 0.
	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
CH_4	5 997	5 585	5 831	5 719	5 682	5 633	5 579	5 588	5 556	5 590	5 524
N_2O	6 605	6 508	5 795	5 318	4 961	4 636	4 690	4 606	4 594	4 649	4 709
CO_2	732	619	537	268	222	156	165	192	246	240	177
Total	13 333	12 712	12 163	11 305	10 865	10 425	10 434	10 386	10 397	10 479	10 411

2.2.1 CH₄

The CH₄ emission primarily originates from livestock digestive processes, with a smaller contribution from animal manure particularly slurry. Field burning of agricultural residues is also included as a source of emission, but contributes less than 1 % to total agricultural CH₄ emissions.

The trend in CH_4 emissions from 1985 to 2015, is presented in Figure 2.8 and shows a reduction from 244 kt CH_4 in 1985 to 221 kt CH_4 in 2015, corresponding to 8 %. From 1985 to 2015, the emission from enteric fermentation has decreased mainly due to a decrease in the number of cattle. A contrasting development has taken place in emission from manure management. Structural changes in the sector have led to a move towards the use of slurry-based housing systems, which have a higher emission factor than systems with solid manure.

Figure 2.8 CH₄ emission 1985-2015, kt CH₄ per year.

In 2015, approximately 10 % of slurry was treated in biogas plants. Investigations indicate a lower emission of CH_4 from biogas treated slurry (Mikkelsen et al., 2016) and this effect is included in the emission inventories.

2.2.2 N₂O

The emission of N_2O takes place in the chemical transformation of nitrogen and is therefore closely linked with the nitrogen cycle. There is a direct link between the estimation of the NH_3 emission and the estimation of the N_2O emission.

Figure 2.9 presents the trend in the emissions of N_2O in the period 1985 to 2015 and reveals that the emission has decreased from 22.2 kt N_2O to 15.8 kt N_2O , which corresponds to a 29 % reduction.

 N_2O is produced from a range of different sources, which are presented in figure 2.9. The largest sources are animal manure and inorganic N-fertilisers applied to soil. The reduction in total N_2O emissions is strongly related to a significant decrease in emissions from the use of inorganic N-fertiliser and in nitrogen leaching and runoff. This development is primarily a consequence of an improved utilisation of nitrogen in animal manure.

Despite the increasing production of swine and poultry, the total amount of excreted nitrogen in manure has decreased from 1985 to 2015, which is due to an improved feed efficiency, especially for fattening pigs. A decrease in the total amount of nitrogen also means a decrease in N_2O emissions. Another reason for the reduction is the change from previous, more traditional, tethering systems with solid manure to slurry-based systems, because the N_2O emission is lower for liquid manure than for solid manure.

2.2.3 CO₂

Emission of CO_2 from agriculture originates from liming, urea application and use of other carbon-containing fertilisers. The largest source is liming which contribute with 94 % of the emission in 2015. The emission has decreased from 1985 to 2015 from 732 kt CO_2 to 177 kt CO_2 , which corresponds to a reduction of 76 %, mainly due to decrease in the use of lime.

Figure 2.10 Emission of CO2 from liming, urea and carbon-containing fertilisers, 1985-2015.

3 Description of the model IDA

A comprehensive model complex called "Integrated Database model for Agricultural emissions" (IDA) is used to store input data and to calculate the agricultural emissions. The emission calculation includes all pollutants and all agricultural sectors.

3.1 Methodology

The main principle in the estimation of the emission is an activity (a) multiplied with an emission factor (EF) set for each activity (*i*). The overall emission is calculated as the sum of the emissions from all activities (see Equation 3.1).

$$E_{Total} = \sum a_i \cdot EF_i \tag{Eq. 3.1}$$

Activity data for reporting in the agricultural sector could be, e.g. the number of cattle. The activity data for estimating emissions in the database are typically disaggregated into several different subcategories, which for cattle, for example, are dairy cattle, calves, heifers, bulls and suckling cattle and again divided into different breeds and weight classes.

The emissions are estimated in accordance with international guidelines. The emission calculations for the greenhouses gases are in accordance with the methods in the IPCC Guidelines (IPCC, 2006). The calculation of air pollutant emissions are in accordance with the methodologies described in the EMEP/EEA Guidebook (EMEP, 2013). National values and methodological approaches are used where these reflect the Danish agricultural conditions in a better way.

3.2 Data references – sources of information

Data input for emission calculations are collected, evaluated and discussed in collaboration with a range of different institutions involved in agricultural research and administration. The organisations include, for example, Statistics Denmark, Danish Centre for Food and Agriculture at Aarhus University, SEGES (agricultural advisory service), the Danish Environmental Protection Agency and the Danish Agricultural Agency.

Table 3.1 provides an overview of the various institutions and organisations who contribute with national data for the preparation of the agricultural emission inventories.

References	Link	Abbreviatio	on Data / information
Danish Centre for Environment and	http://dce.au.dk	DCE	- data collecting
Energy, Aarhus University			- emission calculations
			- responsible for QA/QC
			- reporting
Statistics Denmark	www.dst.dk	DSt	- livestock production
- Agricultural Statistics			- milk yield
C C			- slaughtering data
			- export of live animal - poultry
			- land use
			- crop production
			- crop yield
Danish Centre for Food and	http://dca.au.dk/	DCA	- N excretion
Agriculture, Aarhus University			- feeding situation
			- animal growth
			- N content in crops
			- modelling of data regarding N-leach-
			ing/runoff
			- NH_3 emission factor
SEGES – The Danish agricultural	www.seges.dk	SEGES	- housing type (until 2004)
advisory service			- grazing situation
2			- manure application, time and methods
			- estimation of extent of field burning of ag-
			ricultural residue
			- acidification of slurry (housing, storage
			and application)
Danish Environmental Protection	www.mst.dk	EPA	- sewage sludge used as fertiliser (until
Agency			2004)
			- industrial waste used as fertiliser
			- NH ₃ emission factor for use of acidifica-
			tion technology (List of Environmental
			Technologies)
			- use of pesticides
The Danish Agriculture Agency	www.lbst.dk/	DAA	- inorganic N-fertiliser (consumption and
			type)
			- housing type (from 2005)
			- sewage sludge used as fertiliser (from
			2005 based on the register for fertilisation)
			- number of animals from the Central Hus-
			bandry Register
The Danish Energy Agency	www.ens.dk	DEA	- manure treated in biogas plants

Table 3.1 Organisations contributing with input data to the preparation of the emission inventories for agriculture.

3.3 Integrated database model for agricultural emissions

The Integrated Database for Agricultural emissions (IDA) model complex is designed in a relational database system (MS Access). Input data are stored in tables in one database called IDA_Backend and the calculations are carried out as queries in another linked database called IDA.

Most emissions relate to livestock production, which is based on information on the number of animals, the distribution of animals according to housing type and, finally, information on feed consumption and excretion.

IDA operates with 39 different livestock categories, according to livestock type, weight class and age. These categories are subdivided into different housing types and manure types, which results in 269 different combinations of livestock subcategories and housing/manure types (Table 3.2). For each of these combinations, information on e.g. feed intake, digestibility, nitrogen excretion and CH_4 conversion factors is attached. The emission is calculated from each of these subcategories and then aggregated to the main livestock categories.

Main livestock	Subcategories	Number of subcategories
categories		divided into housing type
		and manure type system
Dairy cattle ¹	Dairy Cattle	35
Non-dairy cattle	¹ Calves (<1/2 yr), heifers, bulls, suckling cattle	129
Sheep	Including lambs	2
Goats	Including kids (meet, dairy and mohair)	3
Horses	<300 kg, 300-500 kg, 500-700 kg, >700 kg	4
Swine	Sows, weaners, fattening pigs	37
Poultry	Hens, pullets, broilers, turkeys, geese, ducks,	50
	ostriches, pheasants	
Other	Mink, fitchew, foxes, fin raccoon, deer	9

Table 3.2 Livestock categories and subcategories.

¹⁾ For all subcategories, large breeds and Jersey cattle are separately identified.

Data are collected from the organisations mentioned above (Table 3.1), and processed and prepared for import to the database. This step is done in spreadsheets. The data are imported and stored in the database called "IDAbackend" which also stores the emission factors for all pollutants. All emission calculations are done in IDA, which is linked to IDA-backend. This means that calculations of pollutants all use the same data on number of animals, crop area, amount of inorganic N-fertiliser, etc. The calculated emissions and additional information are uploaded to the CRF and NFR templates via a conversion database. An overview of the data process is shown in Figure 3.1.

Data collection, processing and preparing

Data collected from:

- Statistics Denmark
- DCA
- SEGES
- Danish Environmental Protection Agency
- The Danish Agricultural Agency
 The Danish Energy Agency

IDA-backend

Animals	Number		
	Housing type distribution		
	N-excretion		
	Amount of straw		
	Days on grass		
	Amount of feed		
	Amount of manure		
Crops	Area		
Inorganic fertiliser	Amount of N and of product		
N-leaching and run-off	Amount of N		
Sewage sludge and industrial waste used as fertiliser	Amount of N		
Crop residue	Amount of N		
Organic soils	Area		
Field burning of agricultural residues	Amount of burnt straw		
Liming	Amount of lime		
Pesticides	Amount of product		
Mineralisation	Amount of N		
All	Emission factors		

	•		
<u>IDA</u>			CRF and NFR templates
Emission calc	ulations of:		 Output:
- CH ₄ - N ₂ O - NH ₃ - PM - NMVOC - CO - CO ₂	- NO _x - SO₂ - Heavy metals - PAHs - Dioxins - HCB - PCBs	- BC	Emissions and additional information re- quired in the template.

Figure 3.1 Overview of the data process for calculation of agricultural emissions.

4 Livestock population data

The livestock production is the main source of the agricultural emissions of the NH₃ emission and CH₄ emission. To calculate the agricultural emission, a series of input data is used. Some values are obtained as default values from guidelines and some are estimated based on national values, which closer reflect the Danish agricultural conditions. Table 4.1 lists the most important national variables, and shows that some variables are used to calculate both NH₃ and greenhouse gas emissions. These variables (number of animals, distribution of housing types and estimated days on pasture and in housing) are described in this chapter. The remaining variables are included in the relevant pollutant chapters.

Table 4.1 Polluta	ants and variables.
Pollutants	National variables
NH ₃ , N ₂ O, CH ₄ ,	- No. of animals
NMVOC, NO _x , PM	1- Housing type/manure type
	- Days in housing and on pasture
NH ₃ , N ₂ O	- N-excretion (depends on feed intake)
NH ₃ , N ₂ O	- Conditions for storage and application of manure on agricultural soil
CH ₄	- Feed intake (amount and composition)
	- Manure excretion (amount, content of dry matter and volatile solids)

4.1 Livestock population

Livestock production figures are primarily based on the agricultural census from Statistics Denmark (DSt), see Appendix D for numbers of livestock 1985-2015 given in annual average population (AAP), definition in the EMEP/EEA Guidebook (EMEP, 2013).

Only farms larger than five hectares are included in the annual census from Statistics Denmark. Especially horses, goats and sheep are placed on small farms, which mean that the number of animals given in the Agricultural Statistics is not representative. Therefore, the number of horses is based on estimations made by SEGES and the number of sheep and goats is based on the Central Husbandry Register (CHR), which is the central register of farms and animals managed by the Ministry of Environment and Food of Denmark. From 2010, the annual census includes farms with more than 20 goats and sheep, but the CHR is considered as more reliable because the register include all animals regardless of farm size.

The inventories furthermore includes emissions from deer, ostrich and pheasants, but these animal categories are not included in DSt. Data on the number of deer and ostrich are based on the CHR, while the number for pheasants is based on expert judgement by the pheasant breeding association (Stenkjær, 2009, Pers. Comm.).

The normative figures for feed intake and N-excretion are for some livestock categories, e.g. dairy cattle, heifers (2003-2015) and sows, given for a year animal, which means the average number of animals, present within the year. This corresponds to the definition of annual average population (AAP) in the EMEP/EEA Guidebook (EMEP, 2013). For other livestock categories such as heifers (1985-2002), bull calves, bulls, weaners, fattening pigs and pullets, the normative figures are given per animal produced.

Below follows a description of how the livestock production is calculated for each animal category.

4.1.1 Cattle

Cattle are divided into six main categories dairy cattle, bull calves, heifer calves, bulls more than six months destined for slaughter, heifers more than six months to be used for breeding purposes, and suckling cattle. For all categories except for suckling cattle, a distinction is made between large breeds and Jersey cattle (Table 4.2). Suckling cattle are divided in tree groups, based on weight. The categories are further divided into different housing systems and manure types.

Data regarding the distinction between large breed and Jersey cattle were, until 2000, collected via special calculations from DSt. From 2001, the figures on Jersey cattle have been provided by SEGES, and are based on registrations from annual yield controls covering approximately 90 % of dairy cattle.

Table 4.2 Proportion of Jersey cattle (%)¹

Main categories of cattle	2001	2005	2010	2015
Dairy cattle	12.2	12.5	13.1	14.4
Heifer calves, 0 - 6 months	9.4	9.4	10.1	10.6
Heifers, 6 months to calving	8.5	8.6	9.3	9.4
Bull calves, 0-6 months	4.2	4.0	2.7	2.2
Bulls, 6 months to slaughter age	6.6	6.2	3.8	3.6
Suckling cattle	Weight; <40	0 kg, 400-60	0 kg and >60)0 kg

¹ Source: Flagstad, 2016, Pers. Comm..

In order to calculate the emission, the number of animals has to be quantified for each of the categories.

Dairy cattle

The annual average population of dairy cattle is based on DSt.

Heifers

The number of heifers is calculated by two different methodologies, which is due to a change in the Danish Normative System in 2003. This change in the calculation has no impact on emissions.

From 1985 to 2002, the normative figures for N excretion are given per animal produced, which is described in Mikkelsen et al. (2006). From 2003 and onwards the normative figures are changed so the values of feed intake and Nexcretion represent AAP (annual average population), which are based on the number of animals reported by DSt. From 2003, the number of heifers per year is calculated as:

a)
$$\operatorname{no}_{L} = \operatorname{no}_{DSt} \cdot (1 - J)$$
 (Eq. 4.1a)

b)
$$no_J = no_{DSt} \cdot J$$
 (Eq. 4.1b)

Example for 2015 heifer calves (< ½ year):

$$no_L = 158774 \cdot (1 - 0.106) = 141944$$

where:

no _{DSt}	= number of heifers <½ year given by DSt
nol	= number of large breed heifers <½ year
noj	= number of Jersey heifers <½ year
J	= fraction of Jersey heifers

Bulls

The normative figures from DCA represent feed intake and N-excretion per animal produced, therefore the emission calculation has been based on the number of animals produced.

The production of both bulls and bull calves is based on data on slaughter provided by DSt. Animals discarded during the slaughtering process is taken into account.

Number of total bulls and bull calves produced

For the calculation of bulls > 6 months is the number of slaughtered young bulls, bulls, steers and discard cattle given by DSt.

Number of bulls produced per year:

$$no_{bulls} = no_{yb} + no_{b} + no_{s} + no_{dis}$$
(Eq. 4.2)

where:

no _{bulls}	= number of bulls
no _{y b}	= number of slaughtered young bulls
nob	= number of slaughtered bulls
nos	= number of slaughtered steers
no _{dis}	= number of discarded cattle

Number of bull calves < 6 months is calculated based on the number of bulls and number of veal calves given by DSt:

$$no_{bull calves} = no_{bulls} + no_{vc}$$
(Eq. 4.3)
where:
$$no_{bull calves} = number of bull calves$$
$$no_{bulls} = number of bulls$$
$$no_{vc} = number of veal calves$$

Example from 2015:

 $no_{bulls} = 56\ 600 + 158\ 600 + 7\ 400 + 2\ 020 = 224\ 620$

 $no_{bull\ calves} = 224\ 620 + 5\ 900 = 230\ 520$

Distribution between large breed and Jersey An average slaughter weight for large breed cattle and Jersey cattle of 440 kg and 328 kg, respectively, is assumed in the normative figures (Poulsen et al., 2001).

The number of bulls from suckling cattle is counted under the category of bull calves, large breed. It is assumed that the allocation between dairy cattle and suckling cattle is approximately the same for bull and for bull calves. The fraction of suckling cattle is 14.0 % in 2015.

The number of bulls/bull calves from suckling cattle is estimated. For the remaining part of cattle, the distribution between large breed and Jersey is estimated by using the percentage for Jersey cattle given in Table 4.2.

Equation 4.4:

$$Frac = no_{S, DSt} / (no_{D, DSt} + no_{S, DSt})$$
(Eq. 4.4)

where:

Frac	= fraction of suckling cattle
no _{S, DSt}	= number of suckling cattle given by DSt
no _{D, DSt}	= number of dairy cattle given by DSt

The number of respectively large breed and Jersey bulls and bull calves produced is calculated as follows:

Equation 4.5 a) and b):	
a) $\operatorname{no}_{B,L} = (\operatorname{no}_B - \operatorname{no}_B \cdot \operatorname{Frac}) \cdot (1 - J) + (\operatorname{no}_B \cdot \operatorname{Frac})$	(Eq. 4.5a)
b) $\operatorname{no}_{B,J} = (\operatorname{no}_B - \operatorname{no}_B \cdot \operatorname{Frac}) \cdot J$	(Eq. 4.5b)

where:

no _{B, L}	= number of bulls produced, large breed
no _B	= number of bulls produced
no _{B, J}	= number of breed bulls produced, Jersey
Frac	= fraction of suckling cattle
J	= % of Jersev bulls

Calculation example for 2015:

Table 4.3	Number of bulls, 2015.
-----------	------------------------

	,			
	No. of animals, DSt	No. of animals produced	Fraction of suckling cattle	No. of bulls produced
				Large breed Jersey
Bull calves < 1/2 year	122 311	230 520	0,140	226 157 4 363
Bulls > ½ year	126 653	224 620	0,140	217 664 6 956

Suckling cattle

The number for suckling cattle is provided by DSt.

4.1.2 Swine

There are three different main swine categories: sows (including piglets up to 7 kg), weaners (7 to 31 kg) and fattening pigs (31 to 110 kg).

Sows

The number of sows is provided by DSt. Sows include pregnant sows, suckling sows and barren sows.

Weaners and fattening pigs

The normative figures for feed intake and N-excretion for fattening pigs and weaners are provided per pig produced; therefore, the emission calculation has been based on the number of animals produced.

The production of both weaners and fattening pigs is mainly based on data on slaughter provided by DSt. Discarded animals during the slaughtering process and export of live animals are taken into account. The calculated emission from weaners and fattening pigs also include the emission related to breeding of boars and slaughtered and discarded sows.

The number of fattening pigs is based on the total meat production divided with an average slaughter weight based on the normative figures, which in 2015 was reported as 84 kg (Poulsen, 2016).

Number of fattening pigs produced:

$$no = (\frac{AM}{AS}) + Ex$$
 (Eq. 4.6)

where:

no= number of fattening pigsAM= amount of meat produced, kgAS= average slaughter weight, kgEx= export of live fattening pigs and animals for breeding, number

Example from 2015:

$$no_{fattening} = \left(\frac{1\ 627\ M\ kg}{84\ kg}\right) + 489\ 000 = 19\ 861\ 000 \cong 19.9\ million$$

The number of weaners is calculated as the number of fattening pigs plus the number of exported live weaners, which has increased significantly in the last ten years from 1.1 million in 2001 to 11.6 million in 2015.

Number of weaners produced:

$$no = no_{fattening} + no_{exported}$$
 (Eq. 4.7)

where:

no	= number of weaners, weight 7-31 kg
no fattening	= total number of produced fattening pigs
no _{exported}	= number of exported living weaners

Example for 2015:

 $no_{weapers} = 19.8 million + 11.6 million = 31.5 million$

The normative feed intake and excretion values for fattening pigs are in 2015 based on a 110 kg live weight, equivalent to 84 kg slaughter weight (Poulsen, 2016). Slaughtering data are as mentioned based on Statistics Denmark. Information on discarded animals is based on data from SEGES, which is a cooperative owned by 16 members and these members represent most of the Danish meat industry. In 2015, the total meat production is estimated at 1 627 million kg meat and the number of living animals exported are 12.1 million (Table 4.4).

Table 4.4 Background data for estimating number of produced fattening pigs and weaners, 2015.

Fattening pigs to slaughter (million kg meat)	
Delivered to slaughterhouse	1 565
Slaughtered for the producer at slaughterhouse	0
Slaughtered at home	2
Discarded at slaughterhouse	3
Sow unit (million kg meat)	
Gilt to slaughter	0
Boars	2
Sows	45
Discarded sows at slaughterhouse	10
Total meat production from pigs, million kg meat	1 627
Export of living animals (1 000 s)	
Fattening pigs and animals for breeding	489
Weaners	11 644
No of produced animal (1 000 s)	
No. of produced fattening pigs	19 861
No. of produced weaners	31 505

Table 4.5 shows the number of swine other than sows reported by DSt, compared to the calculated number of weaners and fattening pigs produced per year. The number of animals given by DSt represents the number given in AAP, while the emission calculations are based on number of produced swine.

Table 4.5	Number of weaners and fattening pigs, 2015.	

	No. of animal,	No. of produced swine,
	DSt, 1 000 unit	1 000 unit
Swine (other than sows)	11 506	
Fattening pigs (31-110 kg)		19 861
Weaners (7-31 kg)		31 505

4.1.3 Poultry

For poultry, there are four main categories: laying hens, broilers, turkeys and other poultry (geese, ducks, pheasants and ostrich). In the following, an estimation of the numbers of animals is described.

Laying hens

The category of laying hens includes hens and pullets. The normative figures for hens are based on average annual hens (units of 100). The category distinguishes between six main production forms for hens: free-range, organic, barn, battery, aviary as well as production of hens for brooding. The distribution between the different production forms is based on data from DSt, see Table 4.6.

Hens

The number of laying hens is based on the egg production. The production of eggs divided on production forms are given by DSt and the production of eggs per hen is given in the normative figures (Poulsen, 2016). The number of hens within each category is calculated as follows:

$$no_i = \frac{(a_i + a_h \cdot P_i/100) \cdot 1000\ 000}{Y_i}$$
(Eq. 4.8)

where:

no _i	= number of hens within the production form <i>i</i>
a _i	= amount of eggs produced for sale in the production form i , in
	million kg (DSt)
a _h	= amount of eggs produced for home sale, in million kg (DSt)
Р	= $\%$ share of the production form <i>i</i> (DSt)
Yi	= production of eggs per hen per year within the production form
	<i>i</i> , in kg (Poulsen, 2016)

Below is an example of calculation of the number of free-range hens in 2015 (100 unit):

$$no_{free-range} = \frac{(4+8\cdot 6.35/100)\cdot 1000\ 000}{19}/100 = 2\ 373$$

Calculations of number of hens for brooding do not include eggs produced for home sale.

The category of battery hens is furthermore divided into three different housing systems according to the differences in the handling of manure. These categories are termed manure houses, manure tanks and manure cellar.
	No of hens, 100 unit	%. distribution on production forms	Number of hens, 100 unit
Hens - total	45 947	-	
- of which egg layers for brooding	10 000		10 000
- of which egg layers	35 947		
Free-range		7	2 373
Organic		24	8 805
Barn		21	7 475
Battery, manure house		41	14 874
Battery, manure tank		3	1 159
Battery, manure cellar		4	1 263

Table 4.6	Distribution (of hens i	n different	categories	in 2015	100 unit
1 abie 4.0	Distribution		1 unerent	calegones	11 2013,	TOO unit.

Pullets

The normative figure for pullets is based on the production of 100 pullets. The production time for pullets is 118 days or 119 days (Poulsen, 2016), which corresponds to approximately three production cycles during the year (365/118 = 3.1). Annual production is determined using the population figure provided by DSt (chicken for breeding) multiplied by the number of production cycles.

The total number of pullets produced per year is divided into three main production forms – consumption (net), consumption (floor) and pullets used for brooding eggs. The multiplication factor related to the percentage distribution of the three different production forms is from 1985 to 2004 based on information from the Danish Agriculture & Food Council (Jensen, 2008, Pers. Comm.) and from 2005 based on information from DAA – see Table 4.7.

Calculation of the total number of pullets produced per year:

$$no_{pu} = no_{DSt} \cdot \frac{365}{T} \cdot \left(\frac{P}{100}\right)$$
(Eq. 4.9)

where:

no _{pu}	= number of pullets within a given production form
no _{DSt}	= number of pullets given by DSt
Т	= production time, days
Р	= % distribution of the production form

Below is, as an example, the calculation of the number of pullets produced for consumption, net production (100 unit), for 2015:

$$no_{pu} = 10\ 232 \cdot \frac{365}{118} \cdot \left(\frac{18.3}{100}\right) = 5\ 792$$

	No. of pullets	Distribution on	Production	Production	No. of pullets pro-
	given in DSt	production forms	time	runs per year	duced per year
	100 unit				100 unit
		%	days		
Pullets - total (population DSt)	10 232	100			
Consumption, floor		43	118	3.093	13 482
Consumption, net		18	118	3.093	5 792
Egg brooding, floor		39	119	3.067	12 271
Number of pullets produced					31 544

Table 4.7 Calculation of the number of pullets produced in 2015,100 unit

Broilers, turkeys, ducks and geese

Numbers of broilers, turkeys, ducks and geese are based on the number of animals produced. The calculation of production is based on slaughter data from DSt. Export of animals and farmers' private consumption of animals are also taken into account and data is obtained from DSt.

Calculation method to estimate poultry production:

$$no_{po} = no_{DS} + no_{PC} + no_E \tag{Eq. 4.10}$$

where:

where.	
no _{po}	= number of the given category of poultry (broilers, ducks, geese
	or turkeys)
no _{DS}	= number of animals delivered to slaughter
no _{PC}	= number of animals slaughtered at home for private consumption
no _E	= number of live animals exported

Example for the number of broilers produced in 2015 (in 1 000 unit):

 $no_{no} = 95\ 681 + 500 + 18\ 556 = 114\ 738$

The calculated number of broilers, turkeys, ducks and geese produced is compared in Table 4.8 with the figures for the number of average annual animals reported by DSt. The number of average annual animals represents the number of housing places.

Table 4.8	Number of broilers, turkeys, duc	cks and geese, 2015.				
	No. of animal,	No. of produced animals				
	DSt, 1 000 unit	1 000 unit				
Broilers	11122	114 738				
Turkeys	251	5 985				
Ducks	248	415				
Geese	7	19				

Pheasants and ostriches

DSt has no data on the number of pheasants and ostriches produced. The number of pheasants is based on expert judgement by the pheasant breeding association (Stenkjær, 2009, Pers. Comm.) and is estimated at 1 062 500 in each of the years 1985-2015. Pheasants bred for hunting are estimated as unaltered in the period. The number of ostriches is based on information obtained from the Central Husbandry Register (CHR), which is the central register for farm

data of the Ministry of Environment and Food of Denmark, see Table 4.9. The production of ostrich in Denmark started in 1993 and no production of ostrich has taken place before 1993.

Table 4.9 Number of ostrich 1985 to 2015.

	1985	1995	2000	2005	2010	2011	2012	2013	2014	2015
Ostrich	0	3 333	8 889	3 661	358	191	176	151	96	91

4.1.4 Horses

The number of horses are split into four different weight classes: small ponies up to 300 kg, lighter breeds – 300-500 kg, medium-weight breeds – 500-700 kg and large breeds – more than 700 kg. SEGES estimates that the distribution in these groups is 25, 34, 38 and 3 %, respectively.

The figures from DSt only includes horses on farms larger than 5 ha. However, a study of pets undertaken by DSt has indicated that a significant number of horses are found on smaller hobby farms and riding schools that are below 5 ha. The total number of horses in the inventories is based on the horse breeding register managed by SEGES.

In 2015, 57 720 horses were listed by DSt, as opposed to 155 000 according to SEGES figures. SEGES has estimated the number of horses in 2000 to 150 000 and in 2008 to 190 000. The numbers in between are interpolated. Number of horses in 2009 to 2015 is based on a new judgement from SEGES, which shows a decrease in number of horses. Table 4.10 shows the number of horses registered by, respectively, DSt and SEGES.

Table 4.10 Number of horses 1985 to 2015 (1 000 unit).

					,		,				
	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
DSt ¹	32	38	18	40	54	60	61	68	57	49	58
SEGES ²	140	135	143	150	175	165	155	155	150	150	155

¹ Agricultural units > 5 ha.

² Total number of horses incl. horses on small farms and riding schools.

4.1.5 Sheep, goats and deer

The normative figures for goats are based on average annual breeding goats including kids, because this corresponds to the unit in the normative data. For sheep normative figures are provided for both sheep and lambs. It is expected that a number of sheep and goats are to be found on farms below five ha and thus the actual number is higher than reported by DSt. Therefore, data on the number of sheep and goats are based on the Central Husbandry Register (CHR).

The number of sheep has been divided in number of mother sheep and lamps. Number of mother sheep is based on numbers from CHR, while the number of lamps is the number of mother sheep multiplied by 1.5, because sheep on average give birth to 1.5 lambs per year.

Table 4.11 Number of mothersheep 1985-2015 (1 000 unit).

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Mother sheep											
DSt ¹	33	77	67	68	79	72	67	70	72	69	65
CHR ²	40	92	81	112	126	111	94	90	88	88	84

¹ Agricultural units > 5 ha.

² 1985-1996 numbers from DSt multiplied by 1.2.

The production of deer is included in the Danish inventories and covers animals bred for meat on farms (in enclosures) and not deer in the wild. No data on the number of deer are available from DSt, thus the number of deer is based on CHR.

4.1.6 Fur animals

The production of fur animals is calculated as the population of mink, fit chew, foxes and finn racoon as stated by DSt.

4.2 Housing system

For each livestock category, the number of animals is divided into a range of different housing systems. The housing system is a determining factor for how the animal manure is handled and therefore decisive for the distribution into liquid and solid manure systems.

No systematic record of the distribution of the different housing types exists until 2004. Therefore, the distribution from 1985 to 2004 is based on expert judgement. For cattle and swine, the distribution is based on information from Rasmussen (2003, Pers. Comm.) and Lundgaard (2003, Pers. Comm.). The distribution of housing systems for fur animals is obtained from Risager (2003, Pers. Comm.). The housing distribution for poultry is determined on the basis of efficiency controls by the Danish Agriculture & Food Council (Jensen, 2008, Pers. Comm.). From 2005 onwards, the distribution of the different housing types is based on information from the Danish Agricultural Agency (DAA) on farm nitrogen budgets, which farmers, by law have to submit annually.

Appendix E presents the distribution of the different housing types for all livestock categories. Table 4.12 and Table 4.13 show the estimated distribution of housing types from 1985 to 2015 for dairy cattle and fattening pigs, the two most important livestock categories.

The structural development in the agricultural sector has influenced the change in housing types. New housing facilities have been built and for dairy cattle, most of the tethered housings have been replaced by larger loose-housing facilities. In 1985, 85 % of the dairy cattle were kept in tethered stalls and in 2015 this has reduced to 7 %. In the case of fattening pigs, many solid floor systems have been replaced by a system with slatted floors. The consequence of this development is that more of the animal manure is handled as slurry.

Table 4.12 Daily calle distributed on main housing types, 76.	Table 4.12	Dairy cattle distributed	on main housing types, o	%.
---	------------	--------------------------	--------------------------	----

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Tethered housing	85	79	73	46	20	12	10	9	8	7	7
Loose-housing with beds	14	18	21	43	70	82	85	86	86	87	87
Deep litter	1	3	6	11	10	6	5	5	6	6	6

Table 4.13 Fattening pigs distributed on main housing types, %.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Fully slatted floor	29	50	58	54	53	54	53	52	46	44	40
Partly slatted floor	30	24	26	35	38	42	43	46	51	54	58
Solid floor	40	22	11	5	3	2	1	1	1	1	1
Deep litter	1	4	5	6	6	3	2	2	2	2	2

4.3 Number of days in housing and on pasture

A proportion of the manure from dairy cattle, heifers, suckling cows, sheep, goats, horses and deer is deposited on the field during grazing. It is assumed, that on average 5 % of the manure from dairy cattle is excreted directly onto the field during grazing in 2015, which translates to 18 days on pasture per year (Aaes, 2013, Pers. Comm.). The estimate for suckling cows is 224 days, with 132 days for heifers, 183 days for horses, 265 days for sheep and goats and 365 for deer (Poulsen et al., 2001), Table 4.14.

The number of grazing days for dairy cattle decreased in the period 2002-2007 and grazing days for heifers decreased from 1990-2007 due to the structural development towards larger farms (See Appendix F). A production with a large numbers of cattle makes it difficult to drive the animals to pasture because it is time consuming. From 2007 and forward the estimate for grazing days, for both the dairy cattle and heifers, are kept at the same level.

	Grazing days
Cattle:	
Dairy Cattle	18
Calves and bulls	0
Heifers	132
Suckling Cattle	224
Swine:	
Sows, weaners and fattening pigs	0
Sows, outdoor	365
Poultry:	
Hens, pullets, broilers, turkeys, ducks and ostrich	0
Geese, pheasant and ostrich	365
Other:	
Horses	183
Sheep and goats	265
Deer	365
Fur animals	0

Table 4.14 Number of grazing days corresponding to the proportion of N in manure deposited on the field during grazing, 2015.

5 NH₃ emission

Figure 5.1 shows the NH₃ emissions from different sources in 2015. The emission from manure management contributes 52 % and manure applied to soils 28 % of the total NH₃ emission. The emissions from cultivated crops and inorganic N-fertilisers contribute 8 % and 9 %, respectively. The remainder comes from grazing animals (3 %) and less than 1 % is from other sources such as sewage sludge and industrial sludge applied to agricultural land, the field burning of agricultural residues and NH₃ treated straw. Description of trend 1985 – 2015 see also Chapter 2.1.1. Appendix A shows the NH₃ emissions from all sources for the period 1985 – 2015.

Figure 5.1 NH₃ emissions distributed on sources, 2015.

5.1 Animal manure

5.1.1 Total N and TAN

The emission of NH_3 from manure management is calculated on the basis on nitrogen excreted from livestock. Most of the N excreted that is readily degradable and broken down to NH_4 -N, are found in the urine. Previously, the emission calculation was based on the total N content in manure for all manure types. However, the relationship between NH_4 -N and total N will not remain constant over time due to changes in feed composition and feed use efficiency.

In order to be able to implement the effect of NH_3 -reducing measures such as improvements in feed intake and composition in the emission inventories, it is necessary to calculate the emission based on the Total Ammonia Nitrogen (TAN) content, which has been done to the extent possible. From 2007, the calculation of NH_3 emission from liquid manure is based on TAN. While for solid manure and deep litter, the emission factors given in the normative figures are based on total N, and therefore the NH_3 emission from solid manure and deep litter is based on total N. The normative figures for both total nitrogen excretion and the content of TAN are provided by DCA.

Acidification of the manure reduces the NH₃ emission. Reduction of NH₃ emission due to acidification of manure in the housings has been included in the inventories for dairy cattle and fattening pigs for the years 2012-2015.

5.1.2 Methodology

The NH_3 emission occurs wherever the manure is exposed to the atmosphere in livestock housings, manure storages, after application of manure to the fields and from the manure deposited by grazing animals. The total NH_3 emission from animal manure is calculated as:

$$AM_{t} = AM_{h} + AM_{s} + AM_{ap} + A_{g}$$
(Eq. 5.1)

where:

AM _t	= total ammonia emission, kg
AM_h	= emission from manure in livestock housing, kg
AM _s	= emission from manure storage, kg
AM_{ap}	= emission from manure application to fields, kg
AM_{g}	= emission from manure deposited by animals on grass, kg

For each of the elements above, NH_3 losses are calculated for each individual combination of livestock category and housing/manure type. The time the livestock spends indoors and outdoors (grazing), respectively, is taken into account.

a)
$$AM_h = \left(no \cdot Nex_a \cdot \left(1 - \frac{D_g}{365}\right) \cdot EF_h\right) - reduc.$$
 (Eq. 5.2a)

b)
$$AM_s = \left(no \cdot Nex_h \cdot \left(1 - \frac{D_g}{365}\right) + reduc.\right) \cdot EF_s$$
 (Eq. 5.2b)

c)
$$AM_{ap} = \left(no \cdot Nex_s \cdot \left(1 - \frac{D_g}{365}\right) + reduc.\right) \cdot EF_{ap}$$
 (Eq. 5.2c)

d)
$$AM_g = no \cdot Nex_a \cdot \left(\frac{D_g}{365}\right) \cdot EF_g$$
 (Eq. 5.2d)

where:

no	= number of animals
Nexa	= N excretion from animals, kg per head per year
Nex _h	= N excretion in housing unit, kg per head per year
Nexs	= N excretion in storage unit, kg per head per year
D_{g}	= days on grass during the year (see Table 4.14)
EF	= emission factor for the given unit (housing, storage, application
	or grass). % NH ₃ -N of N excreted

Reduc. = amount of NH_3 -N emission reduced due to acidification, kg NH_3 -N

The amount of N reduced in the emission from housings is added to the amount of N excretion used to calculated emission from storage and application because when the N is not evaporated as NH_3 in the housing it will stay in the manure.

The amount NH₃-N reduced is calculated as:

Reduc.=
$$M \cdot RF \cdot N$$
 (Eq. 5.3)

Where:

Ν

Reduc.	= amount of NH ₃ -N emission reduced due to acidification, kg
	NH ₃ -N
Μ	= amount of manure acidified (SEGES, 2015, Pers. Comm.), kg
RF	= reduction factor, % (MST, 2016)

= amount of kg NH₃-N per kg manure

 Table 5.1
 Amount of manure acidified and reduction factor, 2012-2015

 PE
 %

	RE, %	Amount of n			
		2012	2013	2014	2015
Cattle	50	437	550	600	600
Swine	65	437	550	600	600

¹ Same for all years

The emission calculation for fattening pigs in 2015 housed on fully slatted flooring is shown below as an example, based on normative figures and emission factors given in Table 5.2. In 2015, 19.9 million fattening pigs were produced (Table 4.5). Of these, 40 % are housed for 365 days a year in housing systems with fully slatted floor.

Table 5.2 Normative figures and emission factors for one produced fattening pigs in 2015 (DCA).

	Emission	factors, EF,			
kg N per produced animal				%. NH;	₃-N of TAN
TAN ex animal	TAN ex housing	TAN ex storage	Housing unit	Storage	Application
1.90	1.44	1.80	24	2.9	10.77 (slurry)

Calculation of the emission from fattening pigs housed on fully slatted floor:

$$AM_{h} = (19\ 861\ 372 \cdot 0.398) \cdot \frac{1.90}{1000} \cdot \left(1 - \frac{0}{365}\right) \cdot \frac{24}{100} - 363 = 3\ 242\ tonnes\ NH_{3} - N$$

$$AM_s = \left((19\ 861\ 372 \cdot 0.368) \cdot \frac{1.44}{1000} \cdot \left(1 - \frac{0}{365}\right) + 363 \right) \cdot \frac{2.9}{100} = 341\ tonnes\ NH_3 - N$$

$$AM_{ap} = \left((19\ 861\ 372 \cdot 0.398) \cdot \frac{1.80}{1000} \cdot \left(1 - \frac{0}{365}\right) + 363 \right) \cdot \frac{10.77}{100} = 1\ 572\ tonnes\ NH_3 - N$$
$$AM_{total} = 3\ 242 + 341 + 1\ 572 = 5\ 154\ tonnes\ NH_3 - N = 6\ 258\ tonnes\ NH_3$$

N-excretion and emissions given in NH_3 -N for all main livestock categories are shown in Appendix G.

5.1.3 Normative figures for nitrogen in animal manure

The normative values for nitrogen excretion are estimated by DCA based on research results (Laursen, 1994; Poulsen & Kristensen, 1997; Poulsen et al., 2001; Poulsen, 2016). The normative figures are, since 2002, adjusted annually to take into account the changes in feed composition and feed use efficiency. Values for N ex animal are provided in Appendix H for the most important livestock categories and in Appendix I based on TAN for 2007 to 2015.

For heifers, a change in methodology has taken place. From 1985 to 2002 the normative figures for N ex were provided for each produced animal. This has changed from 2003, where the N ex covers N ex per AAP (annual average population – see definition in section 4.1). For animal categories for which N ex is based on produced animal, this is noticed as a footnote in Appendix H and I.

Appendix G shows the total N excretion for the different main livestock categories from 1985 to 2015 as well as the NH_3 emission for the different main livestock categories.

5.1.4 Emission factors

Housing unit

The emission factors for housing vary according to the combination of housing and manure type. As an example, the emission factors for cattle housing units are given in Table 5.3 based on values in the report on normative standards (Poulsen et al., 2001, Kai et al. 2016). In Appendix J is listed emission factor for housing for all other livestock categories.

Table 5.3 NH_3 emission factors for housing units for cattle.

Cattle		Urine	Slurry	Solid manure	Deep litter manure
		TAN	TAN	Total N	Total N
Housing type		%. loss of TA	AN ex animal	%. loss o	f N ex animal
Tethered	urine and solid manure	10	-	5	-
	slurry manure	-	6	-	-
Loose-housing	slatted floor	-	16	-	-
with beds	slatted floor and scrape	-	12	-	-
	solid floor	-	20	-	-
	drained floor	-	8	-	-
	solid floor with tilt and scrape	-	8	-	-
	solid floor with tilt	-	12	-	-
Deep litter	all	-	-	-	6
	+ solid floor	-	-	-	6
	+ slatted floor	-	16	-	6
	+ slatted floor and scrape	-	12	-	6
	+ solid floor and scrape	-	20	-	6
Boxes	sloping bedded floor	-	16	-	-
	slatted floor	-	16	-	-

Storage

The emission factors used for storage are listed in Table 5.4 and are based on normative figures (Poulsen et al., 2001 and Poulsen, 2016).

			Urine	Slurry ¹	Solid	Deep litter	%. of solid manure
					manure		stored in heap on field
Cattle		Total N	2	2.1	4	1	35
		TAN	2.2	3.5	-	-	-
Swine	Sows	Total N	2	2.4	19	6.5	50
		TAN	2.2	2.9	-	-	-
	Weaners	Total N	2	2.4	19	9.8	-
		TAN	2.2	2.9	-	-	-
	Fattening pigs	Total N	2	2.4	19	9.8	75
		TAN	2.2	2.9	-	-	-
Poultry	Hens and pullets	Total N	-	2	7.5	4.8	95
	Broilers	Total N	-	-	11.5	6.8	85
	Turkeys	Total N	-	-	-	8	-
	Ducks and geese	Total N	-	-	-	6.8	-
Fur animals		Total N	0	3.1	11.5	-	-
		TAN	0	3.1	-	-	-
Horses, sheep and goats		Total N	-	-	-	4	-

Table 5.4 NH₃ emission factors for storage units.

¹ It is assumed that 5 % of slurry tanks in swine production and 2 % in cattle production are not fully covered or have an inadequate floating cover. The emission factors were higher in the previous years (see Appendix K).

Liquid manure

The emission from urine is, according to the normative figures, an estimated 2 % of total N ex housing unit and 2.2 % of TAN ex housing unit from a closed urine tank.

Due to legislation from 2003, all slurry tanks must be fully covered or established with a floating layer as cover. As not all slurry tanks have a fixed cover or a full floating cover, this is taken into account in the inventories (COWI, 1999 and 2000). It is assumed that the covered capacity has increased in recent years as a result of the stricter regulations on the management of slurry tanks. However, as it is difficult to achieve a full floating cover every day of the year, some emission can take place during filling and mixing of manure in the tank. Therefore, it is assumed that floating/fixed covers are missing on 5 % of slurry tanks in swine production and on 2 % in cattle production.

The correction for the lack of floating/fixed covers for total N ex housing unit is based on normative figures (Poulsen et al., 2001), while the correction for TAN is based on Hansen et al. (2008). The emission factor for swine slurry with and without a floating/fixed cover is 2 % and 9 % of total-N ex housing unit and 2.5 and 11.4 % of TAN, respectively. For cattle slurry, the factor is approximately 2 % with floating/fixed cover and 6 % of total-N ex housing and 3.4 and 10.3 % of TAN, respectively. Calculation examples of NH₃-N emission factor based on TAN for swine, cattle and fur slurry are shown in Equation 5.4.

a) Emission swine slury	$= (0.95 \cdot 2.5\%) + (0.05 \cdot 11.4\%) =$	= 2.9% (Eq. 5.4a)
-------------------------	--	-------------------

b) Emission $_{\text{cattle slurry}} = (0.98 \cdot 3.4\%) + (0.02 \cdot 10.3\%) = 3.5\%$ (Eq. 5.4b)

c) Emission $_{\text{fur shurry}} = (0.98 \cdot 2.9\%) + (0.02 \cdot 12.9\%) = 3.1\%$ (Eq. 5.4c)

The emission factors for 2015 for swine (corrected), cattle (corrected) and fur animals are 2.9 %, 3.5 % and 3.1 %, respectively. Emission factors for storage of manure for all years are shown in Appendix K.

Solid manure

The emission from solid manure is based on normative figures (Poulsen et al., 2001). From august 2006, the law stipulates that manure heaps should be covered, but also here a correction of the emission factor is made for the ones not covered. In the inventories, it is assumed that 50 % of the manure heaps are covered. A calculation example of the correction for swine manure is shown in Equation 5.5, where emission factors with and without cover is 13 % and 25 % of total-N ex housing unit (Poulsen et al, 2008). The same correction is made for all animal categories.

Emission _{swine solid manure} =
$$(0.5 \cdot 25\%) + (0.5 \cdot 13\%) = 19\%$$
 (Eq. 5.5)

Emission factors for cattle, swine, poultry, and fur animals are 4%, 19%, 7.5% (broilers 11.5%) and 11.5%, respectively. See emission factors and factors for correction in Appendix L.

The emission from deep litter bedding is based on normative figures (Poulsen et al., 2008). The calculation of the emission from cattle, sows, fattening pigs, hens and broilers takes into account, that a proportion of the manure is applied directly to the field and, therefore, not stored in the field manure heap. The report containing normative figures estimates percentage of manure stored in the field manure heap (Poulsen, 2008), see Table 5.4.

Denitrification

Table 5.5 lists the emission factors for denitrification of solid manure and deep litter based on normative figures (Poulsen et al., 2001 and Poulsen, 2016). The emission factors are estimated based on measurements in Danish cattle and swine housing units. The factors for the remaining livestock categories are not measured directly; however, they are estimated relative to the denitrification from cattle and swine units. The fact that a certain proportion of the manure is stored in the field manure heap is taken into account (Poulsen et al., 2001).

	Denitrification in % of total N ex housing unit					
	Solid manure	Deep litter				
Cattle	10	5				
Swine	15	15				
Poultry	10	10				
Horses, sheep and goats	-	10				

Table 5.5 Denitrification associated with storage of solid manure and deep litter in the field manure heap.

Field application of manure

Over time, a change in practice of manure application has taken place, which is a result of changes in crop pattern and increasing environmental demands. A rise in growing of winter cereals has led to a shift from manure application in autumn to early application in spring and changes in application technology. The requirement for an improved N utilisation in manure has also led to a greater proportion of slurry being injected or incorporated directly into the soil. Two further NH_3 reducing measures should also be mentioned. Following the legislation (BEK, 2002), a ban on traditional broad spreading of liquid manure was introduced, and manure applied to areas without vegetation had to be incorporated into the soil within six hours of application, both effective from 1 August 2003. From 2011, slurry applied on fields with grass for feeding or fields without crop cover must be injected directly into the soil (BEK, 2013). However, the injection can be substituted by acidification of the slurry. Acidification reduces the pH value and thus reduces ammonia emission, because a larger part of the nitrogen is converted to ammonium, which does not evaporate as easily as ammonia. To calculate the emission from application of manure to agricultural land, four different weighted emission factors are used; liquid and solid manure from swine and cattle, respectively. For all other livestock categories is used same weighted emission factor as for cattle manure.

Changes in application practices and technological improvements driven by environmental legislation have led to a decrease in the weighted emission factors – see Table 5.6. The emission factor for both cattle- and swine slurry has decreased. For cattle slurry, the emission factor is lowered from 33.0 % in 1985 to 12.7 % in 2015, corresponding to a 62 % reduction due to approximately two thirds of the slurry now being injected/incorporated directly into the soil and the use of acidification of the manure. The weighted emission factor for solid manure has also decreased because the manure applied on bar soil have to be plough down into the soil, which lower the NH_3 emission.

Table 5.6 Percentage loss of NH_3 from application of liquid manure (NH_3 -N of TAN ex storage) and solid manure (NH_3 -N of N ex storage).

Weighted emission factor		1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Liquid manure	Cattle ¹	33.0	34.3	30.3	27.2	14.1	14.3	13.1	13.2	12.9	12.7	12.7
	Swine	17.3	17.9	15.3	13.8	11.1	11.0	10.8	10.8	10.8	10.8	10.8
Solid manure	Cattle ¹	9.6	7.9	7.5	6.8	6.7	6.4	6.7	6.7	6.7	6.7	6.7
	Swine	9.6	7.9	7.5	6.8	6.7	6.4	6.2	6.2	6.2	6.2	6.2

¹ Value for cattle is also used for all other animal types, except for swine.

Calculation of the weighted emission factor

The weighted emission factor is calculated for each year and in two stages. EF_w is calculated first as the sum of the proportion of manure applied under a given application practice (*i*) multiplied by the associated emission factor for this application practice.

$$EF_w = \sum MA_i \cdot EF_i \tag{Eq. 5.6}$$

where:

$\mathbf{EF_w}$	= weighted emission factor, kg NH3-N per kg N per year
MA _i	= nitrogen in manure applied under a given application practice
	i, kg N per year
EF _i	= emission factor for the application practice <i>i</i> , kg NH ₃ -N per kg N
	per year

Secondly EF_{wt} is calculated which includes emission reducing technology, such as acidification of manure in connection with application.

$$EF_{wt} = p_t (EF_w - EF_t)$$
(Eq. 5.7)

Where:

EFwt	= weighted emission factor including technology, kg NH ₃ -N	per
	kg N per year	

\mathbf{p}_t	= % of the manure	treated by the	technology <i>t</i>
1.			0,5

- EF_w = weighted emission factor by application practice, kg NH₃-N per kg N per year
- EF_t = emission factor for manure treated by the technology *t*, kg NH₃-N per kg N per year

A given application practice is determined by different combinations of variables such as application time, application methods, length of time between application and incorporation of manure, and stage of crop growth.

Application time

- a. spring-winter (bare soil, crops, grass)
- b. spring-summer (grass)
- c. late summer-autumn (rape, seed grass)

Application method

- a. injection/direct incorporation
- b. trailing hoses
- c. broad spreading (prohibited for liquid manure from 2003)

Length of time between application to land and incorporation of manure

- a. 6 or 4 hours
- b. less than 12 hours
- c. more than 12 hours
- d. more than a week

Stage of crop growth

- a. bare soil
- b. growth

There is no annual statistical information on how the farmer handles the manure application in practice. The calculations are based on a study of a limited number of farms, sales figures for manure application machinery as well as development trends in LOOP areas (catchments included in the national monitoring program for the aquatic environment) (Andersen et al., 2001).

The estimate for application practice in 2001 and 2002 is, in addition to data from LOOP areas (Grant et al., 2002; Grant et al., 2003), based on information from the organisation for agricultural contractors (Kjeldal, 2002, Pers. Comm.) and a questionnaire survey of application practice implemented by Danish Agriculture (2002) involving 1.600 farmers. From 2003 onwards, the estimate of application practice is based on expert judgement (Birkmose, 2016, Pers. Comm.).

The assumed application practice for the years 1985 – 2015 is shown in Appendix M.

Emission factor

The emission factor used for each combination of application practice (Equation 5.6) is based on information from Hansen et al. (2008), see Table 5.7.

The emission will be relatively high in the beginning of the growing season, when the plants, by virtue of their small size, do not contribute significant to shade or shelter. With applications later in the season, the emission will be significantly lower, despite the higher air temperatures, as a result of the larger leaf area available. In addition to the shade and shelter effect provided by the leaves, which lowers the emission, the leaves themselves will absorb a proportion of the NH_3 in gaseous form.

In accordance to Danish livestock regulations, the maximum time between application and incorporation of manure has been reduced from 12 to 6 hours from BEK (2002). It is assumed, that the decrease in the emission factor resulting from this reduction will be 33 % (Sommer, 2002, Pers. Comm.).

		Emission factor under application								
		Liquid manure								
Crop stage ^a	Application time	Injected/in	corporated direct	Trai	ling hoses					
		Hours ^b	NH₃-N in %. of	Hours ^b	NH ₃ -N in %. of					
			TAN in manure		TAN in manure					
-	March	0	1.6	4	10.7					
-	April	0	1.8	4	11.6					
+	March	> 1 week	24.5	> 1 week	26.9					
+	April	> 1 week	26.7	> 1 week	28.6					
+	Мау	0	-	> 1 week	26.0					
+	Summer	0	32	> 1 week	43.2					
-	Summer	0	2.1	4	13.8					
+	Autumn	0	28.6	> 1 week	38.6					
-	Autumn	0	1.9	4	12.4					
		Liqu	id manure	Soli	Solid manure					
		Broad	d spreading	Tr	aditional					
		Hours ^b	NH₃-N in %. of	Hours ^b	NH ₃ -N in %. of					
			TAN in manure		total in manure					
-	Winter-spring	< 12	18.5	4	5.0					
-	Winter-spring	> 12	20.1	6	10.0					
-	Winter-spring	> 1 week	48.6	> 1 week	16.0					
+	Spring-summer	> 1 week	73.5	> 1 week	20.0					
+	Late summer-autumn	> 1 week	72.0	> 1 week	14.0					
-	Late summer-autumn	< 12	23.0	4	3.0					
-	Late summer-autumn	> 12	23.0	6	8.0					
-	Late summer-autumn	> 1 week	23.0	> 1 week	11.0					

Table 5.7 Emission factors for application of cattle manure.

^a -: indicate bare soil, +: indicate growth.

^b Length of time before incorporation into soil.

Grazing

Part of the manure from dairy cattle, heifers, suckling cows, sheep, goats, horses and deer is deposited on the field during grazing (See chapter 4.3 and Appendix F).

An emission factor of 7 % of the total nitrogen content is assumed for volatile NH_3 -N, which is based on studies of grazing cattle in the Netherlands and the United Kingdom (Jarvis et al., 1989a; Jarvis et al., 1989b; Bussink, 1994). The emission factor is used for all animal categories.

5.2 Inorganic N-fertilisers

Data on the use of inorganic N fertiliser is based on the sale estimations collected by DAA (2016). Emission factors are based on the values given in EMEP/EEA Guidebook (EMEP, 2016).

The emission from inorganic N-fertilisers depends on type as well as amount used. Data for consumption 1985-2015 (Table 5.8) and fertiliser type and nitrogen content for 2015 (Table 5.9) is obtained from the DAA (2016), which is based on the total sale from all fertiliser suppliers.

Table 5.8 Inorganic N-fertiliser consumption 1985 - 2015, kt N.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Used in agriculture	392	395	310	246	204	188	195	185	192	185	201

Emission factors for the various fertiliser types are based on the recommendations in the EMEP/EEA Guidebook (EMEP, 2016), see Table 5.9. The same emission factors are applied for all years.

	Emission factor,	Consumption,
	% of N in fertiliser	kt N
Fertiliser type:		
Calcium nitrate + boron	5.0	0.2
Ammonium sulphate	9.0	7.0
Calcium ammonium nitrate and other nitrate types	0.8	98.7
Ammonium nitrate	1.5	3.7
Liquid ammonia	1.9	5.9
Urea	15.5	0.9
Other single fertilisers	1.0	24.4
Magnesium fertiliser	5.0	0.0
NPK fertiliser	5.0	54.4
Diammonium phosphate (18-20-0)	5.0	0.3
Other NP fertilisers	5.0	5.4
NK fertilisers	1.5	2.5
Total consumption of fertiliser		203 ¹
Emission factor - weighted average	2.5	

Table 5.9 Consumption and emission factors used for inorganic N-fertiliser, 2015.

¹ Including consumption relating to parks, sports grounds etc. – representing approximately 1 %.

Since 1985, there has been a significant decrease in the use of inorganic N-fertiliser (Table 5.8). This is mainly due to stricter requirements to the utilisation of nitrogen in manure and requirements to handling of manure applied to the soil. Also, changes in the distribution of the different types of fertiliser decreases the emission. Use of urea, which has a high emission factor, has de-

creased and contributes today less than 1 % of the total nitrogen used as fertiliser. In average 2.5 % of the total nitrogen used in inorganic N fertiliser is emitted as NH_3 in 2015.

Table 5.10 NH₃-N emission from inorganic N fertilisers and IEF (implied emission factor), 1985 – 2015.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
tonnes NH₃-N	15 085	13 351	9 712	6 634	5 367	4 539	4 583	4 347	4 600	4 644	5 021
IEF, %	3.8	3.3	3.1	2.6	2.6	2.4	2.3	2.3	2.4	2.5	2.5

5.3 Crops

Plants exchange NH₃ with the atmosphere by absorbing and expelling NH₃. The amount can vary significantly depending on the plant's stage of development, conditions surrounding the application of the fertiliser and climatic conditions at the particular location. A study from Schjoerring and Mattsson (2001) indicate an emission of up to 5 kg NH₃-N per hectare. Based on a literature view the emission from growing crops is estimated to 2 kg N per ha for crops in rotation and 0.5 kg per ha for grass and clover. Despite uncertainties related to the use of these emission factors, the emission from growing crops is included in the Danish emission inventories, because otherwise the total NH₃ emission considered to be underestimated. The size of the cultivated area is based on information from Statistics Denmark.

Table 5.11 Emission factor used for crops, kg N per ha.All crops ex grass2Grass/clover in a rotation0.5Permanent/long-term grass0.5

From 1985 to 2015 the NH_3 emission from growing crops has decreased from approximately 4 900 to 4 400 tonnes of NH_3 -N corresponding to a reduction of 10 %, which is due to a decrease in the area with crops.

5.4 Sewage sludge

Some of the sludge from wastewater treatment and the manufacturing industry is applied as fertiliser to agricultural soil. Information on the amount of sewage sludge applied is obtained from reports prepared by the Danish Environmental Protection Agency, where the latest one is DEPA (2009). From 2005 and onwards the amount of N applied from wastewater treatment is based on the fertiliser accounts controlled by DAA. Farmers with more than 10 animal units¹ have to be registered and have to keep accounts of the N content in manure, received manure or other organic fertiliser.

The N content varies from year to year and is usually 4–5 % of the total amount of sludge. An emission factor of 3 % of the N content in sludge is used. For sludge incorporated into soil within six hours of application the emission factor is expected to be halved, i.e. 1.5 %. Concerning the application to fields,

¹ A Danish animal unit is defined as 100 kg Nex Storage from an average housing system. This corresponds to e.g. 0.75 large breed dairy cattle or 36 fattening pigs.

it is assumed that 25 % of the sludge is not incorporated, while the remaining 75 % is incorporated within six hours. This gives a weighted emission factor of approximately 1.9 %, same for all years.

$$EF_{sewage \ sludge} = 0.25 \cdot 0.03 + 0.75 \cdot 0.015 = 0.019 \ NH_3 - N \ applied$$

Table 5.12 shows an increasing amount of sewage sludge being applied to agricultural soil from 1985 to the mid-1990s, which is replaced by a decrease until 2008 due to use of the product in industrial processes, e.g. in cement production and the production of sandblasting materials. From 2008 and forward, the amount of applied sewage sludge on agricultural soils is stabilised at the same level.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Sewage sludge applied to agricultural soil, kt dry matter	50	78	112	84	46	57	55	52	52	54	58
N content, %.	4.0	4.0	4.1	4.3	4.8	4.8	4.8	4.8	4.8	4.8	4.8
N applied to agricultural soil, tonnes NH_3 -N	2 000	3 115	4 635	3 625	2 173	2 692	2 592	2 470	2 457	2 554	2 768
NH ₃ -N emission, tonnes NH ₃ -N	38	58	87	68	41	50	49	46	46	48	52

Table 5.12 Emission from sewage sludge applied to agricultural land 1985-2015

The NH_3 emission from industrial sludge is assumed to be negligible because most of it is immobilised in organic matter (Andersen et al., 1999), which is why there is no estimate for this source.

5.5 NH₃ treated straw

The addition of NH_3 promotes the breakdown of straw, which increase the digestion processes. NH_3 treated straw is used as cattle feed. It is assumed that the sale of NH_3 in the second half of the year is used for the treatment of straw with NH_3 and the NH_3 sales are obtained from the suppliers. By law, the NH_3 treatment of straw was banned in 2006. However, due to wet weather conditions, a dispensation to the law can be given in affected areas and dispensations are given in different areas every year from 2006 and forward. No statistics is provided for the dispensations and therefore the amount of NH_3 used for treatment of straw is assumed to be 200 tonnes NH_3 per year, which account for 10% of the average consumption in year 2000 – 2004.

The emission from ammonia treatment of straw is estimated to 65% kg NH₃-N per kg N added to straw. This estimate is based on few studies and depends on the dry matter content in straw and the storage conditions (Andersen et al., 1999). There is no statistics regarding how the farmers handle the ammonia treated straw in practice, so the emission factor is highly uncertain.

Table 5.13 shows that since 1985 there have been a considerable decrease in the emission from NH_3 treated straw until the ban in 2006.

Table 5.13 Emission from NH_3 treated straw, 1985-2015, tonnes NH_3 -N.

	-		,		,	-					
	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Consumption of NH ₃ -N	8 300	12 936	8 421	3 131	329	200	200	200	200	200	200
Emission of NH ₃ -N	5 395	8 408	5 474	2 035	214	130	130	130	130	130	130

6 PM emission

PM emissions originate from the livestock housing, from field operations and from field burning of agricultural residues. In the Danish inventories, PM from handling of crop products is not included as there is no default methodology provided in the EMEP/EEA Guidebook and no national activity data or emission factors are available.

The PM emissions from the agricultural sector mainly consist of larger particles. In the reporting under CLRTAP particulate matter is reported as TSP, PM_{10} and $PM_{2.5}$. Tiny airborne particles or aerosols that are smaller than 100 μ m are collectively referred to as total suspended particles (TSP). PM_{10} is the fraction of suspended particulate matter with an aerodynamic diameter of 10 μ m or smaller and $PM_{2.5}$ represents particles smaller than 2.5 μ m.

Agriculture accounts for 70 % of the total TSP emission in 2015 and the emission shares for PM_{10} and $PM_{2.5}$ are 27 % and 6% respectively. Most agricultural emissions originate from field operations, contributing with 89 % of the agricultural emission. Emissions from livestock production contribute with 11 % and the field burning of agricultural residues contribute less than 1 % to the agricultural emissions. A description of the calculation methodology is set out below. The calculation from field burning is described in Chapter 7.

6.1 Livestock production

The PM emissions from animal production include dust from housing systems. In 2015, these emissions, expressed as TSP, were estimated to 6.92 kt. Of this, 56 % relates to swine production. The emission from cattle and poultry contributed 20 % and 23 %, respectively.

Table 6.1 shows emission of PM from livestock production 1985 – 2015. See Appendix N for PM emission for all years distributed on the different animal categories. The emission of TSP and PM_{10} increases from 1985 to 2005 and decreases from 2005 to 2015 mainly due to change in number of animals. The $PM_{2.5}$ emission decreases from 1985 to 2005 and from 2005 to 2015 is almost unaltered.

Tuble c													
	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015		
TSP	6.83	6.65	7.14	7.17	7.23	7.22	7.21	7.04	7.00	6.97	6.92		
PM_{10}	2.48	2.38	2.54	2.61	2.56	2.55	2.52	2.48	2.45	2.42	2.37		
PM _{2.5}	0.81	0.71	0.66	0.63	0.53	0.56	0.55	0.57	0.56	0.55	0.54		

Table 6.1 PM emission from livestock 1985-2015, kt

6.1.1 Calculation method

The estimation of the PM emission is based on the EMEP/EEA Guidebook (EMEP, 2016). The PM emission is calculated using equation 6.1 and thus distinguishes between emission from liquid and solid manure.

$$PM_{10} = no \cdot (1 - \frac{D_G}{365}) \cdot (EF_{PM10_S} \cdot B_S + EF_{PM10_L} \cdot B_L)$$
(Eq. 6.1)

where:

PM ₁₀	= emission of PM ₁₀ , kg per year
no	= number of average annual population (AAP – see definition in
	section 4.1)
D _G	= actual days on grass
EFPM10, S or L	= emission factor for solid or liquid manure, kg per head per year
B _{S or L}	= % of solid or liquid manure

The main types of housing are divided into subcategories with a distinction for each category between solid and slurry based housing systems. The PM emission is furthermore related to the number of days the animal is housed. The PM emission from grazing animals is considered as negligible. Number of grazing days for 2015 is listed in Table 4.

6.1.2 Activity data

Calculation of PM from livestock is based on data for the number of animals, type housings and manure and days on grass.

6.1.3 Emission factors

The emission factors for PM_{10} and $PM_{2.5}$ are those recommended in the EMEP/EEA Guidebook, (EMEP, 2016). The same emissions factors are used for all years.

Table 6.2 shows the emission factors for livestock. The emission factors are given for a range of livestock categories and separated into solid or slurry based systems.

		Emi	ssion factor	
Livestock category	Manure type	TSP	PM ₁₀	PM _{2.5}
Cattle:				
Dairy cattle	Slurry	1.81	0.83	0.54
	Solid	0.94	0.43	0.28
Calves < 1/2 year	Slurry	0.34	0.15	0.10
	Solid	0.35	0.16	0.10
Beef cattle	Slurry	0.69	0.32	0.21
	Solid	0.52	0.24	0.16
Heifers ¹	Slurry	1.07	0.49	0.32
	Solid	0.64	0.30	0.19
Suckling cattle ²	Slurry	0.69	0.32	0.21
	Solid	0.52	0.24	0.16
Swine:				
Sows	Slurry	0.62	0.17	0.01
	Solid	0.62	0.17	0.01
Weaners	Slurry	0.27	0.05	0.002
	Solid ³	0.27	0.05	0.002
Fattening pigs	Slurry	1.05	0.14	0.01
	Solid	1.05	0.14	0.01
Poultry:				
Laying hens	Solid	0.19	0.04	0.003
Broilers	Solid	0.04	0.02	0.002
Turkeys	Solid	0.11	0.11	0.02
Ducks	Solid	0.14	0.14	0.02
Geese	Solid	0.24	0.24	0.03
Other:				
Horses	Solid	0.48	0.22	0.14
Sheep	Solid	0.14	0.06	0.02
Goats	Solid	0.14	0.06	0.02
Fur	Slurry	0.02	0.008	0.004

Table 6.2 PM emission factors from animal housing systems, kg per AAP (defined in section 4.1).

¹ Average of "calves" and "dairy cattle".

² Assumed the same value as for "Beef cattle".

³ Same as slurry-based systems.

6.2 Field operations

In the EMEP/EEA Guidebook, a methodology is provided to account for PM emissions from field operations, which includes emissions from crop harvesting, cultivation of soil, and the cleaning and drying of crops (EMEP, 2016). Harvesting and soil cultivation is the predominant source of PM and the emission depends on crop type, soil type, cultivation method and the weather before and during work.

The emission of TSP, PM_{10} and $PM_{2.5}$ are shown in Table 6.3. The emission of TSP has decreased 19 % from 1985 to 2015 due to decrease in the area of cultivated crops and number of treatments of the fields.

Table 6.3 Emissions of PM₁₀, PM_{2.5} and TSP from field operations, tonnes.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
TSP	67 720	68 392	62 496	62 382	54 146	56 655	56 541	55 587	55 218	56 365	55 040
PM ₁₀	6 772	6 839	6 250	6 238	5 415	5 665	5 654	5 559	5 522	5 637	5 504
PM _{2.5}	510	527	485	479	436	468	457	445	448	466	458

6.2.1 Calculation method

The methodology provided in the EMEP/EEA Guidebook on emission calculations from field operations is shown below:

$$E_{PM} = EF_{PM} \cdot AR \cdot no_o \tag{Eq. 6.2}$$

 $\begin{array}{lll} \mbox{where:} & E_{PM} & = \mbox{emission of } PM_{10}, PM_{2.5} \mbox{ or } TSP, \mbox{ kg} \\ & EF_{PM} & = \mbox{emission factor for crop and operation type, \mbox{ kg per ha} \\ & AR & = \mbox{area of crops, ha} \\ & no_o & = \mbox{ production cycles, the number of times the operations are} \\ & \mbox{performed} \end{array}$

6.2.2 Activity data

For activity data are used area of cultivated crops and number of operations for each crop. The area of crops is estimated by Statistic Denmark (DSt, 2016) and number of operations are based on budget estimates made by SEGES. See Appendix O for area of cultivated crops and Appendix P for number of operations divided in soil cultivation, harvesting, cleaning and drying.

The number of operations changes over time for some crop types, especially change in number of soil cultivations. Number of soil cultivations decreases from 2001-2002 for cereals, rape and grass and increases from 2001-2010 for potatoes which affects the emission of PM.

6.2.3 Emission factors

Emission factors for crops and operation type are given in Table 6.4 (EMEP, 2016). Emission factors for wet climate conditions are the most suitable for Danish conditions.

		,	01	
Crop	Soil cultivation	Harvesting	Cleaning	Drying
PM 10				
Wheat	0.25 ^a	0.27 ^b	0.19 ^a	0.56 ^a
Rye	0.25 ^a	0.2 ^b	0.16 ^a	0.37ª
Barley	0.25 ^a	0.23 ^b	0.16 ^a	0.43 ^a
Oat	0.25 ^a	0.34 ^b	0.25ª	0.66 ^a
Other arable	0.25 ^a	0.26 ^c	0.19 ^c	0.51°
Grass	0.25 ^a	0.25 ^a	0 ^a	0 ^a
PM _{2.5}				
Wheat	0.015 ^a	0.011 ^b	0.009 ^a	0.168 ^a
Rye	0.015 ^a	0.008 ^b	0.008 ^a	0.111ª
Barley	0.015 ^a	0.009 ^b	0.008 ^a	0.129 ^a
Oat	0.015 ^a	0.014 ^b	0.0125ª	0.198 ^a
Other arable	0.015 ^a	0.010 ^c	0.009 ^c	0.152°
Grass	0.015 ^a	0.01ª	0 ^a	0 ^a
TSP				
Wheat	2.5	2.7	1.9	5.6
Rye	2.5	2	1.6	3.7
Barley	2.5	2.3	1.6	4.3
Oat	2.5	3.4	2.5	6.6
Other arable	2.5	2.6	1.9	5.1
Grass	2.5	2.5	0	0

Table 6.4 Emission factor for field operations, kg per ha.

^a EMEP (2016).

^b van der Hoek & Hinz (2007).

^c average of wheat, rye, barley and oat.

^d PM₁₀ multiplied by 10 (van der Hoek & Hinz, 2007).

7 Field burning of agricultural residues

The field burning of agricultural residues has been prohibited in Denmark since 1990 (LBK, 1989; BEK, 1991) and may only take place in connection with the production of grass seeds on fields with repeated production (straw from seeds of grass) and in cases of wet or broken bales of straw (mixed cereals). The amount of burnt straw from the grass seed production is estimated at 15 % of the total amount produced. The amount of burnt bales or wet straw is estimated at 0.1 % of the total amount of straw. Both estimates are based on an expert judgement provided by the Danish Agricultural Advisory Service (Feidenhans'l, 2009, Pers. Comm.). The total production is based on data from DSt.

Field burning produces emissions of a series of different pollutants: NH_3 , CH_4 , N_2O , NO_x , CO, CO_2 , SO_2 , NMVOC, PM, heavy metals, dioxins, PAHs, HCB and PCBs. Default values given by the EMEP/EEA Guidebook (EMEP, 2016) are used for NH_3 , NO_x , CO, SO_2 , NMVOC, PM, BC, heavy metals (except for Cu) and dioxins. For Cu and for PAHs, emission factors are based on Jenkins (1996) and for N_2O , CH_4 and CO_2 the emission factors are based on Andreae & Merlet (2001). Emission factors for HCB are based on Hübner (2001) and for PCBs on Black et al. (2012).

Figure 7.1 shows the trend of the emission of NH_3 , PM_{10} , $PM_{2.5}$, CH_4 and NMVOC from field burning for 1985-2015. The large decrease of the emissions in 1990 is due to the ban on field burning of agricultural residues. The trend of the emission of the remaining pollutants is similar to the ones shown. Emissions for all pollutants and all years are shown in Appendix Q.

Figure 7.1 Trend of the emission of selected pollutants from field burning of agricultural residues.

7.1.1 Calculation method

The equation for calculating the emission is shown below. The parameters used for the calculation of emissions are given in Table 7.1, Table 7.2 and the EFs are provided in Table 7.3. EFs are the same for all years.

$Emi=BB \cdot \frac{EF}{1\ 000} \cdot FO \tag{Eq. 7.1}$				
$BB = \frac{CP \cdot FI}{1}$	3·FR _{DM} 000			
Where:				
Emi	= emission of pollutants, kt			
BB	= total burned biomass, kt dry matter (DM)			
СР	= crop production, t			
FB	= fraction burned in fields			
FR _{DM}	= dry matter fraction of residue			
EF	= emission factor, g per kg DM			
FO	= fraction oxidised			

Table 7 1	Paramatora f	or octimating	omicciono	from field	hurning	2015
	raiameters i	or estimating	61113310113	II UIII IIEIU	burning,	2015.

	Crop	Fraction burned	Dry matter	Total biomass	Fraction
	production	in fields	fraction of residue ^a	burned	oxidised ^b
	tonnes			kt DM	
Mixed cereals	5 772 900	0.001	0.85	4.91	0.90
Straw from seeds of grass	347 500	0.15	0.85	44.31	0.90

^a SEGES (2005).

^b IPCC (1997).

7.1.2 Activity data

The amount of burnt straw from the grass seed production is estimated as 15-20 % of the total amount produced. The amount of burnt bales of wet straw is estimated as 0.1 % of total amount of straw. Both estimates are based on expert judgement by SEGES. The total amounts of burned biomass are based on data for crop production from Statistics Denmark and dry matter fraction of the crops (SEGES, 2005).

7.1.3 Emission factor

Table 7.3 shows the emission factor used of all pollutants from field burning of agricultural residues and the emission for the year 2015.

			Emission	Unit for
Pollutant	EF	Unit for EF	2015	emission
NH ₃	2.4	g per kg DM	0.11	kt
CH ₄	2.7	g per kg DM	0.12	kt
N ₂ O	0.07	g per kg DM	0.003	kt
NO _x	2.4	g per kg DM	0.11	kt
СО	58.9	g per kg DM	2.61	kt
CO ₂	1.515	kg per kg DM	67.10	kt
SO ₂	0.3	g per kg DM	0.01	kt
NMVOC	6.3	g per kg DM	0.28	kt
<u>PM</u>				
TSP	5.8	g per kg DM	0.26	kt
PM ₁₀	5.8	g per kg DM	0.26	kt
PM _{2.5}	5.5	g per kg DM	0.24	kt
BC	0.5	g per kg DM	0.02	kt
Metals				
Pb	0.865	mg per kg DM	0.04	t
Cd	0.049	mg per kg DM	0.002	t
Hg	0.008	mg per kg DM	0.0004	t
As	0.058	mg per kg DM	0.003	t
Cr	0.22	mg per kg DM	0.01	t
Ni	0.177	mg per kg DM	0.01	t
Se	0.036	mg per kg DM	0.002	t
Zn	0.028	mg per kg DM	0.001	t
Cu	0.0003	mg per kg DM	0.00001	t
Dioxins	500	ng TEQ per t	0.03	g/TEQ
<u>PAHs</u>				
Benzo(a)pyrene	2 787	μg per kg DM	0.12	t
benzo(b)fluoranthene	2 735	μg per kg DM	0.12	t
benzo(k)fluoranthene	1 073	μg per kg DM	0.05	t
Indeno(1,2,3-cd)pyrene	1 017	μg per kg DM	0.05	t
HCB - mixed cereals ¹	0.003	g per t		
HCB - grass seed ¹	0.002	g per t		
HCB			0.11	Kg
PCBs - mixed cereals	3	μg TEQ per t		
PCBs - grass seed	0.05	μg TEQ per t		
PCBs			0.00002	Kg

Table 7.3 Emission factors and emissions for the different pollutants from field burning of agricultural residues, 2015.

¹ See Chapter 7.1.1 for conversion of EF from the unit ha to g per t.

References: EMEP, 2016, Jenkins, 1996, Andreae & Merlet, 2001, Hübner, 2001

7.1.4 Conversion of EF for HCB

The emission factor for HCB from field burning of agricultural residue is given by Hübner (2001) as 10 000 μ g per ha. This factor has been converted to the unit g per tonnes by following equation:

$$EF_{Used} = (EF_{Hubner}/Y)/1\ 000\ 000$$
 (Eq. 7.1)

Where:

EF Used	= emission factor, g per tonnes
EF _{Hubner}	= emission factor given by Hübner (2001), 10 000 µg per ha
Y	= yield, tonnes per ha

Table 7.2 Emission factor for HCB from field burning of agricultural waste.

	Yield, tonnes per ha	EF, g per tonnes
Straw from cereals	3.4	0.003
Straw from seed production	5	0.002

8 HCB emission from use of pesticides

Hexachlorobenzene (HCB) is a poisonous substance, which is dangerous to human and animal health. HCB is used as agent in pesticides and some of the pesticides used in Denmark contain HCB, but pure HCB used as pesticide is banned.

There are two sources for HCB emission in the agricultural sector; field burning of agricultural residue and the use of pesticides. Emissions of HCB from field burning of agricultural residues are described in Chapter 7.

Table 8.1 shows the emission of HCB from use of pesticides for the years 1990-2015. The emission has decreased significantly from 1990 to 2015 due to decrease in use of pesticides containing HCB.

Table 8.1 Emission of HBC, 1990-2015, kg.

	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Pesticides	18.28	0.50	0.33	0.01	0.02	0.03	0.02	0.03	0.03	0.03

8.1 Calculation method

The emission is calculated using following equation:

$$E_{pes} = \sum a_i / 1000 \cdot EF_i / 1000$$
 (Eq. 8.1)

Where:

E _{pes}	= emission of HCB from pesticides, kg
ai	= amount of effectual substance in the pesticide <i>i</i> , kg
EFi	= emission factor for the pesticide <i>i</i> , g per ton

8.2 Activity data

A range of pesticides are used in Denmark. In the period 1990 to 2015, six types of pesticides containing HCB have been identified as used in Denmark. These are atrazine, chlorothalonil, clopyralid, lindane, pichloram and simazine. Data on the amounts of active substances used in Denmark are collected from the Environmental Protection Agency (EPA), see Table 8.2. The use of atrazine and lindane stopped in 1994 and the use of chlorothalonil and simazine ceased in 2000 and 2004, respectively.

		onootaa	loubolui	00 000		inneant, i		10, 19 (,	10)
_	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Atrazine	91 294	-	-	-	-	-	-	-	-	-
Chlorothalonil	10 512	10 980	7 340	-	-	-	-	-	-	-
Clopyralid	16 461	22 587	7 446	5 874	9 122	11 840	8 170	14 258	13 525	13 525
Lindane	8 356	-	-	-	-	-	-	-	-	-
Pichloram	-	-	-	-	723	1 349	206	256	258	258
Simazine	30 234	19 865	23 620	-	-	-	-	-	-	-

Table 8.2 Amounts of effectual substance used in Denmark, 1990-2015, kg (EPA, 2015)

8.3 Emission factors

Emission factors given in Yang (2006) are used in the calculation of the emissions, see Table 8.3.

	1990	1995	2000	2005-2015
Atrazine	100	1	1	1
Chlorothalonil	500	40	40	10
Clopyralid	2.5	2.5	2.5	2.5
Lindane	100	50	50	1
Pichloram	100	50	50	8
Simazine	100	1	1	1

Table 8.3 Emission factors for HCB from pesticides, 1990-2015, g per tonnes.

9 NMVOC emission

NMVOC emission originates from animal manure, growing crops and grass and field burning of agricultural residues. Agriculture accounts for 35 % of the national NMVOC emission in 2015 and is mainly related to emission from animal manure, which accounts for 94 % in 2015.

9.1 Manure management

NMVOC from manure has been calculated and is related to animal husbandry and mainly to the cattle production.

9.1.1 Emission

The trend in NMVOC emission from 1985 to 2015 shows a decrease from 41 kt to 36 kt with the highest fall in the beginning of the period (Figure 9.1). Back in 1985 two thirds of the emission originates from the cattle production, while it is half the emission in 2015. A decrease of emission from cattle is a consequence of less animals due to higher milk yield and production ceiling due to the EU milk quota. An increase of the production of swine and fur bearing animals has resulted in an increase of the emission from these categories in the period 1985 to 2015.

Figure 9.1 Emission of NMVOC from manure management, 1985-2015.

9.1.2 Calculation method

The estimation of NMVOC emissions is based on the EMEP/EEA guidebook (2016). NMVOC emissions from animal husbandry comes from feed, degradation of feed in the rumen and from undigested fat, carbohydrate and protein decomposition in the rumen and in the manure. Silage is a major source of NMVOC emissions and therefore two sets of emission factors are introduced in the Guidebook; a high emission factor based on feeding with silage and a low emission factor based on feeding without silage.

The calculation of NMVOC emissions is based on the Tier 1 approach and is estimated as the number of animal multiplied with the NMVOC emission factor for each animal category. The number of animals is given as the average annual population (AAP).

$$E_{NMVOC} = \sum AAP_i \cdot EF_i$$
 (Eq. 9.1)

Where:

E _{NMVOC}	= emission of NMVOC, kg
AAP _i	= number of animals given in average annual population for the
	animal category i
EFi	= emission factor for the animal category <i>i</i> , kg per AAP

9.1.3 Activity data

The activity data for the NMVOC emission from manure management is number of animals, see Chapter 4.

9.1.4 Emission factor

NMVOC emission factors recommended in EMEP/EEA Guidebook 2016, Table 3-4 are used (Table 9.1). For days on grass, the emission factor for feeding without silage is used for cattle, sheep, goats and horses. However, all emissions are entered in NFR category 3B, while the notation key IE is used for NFR category 3Da3.

The same emissions factors are used for all years, which means that changes of the emission over time depends on change in animal production or change in grazing days.

	EF NMVOC with silage	EF NMVOC without silage ¹
Dairy Cattle	17.937	8.047
Non-Dairy Cattle	8.902	3.602
Sheep	0.279	0.169
Swine – sows		1.704
Swine – other		0.551
Goats	0.624	0.542
Horses	7.781	4.275
Laying hens		0.165
Broilers		0.108
Turkeys		0.489
Other poultry		0.489
Fur bearing animals		1.941

Table 9.1 NMVOC emission factors (EMEP/EEA Guidebook 2016, Tier1).

¹ Emission factor is also used for time on grass.

9.2 Growing crops

Emission of NMVOC from growing crops may arise to attract pollinating insects, eliminate waste product or as a means of losing surplus energy (EMEP/EEA, 2016). The calculation of the NMVOC emission from growing crops is based on emission factors recommended in EMEP/EEA Guidebook 2016.

9.2.1 Emission

The NMVOC emission from cultivated crops is estimated to 2.11 kt in 2015 based on an IEF at 0.80 and a cultivated area of 1 437 900 hectares. The IEF varies annually from 0.51 - 0.80 kg NMVOC per hectare (Table 9.2) depending on the allocation of the four mentioned crop types. Higher allocation of rape and rye result in higher IEF due to a higher emission factor for these two crop types.

Table 9.2 Cultivated area, IEF and emission of NMVOC.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Total cultivated	2 834	2 788	2 726	2 647	2 707	2 646	2 640	2 645	2 628	2 652	2 633
IEF, kg per ha	0.66	0.71	0.58	0.56	0.53	0.57	0.57	0.63	0.70	0.73	0.80
Emission, kt	1.87	1.99	1.57	1.48	1.42	1.51	1.50	1.66	1.83	1.94	2.11

9.2.2 Calculation method

In Table 3-3 in EMEP/EEA Guidebook 2016 emission factors for cultivation of wheat, rye, rape and grass (15°C) are given. A Tier 2 IEF is estimated corresponding to Danish yield level of dry matter content (DM) for these crop types. The emission from other crop types is not available in the Guidebook. However, the total NMVOC emission is estimated as the Tier 2 IEF multiplied with the total cultivated area. See equation 9.2:

$$E_{NMVOC} = A \cdot IEF$$

(Eq. 9.2)

Where:

from agricultural soils, kg (1)
na (2)
or, kg per ha (3) (see Chapter 9.2.4)

9.2.3 Activity data

Area of wheat, rye, rape and grass is used for estimating IEF. The total area of cultivated crops is used to estimate the total emission of NMVOC from growing crops. All areas are based on Statistics Denmark (DSt).

9.2.4 Emission factors

Here are given the equations for the calculation of the IEF. See Table 9.3 for factors used.

$$IEF = \frac{\sum E_i}{\sum ha_i}$$
(Eq. 9.3)

Where:

IEF	= implied emission factor, kg per ha (3)
Ei	= emission for the crop <i>i</i> , kg (4)
hai	= area of the crop <i>i</i> , ha (5)

$$E_i = EF_i \cdot hours pr day \cdot days pr year \cdot Frac_i \cdot DM_i \cdot ha_i$$
 (Eq.9.4)

Where:	
Ei	= emission for the crop <i>i</i> , kg per ha per year (4)
EFi	= emission factor for crop <i>i</i> , kg per kg DM per hour (6)
hours per day	= 24 hour per day
days per year	= 365 days per year
Fraci	= fraction of year emitting for crop i (7)
DM _i	= mean dry matter for crop <i>i</i> , kg DM per ha (8)
ha _i	= area for crop <i>i</i> , ha (5)

Table 9.3 Estimation of NMVOC emission factor, 2015.

2015	EFi ⁶ (EEA/EMEP)	Frac _i ⁷	DM _i ⁸	Cultivated area ⁵	NMVOC emission ⁴	IEF ³ – Tier 2 DK
Crop	Kg NMVOC /kg DM/yr		kg DM/ha	ha	Kg/ha/yr	kg NMVOC/ha
Wheat	2.60E-08	0.3	6 826	608 733	283 351	
Rye	1.41E-07	0.3	5 389	125 540	250 422	
Rape	2.02E-07	0.3	3 945	193 234	403 842	
Grass land*	1.03E-08	0.5	9 230	510 393	212 528	
Total				1 437 900 ²	1 150 142 ¹	0.80 ³

*Grass land 15 °C.

¹⁻⁸ see Eq. 9.2-9.4.

10 NO_x

Emission of NO_x includes emission from manure management and agricultural soils. The emission from agricultural soil includes emission from nitrogen applied to soil as animal manure, inorganic N fertiliser and sewage sludge. Agriculture accounts for 15 % of the total NO_x emission in 2015 and the main part occurs from animal manure applied to soil and inorganic N fertiliser.

10.1 Manure management

 NO_x emission from manure management relates to the emissions from housings and account for around 1 % of the agricultural emission of NO_x .

10.1.1 Emission

The NO_x emission from 1985 to 2015 decreased significantly from 0.6 kt NO_x to 0.2 kt NO_x corresponding to a 58 % reduction. The emission depends on number of animal and manure type, and the decrease is mainly related to changes from solid based systems to slurry-based systems for both dairy cattle and swine production. Thus, the share of solid manure was 23 % in 1985 and dropped to 10 % in 2015.

Figure 10.1 NO_x emission from manure management 1985–2015.

10.1.2 Calculation method

The estimation of NO_x emission is based on the EMEP/EEA guidebook (2016) and is based on number of animals given as the average annual population (AAP).

$$\mathbf{E}_{NO_{X}} = AAP_{i} \cdot \mathbf{EF}_{i} \tag{Eq. 10.1}$$

X X 71	
W/horo	
vvnere.	

E _{NOx}	= emission of NO _x , kg
AAP _i	= average annual population of animal category <i>i</i>
EFi	= emission factor for animal category <i>i</i> , kg per AAP

10.1.3 Activity data

The emission calculations is based on number of animals and housing/manure type (See Chapter 4).

10.1.4 Emission factor

Emission factor for estimation of NO_x emission from manure management is listed in Table 10.1. Some of the manure from the mink production is handled as slurry, but no EF for slurry is mentioned in the Guidebook. Therefore, the same emissions factor is used for both slurry and solid systems.

NFR code	Livestock	slurry	solid
3B1a	Dairy cattle	0.011	0.236
3B1b	Other cattle	0.003	0.144
3B2	Sheep		0.008
3B3	Sows	0.006	0.204
3B3	Fattening pigs	0.002	0.069
3B4d	Goats		0.008
3B4e	Horses		0.201
3B4gi	Laying hens	0.0002	0.005
3B4gii	Broilers		0.002
3B4giii	Turkeys		0.008
3B4giv	Ducks		0.004
3B4giv	Geese		0.002
3B4h	Fur bearing animals	0.0003 ¹	0.0003

Table 10.1 NO_x emission factors (EMEP/EEA Guidebook 2016), kg NO₂ per AAP.

¹ Used the same EF as given for solid manure.

10.2 Agricultural soils

Emission of NO_x from manure applied on soils, inorganic N fertiliser and sewage sludge is estimated and accounts for 49 %, 48 % and 2 %, respectively, of the agricultural emission of NO_x.

10.2.1 Emission

The main part of the NO_x emission from agricultural soils comes from manure applied to soil and use of inorganic N-fertiliser. The emission has decreased from 1985 to 2015 by 33 % mainly due to decrease in use of inorganic N fertiliser.

Figure 10.2 NO_x emission from agricultural soils, 1985-2015.

10.2.2 Calculation method

The emission of NOx is calculated as emission of NO_2 based on following equation:

$$E_{NO_{x}} = \sum N_{i} \cdot EF$$
 (Eq. 10.2)

Where:

E _{NOx}	= emission of NO_x , kg NO_2
Ni	= amount N applied from <i>i</i> fertiliser type, kg
EF	= emission factor, 0.04 kg NO2 per kg N applied

10.2.3 Emission factor

The emission factor for NO_x is default value from the EMEP/EEA guidebook (2016), which recommend an emission factor of 0.04 kg NO_2 per kg N applied. The background reference is based on a literature study, which do not distinguish between different kinds of fertiliser types. The default emission factor is used for both manure applied on soils, inorganic N fertiliser and sewage sludge. This indicate that the same emission factor can be used independently of the crops being fertilised with inorganic N fertiliser or manure.

11 CH₄ emission

The major part of the agricultural CH_4 emission originates from the digestive processes, but also emission from manure management and field burning takes place. The agricultural CH_4 emissions accounts for 81 % of the total CH_4 emission in 2015. The digestive processes in ruminants, predominantly cattle, are the largest source of agricultural CH_4 emissions. The emission from manure is due to the bacterial breakdown under anaerobic conditions (primarily in slurry). The field burning of agricultural residues is also included as a source of emissions, but contributes less than 1 % to total agricultural emissions of CH_4 .

For the CH_4 emission from manure management, a lower emission from biogas treatment of slurry is taken into account, which is described in section 11.3.

The methodology used to calculate the CH_4 emission is based on guidance given in the 2006 IPCC Guidelines (IPCC, 2006).

11.1 Enteric fermentation

The CH_4 emission from enteric fermentation can be regarded as an energy loss under the digestion process. It is mainly ruminants that produce CH_4 , whereas monogastric animals – e.g. swine, horses, poultry and fur animals – produce CH_4 to a much smaller degree.

The emission is primarily from cattle, which, in 2015, contributed 87 % of the emission from enteric fermentation. The emission from swine production is the second largest source at 9 % and the rest of the animals; horses, sheep, goats, poultry and deer make up the remaining 4 %. The relative contribution from swine production has increased over the years as a result of a production expansion as well as a reduction in the number of cattle.

From 1990 to 2015, the emission from enteric fermentation has overall decreased by 9 %, which is primarily related to a decrease in the number of cattle. The number of swine has increased from 9.5 million in 1990 to 12.5 million in 2015, but this increase is only of minor importance for the total CH₄ emission from enteric fermentation. The emission was at its lowest in 2005 but has increased slightly until 2015, mainly due to a slight increase in emission from cattle, which is due to increase in feed.

11.1.1 Calculation method

The calculation of CH_4 production from the digestive system is based on the animal's total gross energy intake (GE) and the CH_4 conversion factor, which is the fraction of gross energy in feed converted to CH_4 , see Equation 11.1.

$$EF_{CH4} = \frac{GE \cdot Y_m \cdot 365}{55.65}$$
(Eq. 11.1)
to

For the conversion of MJ to kg CH₄, the value recommended by the IPCC is used. The CH₄ conversion rate Y_m is the extent to which feed energy is converted to CH₄ and varies depending on the breed of animal and the respective feeding strategy. Y_m for dairy cattle are based on a national value (Hellwing et al, 2014). For non-dairy cattle and sheep Y_m given in IPCC (2006) are used. For swine, horses and goats the values of Y_m are based on Crutzen et al (1986).

The difference between summer and winter feed intake is taken into account. Feed intake in summer are based on feed plans with mainly grass whereas winter feed plans are based on roughage and concentrates.

$$CH_{4 enteric,total} = CH_{4 enteric,winter} + CH_{4 enteric,summer}$$
 (Eq. 11.2)

11.1.2 Emission calculation for poultry and fur animals - Tier 1

For fur animals, poultry, ostrich and pheasants, data on gross energy are not available in the IPCC Guidelines. Based on country specific information (Hansen, 2010, Pers. Comm.) CH_4 emission from enteric fermentation from fur farming is considered not applicable.

The emission calculation for poultry, ostrich and pheasants is calculated by a Tier 1 methodology:

$CH_{4 enteric} = \sum EF_i \cdot no_i$	(Eq. 11.3)
	` 1	/

Where:

 $\begin{array}{ll} \text{CH}_{4,\,\,\text{enteric}} &= \text{emission of CH}_4 \\ \text{EF}_i &= \text{emission factor for animal category } i, \, \text{CH}_4 \, \text{per animal} \\ \text{no}_i &= \text{number of animals, category } i \end{array}$

Emission factors used for poultry, ostrich and pheasants are based on the emission factors given by Wang & Huang (2005) (see Table 11.1). EF for broilers with a life cycle of 30-56 days is scaled in proportion to 42 days for broilers given by Wang & Huang (2005). Organic broilers with a life cycle of 81 days are scaled in proportion to the Taiwan country chicken with 91 days of life cycle and pullets with a life cycle of 112-119 days is scaled in proportion to the 140 days given for pullets by Wang & Huang (2005). EF for ducks, geese, turkeys, ostrich chicken and pheasant chicken are scaled by weight in proportion to a broiler with 40 days of life cycle. For laying hens, the EF given by Wang & Huang (2005) is used and for ostrich hens and pheasant hens, the EFs are scaled by weight in proportion to a laying hen.

Table 11.1	Emission factors f	or poultry	in mg CH₄	per head	per lifecy	/cle.
------------	--------------------	------------	-----------	----------	------------	-------

	CH ₄ emission factor
Broilers, 42 days	15.87
Taiwan country chicken, 91 days	84.82
Pullets, 140 days	3 561
Laying hens, 365 days	10 610

11.1.3 Emission calculation for cattle, swine, sheep, goats and horses by Tier 2

The calculation of CH_4 from enteric fermentation for animals other than poultry and fur animals, is calculated using a method based on IPCC 2006 Tier 2.

The Tier 2/country specific (CS) equation for EF of enteric fermentation is the sum of the feeding situation in winter and summer. EF is based on actual feeding plans, which is provided from data for feed units (FU) in the feed for each livestock category. Except from dairy cattle, where the EF is based on kg dry matter (DM) in the feed. For dairy cattle, feeding with beets is taken into account, because beet feeding gives a higher methane production rate compared to grass and maize due to the high content of easily convertible sugar. Feeding with beets is only relevant for dairy cattle, therefore the equation below concerning beet will be left out for the remaining animal categories.

$$EF = EF_{winter} + EF_{summer}$$
(Eq. 11.4)

Dairy cattle:

$$EF_{winter, dairy cattle} = F \cdot$$
 (Eq. 11.5)

 $((GE_{F winter}/55.65) \cdot Y_{m excl beet} \cdot (1 - grazing days/365 - days with beet/365))$

+ $(GE_{F winter}/55.65) \cdot Y_{m incl beet} \cdot days with beet/365)$

 $EF_{summer, dairy cattle} = F \cdot \left(\frac{GE_{F summer}}{55.65}\right) \cdot Y_{m grazing} \cdot \frac{grazing days}{365}$ (Eq. 11.6)

Where:

EFwinter	= Emission factor for winter feed, kg CH4 per head per year
EF _{summer}	= Emission factor for summer feed, kg CH_4 per head per year
F	= feed, kg DM
$GE_{F,winter}$	= gross energy per kg DM, MJ per kg DM in winter
$GE_{F, \ summer}$	= gross energy per kg DM, MJ per kg DM in summer
Ym	= methane conversion rate, % of gross energy in feed converted
	to methane
	amongs contant of CIL MI non CIL

 $55.56 = \text{energy content of } CH_4, \text{ MJ per } CH_4$

Other animals:

$$EF_{winter} = FU \cdot \left(\left(\frac{GE_{FUwinter}}{55.65} \right) \cdot Y_m \cdot \left(1 - \frac{grazing \, days}{365} \right) \right)$$
(Eq. 11.7)

$$EF_{summer} = FU \cdot \left(\frac{GE_{FU \ summer}}{55.65}\right) \cdot Y_{m \ grazing} \cdot \frac{grazing \ days}{365}$$
(Eq. 11.8)

Where:	
EF _{winter}	= Emission factor for winter feed, kg CH ₄ per head per year
EF _{summer}	= Emission factor for summer feed, kg CH ₄ per head per year
FU	= feeding units
$GE_{FU,winter}$	= gross energy per feeding unit, MJ per FU in winter
GE _{FU, summer}	= gross energy per feeding unit, MJ per FU in summer
Ym	= methane conversion rate, % of gross energy in feed converted
	to methane
55.56	= energy content of CH_4 , MJ per CH_4

Thus, to calculate the total gross energy (GE) intake, the estimation of GE per kg DM or GE per feed unit – defined as GF_F or GE_{FU} , respectively is needed. A feed unit in Denmark is defined as the feed value in 1.00 kg barley with a dry matter content of 85 % (Statistics Denmark, yearbook 2010). For other cereals, e.g. wheat and rye one feed unit is 0.97 kg and 1.05 kg, respectively.

11.1.4 Gross energy intake (GE)

 GE_F for dairy cattle are estimated by SEGES (Aaes, 2016, Pers. Comm.). From 2014 feed intake for dairy cattle given in the normative figures are provided in kg DM per year and the energy in the feed is provided in MJ per kg DM. The energy intake is a standard winter feed regardless of whether the animal grazes or not. See Appendix R for time series for GE for dairy cattle

For all other livestock categories than dairy cattle, the estimation of GE (GE_{FU}). GE_{FU} is based on the composition of feed intake and the energy content in proteins, fats and carbohydrates based on actual efficacy feeding controls or actual feeding plans at farm level, collected by SEGES or DCA. The data are provided in Danish feed units or kg feedstuff and these values are converted to mega joule (MJ). The calculation is shown in the equations below:

$$GE_{FU} = \frac{MJ/day}{FU/day}$$
(Eq. 11.9a)

$$FU/day = \frac{kg DM}{day} \cdot \frac{FU}{kg DM}$$
(Eq. 11.9b)

$$MJ/day = \frac{kg DM}{day} \cdot \frac{MJ}{kg DM}$$
(Eq. 11.9c)

$$MJ/kg DM = \%_{crude \ protein} \cdot E_{crude \ protein} + \%_{crude \ fat} \cdot E_{crude \ fat} + \\ \%_{carbohydrates} \cdot E_{carbohydrates}$$
(Eq. 11.9d)

$$\%_{carbohydrates} = 100 - (\%_{crude \ protein} + \%_{crude \ fat} + \%_{raw \ ashes})$$
 (Eq. 11.9e)

Where:

GE _{FU}	= gross energy per feed unit, MJ per FU
FU	= feed unit
MJ	= mega joule
DM	= dry matter
%crude protein	= share of crude protein in the feed, $\%$
Ecrude protein	= energy factor for crude protein, 24.24 MJ per kg DM
%raw fat	= share of crude fat in the feed, %

Eraw fat	= energy factor for crude fat, 34.12 MJ per kg DM
%carbohydrates	= share of carbohydrates in the feed, %
Ecarbohydrates	= energy factor for carbohydrates, 17.30 MJ per kg DM
% _{raw ashes}	= share of raw ashes in the feed, %

For horses, heifers, suckling cattle, sheep and goats an average winter feed plan is provided (Andersen, 2003, Pers. Comm.; Clausen, 2004, Pers. Comm. Bligaard, 2004, Pers. Comm.; Holmenlund, 2004, Pers. Comm.), on which the calculation of GE content is based (See Appendix S). Gross energy for deer is based on feed plans for goats, as their feeding conditions resemble those of deer the most.

11.1.5 CH₄ conversion rate (Y_m)

Investigations from DCA have shown a change in feed practice from use of feeding beet to maize (whole cereal). Feeding with beet gives a higher methane production rate compared to grass and maize due to the high content of easily convertible sugar. The development in feed practice reflects the change in the average Y_m for dairy cattle and heifers from 6.38 in 1990 to 6.00 in 2002 and onwards.

The estimation of the national values of Y_m is based on model "Karoline" developed by DCA based on average feeding plans for 20 % of all dairy cattle in Denmark obtained from SEGES (Olesen et al.; 2005). DCA have estimated the CH₄ emission for a winter feeding plan for two years, 1991 (Y_m =6.70) and 2002 (Y_m =6.00). Y_m for the years between 1991 and 2002 are estimated by interpolation. Feeding beets are only included in the winter feeding plan and the Y_m is therefore also adjusted for days on winter and summer feeding plan. It is assumed that the winter feeding plan covers 200 days.

Further knowledge regarding the Y_m is provided by DCA in 2014 (Hellwing et al., 2014), which covers calculation based on experiments with Holstein cows conducted from May 2010 to May 2014 at Aarhus University including 41 different diets from 10 experiments; in total 185 observations (two observations were omitted). The calculation is based on analysed concentrations of ash, crude protein, fat and carbohydrate in the diet using the same equation as the Norfor feed evaluation system. This study showed an Y_m value between 5.98 and 6.13, which confirms the values from the older study (Olesen et al., 2005) and supports the continued use of an Y_m value at 6.00 from 2002 and forward.

The Y_m for feeding with beet is higher in 1990 compared to year 2000, which is due to the proportion of the beet in the total feeding during the year. In 1990 the total cultivated area with fodder beet account for 102 thousand ha decreasing to 18 thousand ha in year 2000, which result in significantly lower beet proportion in feeding in year 2000.

2010; /0 01 g100	e energy.				
Dairy cattle	1990	1991	1995	2000	2002-2015
Y _{m incl. beet}	6.70	6.70	6.45	6.13	6.00
$Y_{m \; excl. \; beet}$	6.00	6.00	6.00	6.00	6.00
Y _{m grazing}	6.00	6.00	6.00	6.00	6.00
Average Y_m	6.38	6.38	6.24	6.07	6.00

Table 11.2 CH₄ conversion rate (Y_m) – national factor used for dairy cattle and 1990 – 2015. % of gross energy.

For non-dairy cattle and sheep Y_m given in IPCC (2006) are used. For swine, horses and goats Y_m are based on Crutzen et al. (1986).

11.1.6 CH₄ emission from enteric fermentation 2015

An overview of the most important variables and the implied emission factor (IEF) for 2015 is shown in Table 11.3a-b. A distinction is made between animals where emissions are calculated based on an annual average population (AAP) (see Table 11.3a) and animals where the emission is based on one produced animal (see Table 11.3b).

Table 11.3a Feed consumption and conversion rates to determine the CH₄ emission from livestock enteric fermentation, values per AAP^a, 2015.

Livestock category	Feed intake	Gross energy (GE)		Feed on grass	Y _m	IEF⁵
		Winter	Summer			
	FU per year	MJ pe	r FU	%. feeding days per year	% of gross energy	kg CH₄ per AAP
Cattle (large breed):				-		
Dairy cattle	7 761°	18.90 ^d	18.90	5	6.0	158.15
Heifer calves, < ½ year	1 047	18.30	18.83	-	6.5	22.38
Breeding calves, 1/2 year to calving	2 094	25.75	18.83	30	6.5	56.86
Suckling cows > 600 kg Swine:	2 502	34.02	18.83	61	6.5	72.18
Sows incl. piglets < 7.3 kg Other:	1 510	17.49	17.49	-	0.6	2.83
Horses, 600 kg	2 555	29.83	18.83	50	2.5	27.93
Sheep incl. lambs	498	29.95	18.83	73	6.5	12.72
Lambs	153	29.95	18.83	73	4.5	2.71
Goats for meat production incl. kids	667	29.95	18.83	73	5.0	13.11
Deer	668	29.95	18.83	73	5.0	11.30
	kg feed	MJ p	er kg feed			
Battery hens (100 unit)	4 070	17.46	17.46	-	-	1.06
Mink incl. young	258	11.47	11.47	-	-	0

^a AAP - annual average population (See definition in Section 4.1).

^b IEF – implied emission factor.

^c kg dry matter.

^d See Appendix R for the time series.

Livestock category	Feed intake	Gross energy (BE)		Feed on grass	Ym	IEF
		Winter	Summer	<u>g</u>		
	FU	MJ pe	er FU	%	% of gross energy	kg CH₄ per prod. animal
Cattle (large breed):						
Bulls calves, < 1/2 year	665	18.30	18.83	-	3.0	6.56
Bulls, 1/2 year to slaughter, 440 kg	1 234	18.30	18.83	-	3.0	12.17
Swine:						
Weaners, 7.3-31 kg	46	16.46	16.46	-	0.6	0.08
Fattening pigs, > 31 kg	226	17.25	17.25	-	0.6	0.42
	kg feed	MJ p	er kg feed			
Broilers, 35 days (1 000)	3 390	18.99	18.99	-	-	0.01
Ostrich	-	-	-	-	-	0.66
Pheasant (100 unit)	-	-	-	100	-	0.47
Geese (100 unit)	2 800	18.19	18.19	100	-	0.005
Turkeys, cock/hen (100)	5 070/2 430	18.55	18.55	-	-	0.01
Ducks (100)	975	18.19	18.19	-	-	0.003

Table 11.3b Feed consumption and conversion factors to determine the CH_4 emission from livestock enteric fermentation, values per produced animal, 2015.

The total CH_4 emission from enteric fermentation 2015 is estimated to 147 kt CH_4 and the major part is related to the production of dairy cattle (See Table 11.4).

		allon.
	Emission 2015	Share of total
	kt CH ₄	%
Cattle:		
Dairy cattle	86.59	59.0
Heifer calves, < 1/2 year	3.46	2.4
Heifer, ½ year to calving	27.32	18.6
Bull, calves < 1/2 year	1.50	1.0
Bulls, 1/2 year to slaughter	2.72	1.9
Suckling cows	6.21	4.2
Swine:		
Sows incl. piglets < 7 kg	2.92	2.0
Weaners, 7-31 kg	2.59	1.8
Fattening pigs, > 31 kg	8.29	5.7
Poultry:		
Hens	0.06	<0.1
Broilers	0.0015	<0.1
Other poultry	0.0004	<0.1
Other:		
Horses	3.38	2.3
Sheep	1.07	0.7
Lamps	0.34	0.2
Goats (incl. kids)	0.15	0.1
Deer	0.09	0.1
Mink incl. young	0	0
Total	146.69	

Table 11.4	CH₄	emission	from	enteric	fermentation.
	0114	01111001011	nom	CINCINC	ionnoniaion.

11.2 Manure management

 CH_4 emission from animal manure is calculated based on the energy in animal manure, taking into account housing conditions as manure type and use of straw for bedding based on information from Poulsen et al. (2001) and Poulsen (2008 and 2016).

The housing type determines the manure type and the CH_4 production varies depending on the manure type. Anaerobic conditions, as found in slurry, promote CH_4 formation, while CH_4 production is low in solid manure. Developments in recent years, where more livestock are housed in slurry based housing systems, have led to an increase of the CH_4 emission.

The overall CH_4 emission from manure management increased by 36% from 1985 to 2015 and this is from both the cattle and swine production. The emission from swine increased from 1985 to 2004 and decreased subsequently until 2015. The emission is mainly determined by the production of fattening pigs and the emission development follows the same trend as the number of produced fattening pigs. Change in housing types however also influence the emission. The emission increases due to change to more slurry based housing systems but decreases again due to change to housing systems with a shorter storage time and HRT (Hydraulic Retention Time) for the manure in the barns.

The emission from dairy cattle also increased from 1985 to 2015, despite a decrease in number of dairy cattle. This is related to higher milk yield and thus higher feed intake and higher manure excretion.

11.2.1 Calculation method

 CH_4 formation from manure management is calculated based on IPCC Guidelines 2006, where the proportion of excreted volatile solids (VS) is determined. The determination of VS is country specific and based on the amount of manure excreted (Equation 11.10 and 11.11).

$$VS_{housing} = VS_{manure} + VS_{straw}$$
 (Eq. 11.10a)

$$VS_{manure} = \frac{m}{365} \cdot DM_{M} \cdot VS_{DM} \cdot (365 - g_1)$$
(Eq. 11.10b)

$$VS_{straw} = s \cdot DM_s \cdot \left(1 - \frac{ash}{100}\right) \cdot (365 - g_2)$$
(Eq. 11.10c)

$$VS_{grass} = \frac{m}{365} \cdot DM_{M} \cdot VS_{DM} \cdot g_{1}$$
 (Eq. 11.11)

Where:

VS	= volatile solids excreted, kg per animal per year
m	= amount of manure excreted, kg per animal per year
DM	= dry matter of (M) manure or (S) straw, %
VS _{DM}	= share of volatile solids of dry matter, 80 $\%$

\mathbf{g}_1	= feeding days on grass, days per year ²
\mathbf{g}_2	= actual days on grass, days per year
S	= amount of straw, kg per animal per year
ash	= ash content in straw, %

The ash content in straw is set to 4.5 % (SEGES, 2005). Dry matter content in manure is based on the normative data (Poulsen, 2016). VS of dry matter (VS_{DM}) is 80 % for all animal categories. The number of days on grass is shown in Table 4.14. The amount of manure excreted and straw used depend on housing type and are given in Poulsen (2016).

The amount of CH_4 produced is determined from Equation 11.12, where VS is multiplied with the maximum CH_4 formation capacity B_0 , which varies for each livestock type. The CH_4 conversion factor, MCF depends on the actual temperature and storage conditions. Denmark has a cold climate and, therefore a relatively low MCF.

$$CH_4 = \left(VS_{\text{housing}} \cdot \frac{MCF_{i,j}}{100} \cdot 0.67 \cdot B_{0,i}\right) + \left(VS_{\text{grass}} \cdot \frac{MCF_{i,j}}{100} \cdot 0.67 \cdot B_{0,i}\right)$$
(Eq. 11.12)

Where:

CH_4	= CH_4 emission for the given livestock category, kg CH_4 per animal
	per year
VShousing	= volatile solids from housings, kg dry matter per animal per year
VSgrass	= volatile solids from grazing, kg dry matter per animal per year
0.67	= conversion factor, $m^3 CH_4$ to kg CH_4
B ₀	= maximum CH_4 producing capacity for manure produced by live-
	stock category (<i>i</i>), m ³ CH ₄ per kg VS (IPCC, 2006)
MCF	= CH ₄ conversion factor for a given livestock category (<i>i</i>) and a given
	manure type (j) (Country specific for cattle and swine, others IPCC,
	2006)

11.2.2 MCF - Methane conversion factor

During the last years, several studies have been carried out to support the calculation of an MCF value for slurry treated in anaerobic digestion systems. This work has led to the development of a national MCF for liquid cattle and swine manure, for slurry treated in a biogas plant and untreated raw slurry (Mikkelsen et al, 2016). For all other animal categories and manure types, default MCF values provided in the IPCC guidelines are used (IPCC, 2006). For liquid systems for fur bearing animals the MCF is a weighted value depending on the situation for covered and uncovered slurry tanks. Also for swine on deep bedding housing systems, a weighted value is used due to the residence time of manure in the barn

² Actual days on grass is the number of days the heifer is out of the housing. Feeding days on grass is higher than actual days on grass due to a higher feed intake during grazing compared to the period in housing. Feeding days on grass is a conversion of this higher feed intake to days on grass.

For a more detailed description and documentation of the national MCF refer to Chapter 11.3.

Livestock category	Manure type	MCF
Cattle	Slurry	4.82
	Slurry - biogas treated	2.62
	Deep litter > 1 month	17.00
	Deep litter < 1 month	3.00
	Solid	2.00
	Pasture/Range/Paddock	1.00
Swine	Slurry	13.92
	Slurry - biogas treated	10.25
	Deep bedding weaners	7.20
	Deep bedding fattening	11.40
	Deep bedding sows	14.67
	Solid	3.00
Fur bearing animals	Slurry	10.14
	Deep litter	3.00
	Solid	2.00
Poultry	All types	1.50
	Pasture/Range/Paddock	1.00
Horses, sheep and goats	Deep litter	1.00
	Pasture/Range/Paddock	1.00
Ostich	Solid	2.00
	Pasture/Range/Paddock	1.00
Pheasant and deer	Pasture/Range/Paddock	1.00

Table 11.5 Methane conversion factor (MCF) for 2015, %.

Slurry

National MCFs for both untreated and biogas treated liquid manure from cattle and swine have been estimated, see Chapter 11.3. MCF for liquid cattle manure is lower compared to the MCF given in IPCC 2006, while the MCF for liquid swine manure is higher. See Appendix T for time series for the national MCF.

Due to legislation from 2003, all slurry tanks have to be fully covered or have established a floating cover. However, it is difficult to achieve full floating cover all days of the year and some emission can take place during filling and mixing of manure in the tank. Therefore, it is assumed that floating/fixed covers are absent on 2 % in fur production. MCF for fur slurry is estimated as 98 % with an MCF of 10 % (covered) and 2 % with an MCF of 17 % (uncovered). This results in a MCF of 10.14 for fur slurry.

Deep bedding

The MCF for swine deep bedding depends on how long time the manure is stored in the barn and the emission is particularly high for bedding stored more than one month. The bedding situation is based on information from SEGES and is different for the three swine subcategories. The lowest MCF at 7.2 % is seen for weaners because 70% of the bedding material is removed during the first month. The situation is opposite for sows where only 20 % of the bedding is removed during the first month, which lead to a higher MCF at 14.7 %.

 Table 11.6
 Methane conversion factor (MCF) for swine, deep bedding.

	_	DK condition, % of yr		IPCC,	2006
MCF, swine deep bedding	MCF, DK	> 1 month	< 1 month	> 1 month	< 1 month
Deep bedding weaners	7.2 %	30	70	17 %	3 %
Deep bedding fattening	11.4 %	60	40	17 %	3 %
Deep bedding sows	14.7 %	80	20	17 %	3 %

11.2.3 CH₄ emission from manure management 2015

Table 11.7 gives an overview of data used to calculate the CH₄ emission and the implied emission factor (IEF) from animal manure covering different categories of livestock.

The B_0 values used in the inventories are based on IPCC default values. Here it is demonstrated that the maximum CH_4 formation is significantly higher in swine manure than in cattle manure.

Livestock category	Days on grass	Max.CH₄ producing capacity	IEF⁵	
	g ₁ (g ₂) ^a	B ₀		
	days per year	m³ CH₄ per kg VS	kg CH₄ per AAP ^c	
Cattle (large breed):				
Dairy cattle	18	0.24	23.14	
Heifer calves, < 1/2 year	0	0.18	2.45	
Heifer, 1/2 year to calving	132 (111)	0.18	11.33	
Suckling cows, > 600 kg	224	0.18	21.75	
Swine:				
Sows incl. piglets < 7.1 kg	0	0.45	12.06	
Poultry:				
Hens, battery (100 units)	0	0.39	4.44	
Other:				
Horses, 600 kg	182.5	0.3	3.25	
Sheep	265	0.19	0.38	
Lamps	265	0.19	0.07	
Goats incl. kids	265	0.18	0.45	
Deer	365	0.18	0.33	
Fur animals	0	0.25	0.51	

Table 11.7a Conversion factors to determine the CH_4 emission from animal manure handling, values per AAP^a, 2015.

Livestock category	Days on grass	Max.CH₄ produ cing capacity	IEF ^b	
	g ₁ (g ₂) ^a	B ₀		
	days per year	m³ CH₄ per kg VS	kg CH₄ per prod. animal	
Cattle (large breed):				
Bull calves, < 1/2 year	0	0.18	2.08	
Bull, 1/2 year to slaughter, 440 kg	0	0.18	19.21	
Swine:				
Weaners, 7.1-31 kg	0	0.45	0.22	
Fattening pigs, > 31 kg	0	0.45	1.30	
Poultry:				
Broilers (1 000 units)	0	0.36	2.53	
Ostrich	0	0.25	3.97	
Pheasant (100 units)	365	0.36	1.48	
Geese (100 units)	365	0.36	2.11	
Turkeys (100 units)	0	0.36	2.94	
Ducks (100 units)	0	0.36	1.45	

Table 11.7b Conversion factors to determine the CH_4 emission from animal manure handling, values per produced animal, 2015.

 $a g_1$ feeding days on grass, g_2 actual days on grass.

 $^{\rm b}$ IEF – implied emission factor.

^c AAP - annual average population (See definition in Section 4.1).

The total CH_4 emission from manure management 2015 is estimated to 74 kt CH_4 and the main emission originates from the production of swine, which has a high proportion of slurry based housing system (See Table 11.8).

Table 11.8 CH₄ emission from animal manure.

Livestock Category	Emission 2015	Share of total
	kt CH ₄	%
Cattle		_
Dairy cattle	13.44	18.1
Heifer calves, < 1/2 year	0.38	0.5
Heifer, ½ year to calving	5.61	7.6
Bull, calves < ½ year	0.48	0.6
Bulls, 1/2 year to slaughter	4.30	5.8
Suckling cows	1.94	2.6
Swine:		
Sows incl. piglets < 7.1 kg	12.44	16.8
Weaners, 7.1-31 kg	7.01	9.5
Fattening pigs, > 31 kg	25.83	34.8
Poultry:		
Hens	0.22	0.3
Broilers	0.29	0.4
Other poultry	0.03	<0.1
Other:		
Horses	0.42	0.6
Sheep	0.03	<0.1
Lambs	0.01	<0.1
Goats (incl. kids)	0.01	<0.1
Deer	0.002	<0.1
Mink incl. Young	1.73	2.3
Total	74.16	

11.3 Biogas treatment of slurry

11.3.1 Introduction

A significant and growing part of the Danish animal slurry is being used for production of biogas (10 % in 2015). The production uses anaerobic digestion of animal manure in combination with other biodegradable products, e.g. agricultural waste and slaughterhouse waste. Biogas treatment is important to be included in the inventories, because the anaerobic digested slurry produces lower CH_4 emission from storage and from applied slurry on cultivated soils.

As mentioned in Chapter 11.2.1 the CH₄ emission from manure management depends, among other variables, on the CH₄ conversion factor (MCF), which depends on the actual temperature and storage conditions. The 2006 IPCC Guidelines Tier 2 approach recommends an MCF at 10 % for covered and an MCF at 17% for uncovered manure (cool climate) for swine and cattle. Based on study activities in 2015-2016, a national MCF has been estimated for raw untreated slurry and for anaerobic digested slurry, from cattle and swine slurry respectively. Focus has been on cattle and swine slurry, which cover >96 % of the total CH₄ emission from manure management in the 2015 submission.

First, the result of the national MCF estimated will be presented. Following is an overview of the biogas production in Denmark and the estimation of the amount of treated slurry. Finally, a description and documentation of the estimation of the national MCF are provided.

11.3.2 National estimated MCF for cattle- and swine slurry

In 2015-2016 national studies were conducted covering e.g. manure storage time in Danish barns (Kai et al, 2015) and the emissions from anaerobically digested material (Petersen et al, 2016).

During the work with estimating the CH₄ emission from anaerobic digested cattle and swine slurry, it became apparent that the currently used MCF for cattle and swine slurry (the default values from the 2006 IPCC Guidelines) were not properly reflecting the Danish conditions. The analyses based on new measurements showed that the emission from untreated swine slurry was underestimated. It was therefore decided also to estimate a country specific MCF for untreated cattle and swine slurry.

The national estimates of MCF are based on temperature dependent degradation functions, which take into account the different temperature conditions inside the barns and during outdoor storage. The storage time and the related CH₄ emission inside the barns, outdoor storage and storage of anaerobic digested biomass are also taken into account. The approach uses temperature dependent functions adapted to Danish conditions. The emissions are estimated separately from the barns and pre-tanks at the farm. After the manure has left the barn, it is split in two fractions. The major fraction of 90 % is left on the farms as untreated raw liquid manure and currently 10 % is brought to anaerobic digestion either on the farms or at large-scale biogas plants. The digested material is returned for storage on the farms until field application. In Table 11.9, the MCF values used in previous emission inventories are compared to the new national estimated values.

Table 11.9 Methane conversion factor (MCF) values previously used and from the current study (Nielsen et al, 2017).

MCF in 2015, %	Previously used ^a	New – liquid system	New - anaerobic
			digesters
Untreated cattle slurry	10.14	4.82	
Untreated swine slurry	10.35	13.92	
Biogas treated cattle slurry	10.14		2.62
Biogas treated swine slurry	10.35		10.25

^a weighted average for covered (MCF 10 %) and uncovered (MCF 17 %) slurry.

The national MCF for cattle slurry is lower than the 2006 IPCC Guidelines default and also lower than the MCF, which has been found in Swedish studies (Rodhe et al. 2009, 2012 and 2015). The lower MCF for Danish conditions is furthermore supported by studies by Møller (2013), who investigated the CH₄ emission from cattle and swine manure under different temperatures. This study indicates low CH₄ emissions from dairy cattle slurry stored below 15 °C. This is probably due to the fact, that the methanogens in the slurry are not very active at these relatively low temperatures. When the temperatures were higher than 20 °C, the CH₄ emission from cattle slurry increases, although not comparable to the emissions from swine slurry.

The national estimated MCF for untreated swine slurry is higher than the 2006 IPCC Guidelines default. The national study shows a very fast turnover of VS in the swine slurry, and especially inside the barns caused by the relatively high temperatures (Møller, 2013), which leading to a high emission of methane per kg of VS.

Table 11.10 shows the trend 1990 – 2015 for the national estimated MCF for cattle and swine slurry both digested and undigested. The national estimated MCF for not digested slurry for cattle is changing slightly over time, from 4.85 in 1990 and 4.82 in 2015. The MCF not digested slurry for swine, is reduced from 15.19 in 1990 to 13.92 in 2015 due to changes in housing system. The MCF depends on storage time in housing, which differ from system to system. The development from housing systems with fully slatted floor towards systems with partly slatted floor, shorter than storage time for slurry and thus reduces the MCF.

The MCF for undigested cattle slurry 2015 is estimated to 4.82 % and the MCF for digested cattle slurry is 2.62 %, which corresponds to a 46 % reduction of CH₄ emission. The MCF for undigested swine slurry in 2015 is estimated to 13.92 % and the MCF for digested swine slurry to 10.25 %, which corresponds to a 26 % reduction. The changes over time is mainly due to changes in housing types.

	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Cattle										
MCF for digested cattle slurry	2.68	2.61	2.88	2.77	2.75	2.77	2.85	2.93	2.78	2.62
MCF for undigested cattle slurry	4.85	4.76	5.03	4.92	4.88	4.90	4.91	5.00	4.88	4.82
Swine										
OWINE										
MCF for digested swine slurry	11.94	11.79	11.55	10.70	10.66	10.59	10.52	10.46	10.39	10.25
MCF for undigested swine slurry	15.19	15.12	14.94	14.18	14.14	14.07	14.00	13.95	13.93	13.92

Table 11.10 Estimated methane conversion factor (MCF) for digested and undigested cattle and swine slurry from 1990 to 2015, %.

11.3.3 Estimation of slurry treated in biogas plants in Denmark

In Denmark, the biogas plants are divided into five facility types; wastewater, industrial, landfills, large-scale plants (centralised multi farms) and farm-level plants. Large-scale biogas plants are larger facilities, where slurry is received from several farms and farm-level plants are characterised by receiving manure from one or a few farms. In 2015, the total biogas production is estimated by the Danish Energy Agency to 6 348 PJ (DEA, 2016a) and the manure based biogas plants account for approximately 82 % of the total biogas production produced at 26 large-scale plants and 51 farm-level plants.

The livestock production mainly takes place in the western parts of Denmark in Jutland and consequently the majority of manure based biogas plants are located here.

Figure 11.1 Biogas producers in Denmark, 2016 (DEA, 2016c). WWT - waste water treatment.

Data collected by the Danish Energy Agency (DEA) is based on reporting from each biogas plant. The data gives, for the first time, an overview of the actual amount and different types of biomass used in biogas production. In the following, the data are referenced as register of Biomass Input to Biogas production (BIB). The BIB register reflects the situation in 2015 (DEA, 2016b). The data given in the BIB register is used to find the relation between the biogas production and the amount of slurry delivered to biogas plants. This relation has been used to estimate the amount of biomass input for previous years 1990 – 2014.

The anaerobic digestion process is complicated and sensitive to several factors, such as different biomass types and different combination of biomass input, nutrients concentration, species and concentration of bacteria, operational conditions for each biogas plants, etc. Uses of current data from the BIB register will to some extend take these variations from biogas plant to biogas plant into account, because the data is based on existing production.

BIB register

The BIB register does not fully cover all biogas plants. It includes however, the most important biogas producers, and thus it covers 93 % of the total biogas production. Animal manure for biogas production mainly takes place at the large-scale- or the farm-scale biogas plants and only 1 % is delivered to industrial biogas plants.

Data covering the large-scale plants and farm-level biogas plants show that manure accounts for 79 % of the total biomass input. The remaining biomass input is from sewage sludge, residues from the meat production and biomass from crops. The BIB register shows that the majority of manure sent to anaer-obic digestion is slurry (96 %). Deep litter to biogas treatment accounts for 2% of the total amount of manure.

The emission inventories only includes biogas treated slurry from cattle and swine, which account for 88 % of the total amount of slurry delivered to biogas plants. The BIB register allows to include biogas treated slurry from minkand poultry production, deep litter and other manure types, which is planned to be implemented in later emission inventories.

In 2015, large-scale and farm-level biogas plants produced 4 161 TJ, which correspond to 70 % of the total biogas production. The total biomass input to all facilities is estimated to 8 535 kt and the amount used in large-scale and farm-level biogas plants accounts for 4 143 kt (49 %).

	. .			
Facility type	Biomass input, kt	%	Biogas production, TJ*	%
Wastewater treatment	2 522	30	776	13
Industrial	1 871	22	927	16
Landfill	-	-	70	1
Large-scale	3 289	39	3 085	52
Farm-scale	854	10	1 086	18
Total	8 535	100	5 944	100

Table 11.11 Biomass input and biogas production, 2015.

*Used a conversion factor of 35.8 MJ/m3 and CH₄ content of 65 %.

Biogas treated slurry 1990 - 2015

The biogas production 1990-2015 is specified in the Danish Energy Statistics (DEA, 2016d). Assuming that the relation between biogas production and input of slurry given in BIB register for 2015 is roughly similar in recent years 1990-2015, the biogas treated slurry can be estimated based on the energy production.

In 1990, the biogas production at the large-scale, farm-level and industrial biogas plants was 752 TJ which correspond to a slurry input of 194 kt, increasing to 5 259 TJ and 3 832 kt slurry in 2015.

In 2015, around 10 % of total amount of slurry is delivered to biogas production, 14 % of the total amount of cattle slurry and 8 % for swine slurry.

Table 11.12 Biogas production, 1990-2015 (DEA, 2016b and DEA, 2016d).

	1990	1995	2000	2005	2010	2015
Biogas production, TJ						
Total	752	1758	2912	3830	4337	6348
Large-scale, farm-level and industrial biogas plants	266	746	1442	2375	3184	5259
Slurry delivered to biogas plants, kt						
Cattle, swine and mixed	194	543	1050	1731	2320	3832
% of total produced slurry	<1	2	4	5	7	10

11.3.4 Calculation method for the national MCF

MCF is estimated by using the Tier 2 equation for estimating CH₄ emission factor from manure management from IPCC 2006:

$$MCF_{not \ digested} = \left(\frac{E_{barns} + E_{storage, not \ digested}}{VS_{barns}}\right) / (0.67 \cdot B_0)$$
(Eq. 11.13)

Where:

MCF _{not digested}	= methane conversion factor for not digested slurry, %
Ebarns	= emission of CH_4 from barns, kg CH_4 , see Equation 11.15
Estorage, not digested	= emission of CH ₄ from storage of not digested slurry, kg
	CH ₄ , see Equation 11.16
VS _{barns}	= amount of volatile solids, kg VS, based on VS excreted, see
	Table 11.14
Bo	= maximum methane producing capacity, m ³ CH ₄ per VS
0.67	= conversion factor, $m^3 CH_4$ to kg CH_4

$$MCF_{digested} = \left(\frac{E_{barns} + E_{storage,digested}}{VS_{barns}}\right) / (0.67 \cdot B_0)$$
(Eq. 11.14)

Where:

MCF _{digested}	= methane conversion factor for digested slurry, $\%$
Ebarns	= emission of CH_4 from barns, kg CH_4 , see Equation 11.15
Estorage, digested	= emission of CH ₄ from storage of not digested slurry, kg
	CH ₄ , see Equation 11.16

kg VS, based on VS excreted, see
cing capacity, m³ CH4 per VS
$m^3 CH_4$

11.3.5 Estimation of methane emission from raw cattle and swine slurry and anaerobic digested animal manure

The CH_4 emission from liquid cattle and swine manure is based on CH_4 emission from barns, from outdoor stored raw cattle and swine slurry, from anaerobic digesters and from anaerobically digested biomass/primarily animal manure.

Emission of CH4 from barns

$E_{barns} = VS_{bb}$	_{arns} ·EF _{barn}	$_{\rm s} \cdot {\rm HRT}/365$	5		(Eq. 11.15)
Where:					
_			-	 	

Ebarns	= emission of CH ₄ from barns, kg CH ₄
VS _{barns}	= amount of volatile solids, kg VS, based on VS excreted, see Ta-
	ble 11.14
EF _{barns}	= emission factor for CH ₄ , based on measurements, see Table
	11.13
HRT	= Hydraulic Retention Time, days, see Table 11.14

Emission of CH4 from storage of not digested slurry

CH₄ emission from storage of slurry is estimated as VS multiplied by EF where VS is divided in VS degradable (VSd) and VS non-degradable³ (VSnd).

E _{Storage,not digested} = VSd _{storage,not digested} ·EFd _{storage,not digested} +	
VSnd _{storage,not digested} · EFnd _{storage,not digested}	(Eq. 11.16)

Where:

Estorage, not digested	= emission of CH ₄ from storage of not digested slurry,
	kg CH ₄
VSd _{storage, not digested}	= amount of degradable volatile solids in the slurry not
	digested, see Table 11.14, kg VSd
EFd _{storage, not digested}	= emission factor for CH_4 for degradable VS, see Table
	11.13, g CH4 per kg VSd per year
VSnd _{storage, not digested}	= amount of non-degradable volatile solids in the slurry
	not digested, see Table 11.14, kg VSnd
EFnd _{storage, not digested}	= emission factor for CH ₄ for degradable VS, see Table
	11.13, g CH₄ per kg VSnd per year

Emission of CH4 from storage of digested slurry

 $E_{storage,digested} = VSd_{storage,digested} \cdot EFd_{storage,digested} + VSnd_{storage,digested} \cdot EFnd_{storage,digested}$ (Eq. 11.17)

Where:

 $E_{storage, digested} = emission of CH_4 from storage of digested slurry, kg \\ CH_4$

 $^{\rm 3}$ Non-degradable could also be refed to as low-degradable because a small decomposition is possible.

VSd _{storage} , digested	= amount of degradable volatile solids in the slurry di-
	gested, see Table 11.14, kg VSd
EFd _{storage} , digested	= emission factor for CH_4 for degradable VS, see Table
	11.13, g CH ₄ per kg VSd per year
VSnd _{storage} , digested	= amount of non-degradable volatile solids in the slurry
0 0	digested, see Table 11.14, kg VSnd
EFnd _{storage} , digested	= emission factor for CH_4 for degradable VS, see Table
0 0	11.13, g CH ₄ per kg VSnd per year

Table 11.13 Estimated emission factors.

Cattle	
EF _{barns} , g CH ₄ per kg VS per year	66.92
EFd _{storage, not digested} , g CH ₄ per kg VSd per year	12.02
EFnd _{storage, not digested} , g CH ₄ per kg VSnd per year	0.16
EFd _{storage, digested} , g CH ₄ per kg VSd per year	10.13
EFnd _{storage, digested} , g CH ₄ per kg VSnd per year	0.19
Swine	
EF _{barns} , g CH₄ per kg VS per year	569.50
EFd _{storage, not digested} , g CH ₄ per kg VSd per year	29.64
EFnd _{storage, not digested} , g CH ₄ per kg VSnd per year	0.63
EFd _{storage, digested} , g CH ₄ per kg VSd per year	10.13
EFnd _{storage, digested} , g CH ₄ per kg VSnd per year	0.19

Table 11.14a-c shows the estimated CH_4 emission from liquid cattle and swine slurry for the years 1990-2015. Table 11.14a-c shows the total amount of liquid VS excreted by cattle and swine, the average HRT, the estimated g CH_4 per kg VS and the total emission of CH_4 from that category.

For cattle slurry, the total emission in barns in 1990 has been estimated to 3.64 kt CH₄ increasing to 4.48 kt CH₄ in 2015. The increase in this emission is due to change in housing systems where the slurry is kept in the housings longer and more slurry. In addition to this comes an emission from outdoor storage, estimated to 4.25 kt CH₄ in 1990 and remains almost constant to 2015. To this comes a small amount from digested manure.

For swine slurry has the total emission inside the barns in 1990 been estimated to 16.26 kt CH₄ in 1990 increasing to 27.44 kt CH₄ in 2015, due to a growing swine production until 2011. To this comes an emission from outdoor storage. This has been estimated to 5.75 kt CH₄ in 1990 and an increase to 10.65 kt CH₄ in 2015. The increase in this emission is due to increase in the share of degradable volatile solids in the slurry. In addition, a small amount is realised from the digested manure.

Cattle	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Barns										
Slurry, tonnes VS per year	1 081 908	998 008	989 831	1 149 864	1 193 926	1 200 212	1 274 389	1 278 969	1 277 397	1 275 456
EF, g CH₄ per kg VS per year	66.92	66.92	66.92	66.92	66.92	66.92	66.92	66.92	66.92	66.92
Average HRT, days	18.33	18.12	20.81	20.14	19.64	19.77	19.94	20.58	19.63	19.15
EF, g CH₄ per kg VS per year	3.36	3.32	3.82	3.69	3.60	3.62	3.66	3.77	3.60	3.51
Emission, kt CH ₄ per year	3.64	3.31	3.78	4.25	4.30	4.35	4.66	4.83	4.60	4.48
Storage, not digested										
Slurry, not digested, tonnes VSd ab barn Slurry, not digested, tonnes VSnd ab	343 702	311 113	298 667	337 274	344 740	347 694	373 843	373 288	363 712	353 552
barn	722 043	653 443	628 941	709 778	725 139	731 445	786 584	785 905	765 042	743 325
EF, g CH₄ per kg VSd per year	12.02	12.02	12.02	12.02	12.02	12.02	12.02	12.02	12.02	12.02
EF, g CH₄ per kg VSnd per year	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
Emission, kt CH4 per year	4.25	3.85	3.69	4.17	4.26	4.30	4.62	4.62	4.50	4.37

Table 11.14a Emission estimates for cattle slurry inside the barns and undigested stored liquid manure.

 Table 11.14b
 Emission estimates for swine slurry inside the barns and undigested stored liquid manure.

Swine	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Barns										
Slurry, tonnes VS per year	481 523	678 185	800 154	931 488	947 759	963 417	914 097	900 361	930 935	929 047
EF, g CH₄ per kg VS per year	569.50	569.50	569.50	569.50	569.50	569.50	569.50	569.50	569.50	569.50
Average HRT, days	21.64	21.49	21.10	19.47	19.39	19.23	19.10	18.98	18.94	18.93
EF, g CH₄ per kg VS per year	33.77	33.53	32.93	30.38	30.26	30.01	29.80	29.62	29.55	29.54
Emission, kt CH4 per year	16.26	22.74	26.35	28.29	28.68	28.91	27.24	26.67	27.51	27.44
Storage, not digested										
Slurry, not digested, tons VSd ab barn	189 073	264.662	310 420	365 040	367 433	375 360	354 815	348 580	356 235	350 390
Slurry, not digested, tons VSnd ab barn	234 480	327.562.	382 251	440 107	442 561	451 201	425 762	417 669	426 599	419 553
EF, g CH₄ per kg VSd per year	29.64	29.64	29.64	29.64	29.64	29.64	29.64	29.64	29.64	29.64
EF, g CH₄ per kg VSnd per year	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
Emission, kt CH4 per year	5.75	8.05	9.44	11.10	11.17	11.41	10.78	10.59	10.83	10.65
Table 11.14c Emission estimates for dige	sted biomass	i.								
Digested biomass	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
VSd, tonne	1 215	3 403	6 578	10 837	14 528	14 018	14 938	15 737	18 322	17 113
VSnd, tonne	7 529	21 079	40 745	67 129	89 990	86 834	92 531	97 479	113 493	106 004
EF, g CH₄ per kg VSd per year	10.13	10.13	10.13	10.13	10.13	10.13	10.13	10.13	10.13	10.13
EF, g CH₄ per kg VSnd per year	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Emission, kt CH4 per year	0.01	0.04	0.07	0.12	0.16	0.16	0.17	0.18	0.21	0.19

11.3.6 Documentation for estimation of the national MCF

CH₄ formation in manure is mainly formed by microorganisms that produce methane as a metabolic by-product in anoxic conditions. They are classified as archaea, a domain distinct from bacteria. The metabolism is temperature dependent, and actual temperatures are therefore the main driver for the methanogenesis. The overall methodology for estimating the CH₄ emission from liquid animal manure and anaerobically digested biomass is based on the available amount of volatile substance (VS) in the biomass and the temperature dependent CH₄ formation functions (Van't-Hoof/Arrhenius equation) (Sommer et al., 2004). The model by Sommer et al. (2004) uses a 2-pooled concept for estimating the CH₄ emission from degradable VS (VSd) and from non-degradable⁴ VS (VSnd). The emission from VSnd has been set to 1 % of VS (Sommer et al., 2001, 2004). During storage inside the barns, in outdoor storages and in the anaerobic digesters VS is degraded. To take into account a "decreasing" emission due to depletion of the VS in the manure in up to 8-9 months, a degradation model has been developed.

For the purpose of documenting the emission estimate in the inventories, the following tasks have been performed:

- a thorough literature search
- estimation of temperature functions for animal manure stored
 - inside the barns for swine and cattle barns
 - o outdoor storage for untreated liquid manure
 - o anaerobically digested manure
- estimation of storage time, HRT (Hydraulic Retention Time) in the barns (Kai et al., 2015)
- temperature dependent CH₄ formation from 27 samples of different types of liquid swine manure and 12 samples of different type of liquid dairy cattle manure (Petersen et al., 2016)
- developing a model to estimate the storage time in outdoor liquid manure stores
- compilation of data from BIB. The BIB include information on suppliers, amount and types of manure and other biomass used in the Danish anaerobic digesters
- developing an emission model based on time steps of 10 days

Dry matter excretion and VS, VSd and VSnd

The amount of excreted dry matter is taken from the Danish Normative System for animal manure (data included in IDA). The share of VS of dry matter is set as a default to 80 % as used in the agricultural inventories.

In the model for estimating the CH_4 emission a 2-pooled model is used, dividing the VS in VSd and VSnd (Tong et al., 1990, Sommer et al., 2004). The share of VSd and VSnd has for the purpose of the inventories been estimated by Petersen et al. (2016) for swine (sow, weaners and fattening pigs) and cattle slurry (mainly dairy cattle slurry). The manure samples were taken in barns in full production and can thus be seen as normal farming practise. Petersen et al. (2016) estimated the average age of the swine slurry to 13-15 days and

⁴ Non-degradable could also be refed to as low-degradable because a small decomposition is possible.

the cattle slurry to around 20-30 days. The slurry samples can therefore be seen as quite fresh manure with only little degradation.

Petersen et al. (2016) sampled 27 swine slurry samples and 12 dairy cattle slurry samples and estimated the VSd. For swine manure they found an average VSd of 50.87 (95 % Confidence Interval: 44.49 - 57.26) and for slurry for dairy cattle a VSd of 32.63 (95 % Confidence Interval: 28.65 – 36.62).

Møller and Moset (2015) has measured dry matter and VS in digested manure from eight biogas plants. They found an average dry matter in the digested manure of 4.88 % were VS of dry matter in average were 3.32 %. The main part 86.1 % of VS in the digested manure were non-degradable VS (VSnd). Based on the model, which take storage time and temperature into account, the emission factor for VSnd_{digested} and VSd_{digested} were estimated to 0.19 g CH₄ per kg VS per year and 10.13 g CH₄ per kg VS per year, respectively.

Parameters for Arrhenius function

Estimation of the parameters for Arrhenius function is based on Petersen et al. (2016) combined on data from Elsgaard et al. (2016).

The determination of methane production rates largely followed the description of Elsgaard et al. (2016). Two temperatures were selected at approximately 10 and 20°C (Petersen et al., 2016). To estimate the parameters, 20 samples from swine slurry and 11 samples from cattle slurry were used. In effect, cattle slurry was always incubated at around 10 °C, and swine slurry around 20 °C.

Methane production rates that have been observed, corrected to the ambient temperature in slurry pits and channels at sampling time, were compared with predictions based on the model presented by Sommer et al. (2001):

$$F(T) = \left(VS_d * b_1 * \exp\left(lnA - E_a * \left(\frac{1}{RT}\right)\right) + VS_{nd} * b_2 * \exp(lnA - E_a * \left(\frac{1}{RT}\right))\right) \cdot 24 \quad (\text{Eq. 11.18})$$

Where:

F(T)	= g CH ₄ per day
VSd	= volatile solids, degradable, kg
VSnd	= volatile solids, non-degradable, kg
b1 and b2	= scaling factors, 1 for VSd and 0.01 for VSnd (dimension-less)
A	= Arrhenius parameter, g CH_4 per kg VS per h
Ea	= the apparent activation energy, J per mol
R	= the gas constant, 8.314 J per mol per K
Т	= temperature, K
24	= conversion from hour to day

An activation energy, Ea, of 80.9 kJ per mol was recently proposed by Elsgaard et al. (2016) which represented the temperature response of a cattle slurry, a swine slurry, fresh digestate and stored digestate (no significant differences).

In Table 11.15 is shown the parameters used.

Table 11.15 CH₄ emission estimate parameters

	Ea,	Ln(A),	VS4 %	VSnd %	Source				
	J per mol g CH4 per kg VS per hour		v 3u, 7o	v 3nu, 78					
Liquid cattle manure	80.900	29.96	32.63	67.37	Petersen et al. (2016)				
Liquid swine manure	80.900	31.30	50.87	49.13	Petersen et al. (2016)				
Digestate	80.900	30.10	13.9	86.1	Elsgard et al. (2016)				

Degradation function

To take into account long time storage of the slurry, the loss of VSd during storage and the actual amount of VSd and VSnd has to be determined.

Based on literature data and unpublished research data, it was estimated that the C loss from manure stores constitutes roughly of 20 % CH₄-C and 80 % CO₂-C (Dinuccion et al., 2008). In the emission estimate, a conservative figure of 25 % is used. Beside this Patni and Jui (1987) found 10-25 % losses of dry matter during storage of dairy cattle slurry supporting that a high share of loss of VS is taken place as CO_2 as this is not lost as CH_4 . For effluent from digested animal manure, Wang et al. (2016) found very low CH_4/CO_2 ratios at around 3-4 % (unpublished data received from Yue Wang). For the digestate, an estimate for CH_4 -C/ CO_2 -C fraction of 10 % is used (Dong, 2013, Pers. Comm.).

The CH_4 /degradation model was built in an excel spreadsheet with a time step of 10 days.

Danish animal housing systems and Hydraulic Retention Time (HRT)

The most common housing systems for swine in Denmark are partly plugsystems with slatted floors and a depth of the slurry channels of 40-60 cm. The storage capacity inside the barns in these systems is around 40 days. After 40 days the farmers pull the plugs and the slurry under the slats are flushed to the outdoor storage tanks. During the production cycle of weaners and fattening pigs it is normally only needed to flush once during the production, and once after the pigs have been moved and the barn is washed and cleaned. In these systems the average storage time is therefore app. 40 days/2 = 20 days. The average storage time is called the Hydraulic Retention Time (HRT).

For the purpose of the Danish inventories, Kai et al. (2015) have investigated/measured the storage capacity in swine and cattle barns and estimated the HRT for all barn types mentioned in the Danish Normative System for animal manure.

Animal housing systems change over time. To take into account changes in the HRT inside the barns over time since 1990, the shares of the different barn types have been multiplied with the HRT for each barn type and summed for swine and cattle slurry to get the average HRT for swine and cattle slurry (Table 11.16). The HRT for liquid cattle manure has increased since 1990. This is mainly because in the 1990'ies there was a high share of tied-up dairy cattle with liquid handling and frequent removal of the slurry. These were later replaced by cubicles combined with slats. In recent years, cubicles with scrapers are becoming more common so a decrease in the HRT for cattle is expected in the future. The most common housing system for swine has until recently been fully slatted floors. A ban on fully slatted floors forced the farmers to build partly slatted floors/drained floors. This has reduced the storage capacity below the slats and thus reduced the average HRT for swine slurry.

Table 11.16 Average Hydraulic Retention Time (HRT) in cattle and swine barns from 1990 to 2015, days.

	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Cattle	18.33	18.12	20.81	20.14	19.64	19.77	19.94	20.58	19.63	19.15
Swine	21.64	21.49	21.10	19.47	19.39	19.23	19.10	18.98	18.94	18.93

In the emission estimate, it is assumed that all manure regardless of whether it is used for anaerobic digestion or not is having the same HRT. The data collected by Kai et al. (2015) do not prove that farms delivering manure to anaerobic digestion are empting their slurry channels more frequently than farmers who are not.

Temperatures

Based on average air temperature for the period 2001-2010, measured temperatures and literature data temperature functions have been developed.

Insulated swine barns

Only few measured slurry temperatures inside the barns can be found in the literature. Some measurements have been made by SEGES (Holm, 2015). Besides this, Petersen et al. (2016) have measured slurry temperatures in 27 different swine barns in November and December 2014 in connection with the CH₄ emission parameterisation. Holm (2015, Pers. Comm.) has made 48 measurements in barns with fattening pigs at different times of the year and found an average slurry temperature of 18.6 °C (16.0-21.8 °C) with a standard deviation of 1.29. The highest temperatures were measured in summer. When the average outdoor temperature was 16-17 °C the slurry temperature tended to be around 19 °C. In winter when the average outdoor temperature was around 2-5 °C the slurry temperature was 17-18 °C (Figure 11.4). The dots represent different combinations of slurry height and temperatures. Petersen et al. (2016) found an average temperature of 18.7 °C in their measurements in November and December. In the inventories are used the average data of 18.6 °C from SEGES throughout as the data are not sufficient qualified to distinguish between winter and summer. Figure 11.2 shows the measured data by SEGES.

Figure 11.2 Measured slurry temperature in fattening pig slurry channel in different times during the production cycle. The different colours indicate different slurry heights in the slurry channel (Holm, 2015, Pers. Comm.).

Open cattle barns

Most cattle barns in Denmark are naturally ventilated. Inside the barns the air temperature is generally 5-6 °C higher than the outdoor temperature. Only a few measurements of the slurry temperatures can be found in the literature. Furthermore, Petersen et al. (2016) made 12 measurements in different dairy barns in November and December 2014. They measured an average air temperature of 5.2 °C and an average slurry temperature of 9.8 °C, thus a 4.6 °C higher slurry temperature than the air temperature. Because of the lack of data, the temperature of liquid manure in naturally ventilated barns is conservatively set to outdoor air temperature plus 5 °C. More measurements are needed on this.

Air temperature

As temperature input annual monthly mean temperatures are used from the Danish Meteorological Institute (DMI) from 2001 to 2010 (Wang, 2012, DMI report 12-24) (Figure 11.3). The monthly average mean has been converted to a Sine-function ($y=a+bsin(2\pi x/d+c)$) to estimate daily average temperatures.

Figure 11.3 Average daily mean temperature in Denmark 2001-2010 (Wang, 2012).

In Table 11.17 the parameters for the Sine-function, which estimates the daily average air temperatures are provided.

Table 11.17Parameters for the Sine-function (y=a+ b sin($2\pi x/d+c$)) for air temperature. $R^2 = 0.994$

$R^{2} = 0.994$								
Parameter	Value	Std Error	t-value	value 95% confidence limits				
а	8.697	0.167	81.49	8.47	8.92			
b	8.234	0.141	58.38	7.94	8.52			
С	4.253	0.028	110.00	4.17	4.25			
d	363.134	1.878	193.31	359.21	367.05			

Outdoor storage temperatures

The temperature in outdoor slurry tanks is expected to follow the outdoor temperature to a great extent. As with indoor storage, only few data can be found in the literature. The temperature is a function of the loading with slurry, the actual amount stored and the solar radiation. If data from other climatic conditions is used they therefore have to be converted to Danish conditions. E.g. Park et al. (2006) found a linear relation between air temperature and slurry temperature in Canada with the following model parameters: Slurry_temperature = Air_temperature * 0.879 + 4.24 (Figure 11.4). However, the locations used for this study is far more southern than Denmark and are thus not suited for Danish conditions, especially not during summer where a

higher solar radiation is occurring. Hansen et al. (2006) measured the slurry temperatures in slurry tanks throughout a year on three farms receiving digestate from anaerobic digesters. They found also a linear relation similar to Park et al. (2006) with the parameters Slurry_temperature = Air_temperature * 0.75 + 6.23 (Figure 11.4). The measurements by Hansen et al. (2006) cannot be seen as representative for raw liquid manure as the digestate as a starting point is having a higher temperature than raw undigested slurry due to the exothermic process in the anaerobic digesters. The model by Hansen et al. (2006) is used for anaerobic digested manure as this is likely a normal temperature profile for digestate returned to the farms for continued storage.

For raw undigested slurry a linear model has been constructed with data from Husted (1994) and Rodhe et al. (2009, 2012, 2015) with the following parameters Slurry_temperature = Air_temperature * 0.5011 + 5.1886 (r² = 0.75).

Figure 11.4 Measured and modelled slurry temperatures in outdoor storage tanks.

Manure storage and application to fields

The Ministry of Environment and Food of Denmark regulate the storage time and the secondary field application of raw undigested and digested biomass. The general rule is that manure is only allowed to be applied to crops, which have a nitrogen norm and is harvested the same calendar year. Only crops with an official nitrogen norm are allowed to be fertilised (BEK, 2015). This means that autumn application is not allowed as these crops are not harvested within the calendar year. The storage manure capacity is therefore 8-10 months including eventually storage capacity inside the barns.

Field application of manure is not allowed before February 1st and not on frozen or snow covered areas. Because of difficulties for driving in the fields the optimum application time is March and April, plus some application to grass cuttings during summer. In cooperation with the Danish Agricultural Advisory Centre (SEGES), a general storage profile for animal manure storages has been developed, Figure 11.5. The figure shows that the maximum storage is in February and the minimum in end April. Slurry is generally stored in four meter deep concrete tanks where two meters are above ground and two meters below ground. As it is not possible to empty the tanks completely (crust cover) it is assumed that 10 % of the annual production is the minimum amount stored by end of April.

No reduction in the CH_4 emission due to microbial degradation in the crust cover (IPCC 2006) is implemented in the emission estimate so far.

Figure 11.5 The fraction of animal manure stored during different month of the year. The fraction is the share of the total annual manure production corrected for grazing. Small amounts are applied to grass during summer giving a lower increase in the summer months than in the winter period.

11.3.7 The model

The model estimates methane emission for slurry from cattle and swine. Estimations of CH₄, VSd and VSnd is based on measurements (Petersen et al., 2016). The measurements are not made on the exact time for excretion of the manure and the CH₄ emission is therefore calculated as a constant emission per day, even though some degrading of VS in the barn will take place. The CH₄ emission in barns for swine at 18.6 °C is estimated to 569.5 g CH₄ per kg VS per year, corresponding to 1.56 g CH₄ per kg VS per day. VS from barns are not divided in VSd and VSnd because the measured emission relate to the total amount of VS. The total CH₄ emission from barns is calculated as excreted VS multiplied by 1.56 g CH₄ per kg VS per day and average storage time (HRT) in the barn.

For cattle barns, the temperature varies through the year. The emission factor of 66.92 g CH_4 per kg VS per year given in Table 11.13 is an average for a year. For cattle, total CH_4 emission from barns is also calculated as VS multiplied with average store time (HRT). It is assumed that excretion of VS in barns is constant. The period in which the cattle is on grass gives less manure in the barns, but this is not taken in to account. It is assumed that the effect of grazing is very small because the majority of dairy cattle in Denmark spend most of the time in the barns.

Methane emission from outdoor storage of undigested slurry is estimated in a matrix, where slurry is supplied and taken away with a time step of 10 days. The matrix sums the total methane emission until the decomposition of VS is almost null (around 2 years). The amount of VS supplied the storage is the total VS excretion from the animals and the straw used for bedding, subtracted VS-loss from barns. Removal of VSd and VSnd from storage is estimated for every time step and a new methane emission is calculated. For cattle slurry the estimation gives an emission of 12.02 g CH₄ per kg VSd and 0.16 g CH₄ per kg VSnd (Table 11.13). For swine slurry the estimation gives 29.64 g CH₄ per kg VSd and 0.63 g CH₄ per kg VSnd (Table 3D-22).

For estimation of methane emission from outdoor storage of digested slurry, the amount of digested slurry delivered to the biogas plants based on the BIB register is used. Same model as used for undigested slurry is used for digested slurry, though with a higher temperature in the storage after biogas treatment. The stored digested slurry has a high content of VSnd and the emission of methane is therefore low. Due to the low activity of the decomposition, a lower CH₄:CO₂-ratio (of 0.1) is assumed for digested slurry compared to undigested slurry (Dong, 2013, Pers. Comm.).

12 N₂O emission

The agricultural N_2O emissions accounts for 89 % of the total N_2O emission in 2015. The emission of N_2O comes from a range of different sources as showed in figure 12.1. The major sources originate from application of animal manure and inorganic N fertilisers on soil and from crop residues. The calculation of N_2O emission from field burning of agricultural crop residues, which contributes less than 1 % to total agricultural N_2O emissions, is described in Chapter 7.

Figure 12.1 Distribution of the N₂O emission in 2015 on sources (Nielsen et al., 2017).

The methodology used to calculate the N_2O emission is based on guidance given in the 2006 IPCC Guidelines (IPCC, 2006). The following chapters provide a more detailed description on the methodologies and emission factors used. The emission sources are divided in to three main categories. The first covers the emission from the management of manure. The second category is direct N_2O emissions from managed soils, which covers emission from the N sources related to cultivation of agricultural soils. The last one covers indirect N_2O emissions from managed soils, which are atmospheric deposition of nitrogen volatilised from agricultural inputs and emission from nitrogen leaching and runoff.

12.1 Manure management

Emission of N_2O from manure management comes from a direct emission from the handling of the manure in housing and during storage and an indirect emission (atmospheric deposition) from the emission of NH_3 and NO_x from manure management.

The N₂O emission from manure management is estimated to 2.5 kt in 2015 of which only 0.5 is related to the indirect emission. The overall emission has decreased with 0.8 kt N₂O from 1985 – 2015 corresponding to 23 %. This decrease is mainly caused by a decreased emission from swine, which is driven by improvement of feed efficiency. The average N ex per swine has decreased dramatically from 1990 due to the farmer's economic benefit of increased feed efficiency and due to environmental requirements.

Figure 12.2 N₂O direct and indirect emission from manure management, 1985-2015.

12.1.1 Calculation method

The N₂O emission depends on N excretion in manure, and the housing/manure type. The nitrogen content in animal manure is based on the normative figures (Poulsen et al., 2001; Poulsen, 2016). Under the anaerobic conditions in slurry and urine, the emission of N₂O is considered relatively low, while the emission from deep litter systems and solid manure in the housing units is higher. The direct emission from animal manure management is calculated as shown in equation 12.1.

$$N_2 O_{MM, direct} = \sum Nex_{j,i} \cdot EF_{j,i} \cdot \frac{44}{28}$$
(Eq. 12.1)

Where:

$\mathrm{N_2O_{MM,\ direct}}$	= direct emission of N ₂ O from manure management, kg
Nex _{j,i}	= N excretion from the given animal category (<i>j</i>) and manure
	type (<i>i</i>), kg N
EF _{j,i}	= emission factor for a given manure animal category (j) and
	manure type (<i>i</i>), kg N ₂ O-N per kg N
44/28	= conversion from N_2O -N to N_2O

The indirect emission of N_2O from manure management is calculated as shown in equation 12.2.

$$N_2 O_{MM, \text{ indirect}} = \sum N_{Vol} \cdot EF \cdot \frac{44}{28}$$
 (Eq. 12.2)

Where:

$N_2O_{MM, indirect}$ = indirect emission of N_2O from	manure management, kg
N_2O	
N_{Vol} = N volatilised as NH_3 -N and N	O _x -N from manure manage-
ment, kg N	
EF = emission factor based on IPCC	C (2006) kg N ₂ O-N per kg N
$44/28 = \text{conversion from } N_2 O-N \text{ to } N_2'$	0

12.1.2 Emission factor

For the direct emission, the IPCC default N_2O emission factors are applied for all livestock categories. Due to transparency of the emission factor used, Table 12.1 show the Danish housing system compared to the housing system given

in IPCC 2006 Guidelines Table 10.21 and the respective default emission factors.

		Emission factor,
DK MMS	IPCC MMS	kg N ₂ O-N pr kg Nex
Cattle		
Liquid/Slurry	Liquid/slurry, with natural crust cover	0.005
Solid	Solid storage	0.005
Deep bedding	Cattle and swine deep bedding, no mixing	0.01
Biogas treated slurry	Anaerobic digester	0
<u>Swine</u>		
Liquid/Slurry	Liquid/slurry, with natural crust cover	0.005
Solid	Solid storage	0.005
Deep bedding	Cattle and swine deep bedding, Active mixing	0.07
Biogas treated slurry	Anaerobic digester	0
Poultry		
Housing with or without litter	Poultry manure with or without litter	0.001
Fur-bearing animals		
Slurry	Liquid/slurry, with natural crust cover	0.005
Solid	Cattle and swine deep bedding, no mixing	0.01
Sheep and goats		
Deep bedding	Cattle and swine deep bedding, no mixing	0.01
Horses and ostrich		
Deep bedding	Cattle and swine deep bedding, no mixing	0.01

Table 12.1 Manure management system (MMS) - emission factors.

The N_2O emission factor for indirect emission is based on the IPCC default at 0.01 kg N_2O -N per kg NH₃-N and NO_x-N volatilised.

12.2 Agriculture soils - direct emissions

Direct emissions of N_2O from agricultural soils come from a range of sources. The emission from all sources, apart from cultivation of organic soils and mineralisation, is calculated based on the amount of N applied to soils as shown in equation 12.3.

$$N_2 O = N_i \cdot EF_i \cdot \frac{44}{28}$$
 (Eq. 12.3)

Where:

 $\begin{array}{ll} N_2O & = \mbox{emission of N2O, kg N_2O} \\ N_i & = \mbox{N applied to soil from the source } i \mbox{ (inorganic or organic N fertiliser, crop residue, urine and dung deposit during grazing), kg N \\ EF_i & = \mbox{emission factor for the source } i \mbox{ (see Table 12.2), kg N_2O-N per kg N } \\ 44/28 & = \mbox{conversion from N_2O-N to N_2O } \end{array}$

The emission factors for N_2O from agricultural soils for all sources are based on the default values given by the IPCC (IPCC, 2006). A NH_3 and N_2O emission factor overview is presented in Table 12.2.

Table 12.2 Emission factors – NH₃ and N₂O from agricultural soils – direct emissions.

	NH ₃ emission factor	N ₂ O emission factor
	(national data ¹)	(IPCC default value)
	Kg NH₃-N per kg N	kg N ₂ O-N per kg N
Inorganic N fertilisers	0.02	0.01
Animal manure applied to soils	0.19*	0.01
Sewage sludge applied to soils	0.02	0.01
Other organic fertilisers applied to soils		0.01
Urine and dung deposited by grazing	0.07	0.01-0.02
animals		
Crop residues		0.01
Mineralisation/immobilisation associ-		0.01
ated with loss/gain of soil organic mat-		
ter		
Cultivation of organic soils		8.2-13**
Coo Chanter F		

¹ See Chapter 5.

*Varies from year to year, has decreased from 0.28 in 1990.

**Unit: kg N₂O-N pr ha.

12.2.1 Inorganic N fertiliser

The amount of nitrogen (N) applied to soil by use of inorganic N fertiliser is estimated from sales estimates from DAA (2016). The consumption of each fertiliser type is shown in Chapter 5, Table 5.9.

As a result of increasing requirements for improved use of nitrogen in livestock manure and reduce the nitrogen loss to the environment, the consumption of nitrogen in inorganic N fertiliser has almost halved from 1985 to 2015 (Table 12.3).

Table 12.3	Nitrogen applied as	fertiliser to agricultural soils	1985 – 2015.
------------	---------------------	----------------------------------	--------------

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
N content in inorganic N fertiliser, kt N	398	400	316	251	206	190	197	187	194	187	203
N ₂ O emission, kt N ₂ O	6.26	6.29	4.96	3.95	3.24	2.98	3.10	2.94	3.04	2.94	3.20

12.2.2 Organic N fertiliser

Animal manure applied to soils

The amount of nitrogen applied to soil is estimated as the N-excretion in housings (Poulsen, 2016). The total N excretion in housings from 1985 to 2015 has decreased by 14 %, due to improvement of feed efficiency and change in housing systems.

Table 12.4	Nitrogen applied	as manure to agricultural	l soils 1985 – 2015.
------------	------------------	---------------------------	----------------------

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
N-excretion, housing, kt N	274	258	239	235	251	239	238	236	234	235	235
N in manure applied on soil, kt N		214	200	196	212	208	208	206	208	209	209
N ₂ O emission, kt N ₂ O	3.57	3.37	3.14	3.08	3.34	3.27	3.26	3.24	3.26	3.28	3.28

Sewage sludge

Information about sewage sludge applied on agricultural soil and the content of nitrogen is obtained from a series of reports published by the Danish Environmental Protection Agency. From 2005, the amount of sewage sludge and N content is based on the information registered in the fertiliser accounts controlled by The Danish Agricultural Agency (See Chapter 5.4).

Table 12.5 Emission from sewage sludge applied on agricultural soils 1985 – 2015.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Nitrogen in sewage sludge, t N	2 000	3 115	4 635	3 625	2 173	2 692	2 592	2 470	2 457	2 554	2 768
N ₂ O emission, kt N ₂ O	0.03	0.05	0.07	0.06	0.03	0.04	0.04	0.04	0.04	0.04	0.04

Other

The category, "Other", includes emission from sludge from industries applied to agricultural soils as fertiliser. Information about industrial waste applied on agricultural soil and the content of nitrogen is obtained from a series of reports published by the Danish Environmental Protection Agency (DEPA, 2009). The recent official figures regarding the amount of sludge from the industrial waste are data covering year 2001 (Petersen & Kielland, 2003). From 2005, the amount of sludge from industries is based on the information registered in the fertiliser accounts controlled by The Danish Agricultural Agency. Amounts in 2002- 2004 are interpolated.

Table 12.6 Emission from sludge from industries applied on agricultural soils 1985 – 2015.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Nitrogen in industrial waste, t N	1 500	1 529	4 500	5 147	5 509	3 401	3 474	4 356	4 596	4 342	4 455
N ₂ O emission, kt N ₂ O	0.02	0.02	0.07	0.08	0.04	0.05	0.05	0.07	0.07	0.07	0.07

12.2.3 Grazing

The amount of nitrogen deposited on grass is based on estimations from the NH_3 inventory. The number of grazing days is based on expert judgement from SEGES. N excretion on grass has decreased due to a reduction in the number of dairy cattle and days on grass. Emission factors are based on IPCC (2006); 0.02 kg N₂O-N per kg N for cattle, poultry and swine and 0.01 kg N₂O-N per kg N for sheep and other animals.

The N_2O emission is estimated to 1.09 kt in 1985 decreasing to 0.59 kt in 2015, due to a fall in grazing days for the large dairy cattle farms.

Table 12.7 Nitrogen excreted on grass 1985 – 2015.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
N excretion, grass, kt N	37	34	36	34	26	22	21	22	22	22	21
N ₂ O emission, kt	1.09	1.00	1.05	1.01	0.73	0.61	0.60	0.61	0.62	0.62	0.59

12.2.4 Crop residues

The emission from crop residues is based on the 2006 IPCC Guidelines methodology. Default values for all parameters given in IPCCC 2006, Table 11.2 are used except from dry matter fractions and crop yield, which are based on national values. The default N_2O emission factor at 0.01 kg N_2O -N per kg N in crop residues is used.

$$N_2 O = N_{crop \ reside} \cdot EF \cdot 44/28 \tag{Eq. 12.4}$$

Where:

N ₂ O	= emission of N ₂ O from crop residue, kg N ₂ O-N
Ncrop residue	= nitrogen from crop residue, kg N
EF	= emission factor (Table 12.2), kg N ₂ O-N per kg N
44/28	= conversion from N_2O -N to N_2O

Where: N_{crop residue} = nitrogen from crop residue, kg N_{Above ground} = total N in above ground residue (Eq. 12.6), kg N_{Below ground} = total N in below ground residue (Eq. 12.7), kg

 $N_{Above ground} = area_{i} \cdot \left(\left((harvest_{i} \cdot DRY_{i} / Frac_{renev,i} / area_{i}) \cdot slope_{i} + intercept_{i} \right) \cdot N_{AG,i} \right) \quad (Eq. 12.6)$

Where:	
NAbove ground	$_{I}$ = total N in above ground residue, kg
i	= crop type
Area	= area of cultivated crops, ha
Harvest	= amount of harvested crop, kg
DRY	= dry matter fraction of harvest product, kg DM per kg harvest
Fracrenev	= fraction of total area of crop type <i>i</i> that is renewed annually
Slope	= constant given by IPCC (2006) (fractionless)
Intercept	= constant given by IPCC (2006) (fractionless)
N _{AG}	= N content of above ground residue, kg N per kg DM

 $N_{below ground} = area_i \cdot \left(\left(harvest_i \cdot DRY_i / Frac_{renev,i} / area_i \right) \cdot R_{BG-BIO} \cdot N_{BG} \right)$ (Eq. 12.7)

Where:	
$N_{\textit{Below ground}}$	= total N in below ground residue, kg
i	= crop type
Area	= area of cultivated crops, ha
Harvest	= amount of harvested crop, kg
DRY	= dry matter fraction of harvest product, kg DM per kg harvest
Frac _{renev}	= fraction of total area of crop type <i>i</i> that is renewed annually
R _{BG-BIO}	= Ratio of below-ground residues to above-ground biomas, kg
	DM per kg DM
N _{BG}	= N content of below-ground residue, kg N per kg DM

The dry matter fraction in crops is based on feedstuff table produced by SEGES, which has information for content of dry matter, fatty acid, protein, starch, sugar and energy for each crop type. The total amount of dry matter in harvest products is based on data from Statistic Denmark and varies from year to year depending on the climatic conditions.

The total amount of nitrogen in crop residues is calculated and then the N content in harvested straw is deducted. The N content in crop residues has increased from 90 million kg N in 1985 to 141 million kg N in 2015, which is mainly a result of a lower amount of harvest straw.

	1001000	,		1000	_010.						
	1986	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Total N in crop residue	120.0	145.8	132.5	134.1	140.2	149.9	154.1	157.4	151.0	161.6	155.0
N in harvested straw	30.0	24.2	20.1	17.4	14.6	14.8	14.7	16.5	14.2	13.5	13.6
N in crop residue	89.9	121.6	112.4	116.7	125.6	135.1	139.4	140.9	136.8	148.5	141.4

Table 12.8 N content in crop residue, million kg N, 1985-2015

The N_2O emission is depending on the N amount in crop residues. Figure 12.3 shows the total N content in crop residues allocated on the main crop types. As a consequence of increase in areas with maize and grass-clover mixtures in rotation, the total N content in these crop types is also increased. Some annual variations takes place due to changes in climate conditions from year to

year - e.g. in 1992 the spring and summer was extremely dry, which lower the yield.

Figure 12.3 Total N in crop residue, 1985 - 2015.

12.2.5 Mineralisation/immobilisation associated with loss/gain of soil organic matter

The N mineralisation from mineral soils associated with loss/gain of soil organic matter is estimated with a dynamic modelling tool (C-TOOL) which is used to estimate long-term changes in carbon from mineral soils. C-TOOL is a 3-pooled dynamic model, where the approximate average half-live times for the three different pools, Fresh organic matter (FOM), Humified organic matter (HUM) and ROM (Resilient Organic Matter) are 0.6-0.7 years, 50 years and 600-800 years, respectively. The main part of biomass returned to soil each year is in the first and easiest degradable FOM pool. This pool consists of mainly fresh straw, fresh manure, root residues, fungi and small animals and fluctuates very much between years depending on the harvest yield and climatic conditions. The annual input to the FOM pool is close to the estimated annual amount of crop residues.

The estimated release of N_2O follows eq. equation 11.8, page 11.16 in IPCC 2006 Guidelines. The N_2O formation is estimated from the annual changes in the HUM and ROM pool. Changes in the FOM pool is considered as being the same as crop residues incorporated in the soil and to avoid double-counting changes in the FOM is not included.

The estimation of carbon stock changes in mineral soils with C-TOOL is subdivided into 20 combinations of regions and soil types. Within each subdivision only losses are included in the estimate. If a subdivision one year has an increase in the HUM and ROM pool the release of N₂O by default are zero as only losses are included, cf. eq. 11.8. The C:N ratios are based on measured values in the Danish Agricultural grid (Nielsen et al, 2017, Chapter 6.6) and differ among soil types. In the calculations are used a range of C:N values from 10.53 to 15.89 with the lowest value on clay soils and the highest on the most sandy soils. The recommended default value in the IPCC 2006 Guidelines is 15.

12.2.6 Cultivation of organic soils

The cultivation of organic soils (humus-rich soils) breaks down organic matter and, thereby, releases both CO_2 and N_2O . The size of the emission depends on the circumstances surrounding cultivation (crop type, rotation, soil management, saturation, pH, etc.). The cultivated area of organic soils is estimated by the Department of Agroecology, Aarhus University. The area of organic soil is divided in areas with >12 % soil organic carbon (SOC) and 6-12 % SOC.

The calculation of the N₂O emission is based on IPCC guidelines (2014), which recommend an emission factor of 13 kg N₂O-N per hectare for cropland and 8.2 kg N₂O-N per hectare of grassland. These are used for areas with >12 % SOC. For areas with 6-12 % SOC emission of 6.5 and 4.1 kg N₂O-N per hectare for cropland and grassland, respectively. Areas of organic soils with no field identification are defined as Grassland, shallow drained, nutrient-rich areas according to the 2013 Wetland Supplement and for these areas are used 1.6 kg N₂O-N per hectare >12 % SOC and 0.8 kg N₂O-N per hectare 6-12 % SOC.

$$N_2 O_{ORG} = AR_i \cdot EF_i \cdot \frac{44}{28}$$
(Eq. 12.8)

Where:

= emission of N_2O , kg N_2O
= area of organic soil, <i>i</i> land type, ha
= emission factor, <i>i</i> land type, kg N ₂ O-N per ha
= conversion from N_2O-N to N_2O

The emission from cultivation of organic soils has decreased from 2.4 kt N_2O in 1985 to 1.6 kt N_2O in 2015, which is due to the decrease in the cultivated area with organic soils.

Table 12.9	Area and N ₂ O	emission for	organic soils,	1985-2015
------------	---------------------------	--------------	----------------	-----------

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
Cropland >12 % SOC, ha	75 1687	0 9926	6 8166	2 640 5	8 464 5	54 288	53 538	49 650	48 232	49 2484	47 763
Grassland >12 % SOC, ha	21 9982	0 776 1	9 554 1	8 332 1	7 110	16 071 ⁻	15 698	17 943	18 729	18 983 1	18 327
Other >12 % SOC, ha	0	0	0	0	0	0	940	2 384	2 817	1 348	3 289
Cropland 6-12 % SOC, ha	47 0194	4 407 4	1 795 3	9 1833	6 5703	33 9583	33 489	31 145	30 342	31 0703	30 220
Grassland 6-12 % SOC, ha	13 761 1	2 996 1	2 232 1	1 467 1	0 703 -	10 053	9 820	11 256	11 782	11 976 1	11 596
Other 6-12 % SOC, ha	0	0	0	0	0	0	588	1 371	1 523	477	1 583
N ₂ O, kt	2.39	2.26	2.12	1.99	1.86	1.73	1.70	1.64	1.62	1.65	1.61

12.3 Agricultural soils - indirect emissions

12.3.1 Atmospheric deposition

Volatilisation of NH_3 and NO_x and the deposition of these gases and products onto soils and the surface of lakes and other water bodies cause N_2O emission. Emission of N_2O is calculated based on all NH_3 emission sources; manure applied to soil, inorganic N fertiliser, sewage sludge used as fertiliser, urine and dung deposited during grazing, crops, ammonia treated straw and field burning of agricultural residue and on NO_x emission sources; manure applied to soil, inorganic N fertiliser and sewage sludge.

The emission is calculated as illustrated in Equation 12.8 - i.e. as the total NH_3 and NO_x emission multiplied by the IPCC standard value for the emission factor of 0.01 kg N_2O -N per kg NH_3 -N and NO_x -N volatilised.
$$N_2 O_{dep} = \left(\left(NH_3 - N_i + NO_x - N_j \right) \cdot EF \right) \cdot \frac{44}{28}$$
(Eq. 12.8)

Where:

 N_2O_{dep} = N_2O emission from atmospheric deposition, kg N_2O

- $NH_3-N_i = NH_3-N$ volatilised from manure applied to soil, inorganic N fertiliser, sewage sludge used as fertiliser, urine and dung deposited during grazing, crops, ammonia treated straw and field burning of agricultural residue, kg N
- $NO_x-N_j = NO_3-N$ volatilised from manure applied to soil, inorganic N fertiliser and sewage sludge, kg N
- $\label{eq:eff} EF \qquad = emission \ factor, \ 0.01 \ kg \ N_2O-N \ per \ kg \ NH_3-N \ and \ NO_x-N \ volatilised$
- $44/28 = conversion from N_2O-N to N_2O$

The total NH₃ and NO_x emission from all emission sources is shown in Table 12.10 together with the calculated N₂O emission. From 1985 to 2015, the N₂O emission has decreased from 1.09 kt N₂O to 0.51 kt N₂O, which equates to a fall of 53 %. As mentioned in Chapter 5 regarding the NH₃ emission, this emission reduction is a consequence of environmental policies to reduce the loss of nitrogen to the aquatic recipients.

Table 12.10 Total NH_3 , NO_x emission and the N_2O emission, 1985 – 2015.

Emission per year	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
NH ₃ emission, kt NH ₃ -N	62.0	59.4	46.6	36.6	29.2	27.9	27.0	26.6	26.9	27.0	27.4
NO _x emission, kt NO _x -N	7.6	7.5	6.4	5.5	5.1	4.9	5.0	4.9	5.0	4.9	5.1
N ₂ O emission, kt N ₂ O	1.09	1.05	0.83	0.66	0.54	0.52	0.50	0.49	0.50	0.50	0.51
CO ₂ emission, million t CO ₂ eqv.	0.33	0.31	0.25	0.20	0.16	0.15	0.15	0.15	0.15	0.15	0.15

12.3.2 Leaching and runoff

Nitrogen, which is transported through the soil, can be transformed to N_2O . The IPCC recommends an N_2O emission factor of 0.0075, of which 0.0025 is for leaching to groundwater, 0.0025 for transport to watercourses (in IPCC definition called rivers) and 0.0025 for transport out to sea (in IPCC definition called estuaries). The N_2O emission from nitrogen leaching is a sum of the emission for all three parts calculated as given in Equation 12.9:

$$N_2O_{\text{leaching}} = (N_{\text{leach-ground}} \cdot EF_{\text{ground}} + N_{\text{leach-rivers}} \cdot EF_{\text{rivers}} + N_{\text{leach-estuatires}} \cdot EF_{\text{estuatires}}) \cdot \frac{44}{28}$$
 (Eq. 12.9)

Where:

N2O _{leaching}	= emission, kg N ₂ O
N	= N leached to ground water, rivers and estuaries, kg N
EF	= emission factor for ground water, rivers and estuaries kg N_2 O-N
	per kg N
44/28	= conversion from N_2O -N to N_2O

In connection with the Action Plans for the Aquatic Environment, nitrogen leaching to groundwater, to the watercourses and to the sea has been estimated. The calculation of N to the groundwater is based on two different models; SKEP/Daisy and N-LES (Børgesen & Grant, 2003) carried out by DCA and DCE (see overview of model in Appendix U). SKEP/DAISY is a dynamical crop growth model taking into account the growth factors,

whereas N-LES is an empirical leaching model based on more than 1500 leaching studies performed in Denmark during the last 15 years. The models produce rather similar results for nitrogen leaching on a national basis (Waagepetersen et al., 2008). The SKEP/Daisy model has estimated the total N leached from 2003-2007 to be from 172 to 159 thousand tonnes N, whereas the N-LES model has estimated the total N leached to be from 163 to 154 thousand tonnes in the same period. An average of the results from the two models is used in the emission inventories.

Data concerning the N leaching to watercourses and to the sea is estimated based on a national model concept called DK-QN developed by Department of Bioscience, Aarhus University as a part of the National Environmental monitoring Program (NOVANA). DK-QN simulates the monthly runoff and nitrogen loading and is developed, based on two other models. These are a groundwater/surface model MIKE-SHE, which describes the national and regional water balance and the interaction flow between groundwater and streams, and the empirical model DK-N, which includes simulations of monthly sources, loads and skinks of total nitrogen. The model DK-QN, has been validated and shows robustness. For a more detailed description, please refer to Windolf et al. (2011).

Since 1985, the amount of nitrogen leached has almost halved as a result of the significant decrease in consumption of inorganic N fertilisers and the improved utilisation of the nitrogen content in animal manure (Table Table 12.12.11). The same trend is reflected in the N_2O emission by a decrease from 2.2 kt N_2O in 1985 to 1.3 kt N_2O in 2015, or 396 kt CO_2 -eqv. in 2015.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015
N-leachinggroundwater, kt N	304	267	235	179	160	168	165	161	162	164	166
N-leaching _{rivers} , kt N	128	102	104	95	67	68	73	74	65	80	94
N-leaching _{estuaries} , kt N	120	100	91	81	56	55	59	59	54	63	78
N ₂ O, kt	2.17	1.84	1.69	1.39	1.11	1.14	1.17	1.15	1.11	1.20	1.33
CO ₂ eqv. million t	0.65	0.55	0.50	0.42	0.33	0.34	0.35	0.34	0.33	0.36	0.40

Table 12.11 Leaching of nitrogen and associated emissions, 1985 - 2015.

Figure 12.4 illustrates on the first axis the total amount of nitrogen applied as fertiliser on agricultural land in the form of animal manure, inorganic N-fertiliser, sewage sludge, crop residues and mineralisation, while the second axis show the amount of N leached to the groundwater. It can be seen that the percentage of N leached compared with the total N applied on soil has decreased from 39 % in 1985 to 27 % in 2008 and increased from 2009 to 2011. From 2012 is used an N leaching fraction at 28 % based on an average for the years 2007-2011 due to lack of data.

Figure 12.4 Leaching of nitrogen from 1985 to 2015.

13 CO₂ emission

Emission of CO_2 from the agricultural sector comes from three sources; field burning of agricultural residue, liming and inorganic N fertiliser. For calculation etc. of emission from field burning, please refer to Chapter 7. Emission of CO_2 from field burning is not reported in the Danish emission inventories, because no cells in Common Reporting Format (CRF) allows to register this emission pollutant.

13.1 Liming

The emission of CO_2 from liming in Denmark occurs during liming with limestone.

13.1.1 Methodological issues

A Tier 1 method as given in IPCC 2006 is used.

$$CO_2 = A_{lime} \cdot EF \tag{Eq. 13.1}$$

Where:

13.1.2 Activity data

The amount of limestone used is based on the sales statistics. The amount used on the agricultural soils is collected by SEGES (Vestergaard, 2016). The amount of limestone used in private gardens is based on expert judgement (Andersen, 2004, Pers. Comm.) and the same value is used for all years.

13.1.3 Emission factors

The emission factor is 4.4 kt CO₂ per kt limestone and the same for all years 1985 to 2015. It is based on the molecular weight for CaCO₃, CO₂ and C.

$$EF = M_{CaCO_3} \cdot M_C \cdot \frac{M_{CO_2}}{M_C}$$

Where:

EF = emission factor for CO_2 from liming, kt CO_2 per kt limestone M_i = molecular weight for *i* molecule

13.1.4 Emission

The emission of CO_2 from liming has overall decreased by 76 % from 1985 to 2015. As shown in Figure 13.1 the main decrease is occurring from 1985 to 1997 and is due to a decrease in the amount of limestone sold.

Figure 13.1 CO_2 emission from liming, 1985 to 2015.

13.2 Fertiliser

13.2.1 CO₂ from urea

Emission of CO_2 from use of urea contributes with less than 1 % of the CO_2 emission from the agricultural sector.

A Tier 1 method as given in IPCC 2006 is used.

$$CO_2 = A_{urea} \cdot EF \cdot \frac{44}{12}$$
 (Eq. 13.2)
Where:

Where:

The amount of urea used on agricultural soils is based on sales estimates from the Danish Agricultural Agency (DAA, 2016). The default emission factor of 0.20 t C per t urea given in IPCC 2006 is used.

In Figure 13.2, the emission of CO_2 from use of urea is shown. The emission has decreased with 87 % from 1985 to 2015, but the main decrease is occurring from 1990 to 2002. From 2003 to 2015, the emission is almost unaltered. The decrease is due to a decrease in the use of urea.

13.2.2 CO₂ from other carbon-containing fertilisers

Use of other carbon-containing fertilisers is in Denmark the use of calcium ammonium nitrate (CAN). The emission of CO_2 from CAN contributes with less than 1 % of the CO_2 emission from the agricultural sector.

A Tier 1 method as given in IPCC 2006 is used.

$$CO_2 = A_{CAN} \cdot EF \cdot \frac{44}{12}$$
 (Eq. 13.3)

Where:

The amount of CAN used on agricultural soils is based on sales estimates from the Danish Agricultural Agency (DAA, 2016).

The emission factor is 0.026 kg CO_2 per kg CAN and the same for all years 1985 to 2016. It is based on the molecular weight:

$$\mathrm{EF} = \left(\frac{\mathrm{kg}\,\mathrm{CaCO_3}}{\mathrm{kg}\,\mathrm{CAN}}/100\right) \cdot \mathrm{M}_{\mathrm{CaCO_3}} \cdot \mathrm{M}_{\mathcal{C}} \cdot \frac{\mathrm{M}_{\mathrm{CO_2}}}{\mathrm{M}_{\mathcal{C}}} \tag{Eq. 13.4}$$

$$\frac{\log CaCO_3}{\log CAN} = (100 - M_{\rm NH_4NO_3}) / M_{CaMg(CO_3)_2} \cdot M_{CaCO_3} \cdot 2$$
(Eq. 13.5)

Where:

EF	Emission factor for CO ₂ from CAN, kg CO ₂ per kg CAN
Mi	Molecular weight for <i>i</i> molecule

Figure 13.3 shows the emission of CO_2 from use of CAN. The emission has decreased with 58 % from 1985 to 2015, but the main decrease is occurring from 1989 to 1999. The decrease is due to a decrease in the use of CAN. From 2000 to 2014, the emission is almost unaltered but an increase is taking place from 2014 to 2015 due to an increase in the use of CAN.

CO₂ from CAN

Figure 13.3 Emission of CO₂ from use of CAN, 1985 to 2015.

14 Quality assurance and quality control

A first step of the development and implementation of a general QA/QC plan for the Danish emission inventories was initiated in 2004, which is described in a manual (Sørensen et al., 2005, Nielsen et al., 2013). The manual describes the concepts of quality work and how to handle quality management by using Critical Control Points and a list of Point of Measurements (PM).

This report describes in detail the methods and the data foundation used to estimate the agricultural emissions, and together with the National Inventory Report (NIR) and the Informative Inventory Report (IIR), a high degree of transparency is ensured.

The check of comparability with the reporting of other countries is ensured through the international review processes, where many parameters are compared across countries and compared to the IPCC default. Additionally, Denmark has carried out a project of verification, where the emissions from key categories in the Danish inventories were compared against other countries with similar circumstances. (Fauser et al., 2007 and 2013).

One of the key elements to assess the accuracy of the inventories is estimating the uncertainties of the emission estimates. The procedure for estimating the uncertainties is described in Chapter 15.

As quality assurance, the most important aspects are external reviews of the inventories by independent experts. For the Danish agricultural inventories, the external review consists of two main elements.

The first element is the international reviews carried out under the UNFCCC and UNECE. These reviews consist of review teams of internationally appointed experts, who are assigned to review the reporting of the different countries. These review teams consist of experts within all sectors and therefore cover the entire emission inventories. The recommendations received by the review teams form an important basis for improving both the inventories themselves but also the documentation.

The second element is the external review of the sectorial reports, such as this one. The sectorial reports are externally reviewed by national or international experts in the field.

Statistics Sweden, who is responsible for the Swedish agricultural inventory, reviewed the first version of this report (Mikkelsen et al., 2006). The first updated rapport (Mikkelsen et al., 2011) was reviewed by Nicholas J. Hutchings from the Faculty of Agricultural Sciences, Aarhus University and by Johnny M. Andersen from the Faculty of Life Sciences, University of Copenhagen. The second updated rapport (Mikkelsen et al., 2013) was reviewed by Heidi Ravnborg from the Danish Environmental Agency. The current report is reviewed by Peter Lund, DCA, Aarhus University, with a specific focus on Chapter 11.

14.1 QA/QC plan

The overall framework regarding a QA/QC plan are constructed as six stages, and each stage focus on quality assurance and quality check in different part of the inventory process. A more detailed set up for stage I, II and III are provided, refer to Appendix V.

The QA/QC procedure is divided in six stages as listed below:

Table 14.1 Stages of QA/QC procedure.

	U
Stage I	Check of input data
	- check of data input in IDA are consistent with data from external data suppli-
	ers
Stage II	Check of IDA data – overall
	- check of recalculations for total emissions compared with the latest submis-
	sion
	- check of total emissions for the total CO2 eqv. and for each compound
Stage III	Check of IDA data – specific
	- check of annual changes of activity data, emission factors, IEF and other im-
	portant variables as GE, N ex, housing system distribution, grazing days
Stage IV	Check by comparing calculation with estimates from other institutions
	- the total N ex for all livestock production estimated by DCA
	- the Register for fertilisation controlled by the Danish Agricultural Agency
Stage V	Check of data registered in the Common Reporting Format (CRF) reported to
	UNFCCC and Nomenclature For Reporting (NFR) to UNECE
	- compare data in CRF or NFR with data from IDA
Stage VI	Check of the inventories in general (external review)
	- check that data is used correctly
	- check the methodology and the calculations

Stage I: Check of input data

At stage I it is checked that all input data in IDA is consistent with data from the external data suppliers. Data from Statistics Denmark has to be checked for the livestock production, slaughter data for poultry and pigs, check of land use and crop yield. Data input from the DCA has to be checked for feed intake, N excretion, manure production, dry matter content and grazing days. Data from the DAA is checked for distribution of housing systems and the use of nitrogen in inorganic N fertiliser.

Stage II: Check of IDA data - overall

Stage II includes checks of the overall calculations in IDA. The first step is to compare the inventory with the last reported emission inventory. In the case where an error cover all time series, it can be difficult to identify this error by checking the changes in inter annual values. Therefore, a check of recalculations is needed.

Next step in stage II is a check of total emissions of NH_3 , CH_4 , N_2O , NMVOC, NO_x , PM and the other compounds, which are related to the field burning of agricultural residues and use of pesticides. For each compound a check of trends of times series 1985-2014 and inter annual changes is provided. Significant jumps or dips from one year to another could indicate an error - otherwise it has to be explained.

Stage III: Check of IDA data - specific

At stage III, a check of specific variables in IDA is provided for both inter annual changes and trends for the entire time series. Variables includes activity data, emission factors, IEFs and other important key variables such as feed intake, gross energy (GE), N ex and housing systems distribution.

Stage IV: Check by comparing calculation with estimates from other institutions

The purpose of stage IV is to verify the calculations in IDA, as far as external data estimations are available. For other purposes DCA for some years calculate the overall N excretion from the total livestock production in DK, which could be compared with the survey given in the emission inventories. Another possibility to check some of the IDA estimations is the information in the fertiliser accounts controlled by DAA. Farmers with more than 10 animal units have to be registered and must keep accounts of the N content in manure, received manure or other organic fertiliser. These comparisons will properly show some differences, which not necessarily indicate an error, but the most important cause of the difference has to be identified.

Stage V: Check of data registered in CRF and NFR

Stage V primarily focuses on the last reported year and the base year (CRF 1990/NFR 1985), where all activity data, emissions and IEFs are checked. Furthermore, CRF and NFR sum emissions are checked with sum emissions in IDA. If an error is detected a more detailed check is done to find the reason for the error.

Stage VI: Check of the inventories in general

General checks of the inventories include considerations of which data input is used, how they are used in the calculations and whether more accurate data are available. The review of this sectorial report addresses these issues and is the most valuable part of the QA of the agricultural sector.

As a part of the report "Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories" (IPCC, 2000) a verification of emission estimates are provided, which include an inter-country comparison for EU15 countries excluding Luxemburg and including Norway and Switzerland and for some verification steps also including Australia, Canada, Japan, Russian Federation and USA (Fauser et al., 2013). The verification covers 1990, 2000 and 2010 emissions, reported in 2012, for 29 Danish verification key categories, identified by a Tier 1 key source analysis. The agricultural sector contributes with 14 of the verification key categories.

For most of the verification categories, the implied emission factor (IEF) show constant time series indicating consistent IEFs from 1990 to 2010 and imply robustness in methodology and underlying data. Comparability of IEF between countries is found for most of the agricultural categories. Some verification categories differ from other countries but can be explained by use of national data, which leads to a larger variation of the IEF values. In general, the Danish IEF is in line with other countries that have comparable agricultural conditions.

15 Uncertainties

Uncertainty estimates are based on the methodology described in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006) and the EMEP/EEA Guidebook (EMEP, 2016). The total uncertainty depends on uncertainty values for activity data and uncertainty values for the emission factor.

15.1 Uncertainty values for agricultural air pollutants

15.1.1 Activity data

As mentioned before, the main part of the emissions depends on the livestock production, and uncertainties such as number of animals, feeding consumption, normative figures etc. are relatively low. The uncertainties for the most important livestock categories are relatively low e.g. for swine and cattle the uncertainties is estimated to 1.3 % and 0.9 %, respectively. The uncertainty is higher for less important animal groups, e.g. fur bearing animals (3.4 %), poultry, horses and sheep (10.4 %) (DSt, 2017). The uncertainty for number of animals overall is estimated to 2 %.

The allocation of housing system is based on information from the farm nitrogen budgets handled and controlled by the Danish Agricultural Agency. All farmers have to submit the information regarding the housing type annually and the uncertainty is assumed as relatively low.

When it comes to NH_3 emission from manure management, the activity data not only includes the number of animals, but also includes estimates for type of housing and thus type of manure, which increase the uncertainty. The uncertainty value is estimated to 5 % - see Table 15.1.

The overall uncertainty for N excretion on grass is estimated to 5 %. Besides the number of animals, the uncertainty depends on the assumed number of days on grass and the N-excretion, which is estimated by SEGES and DCA, Aarhus University. The Danish Normative System for animal excretions is based on data from SEGES, which is the central office for all Danish agricultural advisory services. SEGES engages in a great deal of research as well as the collection of efficiency reports from Danish farmers for dairy production, meat production, pig production, etc., to optimise productivity in Danish agriculture. Feeding plans from 15-18 % of the Danish dairy production, 25-30 % of pig production, 80-90 % of poultry production and up to 100 % of fur production are collected annually. These basic feeding plans are used to develop the standard values of the "Danish Normative System". However, due to the large number of farms included in the norm figures, the arithmetic mean can be assumed as a very good estimate with a low uncertainty. In the normative standards (Poulsen et al., 2016) uncertainty values are indicated for emission measurements in housing and varies from 15 -25 %, but there are no specified uncertainty estimates for emission factors for storage and application of manure.

The activity data for inorganic N fertiliser depends on the amount of fertiliser sold and the nitrogen content, which is based on information given by the DAA. Uncertainty for this is considered to be low and is estimated to 3 %.

For manure applied to soil the activity data is a combination of number of animals, housing type, N excretion, days on grass and emission factors for NH_3 in housings and storage. The combined uncertainty is estimated to 15 %.

An uncertainty of 25 % for the activity for field burning of agricultural residue is used. The uncertainty is a combination of the uncertainty for area of grass for seed production, which has a low uncertainty, amount of burnt straw and yield, which have a high uncertainty.

The uncertainty for activity data regarding use of pesticides with HCB is based on annual sales statistic provided by the Environmental Protection Agency and is considered with relatively low uncertainty; 5 %.

See Table 15.1 for other variables and their uncertainty estimates.

15.1.2 Emission factor

The uncertainty regarding the NH_3 emission factor from manure management is based on Kai et al (2016) and estimated to 25 %. The uncertainty estimations is based on measurements and model estimations.

The ammonia emission from grazing animals depends on the number of grazing days, the animal type, the temperature and other climatic conditions. No statistics exists on the number of grazing days and are therefore based on an estimated provided of the by SEGES. The uncertainty value is estimated to 25 %.

No uncertainty values for the emission factor regarding the inorganic N-fertiliser are given in the EEA/EMEP guidebook. The Danish inventories assume an uncertainty value of 25 %, which indicated an uncertainty in the translation of the Danish fertiliser types to types specified in the guidebook, but also indicate an uncertainty of the emission factors specified in the guidebook.

The uncertainty regarding the emission from the ammonia emission sources cultivated crops, sewage sludge and ammonia treated straw is all based on the relative few data and therefore assumed to have a high uncertainty estimated to 50 %.

For NMVOC, PM and NO_x the uncertainty for the emission factors is based on EEA/EMEP guidebook.

Uncertainties for field burning are relatively high. The uncertainties for the emission factors for field burning of agricultural residues are based on the EMEP/EEA Guidebook (EMEP, 2016) and Jenkins et al. (1996).

No uncertainty value is provided in EMEP for HCB and PCBs, the uncertainty is assumed to be high and thus estimated to 500 %.

NFR code	Compound	Source	Activity data	Emission factor
			uncertainty	uncertainty
3.B	NH_3	Manure management (housing+storage)	5 %	25 %
3.Da1	NH₃	Inorganic fertilisers	3 %	25 %
3.Da2a	NH₃	Animal manure applied	15 %	25 %
3.Da2b	NH_3	Sewage sludge applied	15 %	50 %
3.Da3	NH ₃	Urine and dung deposited by grazing	5 %	25 %
3.De	NH_3	Cultivated crops	2 %	50 %
3.F	NH₃	Field burning	25 %	50 %
3.I	NH_3	NH ₃ treated straw	20 %	50 %
3.B	PM	Manure management	7 %	300 %
3.Dc	PM	Cultivation of soils	10 %	300 %
3.F	PM	Field burning	25 %	50 %
3.B	NO _x	Manure management	5 %	100 %
3.Da1	NOx	Inorganic fertilisers	3 %	400 %
3.Da2a	NO _x	Animal manure applied	15 %	400 %
3.Da2b	NOx	Sewage sludge applied	15 %	400 %
3.F	NO _x	Field burning	25 %	25 %
3.B	NMVOC	Manure management	2 %	300 %
3.De	NMVOC	Cultivated crops	5 %	500 %
3.F	NMVOC	Field burning	25 %	100 %

15.1.3 Result of the uncertainty calculation

Table 15.2 shows uncertainty values for activity and emission factors and combined and total uncertainties for the air pollutants. The uncertainty estimates are based on the simple Tier 1 approach in the EMEP/CorinAir *Good Practice Guidance for LRTAP Emission Inventories* (Pulles & Aardenne, 2004).

The total uncertainty for the NH₃ emission inventories is calculated at ± 16 % (see Table 15.2), which is primarily affected by the main emission source manure management. The higher uncertainty values for the field burning of crop residues have only minor effect on the total uncertainty estimate.

A high total uncertainty of around 100 % to 500 % is associated with NO_x emission, NMVOC emission, PM emission and almost all pollutants related to field burning of agricultural residues. The high uncertainty level is due to the emission factors' uncertainty.

Table 15.2 Uncertainty values for air pollutants, 2015.

Pollutant	NEP estagon/	Emission	Activity	Emission	Combined	Total
NO kt	3 B Manure management	0.20	<u>uaia, /8</u>	100	100	191
NO _x , Kt	3 Da1 Inorganic N fertilisers	8 11	3	400	400	101
	3 Da2a Animal manure applied	8.33	15	400	400	
	3 Da2b Sewage sludge applied	0.29	15	400	400	
	3.F Field burning	0.11	25	25	35	
CO. kt	3.F Field burning	2.61	25	100	103	103
NMVOC. kt	3.B Manure management	35.68	2	300	300	283
	3.De Cultivated crops	2.11	5	500	500	
	3.F Field burning	0.28	25	100	103	
SO ₂ , kt	3.F Field burning	0.01	25	100	103	103
NH₃, kt	3.B Manure management	35.73	5	25	25	16
	3.Da1 Inorganic N fertilisers	6.10	3	25	25	
	3.Da2a Animal manure applied	19.63	15	25	29	
	3.Da2b Sewage sludge	0.06	15	50	52	
	3.Da3 Urine and dung deposited by	1 70	-	05	05	
	grazing animals	1.79	5	25	25	
	3. De Cultivated crops	5.40	2	50	50	
	3.F Fleid burning	0.11	20	50	50	
	3.1 Agriculture other(c)	6.02	20	300	300	268
13F, кі	3 Dc Farm-level agricultural operations	55.04	10	300	300	200
	3 F Field burning	0.26	25	50	56	
PM ₁₀ , kt	3.B Manure management	2.37	7	300	300	221
	3.Dc Farm-level agricultural operations	5.50	10	300	300	
	3.F Field burning	0.26	25	50	56	
PM25. kt	3.B Manure management	0.54	7	300	300	172
	3.Dc Farm-level agricultural operations	0.46	10	300	300	
	3.F Field burning	0.24	25	50	56	
Pb, Mg	3.F Field burning	0.04	25	50	56	56
Cd, Mg	3.F Field burning	0.002	25	100	103	103
Hg, Mg	3.F Field burning	0.0004	25	200	202	202
As, Mg	3.F Field burning	0.003	25	100	103	103
Cr, Mg	3.F Field burning	0.01	25	200	202	202
Cu, Mg	3.F Field burning	0.00001	25	200	202	202
Ni, Mg	3.F Field burning	0.01	25	200	202	202
Se, Mg	3.F Field burning	0.002	25	100	103	103
Zn, Mg	3.F Field burning	0.001	25	200	202	202
Dioxin, g I-Teq	3.F Field burning	0.03	25	500	501	501
Benzo(a)pyrene, Mg	3.F Field burning	0.12	25	500	501	501
Benzo(b)fluoranthen, Mg	3.F Field burning	0.12	25	500	501	501
Benzo(k)fluoranthen, Mg	3.F Field burning	0.05	25	500	501 501	501
	3 Df Llse of pesticides	0.05	25	500	500	
nob, ky	3 E Field hurning	0.00	25	500	500	-03
PCB ka	3 F Field burning	0.00	2J 25	500	501	501
BC kt	3 E Field burning	0.0002	25 25	100	103	103
DO, NI		0.02	20	100	105	105

15.2 Uncertainty values for agricultural greenhouse gases

15.2.1 Activity data

The activity data regarding CH_4 emission from enteric fermentation only depends on number of animals, which is based on very reliable data from Statistics Denmark, thus a low uncertainty at 2 % is used. Activity data for manure management besides number of animals also depends on the housing - and manure type. The uncertainty estimate is assumed to be 5 %.

Uncertainty for N_2O activity data, which depends on the ammonia emission such as manure management, manure applied to soils and the atmospheric

deposition reflects the uncertainty value estimated in the ammonia emission inventories (See the combined uncertainty provided in Table 15.2).

Activity regarding crop residue and cultivation of organic soils depends on land use data from Statistics Denmark, which has a low uncertainty. However, activity data also depends on the yield and the crop's N content, which is much more uncertain. An uncertainty value at 25 % and 20 % is used. The same uncertainty level is used for data on the amount of nitrogen leached to groundwater, watercourses and to the sea.

As for the air pollutants, an uncertainty of 25 % for field burning of agricultural residue is used.

15.2.2 Emission factor

The uncertainty value for enteric fermentation is in IPCC guidance estimated to 20 %. Uncertainty regarding the emission factor used for manure management depends on the uncertainty for each variable such as manure excretion, distribution of housing type, content of dry matter in manure and use of straw for bedding. National data is used for these variables, which may reduce the uncertainty compared with use of IPCC default value. It is considered that an uncertainty of 20 % is reliable.

A CH₄ and N₂O uncertainty for field burning is estimated to 50 %, which is based on IPCC guidelines.

The IPCC default value is used to calculate the uncertainty of the N_2O emission. The uncertainty estimates mentioned in IPCC guidance is very high, from 200 % and for most of the emissions sources up to 500 %. A lower uncertainty value at 100 % is used in the Danish inventories. This could be considered as an underestimation, but on the other hand, an uncertainty on the N_2O estimate of 500% results in a total uncertainty for agricultural greenhouse gases at 120%, which indicate a very uncertain emission inventories.

CRF code	Compound	Source	Activity data	Emission factor
3.A	CH ₄	Enteric fermentation	2 %	20 %
3.B	CH ₄	Manure management	5 %	20 %
3.F	CH_4	Field burning	25 %	50 %
3.B	N ₂ O	Manure management	25 %	100 %
3.Da1	N ₂ O	Inorganic N fertiliser	3 %	100 %
3.Da2a	N ₂ O	Manure applied to soil	25 %	100 %
3.Da2b	N ₂ O	Applied sewage sludge	15 %	100 %
3.Da3	N ₂ O	Manure applied during grazing	10 %	100 %
3.Da4	N ₂ O	Crop residue	25 %	100 %
3.Da4	N ₂ O	Mineralisation	20 %	100 %
3.Da6	N ₂ O	Organic soils	20 %	100 %
3.Db1	N ₂ O	Atmospheric deposition	16 %	100 %
3.Db2	N ₂ O	Leaching	20 %	100 %
3.F	N ₂ O	Field burning	25 %	50 %
3.G	CO ₂	Liming	5 %	100 %
3.H	CO ₂	Urea	3 %	100 %
3.1	CO ₂	CAN	3 %	100 %

Table 15.3 Variables and uncertainty values, GHG.

15.2.3 Result of the uncertainty calculation

Table 15.4 shows the result of Approach 1 uncertainty estimation for 2015, based on the Approach 1 methodology in the 2006 IPCC Guidelines (IPCC, 2006). The overall uncertainty calculation for the agricultural sector based on Approach 1 is estimated to ± 19 %.

The lowest uncertainties are seen for CH_4 emission from enteric fermentation and manure management and the highest for emission from mineralisation and this pattern is reflected in both calculations.

Table 15.4 Comparison between Approach 1 and Approach 2 uncertainty calculation, 2015.

2010.			
Uncertainty		Approach 1	
		Emission,	Uncertainty,
		ki CO ₂ eqv	70 Lower and
			upper (±)
3 Agriculture total		10 472	19
3A Enteric fermentation	CH_4	3 667	20
3B Manure management	CH_4	1 918	21
	N_2O	594	103
3B5 Indirect emission	N_2O	138	101
3D Agricultural Soils			
3Da Direct soil emissions			
3Da1 Inorganic N fertiliser	N_2O	953	100
3Da2a Animal manure applied to soils	N_2O	979	103
3Da2b Sewage sludge applied to soils	N_2O	13	101
3Da2c Other organic fertiliser applied to soils	N_2O	21	102
3Da3 Urine and dung deposited by grazing animals	N_2O	177	100
3Da4 Crop Residues	N_2O	662	103
3Da5 Mineralisation	N_2O	4	112
3Da6 Cultivation of organic soils	N_2O	619	102
3Db Indirect soil emissions			
3Db1 Atmospheric deposition	N_2O	149	101
3Db2 Leaching	N_2O	396	102
3F Field burning of Agricultural residues	CH_4	3	56
	N_2O	1	56
3G Liming	CO ₂	166	100
3H Urea application	CO ₂	1	100
3I Other carbon-containing fertilisers	CO ₂	10	100

16 Conclusion

In response to a number of international conventions, Denmark is committed to calculate the Danish emissions to the atmosphere of a range of different pollutants. For the agricultural sector, the emissions includes ammonia (NH₃), the greenhouse gases: methane (CH₄), nitrous oxide (N₂O), carbon dioxide (CO₂), the indirect greenhouse gases non-methane volatile organic compounds (NMVOC), particulate matter (PM), nitrogen oxides (NO_x) and a series of other pollutants related to the field burning of crop residues (CO, SO₂, heavy metals, PAHs, dioxins, HCB and PCBs) and HCB from use of pesticides.

DCE - Danish Centre for Environment and Energy is responsible for providing and reporting the annual emission inventories. In addition to the emission inventories themselves, requirements in the various conventions call for documentation of used calculation methodology. This report, therefore, includes a review of the emissions for the period 1985–2015, a description of the main drivers for the emission trend and a description on how the emission is calculated. The report is an updated version of Scientific Report from DCE – Danish Centre for Environment and Energy No. 108 (Mikkelsen et al., 2013).

16.1 Agricultural emissions from 1985 to 2015

In 2015, the agricultural sector contributes 95 % of the total NH_3 emission, while the agricultural part of the greenhouse gases are estimated to 21 %. The agricultural emissions is primarily related to the livestock production.

The NH $_3$ emission has decreased from 129 kt NH $_3$ in 1985 and 69 kt NH $_3$ in 2015, corresponding to 46 %.

The agricultural emission of greenhouse gases in 2015 is estimated to 10.4 million tonnes CO_2 -eqv. and has reduced from 13.3 million tonnes CO_2 -eqv. in 1985. Since 1990, which is the base year of the United Nations Framework Convention on Climate Change, the emission has decreased to 12.7 million tonnes CO_2 -eqv. and a reduction of 18 % is obtained.

An active national environmental policy has taken place from the late 1980s, a string of measures have been introduced by action plans to prevent loss of nitrogen from agriculture to the environment with a primary focus on the aquatic environment. The improvement of feed efficiency and nitrogen utilisation in manure has led to a significant decrease in consumption of inorganic N fertiliser. Combined with requirements to the handling of animal manure during storage and application, these are the main drivers for the reduction of both the emission of NH_3 and the greenhouse gas N_2O . Furthermore, the decrease in number of cattle has led to a reduction in CH₄ emission from the enteric fermentation process.

16.2 Methodology and documentation

Preparation of the Danish emission inventories are based on the international guidelines EMEP/EEA air pollutant emission inventory guidebook (EMEP 2016 and 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). In Denmark, a relatively large amount of data and information

is available related to the specific Danish climate and to agricultural production conditions, including livestock populations, housing types, slaughter data, feed intake, N-excretion, etc. Where data relevant for Danish agricultural production are not available, standard values recommended in the international guidelines are used.

Data used to calculate the agricultural emissions are collected, assessed and discussed in cooperation with a range of different institutions involved in agricultural related research and administration. Especially of relevance are Statistics Denmark, DCA - Danish Centre for Food and Agriculture at Aarhus University and SEGES (agricultural advisory service). Furthermore, the following institutions have been involved: the Danish Environmental Protection Agency, the Danish Agricultural Agency and the Danish Energy Authority.

Calculation methodology and background data will be continually evaluated and, where necessary, adjusted as part of developments in research on a national scale, as well as on an international scale via changes in the guidelines.

References

Aaes, O., 2013: Pers. comm. Ole Aaes, SEGES.

Aaes, O., 2016: Pers. Comm., data received. Ole Aaes, SEGES.

Andersen, J.M., Sommer, S.G., Hutchings, N., Kristensen, V.F. & Poulsen, H.D., 1999: Emission af ammoniak fra landbruget – status og kilde. Ammoniakredegørelse nr. 1. Faculty of Agricultural Sciences and National Environmental Research Institute, Aarhus University. (In Danish).

Andersen, J.M., Poulsen, H.D., Børsting, C.F., Rom, H.B., Sommer, S.G. & Hutchings, N.J., 2001: Ammoniakemission fra landbruget siden midten af 80'erne, NERI Technical report no. 353, National Environmental Research Institute, Aarhus University. Available at (In Danish):

<u>http://www.dmu.dk/1_viden/2_publikationer/3_fagrapporter/rap-porter/FR353.pdf</u> (June 2016).

Andersen, L., 2004: Pers. Comm. Lars Andersen, Kalklejer, Vildmosevej 13, 9293 Kongerslev, Tlf.: 98 33 13 77, d. 14. nov. 2004.

Andersen, H.R., 2003: Pers. Comm. Department of Animal Health and Bioscience, Faculty of Agricultural Sciences, Aarhus University.

Andreae, M.O. & Merlet, P., 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15:955-966.

BEK, 1991: BEK nr. 545 af 12/07/1991. Bekendtgørelse om forbud mod markafbrænding af halm m.v. Available at (in Danish): <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=48502</u> (April 2017).

BEK, 2002: BEK nr. 604 af 15/07/2002. bekendtgørelse nr. 604 af 15. juli 2002 om erhvervsmæssigt dyrehold, husdyrgødning, ensilage m.v. Available at (in Danish):

https://www.retsinformation.dk/forms/R0710.aspx?id=12574 (April 2017).

BEK, 2013: BEK nr 915 af 27/06/2013. Bekendtgørelse om erhvervsmæssigt dyrehold, husdyrgødning, ensilage m.v. Available at (in Danish): <u>https://www.retsinformation.dk/forms/R0710.aspx?id=152378&exp=1</u> (April 2017).

BEK, 2015: BEK nr 1318 af 26/11/2015 Gældende. Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=175399</u> (April 2017).

Birkmose, T.S., 2016: Pers. Comm. Torkild Søndergaard Birkmose SEGES.

Black, R.R., Meyer, C.P., Touati, A, Gullett, B.K., Fiedler, H. & Mueller, J.F., 2012: Emission factors for PCDD/PCDF and dl-PCB from open burning of biomass, Environment International, Volume 38, Issue 1, January 2012, Pages 62-66.

Bligaard, H.B., 2004: Pers. Comm. The Danish Agricultural Advisory Service, Department for Cattle.

Bussink, D.W., 1994: Relationship between ammonia volatilisation and nitrogen fertiliser application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertil. Res. 38, pp 111-121.

Børgesen, C.D. & Grant, R., 2003: Vandmiljøplan II – modelberegning af kvælstofudvaskning på landsplan, 1984-2002. Baggrundsnotat til Vandmiljøplan II – slutevaluering. Faculty of Agricultural Sciences and National Environmental Research Institute, Aarhus University. (In Danish).

Clausen, E., 2004: Pers. Comm. Eric Clausen, The Danish Agricultural Advisory Service, Department for Horses.

COWI, 1999: Undersøgelse af flydelag i gyllebeholdere og kommunernes tilsyn hermed. Danish Ministry of the Environment. (In Danish).

COWI, 2000: Overdækning af gyllebeholdere og kommunernes tilsyn hermed – undersøgelsesrapport. The Danish Forest and Nature Agency. (In Danish).

Crutzen, P.J., Aselmann, I. & Seiler, W., 1986: Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans. Tellus 38B:271-284.

DAA, Danish Agricultural Agency, 2016: Consumption of inorganic N-fertiliser. Values for 2000-2015. Available at (In Danish): <u>http://lfst.dk/fileadmin/user_upload/NaturErhverv/Filer/Landbrug/Handelsgoedning/Danmarks_salg_af_handelsgoedning_2014_2015.pdf</u> (March 2017).

Danish Agriculture, 2002: Udbringningspraksis for husdyrgødning 2002. Notat af 25.oktober 2002 – Andersen, J.M., Department of economics and statistics, Danish Agriculture & Food Council. (In Danish).

DEA, 2016a: Energy Statistics received from DEA Nov. 2016.

DEA, 2016b: BIB register, covering data for biomass delivered to the biogas plants and the biogas production. Data received from DEA, Nov 2016.

DEA, 2016c: Available at: <u>https://ens.dk/en/our-services/statistics-data-key-figures-and-energy-maps/energy-infomaps</u> (Feb. 2017).

DEA, 2016d: Data regarding the biogas production in Denmark 2000 – 2015. Received from DEA, Nov 2016.

DEPA, 2009: Orientering fra Miljøstyrelsen nr. 3, 2009 Spildevandsslam fra kommunale og private renseanlæg i 2005. Available at (In Danish): <u>http://www2.mst.dk/udgiv/publikationer/2009/978-87-7052-993-</u> <u>8/pdf/978-87-7052-994-5.pdf</u> (April 2017).

Dinuccio, E, W. Berg and Balsari, P. 2008: Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atm. Env. 42, 2448-2459.

Dong, H., 2013: Pers. Comm. Dr. Hongmin Dong, co-author to IPCC Guidelines, CAAS - Chinese Academy Of Agricultural sciences, Beijing.

DSt, 2017: Statistic Denmark. Agricultural Statistics. Available at: <u>https://www.statistikbanken.dk/statbank5a/default.asp?w=1536</u> (April 2017).

Elsgaard, L., Olsen, A. B., and S.O. Petersen, 2016: Temperature response of methane production in liquid manures and co-digestates, Sci. of the Total Env. 539, pp 78-84.

EMEP, 2013: EMEP/EEA air pollutant emission inventory guidebook — 2013. Technical report no 12/2013. Available at: <u>http://www.eea.europa.eu//pub-lications/emep-eea-guidebook-2013</u> (March 2017).

EMEP, 2016: EMEP/EEA air pollutant emission inventory guidebook — 2016. EEA Report no 21/2016. Available at: <u>http://www.eea.europa.eu/publica-tions/emep-eea-guidebook-2016</u> (March 2017)

Fauser, P., Thomsen, M., Nielsen, O-K., Winther, M., Gyldenkærne, S., Hoffmann, L., Lyck, E. & Illerup, J.B., 2007: Verification of the Danish emission inventory data by national and international data comparisons. National Environmental Research Institute, Aarhus University, Denmark. 53 pp. – NERI Technical Report no. 627. Available at: http://www2.dmu.dk/Pub/FR627_Final.pdf (April 2017).

Fauser, P., Nielsen, M., Winther, M., Plejdrup, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Hoffmann, L., Thomsen, M., Hjelgaard, K. & Nielsen, O.-K. 2013. Verification of the Danish 1990, 2000 and 2010 emission inventory data. Aarhus University, DCE – Danish Centre for Environment and Energy, 85 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 79. Available at: <u>http://dce2.au.dk/pub/SR79.pdf</u> (April 2017).

Feidenhans'l, B., 2009: Pers. Comm. (mail 06.10.2009). Barthold Feidenhans'l, Department of plant production. The Danish Agricultural Advisory Service.

Flagstad, P., 2016: Pers. Comm., data received. Pia Flagstad, Proportion of Jersey cattle. The Danish Agricultural Advisory Service, Department for Cattle.

Grant, R., Blicher-Mathiesen, G., Andersen, H.E., Grewy Jensen, P., Pedersen, M. & Rasmussen, P., 2002: Landovervågningsoplande 2001. NOVA 2003. NERI Technical report no. 420, pp. 125, National Environmental Research Institute, Aarhus University. Available at (In Danish): <u>http://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR420.pdf</u> (April 2017).

Grant, R., Blicher-Mathiesen, G., Pedersen, M.L., Jensen, P.G., Pedersen, M. & Rasmussen, P., 2003: Landovervågningsoplande 2002. NOVA 2003. NERI Technical report no. 468, pp. 131, National Environmental Research Institute, Aarhus University. Available at (In Danish):

http://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR468.PDF (April 2017). Hansen, T.L., Sommer, S.G., Gabriel, S. & Christensen, T.H., 2006: Methane production during storage of anaerobically digested municipal organic waste. J. Environ. Qual., 35, 830-836.

Hansen, M.N., Sommer, S.G., Hutchings, N. & Sørensen, P., 2008: Emission factors for calculation of ammonia volatilization by storage and application of animal manure. Faculty of Agricultural Science, Aarhus University, report 84.

Hansen, N.E., 2010: Pers. Comm., (mail 13.12.2010). Niels Enggaard Hansen, Department of Basic Animal and Veterinary Sciences/Animal Nutrition, Faculty of Life Science, University of Copenhagen.

Hellwing, A.L.F., Weisbjerg, M.R. & Lund, P., 2014: Note: Calculation of Ym for dairy cows in Denmark. Department of Animal Sceince, Aarhus University, AU Foulum, P.O. Box 50, DK-8830 Tjele, Denmark.

Holm, M., 2015: Pers. Comm. Unpublished data recorded in SEGESs Pig Research Centre, Vinkelvej 11, 8620 Kjellerup, Denmark.

Holmenlund, A., 2004: Pers. Comm. The Danish Agricultural Advisory Service.

Husted, S., 1994: Waste Management, Seasonal variation in methane emission from stored slurry and solid manure. J. Environ. Qual., 23: 585-592.

Hübner, C., 2001: Österreichische Emissionsinventur für POPs 1985–1999. Studie im Auftrag des Umweltbundesamt. Interner Bericht, Bd. IB-650. FTU – Forschungsgesellschaft Technischer Umweltschutz GmbH, Wien.

IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. Available at: <u>http://www.ipcc-nggip.iges.or.jp/pub-</u> <u>lic/2006gl/index.html</u> (April 2017).

IPCC, 2014: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. <u>http://www.ipcc-nggip.iges.or.jp/public/wetlands/</u>(April 2017).

Jarvis, S.C., Hatch, D.J. & Roberts, D.H., 1989a: The effects of grassland management on nitrogen losses from grazed swards through ammonia volatilization; the relationship to excretal N returns from cattle. J. Agric. Sci. Camb. 112, pp 205-216.

Jarvis, S.C., Hatch, D.J. & Lockyer, D.R., 1989b: Ammonia fluxes from grazed grassland annual losses from cattle production systems and their relation to nitrogen inputs. J. Agric. Camp. 113, pp 99-108.

Jenkins, B.M., 1996: Atmospheric Pollutant Emission Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations; Final Report (3 Vols.); CARB Project A932-126; California Air Resources Board, Sacramento, California. Jensen, H.B., 2008: Pers. Comm. (mail 23.10.2008). Henrik Bang Jensen Danish Agriculture & Food Council, Environment & Energy Division.

Kai, P., Birkmose, T. & Petersen, S., 2015: Slurry in Danish livestock Buildings. Report by AgroTech to the Danish Energy Agency, pp 32.

Kai, P., Tybirk, P., Jensen, M.L., Jensen, H.B. & Bækgaard, H., 2016: 8. Tab fra stalde. Available in Danish: <u>http://anis.au.dk/filead-</u> min/DJF/Anis/dokumenter_anis/normtal/Stalde_-_baggrundsmateriale_kapitel-8_2016-2017.pdf (November 2017).

Kjeldal, M., 2002: Pers. Comm. Mogens Kjeldal, Technical advisor at Danish Agricultural Contractor.

Laursen, B., 1994: Normtal for husdyrgødning – revideret udgave af rapport nr. 28. Report no. 82, Institute of Food and Ressource Economics, University of Copenhagen (previously referred to as Statens Jordbrugsøkonomiske Institut). (In Danish).

LBK, 1989: LBK nr. 68 af 24/01/1989. Bekendtgørelse af lov om miljøbeskyttelse.

Lundgaard, N.H., 2003: Pers. Comm. Department for Building and Technology, The Danish Agricultural Advisory Service.

Mikkelsen, M.H., Gyldenkærne, S., Poulsen, H.D. Olesen, J.E. & Sommer, S.G. 2006: Emission of ammonia, nitrous oxide and methane from Danish Agriculture 1985-2002. Methodology and Estimates. NERI Research Notes Nr. 231/2006. Available at: <u>http://www2.dmu.dk/Pub/AR231.pdf</u> (April 2017).

Mikkelsen, M.H. Albrektsen, R. & Gyldenkærne, S. 2011: Danish emission inventories for agriculture. Inventories 1985 - 2009. National Environmental Research Institute, Aarhus University. 136 pp. – NERI Technical Report No. 810. Available at: <u>http://www.dmu.dk/Pub/FR810.pdf</u> (April 2017).

Mikkelsen, M.H., Albrektsen, R. & Gyldenkærne, S. 2013. Danish emission inventories for agriculture. Inventories 1985 – 2011. Aarhus University, DCE – Danish Centre for Environment and Energy, 142 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 108. Available at: http://dce2.au.dk/pub/SR108.pdf (April 2017).

Mikkelsen, M.H., Albrektsen, R. & Gyldenkærne, S. 2016. Biogasproduktions konsekvenser for drivhusgasudledning i landbruget. Aarhus Universitet, DCE – Nationalt Center for Miljø og Energi, 41 s. - Videnskabelig rapport fra DCE - Nationalt Center for Miljø og Energi nr. 197. Available at: http://dce2.au.dk/pub/SR197.pdf (August 2017) - In Danish.

MST, 2016: List of Environmental Technologies for Livestock Holdings. Available at: <u>http://eng.mst.dk/topics/agriculture/environmental-technologies-</u> <u>for-livestock-holdings/livestock-housing-system/</u> (April 2017).

Møller, H.B. 2013: Final Report: Biogas potentials in manure and effects of pretreatment (2009-1-010294). Report to the Danish Energy Agency. Møller, H.B. & Moset, V., 2015: Methane emissions from liquid manure storage – influence of temperature, storage time, substrate type and anaerobic digestion. Draft Final report 2015, Biogas Taskforce. Aarhus University, Department of Engineering.

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Gyldenkærne, S., Thomsen, M., Fauser, P., Nielsen, M. Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L. & Bruun, H.G. 2013. Quality manual for the Danish greenhouse gas inventory. Version 2. Aarhus University, DCE – Danish Centre for Environment and Energy, 44 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 47. Available at:

http://www.dmu.dk/Pub/SR47.pdf (April 2017).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Mikkelsen, M.H., Nielsen, M., Gyldenkærne, S., Fauser, P., Albrektsen, R., Hjelgaard, K., Bruun, H.G. & Thomsen, M. 2016. Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2014. Aarhus University, DCE – Danish Centre for Environment and Energy, 491 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 183. Available at: <u>http://dce2.au.dk/pub/SR183.pdf</u> (April 2017).

Olesen, J.E., Jørgensen, H., Danfær, A., Gyldenkærne, S., Mikkelsen, M.H., Asmon, W.A.H. & Petersen, S.O. 2005: Evaluering af mulige tiltag til reduktion af landbrugets metanemissioner. Arbejdsrapport fra Miljøstyrelsen Nr. 11 /2005. Chapter 1 (Allan Danfær): Methane emission from dairy cows. Available at (in Danish): <u>http://mst.dk/service/publikationer/publikationsarkiv/2005/aug/evaluering-af-mulige-tiltag-til-reduktion-af-landbrugetsmetanemissioner/</u>(April 2017).

Park, K.-H., Thompson, A.G., Marinier, M., Clark, K. & Wagner-Riddle, C., 2006: Greenhous gas emissions from stored liquid swine manure in a cold climate. Atm. Env. 618-627.

Patni, N.K. & Jui, P.Y., 1987: Changes in solids and carbon content of dairy-cattle slurry in farm tanks. Bio. Wastes, 20, 11-34.

Petersen, C. & Kielland, M., 2003: Statistik for jordbrugsmæssig anvendelse af affaldsprodukter fra husholdning og institutioner og virksomheder 2001. Miljøprojekt nr. 858 2003. The Danish Environmental Protection Agency.

Petersen, S.O., Olsen, A.B., Elsgaard, L., Triolo, J.M. & Sommer, S.G., 2016: Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements. PLoS ONE 11(8): e0160968. doi:10.1371/journal.pone.0160968.

Poulsen, H.D. & Kristensen, V.F., 1997: Normtal for husdyrgødning – en revurdering af danske normtal for husdyrgødningens indhold af kvælstof, fosfor og kalium. Beretning nr. 736, Faculty of Agricultural Sciences, Aarhus University. (In Danish).

Poulsen, H.D., Børsting, C.F., Rom, H.B. & Sommer, S.G., 2001: Kvælstof, fosfor og kalium i husdyrgødning – normtal 2000. Report no. 36, Faculty of Agricultural Sciences, Aarhus University. (In Danish). Poulsen, H.D., 2008: Baggrundstal 2008. Danish Centre for Food and Agriculture. Available at (in Danish): <u>http://anis.au.dk/forskning/sektioner/husdyrernaering-og-fysiologi/normtal/</u> (March 2017).

Poulsen, H.D., 2016: Normative figures 2000-2015. Danish Centre for Food and Agriculture. Available at (in Danish): <u>http://anis.au.dk/forskning/sek-tioner/husdyrernaering-og-fysiologi/normtal/</u> (March 2017).

Pulles, T. & Aardenne, J.v., 2004: Good Practice Guidance for LRTAP Emission Inventories, 24. June 2004.

Rasmussen, J.B., 2003: Pers. Comm. Department for Building and Technology, The Danish Agricultural Advisory Service.

Risager, H.J., 2003: Pers. Comm. Midtjylland Pelsdyravlerforening (Central Jutland fur animal breeding association).

Rodhe, L., Ascue, J. & Nordberg, Å, 2009: Emissions of greenhouse gases (methane and nitrous oxide) from cattle slurry storage in Northern Europe. IOP Conf. Ser. Earth Environ. Sci. 8, 012019. doi:http://dx.doi.org/10.1088/1755-1315/8/1/012019

Rodhe, L.K.K., Abubaker, J., Ascue, J., Pell, M. & Nordberg, Å., 2012: Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. Biosyst. Eng. 113, 379–394. doi:http://dx.doi.org/10.1016/j.biosystemseng.2012.09.010

Rodhe, L.K.K., Ascue, J., Willén, A., Persson, B.V. & Nordberg, Å. 2015: Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry. Agriculture, Ecosystems & Environment, Vol. 199, January 2015, pages 358-368. Available at: <u>http://www.sci-encedirect.com/science/article/pii/S0167880914004678</u> (November 2017).

Schjoerring, J.K., & Mattsson, M., 2001: Quantification of ammonia exchange between agricultural cropland and the atmosphere: Measurement over two complete growth cycles of oilseed rape, wheat, barley and pea. Plant and Soil 228: 105-115.

SEGES, 2005: Møller, J., Thøgersen, R., Helleshøj, M.E., Weisbjerg, M.R., Søegaard, K. & Hvelplund, T. Fodermiddeltabel 2005. Rapport nr. 112. The Danish Agricultural Advisory Service, Department for Cattle. (In Danish).

SEGES, 2015: Vestergaard, A.V., Pers. Comm., data received. Annette Vibeke Vestergaard, Knowledge Centre for Agriculture.

Sommer, S.G., Møller, H.B. & Petersen, S.O., 2001: Reduktion af drivhusgasemission fra gylle og organisk affald ved Biogasbehandling. Report no. 31, 53 pp. Faculty of Agricultural Sciences, Aarhus University. (In Danish).

Sommer, S.G. 2002: Pers. Comm. Sven Gjedde Sommer, Faculty of Agricultural Sciences, Aarhus University, Department of Biosystems Engineering.

Sommer, S.G., Petersen, S.O. & Møller, H.B. 2004: Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems. 69, 143-154.

Stenkjær, K., 2009: Pers. Comm (phone 06.11.2009). Kristian Stenkjær, Department of Forest and Landscape, Faculty of Life Science.

Sørensen, P.B., Illerup, J.B., Nielsen, M., Lyck, E., Bruun, H.G., Winther, M., Mikkelsen, M.H., & Gyldenkærne, S. 2005: Quality manual for the greenhouse gas inventory Version 1. National Environmental Research Institute, Denmark. 25 pp. – Research Notes from NERI no. 224. Available at: http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rap-porter/AR224.pdf (April 2017).

Tong, X., Smith, L.H. & McCarty, P.L. 1990: Methane fermentation of selected lignocellulosic materials. Biomass 21: 239–255.

van der Hoek, K.W. & Hinz, T., 2007: Particulate matter emissions from arable production – a guide for UNECE emission inventories. Landbauforschung Völkenrode Special Issue 308.

Vestergaard, A.V, 2016: Statistic for liming 2015, received data.

Waagepetersen, J., Grant, R., Børgesen, C.D. & Iversen, T.M., 2008: Midtvejsevaluering af Vandmiljøplan III. Available at (In Danish): <u>http://pure.au.dk/portal/files/2841678/djfma142.pdf.pdf</u> (June 2016).

Wang, S.-Y. & Huang, D.-J., 2005: Assessment of Greenhouse Gas Emissions from Poultry Enteric Fermentation, Asian-Aust. J. Anim. Sci. Vol. 18, No. 6: 873-878.

Wang, P.R., 2012: Referenceværdier: Døgn-, måneds-og årsværdier for regioner og hele landet 2001-2010, Danmark for temperatur, relativ luftfugtighed, vindhastighed, globalstråling og nedbør. Teknisk rapport 12-24 DMI. Available at (in Danish): <u>http://www.dmi.dk/laer-om/generelt/dmi-publika-</u> tioner/2013/#c10659 (Feb. 2017).

Wang, Y., Dong, H., Zhu, Z., Li, L. Zhou, T., Jiang, B. & Xin, H., 2016: CH₄, NH₃, N₂O and NO emissions from stored biogas digester effluent of pig manure at different temperatures, Agr. Eco. Env. 217, 1-12.

Windolf, J., Thodsen, H., Troldborg, L., Larsen, S.E., Bøgestrand, J., Ovesen, N.B. & Kronvang, B., 2011: A distributed moddeling system for simulation of monthly runoff and nitrogen sources, loads and sinks for ungauged catchments in Denmark. J. Environ. Monit., 2011, 13, 2645.

Yang, C., 2006: Estimating HCB Releases from Pesticide Applications, HCB Releases from Pesticide Applications in USA and Canada – All Years. Environment Canada.

Appendixes

A) Ammonia emission from Danish agriculture 1985 – 2015, kt NH₃-N and kt NH₃.

NH ₃ -N	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Agricultural Sector - total	106.06	105.29	103.14	100.61	101.27	101.39	97.78	95.47	93.48	90.74	85.15	82.14	81.50	81.42	76.80	75.06
Manure Management	44.02	44.87	43.96	44.33	43.93	42.00	41.53	42.29	41.53	40.28	38.55	38.32	39.05	40.33	38.90	38.49
Inorganic N-fertiliser	15.09	12.92	12.59	12.23	12.40	13.35	12.44	11.07	10.72	10.74	9.71	8.69	8.55	8.05	7.40	6.63
Manure applied to soil	32.77	32.32	30.85	30.03	29.46	30.26	29.28	28.38	27.58	26.04	24.43	23.93	23.13	22.95	21.91	21.05
Grazing	2.57	2.51	2.41	2.38	2.38	2.39	2.45	2.45	2.49	2.44	2.49	2.50	2.44	2.43	2.38	2.40
Crops	4.92	4.92	4.91	4.86	4.84	4.88	4.85	4.82	4.75	4.41	4.35	4.38	4.48	4.45	4.33	4.29
Sewage sludge used as fertiliser	0.04	0.04	0.04	0.04	0.05	0.06	0.06	0.07	0.09	0.08	0.09	0.09	0.07	0.07	0.07	0.07
NH ₃ treated straw	5.39	6.62	7.35	5.97	7.41	8.39	7.12	6.32	6.24	6.67	5.46	4.17	3.69	3.05	1.71	2.03
Field burning of agricultural residue	1.26	1.08	1.03	0.77	0.81	0.06	0.07	0.06	0.07	0.07	0.08	0.07	0.08	0.10	0.09	0.09
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Agricultural Sector - total	73.57	72.29	71.42	70.88	68.05	65.01	64.00	63.08	59.99	60.60	59.63	58.32	56.21	56.48	56.81	
Manure Management	39.67	40.44	39.85	41.40	38.89	36.79	34.59	33.90	32.68	32.73	32.61	31.70	29.35	29.46	29.43	
Inorganic N fertiliser	6.14	5.68	5.43	5.55	5.37	5.02	5.18	5.47	3.74	4.54	4.58	4.35	4.60	4.64	5.02	
Manure applied to soil	19.50	18.56	18.89	17.05	17.22	16.81	18.00	17.34	17.06	17.08	16.23	16.06	16.04	16.10	16.17	
Grazing	2.44	2.36	2.11	1.94	1.82	1.72	1.63	1.64	1.57	1.54	1.49	1.51	1.53	1.52	1.48	
Crops	4.33	4.33	4.32	4.34	4.40	4.40	4.33	4.46	4.65	4.45	4.46	4.45	4.43	4.49	4.45	
Sewage sludge used as fertiliser	0.07	0.07	0.06	0.05	0.04	0.04	0.04	0.04	0.06	0.05	0.05	0.05	0.05	0.05	0.05	
NH ₃ treated straw	1.33	0.77	0.66	0.43	0.21	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	
Field burning of agricultural residue	0.10	0.08	0.10	0.10	0.10	0.11	0.09	0.08	0.10	0.07	0.07	0.08	0.09	0.09	0.09	

A) Continued... kt NH3

NH₃	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Agricultural Sector - total	128.78	127.85	125.24	122.17	122.97	123.12	118.73	115.93	113.51	110.18	103.40	99.74	98.96	98.87	93.26	91.15
Manure Management	53.45	54.49	53.38	53.83	53.34	51.00	50.42	51.36	50.42	48.91	46.81	46.53	47.42	48.97	47.24	46.74
Inorganic N fertiliser	18.32	15.69	15.28	14.85	15.05	16.21	15.10	13.45	13.02	13.05	11.79	10.55	10.38	9.77	8.99	8.06
Manure applied to soil	39.80	39.25	37.47	36.46	35.77	36.74	35.55	34.46	33.49	31.62	29.66	29.05	28.09	27.86	26.61	25.55
Grazing	3.12	3.05	2.93	2.89	2.88	2.91	2.97	2.98	3.03	2.97	3.02	3.04	2.97	2.95	2.90	2.92
Crops	5.97	5.97	5.96	5.91	5.88	5.92	5.88	5.85	5.77	5.36	5.28	5.31	5.44	5.41	5.25	5.21
Sewage sludge used as fertiliser	0.05	0.05	0.05	0.05	0.06	0.07	0.07	0.09	0.11	0.10	0.11	0.10	0.09	0.09	0.08	0.08
NH ₃ treated straw	6.54	8.04	8.92	7.25	9.00	10.19	8.64	7.67	7.58	8.10	6.63	5.06	4.48	3.70	2.08	2.47
Field burning of agricultural residue	1.53	1.32	1.25	0.93	0.98	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.10	0.12	0.12	0.11
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Agricultural Sector - total	89.34	87.78	86.72	86.07	82.63	78.95	77.71	76.59	72.84	73.59	72.41	70.82	68.25	68.58	68.98	
Manure Management	48.17	49.10	48.39	50.28	47.22	44.67	42.00	41.17	39.68	39.75	39.60	38.49	35.63	35.77	35.73	
Inorganic N fertiliser	7.45	6.90	6.60	6.74	6.52	6.09	6.29	6.64	4.55	5.51	5.56	5.28	5.59	5.64	6.10	
Manure applied to soil	23.68	22.54	22.93	20.71	20.91	20.42	21.86	21.06	20.72	20.75	19.71	19.50	19.47	19.55	19.63	
Grazing	2.97	2.86	2.56	2.36	2.21	2.09	1.99	1.99	1.90	1.87	1.81	1.84	1.86	1.85	1.79	
Crops	5.25	5.26	5.24	5.27	5.34	5.34	5.26	5.41	5.65	5.41	5.42	5.40	5.37	5.45	5.40	
Sewage sludge used as fertiliser	0.08	0.08	0.07	0.06	0.05	0.05	0.05	0.05	0.07	0.06	0.06	0.06	0.06	0.06	0.06	
NH ₃ treated straw	1.62	0.94	0.80	0.53	0.26	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	
Field burning of agricultural residue	0.12	0.10	0.12	0.13	0.13	0.13	0.11	0.10	0.12	0.09	0.09	0.10	0.11	0.11	0.11	

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
CH ₄	5 997	5 903	5 659	5 553	5 512	5 585	5 699	5 775	5 931	5 816	5 831	5 860	5 799	5 906	5 727	5 719
N ₂ O	6 605	6 513	6 379	6 372	6 409	6 508	6 355	6 199	6 052	5 946	5 795	5 498	5 489	5 606	5 401	5 318
CO ₂	732	756	500	739	889	619	512	403	350	412	537	418	483	264	274	268
Total	13 333	13 172	12 539	12 663	12 810	12 712	12 566	12 377	12 332	12 175	12 163	11 776	11 771	11 775	11 402	11 305
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
CH ₄	5 887	5 903	5 893	5 838	5 682	5 574	5 648	5 586	5 555	5 633	5 579	5 588	5 556	5 590	5 524	
N_2O	5 221	5 215	4 983	5 060	4 961	4 818	4 969	4 955	4 751	4 636	4 690	4 606	4 594	4 649	4 709	
CO ₂	207	237	229	160	222	196	194	231	187	156	165	192	246	240	177	
Total	11 314	11 355	11 105	11 057	10 865	10 588	10 812	10 772	10 492	10 425	10 434	10 386	10 397	10 479	10 411	

B) Development in the emission of greenhouse gases, 1985-2015, measured in kt CO₂ equivalents.

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
<u>CH</u> ₄																
Enteric fermentation	4 592	4 444	4 202	4 076	4 010	4 039	4 070	4 019	4 074	3 978	3 967	3 965	3 829	3 833	3 685	3 631
Manure management	1 362	1 422	1 422	1 451	1 474	1 544	1 627	1 754	1 854	1 836	1 861	1 892	1 967	2 070	2 039	2 085
Field burning	43	37	35	26	28	2	2	2	2	2	3	3	3	3	3	3
<u>N2O</u>																
Crop residue	421	431	410	471	494	569	541	410	473	459	526	532	557	560	522	547
Atmospheric deposition - soil	326	318	311	297	302	313	298	282	275	267	248	234	227	221	204	197
Atmospheric deposition - manure management	207	211	207	208	206	197	195	199	195	189	181	180	183	189	183	181
Manure management	748	770	762	772	778	781	791	816	816	781	755	756	764	790	771	769
Grazing	325	316	302	297	296	298	304	305	312	306	311	313	307	306	300	300
Field burning	13	11	11	8	9	1	1	1	1	1	1	1	1	1	1	1
Inorganic N fertiliser	1 864	1 789	1 786	1 719	1 765	1 875	1 849	1 730	1 559	1 528	1 479	1 362	1 347	1 326	1 230	1 178
Organic soils	881	871	861	851	842	832	822	812	803	793	783	773	763	754	744	734
Manure on soil	1 065	1 066	1 031	1 018	1 009	1 003	998	999	1 005	966	937	935	929	947	936	919
Mineralization	92	82	67	113	106	68	14	87	44	26	28	8	11	10	10	36
Sewage sludge	16	16	17	18	20	22	28	32	44	42	43	43	40	41	38	41
Leaching and run-off	646	630	614	598	582	549	514	524	525	589	503	361	360	459	462	415
<u>CO</u> ₂																
Field burning	967	830	789	590	621	49	51	48	53	51	58	57	61	77	73	72
Liming	696	712	452	694	837	565	463	357	307	367	496	393	470	252	265	261
Urea	10	8	7	9	8	15	12	13	13	18	15	9	4	4	3	2
CAN	25	35	41	36	44	38	37	33	30	27	26	16	10	7	6	5

C) Development in the emission of greenhouse gases, 1985-2015, measured in Gg CO₂ equivalents, distributed on main sources.

C) Continued...

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
<u>CH</u> ₄															
Enteric fermentation	3 703	3 646	3 604	3 496	3 483	3 484	3 565	3 596	3 596	3 631	3 592	3 674	3 697	3 711	3 667
Manure management	2 180	2 255	2 286	2 339	2 195	2 086	2 080	1 987	1 956	1 999	1 984	1 911	1 856	1 877	1 854
Field burning	3	3	3	4	4	4	3	3	3	2	2	3	3	3	3
<u>N2O</u>															
Crop residue	553	522	546	550	588	580	576	614	693	632	653	660	641	694	662
Atmospheric deposition - soil Atmospheric deposition –	184	173	171	162	161	155	161	162	151	153	150	147	149	149	152
manure management	186	190	187	194	183	173	162	159	153	154	153	149	138	138	138
Manure management	797	818	808	834	787	728	734	686	641	640	625	612	614	607	594
Grazing	305	292	259	236	219	205	193	194	185	183	179	182	185	183	177
Field burning	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Inorganic N fertiliser	1 094	987	942	968	966	898	911	1 032	938	890	923	876	906	875	953
Organic soils	724	714	705	695	685	675	665	656	646	635	637	627	622	619	619
Manure on soil	944	967	965	985	995	962	1 018	995	971	975	972	966	973	977	979
Mineralization	11	87	61	41	25	66	122	66	14	4	21	11	4	14	4
Sewage sludge	51	45	37	29	21	24	23	27	32	29	28	32	33	32	34
Leaching and run-off	371	418	301	363	331	350	402	364	324	341	348	344	329	359	396
<u>CO</u> ₂															
Field burning	75	63	75	79	80	81	70	65	77	56	55	64	69	68	67
Liming	201	233	226	158	220	194	192	229	181	153	162	188	244	238	166
Urea	2	1	1	1	0	1	1	0	2	1	1	1	1	1	1
CAN	4	3	2	1	2	1	1	2	4	3	3	2	2	2	10

D) Number of livestock.

 Number of livestock given in AAP 	(average annual production), thousands.
--	---

.,			90 0 P		,											
	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Dairy cattle	896	864	811	774	759	753	742	712	714	700	702	701	670	669	640	636
Non-dairy cattle ¹	1 721	1 631	1 540	1 488	1 462	1 486	1 480	1 478	1 481	1 405	1 388	1 393	1 334	1 308	1 247	1 232
Sheep	99	131	148	182	208	230	266	256	221	200	202	235	240	252	264	279
Goats	8	8	8	8	8	7	7	7	7	7	7	7	7	8	8	8
Horses	140	139	138	137	136	135	137	138	140	141	143	144	146	147	149	150
Swine ²	9 089	9 321	9 266	9 217	9 190	9 497	9 783	10 455	11 568	10 923	11 084	10 842	11 383	12 095	11 626	11 922
Poultry ³	15 219	15 220	15 540	15 524	17 194	16 249	15 933	19 041	19 898	19 852	19 619	19 888	18 994	18 674	21 010	21 830
Fur farming	1 906	2 194	2 402	2 877	3 055	2 264	2 112	2 283	1 537	1 828	1 850	1 918	2 212	2 345	2 089	2 199
Pheasant	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063
Deer	9	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Ostrich	0	0	0	0	0	0	0	0	1.1	2.2	3.3	4.4	5.6	6.7	7.8	8.9
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Dairy cattle	623	610	596	563	564	550	545	558	563	568	565	587	582	563	561	
Non-dairy cattle ¹	1 284	1 187	1 128	1 082	1 006	984	1 021	1 006	977	1 003	1 003	1 020	1 032	1 001	991	
Sheep	297	294	303	310	316	319	309	294	289	278	234	226	221	220	210	
Goats	9	9	10	11	11	12	13	14	16	16	13	13	13	12	11	
Horses	155	160	165	170	175	180	185	190	178	165	155	155	150	150	155	
Swine ²	12 608	12 732	12 949	13 233	13 534	13 361	13 723	12 738	12 369	13 173	12 932	12 331	12 076	12 332	12 538	
Poultry ³	21 236	20 580	17 844	16 649	17 633	17 425	16 741	15 406	19 676	18 731	19 319	18 991	19 431	18 348	17 523	
Fur farming	2 304	2 422	2 361	2 471	2 552	2 708	2 837	2 810	2 721	2 699	2 757	2 948	3 143	3 315	3 400	
Pheasant	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	1 063	
Deer	11	10	10	10	10	10	10	10	9	10	8	7	8	7	8	
Ostrich	10.0	6.6	4.8	4.2	3.7	3.7	0.6	0.5	0.4	0.4	0.2	0.2	0.2	0.1	0.1	

¹Non-dairy cattle includes calves, bulls, heifers and suckling cattle.

²Swine includes sows, weaners and fattening pigs.

³Poultry includes hens, pullets, broilers, turkeys, ducks and geese.

D) Continued...

2) Number of livestock given in produced number of animals, thousands.

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Dairy cattle	896	864	811	774	759	753	742	712	714	700	702	701	670	669	640	636
Non-dairy cattle ¹	3 312	3 178	2 992	2 884	2 805	2 854	2 861	2 885	2 805	2 689	2 676	2 643	2 545	2 462	2 337	2 274
Sheep	99	131	148	182	208	230	266	256	221	200	202	235	240	252	264	279
Goats	8	8	8	8	8	7	7	7	7	7	7	7	7	8	8	8
Horses	140	139	138	137	136	135	137	138	140	141	143	144	146	147	149	150
Swine ²	30 570	32 240	32 219	32 783	32 678	33 882	35 913	38 900	42 759	43 049	42 606	42 963	44 475	48 204	48 126	47 481
Poultry ³	94 078	93 400	92 711	99 465	106 678	108 640	113 682	123 520	129 498	139 644	135 907	129 306	132 410	139 230	150 255	146 854
Fur farming	1 906	2 194	2 402	2 877	3 055	2 264	2 1 1 2	2 283	1 537	1 828	1 850	1 918	2 212	2 345	2 089	2 199
Pheasant	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Deer	9	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Ostrich	0	0	0	0	0	0	0	0	1.1	2.2	3.3	4.4	5.6	6.7	7.8	8.9
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Dairy cattle	623	610	596	563	564	550	545	558	563	568	565	587	582	563	561	
Non-dairy cattle ¹	2 286	2 220	1 373	1 359	1 246	1 210	1 261	1 267	1 212	1 224	1 257	1 220	1 238	1 211	1 197	
Sheep	297	294	303	310	316	319	309	294	289	278	234	226	221	220	210	
Goats	9	9	10	11	11	12	13	14	16	16	13	13	13	12	11	
Horses	155	160	165	170	175	180	185	190	178	165	155	155	150	150	155	
Swine ²	49 756	51 435	51 602	53 435	52 071	51 586	52 273	51 068	50 223	51 945	52 853	50 918	50 832	51 455	52 398	
Poultry ³	149 102	148 781	143 256	144 001	135 205	117 875	118 681	120 860	119 414	128 783	128 145	123 559	126 200	123 870	123 519	
Fur farming	2 304	2 422	2 361	2 471	2 552	2 708	2 837	2 810	2 721	2 699	2 757	2 948	3 143	3 315	3 400	
Pheasant	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Deer	11	10	10	10	10	10	10	10	9	10	8	7	8	7	8	
Ostrich	10.0	6.6	4.8	4.2	3.7	3.7	0.6	0.5	0.4	0.4	0.2	0.2	0.2	0.1	0.1	

¹Non-dairy cattle includes calves, bulls, heifers and suckling cattle.

²Pigs includes sows, weaners and fattening pigs.

³Poultry includes hens, pullets, broilers, turkeys, ducks and geese.

E) Housing type distribution in percent, 1985-2015.

Cattle:

Dairy cattle:

Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Tethered with urine and solid manure	40.0	39.1	38.2	37.3	36.4	35.5	34.5	33.6	32.7	31.8	30.9	30.0	30.0	30.0	30.0	18.0
Tethered with slurry	45.0	44.7	44.5	44.2	43.9	43.6	43.4	43.1	42.8	42.5	42.3	42.0	36.0	30.0	30.0	28.0
Loose-holding with beds, solid floor	4.0	3.9	3.8	3.7	3.6	3.6	3.5	3.4	3.3	3.2	3.1	3.0	3.0	3.0	3.0	6.0
Loose-holding with beds, slatted floor	9.0	9.8	10.6	11.5	12.3	12.4	12.9	13.6	13.9	14.9	15.1	15.4	17.9	20.4	20.2	29.6
Loose-holding with beds, slatted floor, scrape	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	3.0	3.0	3.0
Loose-holding with beds, drained floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Loose-holding with beds, solid floor with tilt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Deep litter	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Deep litter, long eating space, solid floor	0.5	0.6	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	1.0	1.5	2.0	2.0	3.0
Deep litter, slatted floor	0.5	0.9	1.3	1.7	2.1	2.5	2.9	3.4	3.8	4.2	4.6	5.0	6.3	7.5	7.5	7.0
Deep litter, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	0.5	1.0
Biogas	0.0	0.0	0.0	0.0	0.0	0.7	1.0	1.1	1.6	1.5	2.1	2.6	3.1	3.6	3.8	4.4

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Tethered with urine and solid manure	15.0	12.0	8.0	6.0	6.2	6.4	6.7	5.6	4.8	4.8	3.8	3.3	3.0	2.8	2.6	
Tethered with slurry	25.0	23.0	18.0	16.0	14.0	12.0	10.0	8.6	7.4	7.4	5.9	5.3	5.2	4.3	4.0	
Loose-holding with beds, solid floor	9.0	11.0	16.0	17.0	15.8	14.6	13.4	13.7	14.1	14.1	15.5	15.3	14.1	15.0	15.2	
Loose-holding with beds, slatted floor	30.9	33.2	35.0	36.6	35.8	33.8	32.3	33.6	35.1	34.9	36.1	37.8	38.9	35.9	33.2	
Loose-holding with beds, slatted floor, scrape	4.0	4.0	5.0	6.0	10.6	15.3	19.9	20.3	20.8	20.8	21.3	21.5	21.7	21.5	21.4	
Loose-holding with beds, drained floor	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	
Loose-holding with beds, solid floor with tilt	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.3	2.1	2.4	2.6	3.3	2.7	4.0	4.4	
Deep litter	0.0	0.0	0.0	0.0	0.9	1.8	2.0	2.0	2.0	2.0	2.1	2.4	2.7	3.0	3.4	
Deep litter, long eating space, solid floor	3.0	3.0	3.0	3.0	2.3	1.7	1.0	0.8	0.8	0.8	0.7	0.6	0.7	0.6	0.5	
Deep litter, slatted floor	7.0	7.0	7.0	7.0	5.4	3.8	2.2	2.1	1.8	1.8	1.5	1.4	1.5	1.3	1.4	
Deep litter, slatted floor, scrape	1.0	1.0	1.0	1.0	1.4	1.5	1.8	1.6	1.4	1.4	1.0	1.0	1.0	0.9	0.9	
Biogas	5.1	5.8	7.0	7.4	7.6	9.1	10.0	10.0	9.4	9.6	9.5	8.1	8.5	10.7	13.0	

E) Continued...

. Heifers:

Calves, 0-6 mth	Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Deep litter (boxes)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Deep litter, solid floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Deep litter (boxes)	89.0	84.0	83.0	80.0	85.4	90.8	96.2	96.3	96.4	96.4	96.4	96.4	96.9	96.4	96.4	
	Deep litter, solid floor	11.0	16.0	17.0	20.0	14.6	9.2	3.8	3.7	3.6	3.6	3.6	3.6	3.1	3.6	3.6	
6 mth-calving	Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Slatted floor-boxes	45.0	44.0	43.0	42.0	41.0	40.0	39.0	38.0	37.0	36.0	35.0	34.0	33.0	33.0	32.0	32.0
	Tethered with urine and solid manure	25.0	23.9	22.7	21.5	20.4	19.2	18.1	16.9	15.8	14.6	13.5	12.0	11.0	10.0	10.0	9.0
	Tethered with slurry	25.0	23.9	22.7	21.5	20.4	19.2	18.1	16.9	15.8	14.6	13.5	12.0	11.0	10.0	10.0	9.0
	Loose-housing with beds, solid floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Loose-housing with beds, slatted floor	0.0	0.7	1.5	2.2	2.9	4.0	4.4	5.2	5.9	6.7	7.4	8.0	10.0	12.0	13.0	14.0
	Loose-housing with beds, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Loose-holding with beds, solid floor with tilt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Deep litter	5.0	4.6	4.2	3.9	3.5	3.1	2.7	2.3	1.9	1.5	1.1	1.0	0.0	0.0	0.0	0.0
	Deep litter, long eating space, solid floor	0.0	0.3	0.5	0.7	1.0	1.2	1.5	1.7	1.9	2.2	2.4	3.0	3.0	3.0	3.0	3.0
	Deep litter, solid floor	0.0	1.8	3.7	5.6	7.4	9.0	11.1	12.9	14.8	16.6	18.5	22.0	24.0	24.0	24.0	25.0
	Deep litter, slatted floor	0.0	0.7	1.5	2.2	2.9	3.7	4.4	5.2	5.9	6.7	7.4	7.0	7.0	6.0	6.0	6.0
	Deep litter, slatted floor, scrape	0.0	0.1	0.2	0.4	0.5	0.6	0.7	0.9	1.0	1.1	1.2	1.0	1.0	2.0	2.0	2.0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Slatted floor-boxes	31.0	30.0	30.0	29.0	32.4	35.8	39.2	37.4	34.9	35.0	31.3	29.8	28.7	27.2	25.2	
	Tethered with urine and solid manure	8.0	7.0	7.0	5.0	5.7	6.5	7.2	6.3	5.7	5.7	4.6	4.1	3.8	3.3	3.0	
	Tethered with slurry	8.0	7.0	7.0	5.0	4.1	3.3	2.4	2.2	2.2	2.2	1.7	1.6	1.4	1.3	1.2	
	Loose-housing with beds, solid floor	0.0	0.0	0.0	0.0	1.6	3.1	4.7	5.7	6.3	6.3	6.8	7.1	6.9	7.6	7.7	
	Loose-housing with beds, slatted floor	17.0	20.0	21.0	23.0	19.3	15.7	12.0	13.8	16.2	16.2	19.0	20.4	21.2	22.2	24.2	
	Loose-housing with beds, slatted floor, scrape	0.0	0.0	0.0	0.0	1.7	3.4	5.1	5.6	6.4	6.4	7.2	7.7	7.4	8.5	9.2	
	Loose-holding with beds, solid floor with tilt	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0	1.0	1.4	1.8	1.7	1.9	
	Deep litter	0.0	0.0	0.0	0.0	7.6	15.3	22.9	22.4	21.9	21.9	21.4	21.2	22.3	21.6	21.5	
	Deep litter, long eating space, solid floor	3.0	3.0	3.0	3.0	2.6	2.2	1.8	1.9	1.6	1.6	1.8	1.7	1.5	1.5	1.4	
	Deep litter, solid floor	26.0	26.0	26.0	28.0	19.0	9.9	0.9	0.9	0.8	0.8	0.9	1.0	0.6	0.8	0.8	
	Deep litter, slatted floor	5.0	5.0	5.0	5.0	3.9	2.8	1.8	1.8	1.8	1.8	1.7	1.6	1.8	1.7	1.8	
	Deep litter, slatted floor, scrape	2.0	2.0	1.0	2.0	2.0	1.9	1.9	1.9	2.1	2.1	2.6	2.4	2.5	2.6	2.1	

E) Continued...

, Bulls:

Calves, 0-6 mth	Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Deep litter (boxes)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Deep litter, solid floor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Deep litter (boxes)	90.9	86.0	82.0	77.0	83.6	90.2	96.8	97.1	97.0	97.0	96.7	96.9	97.5	96.9	96.5	
	Deep litter, solid floor	9.1	14.0	18.0	23.0	16.4	9.8	3.2	2.9	3.0	3.0	3.3	3.1	2.5	3.1	3.5	
6 mth -440 kg	Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Slatted floor-boxes	45.0	44.2	43.5	42.7	41.9	41.2	40.4	39.6	38.9	38.1	37.3	36.5	35.8	35.0	34.0	33.0
	Tethered with urine and solid manure	25.0	23.9	22.9	21.8	20.7	19.6	18.5	17.5	16.4	15.3	14.2	13.2	12.1	11.0	11.0	10.0
	Tethered with slurry	25.0	23.9	22.9	21.8	20.7	19.6	18.5	17.5	16.4	15.3	14.2	13.2	12.1	11.0	11.0	10.0
	Loose-housing with beds, solid floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Loose-housing with beds, slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Loose-housing with beds, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Loose-holding with beds, solid floor with tilt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Deep litter	5.0	4.6	4.2	3.8	3.5	3.1	2.7	2.3	1.9	1.5	1.2	0.8	0.4	0.0	0.0	0.0
	Deep litter, long eating space, solid floor	0.0	0.3	0.5	0.8	1.1	1.3	1.6	1.9	2.1	2.4	2.7	2.9	3.2	3.0	3.0	3.0
	Deep litter, solid floor	0.0	2.0	4.1	6.1	8.1	10.2	12.3	14.2	16.3	18.4	20.4	22.4	24.5	27.0	29.0	33.0
	Deep litter, slatted floor	0.0	0.9	1.6	2.5	3.4	4.2	5.1	5.9	6.8	7.6	8.5	9.3	10.1	11.0	10.0	9.0
	Deep litter, slatted floor, scrape	0.0	0.2	0.3	0.5	0.6	0.8	0.9	1.1	1.2	1.4	1.5	1.7	1.8	2.0	2.0	2.0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Slatted floor-boxes	32.0	31.0	30.0	28.0	28.8	29.6	30.4	29.7	27.3	27.3	24.9	23.3	21.6	20.7	21.2	
	Tethered with urine and solid manure	9.0	8.0	8.0	7.0	6.0	5.0	4.0	3.7	3.1	3.1	2.5	2.3	2.1	1.8	1.7	
	Tethered with slurry	9.0	8.0	8.0	7.0	5.0	3.0	1.0	0.8	0.8	0.8	0.8	0.6	0.6	0.5	0.5	
	Loose-housing with beds, solid floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.9	
	Loose-housing with beds, slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	2.6	4.8	8.2	6.1	6.2	
	Loose-housing with beds, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8	3.3	4.0	4.1	2.8	
	Loose-holding with beds, solid floor with tilt	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.3	0.1	0.0	0.5	0.6	0.2	1.1	1.0	
	Deep litter	0.0	0.0	0.0	0.0	18.9	37.8	56.6	57.5	60.3	60.4	58.0	57.3	56.8	58.4	57.9	
	Deep litter, long eating space, solid floor	3.0	3.0	3.0	3.0	2.3	1.6	0.9	0.9	1.1	1.1	0.9	1.2	1.1	1.1	1.4	
	Deep litter, solid floor	37.0	41.0	45.0	48.0	33.6	19.1	4.7	4.4	4.2	4.2	3.8	3.4	3.4	3.0	3.3	
	Deep litter, slatted floor	8.0	7.0	5.0	6.0	4.4	2.7	1.1	1.4	1.6	1.6	1.4	1.2	1.1	1.2	1.3	
	Deep litter, slatted floor, scrape	2.0	2.0	1.0	1.0	1.0	1.1	1.2	1.3	1.3	1.3	1.7	1.9	0.7	1.7	1.8	

E) Continued...

Suckling cattle:

Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Tethered with urine and solid manure	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.0
Tethered with slurry	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Loose-housing with beds, slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Loose-housing with beds, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Deep litter	90.0	86.5	83.1	79.6	76.2	72.7	69.2	65.8	62.3	58.8	55.4	51.9	48.5	45.0	45.0	45.0
Deep litter, long eating space, solid floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Deep litter, solid floor	0.0	3.5	6.9	10.4	13.8	17.3	20.8	24.2	27.7	31.2	34.6	38.1	41.5	45.0	45.0	46.0
Deep litter, slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Deep litter, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Boxes with sloping bedded floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Tethered with urine and solid manure	8.0	7.0	4.0	5.0	9.2	13.5	17.7	16.0	14.9	14.9	13.4	12.6	12.0	11.1	10.4	
Tethered with slurry	0.0	0.0	0.0	0.0	3.1	6.3	9.4	9.2	8.6	8.6	9.7	8.9	8.2	7.6	6.9	
Loose-housing with beds, slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
Loose-housing with beds, slatted floor, scrape	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	
Deep litter	44.0	43.0	44.0	43.0	50.7	58.4	66.1	67.8	68.5	69.1	68.8	70.5	72.9	73.2	74.0	
Deep litter, long eating space, solid floor	0.0	0.0	0.0	0.0	0.4	0.9	1.3	1.2	1.4	1.4	1.2	1.3	1.2	1.1	1.3	
Deep litter, solid floor	48.0	50.0	52.0	52.0	35.3	18.6	1.9	2.2	2.7	2.7	2.7	2.8	2.6	2.8	2.8	
Deep litter, slatted floor	0.0	0.0	0.0	0.0	0.5	0.9	1.4	1.3	1.5	1.5	1.9	1.7	1.1	1.7	1.7	
Deep litter, slatted floor, scrape	0.0	0.0	0.0	0.0	0.5	1.0	1.5	1.5	1.8	1.8	2.3	2.2	2.0	2.5	2.4	
Boxes with sloping bedded floor	0.0	0.0	0.0	0.0	0.3	0.4	0.7	0.8	0.6	0.0	0.0	0.0	0.0	0.0	0.0	
<u>Swine:</u> Sows:

Gastation period	Housing type	1085	1086	1087	1088	1080	1000	1001	1002	1003	100/	1005	1006	1007	1008	1000	2000
dastation period	Deen litter + solid floor	0.0	0.1	0.2	0.3	0.4	0.5	0.6	1.4	2 1	28	3.5	1000	50	5.7	6.4	77
	Deep litter + solid floor	0.0	0.1	0.2	0.0	0.4	0.5	0.0	1.4	2.1	2.0	3.5	4.0	5.0	5.7	6.4	83
		5.0	5.4	5.8	6.2	6.6	7.0	7.4	7.7	8.2	2.0	0.5	10.7	11.8	12.8	13.0	1/1 3
	Individual housing, partly slatted floor	40.6	50.9	52.0	52 1	54.3	55.5	56.6	56.5	0.2 56 4	56.2	55.0	55.6	55.3	55.0	54.7	51.1
	Individual housing, party statted floor	49.0	0.0	2.0	26	10	4.0	50.0	50.5	67	7.4	0.0	0.5	0.1	0.0	10.4	10.4
	Individual housing, fully statted hoof	1.0	2.4 41.0	0.0	3.0 26 E	4.0	4.9	0.0	0.1	0.7	7.4 00.0	10.0	16.6	10.0	9.0	10.4	10.4
	Individual housing, solid hoor	43.0	41.2	38.8	30.5	34.0	31.0	29.3	26.9	24.5	22.2	19.4	0.01	13.8	11.0	8.2	8.2
	Loose housing, partly slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Deep litter + solid floor	9.0	9.9	11.1	11.1	7.8	4.6	1.3	1.1	0.9	0.9	1.3	1.2	1.0	1.0	0.8	
	Deep litter + slatted floor	9.6	11.7	13.5	13.5	12.2	10.9	9.6	9.0	8.6	8.6	8.6	8.2	8.2	7.8	7.5	
	Deep litter	14.7	14.9	15.2	15.2	11.2	7.1	3.1	2.8	2.5	2.5	2.0	1.9	2.2	1.9	1.9	
	Individual housing, partly slatted floor	49.4	46.7	44.0	44.0	54.0	64.0	71.1	70.4	69.0	69.0	67.5	65.8	62.6	59.7	58.0	
	Individual housing, fully slatted floor	10.1	10.0	9.8	9.8	9.8	9.7	9.7	9.7	10.0	10.0	9.7	9.1	9.6	8.1	8.0	
	Individual housing, solid floor	7.2	6.8	6.4	6.4	5.0	3.7	2.3	1.6	1.0	1.0	0.2	0.2	0.2	0.2	0.2	
	Loose housing, partly slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	2.9	5.4	8.0	8.0	10.7	13.6	16.2	21.3	23.6	
Farrow period		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Individual housing, partly slatted floor	50.0	51.3	52.7	54.0	55.3	56.7	58.0	59.5	61.0	62.5	64.0	65.5	67.0	68.5	70.0	71.0
	Individual housing, fully slatted floor	5.0	7.5	10.0	12.5	15.0	17.5	20.0	20.6	21.3	21.9	22.5	23.1	23.8	24.4	25.0	24.0
	Loose housing, solid floor	45.0	41.2	37.3	33.5	29.7	25.8	22.0	19.9	17.7	15.6	13.5	11.4	9.2	7.1	5.0	5.0
	Loose housing, partly slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Individual housing, partly slatted floor	74.0	74.9	76.6	76.6	76.8	77.0	77.2	78.1	76.9	79.6	80.0	80.9	80.1	81.3	81.3	
	Individual housing, fully slatted floor	22.0	20.9	19.5	19.5	19.2	19.0	18.7	18.6	19.7	20.4	20.0	19.1	19.9	18.7	18.7	
	Loose housing, solid floor	4.0	4.2	3.9	3.9	3.1	2.2	1.4	0.9	0.7	0.0	0.0	0.0	0.0	0.0	0.0	
	Loose housing, partly slatted floor	0.0	0.0	0.0	0.0	0.9	1.8	2.7	2.4	2.7	0.0	0.0	0.0	0.0	0.0	0.0	
Outdoor		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Outdool	Outdoor sows (percent of all sows and periods)	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.7	1.0	13	1 7	2.0	23	27	3.0	3.0
		2001	2002	2002	2004	2005	2006	2007	2000	2000	2010	2011	2.0	2.5	2014	2015	0.0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Outdoor sows (percent of all sows and periods)	2.6	2.0	2.0	2.0	2.0	2.0	1.7	1.4	1.2	1.2	0.5	1.1	1.1	0.6	0.5	

. Weaners:

Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Fully slatted floor	40.0	42.9	45.7	48.6	51.4	54.3	57.1	60.0	57.1	54.3	51.4	48.6	45.7	42.9	40.0	38.0
Partly slatted floor	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	23.6	27.2	30.7	34.3	37.9	41.4	45.0	47.0
Solid floor	35.0	32.1	29.3	26.4	23.6	20.7	17.9	15.0	13.6	12.1	10.7	9.3	7.8	6.4	5.0	5.0
Deep litter (to-climate housings)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Deep litter + slatted floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.4	2.2	2.8	3.6	4.3	5.0	5.0
Partly slatted and drained floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Fully slatted floor	36.0	35.0	33.0	31.0	29.1	27.3	25.4	23.0	22.0	22.0	20.2	18.7	16.5	14.8	13.4	
Partly slatted floor	49.0	50.0	52.0	54.0	57.1	60.2	63.3	66.6	67.8	67.8	69.8	71.6	74.4	74.3	75.4	
Solid floor	5.0	5.0	5.0	5.0	3.7	2.5	1.2	0.9	0.6	0.6	0.5	0.4	0.4	0.3	0.2	
Deep litter (to-climate housings)	5.0	5.0	5.0	5.0	4.4	3.7	3.1	2.4	1.8	1.8	1.3	1.2	1.3	1.7	1.3	
Deep litter + slatted floor	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Partly slatted and drained floor	0.0	0.0	0.0	0.0	5.7	6.3	7.0	7.1	7.8	7.8	8.2	8.1	7.4	8.9	9.7	

, Fattening pigs:

Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Fully slatted floor	29.0	33.4	37.9	42.3	46.7	50.1	54.2	58.7	58.2	58.3	57.7	57.1	56.9	56.6	56.5	53.9
Partly slatted floor	30.0	28.6	27.1	25.7	24.3	22.9	21.4	20.0	21.3	22.6	23.9	25.1	26.4	27.7	29.0	31.0
Partly slatted floor (50-75 % solid floor)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Partly slatted floor (25-49 % solid floor)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Solid floor	40.0	36.4	32.9	29.3	25.7	22.1	18.6	15.0	13.6	12.1	10.7	9.3	7.9	6.4	5.0	5.0
Deep litter	1.0	1.6	2.1	2.7	3.3	3.9	4.4	5.0	4.4	3.9	3.3	2.7	2.1	1.6	1.0	1.0
Partly slatted floor and partly deep litter	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.4	2.1	2.9	3.6	4.3	5.0	5.0
Partly slatted and drained floor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Biogas	0.0	0.0	0.0	0.0	0.0	1.0	1.4	1.3	1.8	1.7	2.3	2.9	3.1	3.4	3.5	4.1
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Fully slatted floor	52.6	51.3	49.2	47.3	53.0	53.0	53.0	52.9	53.8	53.8	53.2	51.5	46.4	43.7	39.8	
Partly slatted floor	33.0	34.0	35.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Partly slatted floor (50-75 % solid floor)	0.0	0.0	0.0	0.0	6.2	6.0	5.9	7.0	7.6	7.6	7.5	7.9	8.0	8.6	8.8	
Partly slatted floor (25-49 % solid floor)	0.0	0.0	0.0	0.0	23.0	21.2	20.8	19.5	18.0	17.9	19.1	18.3	19.6	17.8	15.5	
Solid floor	4.0	4.0	4.0	3.0	3.2	3.5	3.7	2.6	1.7	1.7	1.2	1.0	1.0	0.8	0.6	
Deep litter	1.0	1.0	1.0	1.0	2.0	3.1	4.1	3.2	2.3	2.3	1.8	1.5	1.4	1.3	1.0	
Partly slatted floor and partly deep litter	5.0	5.0	5.0	5.0	3.5	2.1	0.6	0.5	0.5	0.5	0.5	0.5	0.7	0.6	0.6	
Partly slatted and drained floor	0.0	0.0	0.0	0.0	3.0	3.9	4.9	6.1	6.8	6.8	8.2	9.8	12.9	14.8	18.7	
Biogas	4.4	4.7	5.8	5.7	6.1	7.2	7.0	8.2	9.3	9.4	8.5	9.5	10.0	12.4	15.0	

Poultry:

Livestock categories	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Free-range hens	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	1.7	1.7	5.4	9.0	8.5	8.5	8.7	9.0
Organic hens	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	2.7	5.5	6.4	9.5	12.4	12.6
Barn hens	2.2	4.2	8.6	7.4	6.4	5.4	7.6	8.5	8.6	10.7	15.4	15.4	16.4	14.2	16.6	17.1
Battery hens, manure shed	19.6	20.2	20.3	21.7	22.9	24.3	25.0	25.7	27.0	27.7	25.8	24.6	25.6	26.5	26.0	28.8
Battery hens, manure tank	14.8	14.2	13.3	13.1	13.0	12.9	12.1	11.3	10.9	10.0	8.3	7.0	6.5	5.9	5.0	4.9
Battery hens, manure cellar	63.5	61.4	57.9	57.8	57.7	57.4	55.3	52.8	51.8	49.3	42.5	37.4	36.1	34.6	31.1	27.6
Hens for production of brood egg	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Pullet, consumption, net	22.3	21.2	20.2	19.1	18.0	17.0	15.9	14.8	13.8	12.7	11.7	10.6	9.5	8.5	7.4	7.6
Pullet, consumption, floor	52.1	53.2	54.2	55.3	56.4	57.4	58.5	59.6	60.6	61.7	62.7	63.8	64.9	65.9	67.0	69.0
Pullet, brood egg, floor	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	23.4
Broilers, (conv. 30 days)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Broilers, (conv. 32 days)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Broilers, (conv. 35 days)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Broilers, (conv. 40 days)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Broilers, (conv. 45 days)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Broilers, barn (56 days)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Organic broilers (81 days)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Turkey, male	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Turkey, female	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Ducks	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Geese	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

E) Continued															
Livestock categories	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Free-range hens	9.0	8.3	9.1	7.5	7.9	5.9	5.9	5.8	6.6	6.7	7.6	6.8	4.9	4.9	6.3
Organic hens	13.2	13.5	14.3	13.1	14.0	13.7	15.4	15.7	14.6	14.9	15.7	18.6	18.0	19.7	23.8
Barn hens	16.4	18.1	20.2	22.8	25.3	23.5	20.4	19.0	18.8	16.7	17.2	18.6	21.3	21.3	20.6
Battery hens, manure shed	28.8	32.5	29.2	32.7	32.2	36.4	39.2	42.4	43.8	44.9	45.6	46.1	50.1	46.7	42.3
Battery hens, manure tank	4.9	4.1	4.9	4.0	4.8	6.3	7.7	8.0	7.3	7.5	8.0	5.4	5.4	3.1	3.3
Battery hens, manure cellar	27.5	23.4	22.4	19.9	15.8	14.1	11.4	9.1	9.0	9.2	5.9	4.4	0.3	4.3	3.6
Hens for production of brood egg	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Pullet, consumption, net	7.5	6.0	7.0	5.0	5.7	6.4	7.1	6.7	7.1	7.1	19.3	31.6	17.1	22.0	18.3
Pullet, consumption, floor	67.5	69.0	68.0	69.0	70.3	71.7	73.0	84.1	78.1	78.1	75.5	63.5	39.1	42.1	42.6
Pullet, brood egg, floor	25.0	25.0	25.0	26.0	24.0	21.9	19.9	9.2	14.8	14.8	5.2	4.9	43.7	35.9	39.1
Broilers, (conv. 30 days)	0	0	0	0	0.1	0.3	0.8	0.2	0.4	0.1	0.1	0.5	0.3	1.1	0.2
Broilers, (conv. 32 days)	0	0	0	0	3.7	4.8	0.8	2.2	7.0	3.2	10.6	13.6	17.1	22.7	25.2
Broilers, (conv. 35 days)	0	0	0	0	45.4	40.7	45.1	49.0	56.7	75.6	85.7	80.6	78.5	73.2	72.4
Broilers, (conv. 40 days)	100	100	100	100	48.9	53.9	52.9	48.5	35.5	20.9	3.3	4.8	3.2	2.3	1.4
Broilers, (conv. 45 days)	0	0	0	0	1.8	0.2	0.3	0.0	0.3	0.1	0.0	0.0	0.1	0.0	0.0
Broilers, barn (56 days)	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2
Organic broilers (81 days)	0	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.5	0.7	0.5	0.6
Turkey, male	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Turkey, female	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Ducks	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Geese	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Fur farming:

	Housing type	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Mink	Slurry system	10.0	11.7	13.3	15.0	16.7	18.3	20.0	20.0	21.7	23.3	25.0	26.2	27.5	28.7	30.0	42.0
	Solid manure and urine	90.0	88.3	86.7	85.0	83.3	81.7	80.0	80.0	78.3	76.7	75.0	73.8	72.5	71.3	70.0	58.0
Foxes	Slurry system	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
	Solid manure and urine	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	98.0
		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Mink	Slurry system	50.0	55.0	60.0	65.0	72.7	80.5	88.2	92.2	94.8	97.3	96.5	97.2	97.9	97.4	97.8	
	Solid manure and urine	50.0	45.0	40.0	35.0	27.3	19.5	11.8	7.8	5.2	2.7	3.5	2.8	2.1	2.6	2.2	
Foxes	Slurry system	5.0	10.0	15.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Solid manure and urine	95.0	90.0	85.0	70.0	100	100	100	100	100	100	100	100	100	100	100	

Horses, sheep, goats, deer, pheasants and ostrich:

Horses, sheep, goats and ostrich are all housed in deep litter housings all years 1985-2015. Deer and pheasants are on pasture all years 1985-2015

r r tambér el glazing daye concepcitang te the propertien el trantale depected en the hold daning glazing, daye per y	g days corresponding to the proportion of N in manure deposited on the field during	grazing, days p	er yeai
---	---	-----------------	---------

	1985-1990	1991-2002	2003	2004	2005	2006	2007-2015
Cattle:							
Dairy Cattle	55	55	46	39	32	25	18
Calves and bulls	0	0	0	0	0	0	0
Heifers – feeding days on grass	165	171	180	168	156	144	132
 actual days on grass* 	165	165	152	141	131	121	111
Suckling Cattle	184	192	224	224	224	224	224

* Actual days on grass are the number of days the heifer is out of the housing. Feeding days on grass is higher than actual days on grass due to a higher feed intake during grazing compared to the period in housing. Feeding days on grass.

F) Continued...

	1985-2015
Swine:	
Sows, weaners and fattening pigs	0
Sows, outdoor	365
Poultry:	
Hens, pullets, Broilers, Turkeys and Ducks	0
Geese, Pheasant and Ostrich	365
Other:	
Horses	183
Sheep and Goats	265
Deer	365
Fur animals	0

G) Nitrogen excretion	and ammonia emission	according to livestock	category 1985 – 2015.
-----------------------	----------------------	------------------------	-----------------------

1) Nitrogen excretion distributed on livestock groups, tonnes N

N excretion	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Cattle	168 620	164 096	156 160	151 686	150 494	150 382	148 756	144 991	143 739	138 358	137 841	137 000	131 577	129 740	124 454	123 640
Swine	117 472	120 842	117 891	116 689	113 620	112 659	113 491	117 257	121 374	114 453	107 919	107 948	111 121	117 674	116 093	114 794
Poultry	7 427	7 758	8 054	9 055	10 178	10 315	10 322	10 942	11 711	13 037	12 263	12 019	11 946	11 793	12 226	12 167
Horses	6 309	6 264	6 219	6 174	6 129	5 960	5 901	5 839	5 775	5 707	5 637	5 696	5 756	5 815	5 874	5 934
Sheep	658	868	984	1 209	1 379	1 525	1 767	1 699	1 464	1 327	1 339	1 560	1 592	1 674	1 754	1 852
Goats	131	129	128	126	124	123	121	119	118	116	114	113	111	127	132	138
Fur animals	10 071	11 397	12 268	14 481	15 066	11 089	10 189	10 952	7 295	8 588	8 608	8 935	10 294	10 893	9 676	10 169
Deer	144	152	160	160	160	160	160	160	160	160	160	160	160	160	160	160
N excretion total	310 833	311 506	301 863	299 579	297 151	292 213	290 707	291 961	291 637	281 747	273 881	273 431	272 557	277 876	270 370	268 854

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Cattle	123 674	121 427	119 046	115 876	116 110	116 299	120 384	122 619	121 284	121 796	122 009	124 662	125 425	124 411	123 162
Swine	120 662	126 730	123 749	128 946	124 864	114 064	118 096	109 939	104 498	103 365	102 963	98 448	96 408	98 155	97 644
Poultry	12 343	12 309	12 502	13 258	12 974	11 465	11 267	11 597	10 946	11 294	10 836	10 358	9 778	9 500	9 766
Horses	6 131	6 329	6 527	6 725	6 923	7 121	7 319	7 516	7 022	6 527	6 132	6 132	5 934	5 934	6 132
Sheep	1 968	1 949	2 008	2 060	2 095	2 119	2 054	1 949	1 916	1 842	1 552	1 499	1 467	1 459	1 395
Goats	155	151	164	176	181	191	198	231	257	262	206	212	214	198	186
Fur animals	10 639	11 172	10 886	12 585	13 718	14 026	14 698	14 860	15 005	15 697	15 566	16 037	16 816	16 949	18 060
Deer	170	158	155	155	154	154	155	153	152	152	129	115	125	118	122
N excretion total	275 742	280 226	275 037	279 782	277 019	265 439	274 171	268 865	261 079	260 935	259 392	257 463	256 168	256 722	256 467

G)	Continued
----	-----------

2) Ammonia emission from animal manure in housing and storage distributed on livestock groups, tonnes NH₃-N

Ammonia emission	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Cattle	11 367	11 126	10 639	10 373	10 333	10 394	10 278	10 037	9 896	9 508	9 450	9 424	9 250	9 309	9 023	9 627
Swine	26 084	26 578	25 681	25 181	24 271	23 813	23 721	24 229	24 830	23 162	21 574	21 312	21 666	22 687	21 854	20 616
Poultry	2 007	2 086	2 221	2 498	2 823	2 833	2 902	3 121	3 321	3 653	3 568	3 487	3 525	3 489	3 641	3 674
Horses	628	623	619	614	610	593	588	582	576	570	563	569	575	581	596	597
Sheep	42	55	63	77	88	98	114	110	96	87	89	95	89	84	80	101
Goats	9	9	9	9	9	9	9	8	8	8	8	8	7	7	7	8
Fur animals	3 885	4 395	4 728	5 575	5 795	4 263	3 914	4 205	2 799	3 294	3 299	3 423	3 941	4 168	3 700	3 871
Deer ^a	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Emission total	44 020	44 874	43 961	44 330	43 933	42 007	41 531	42 301	41 534	40 291	38 562	38 329	39 065	40 339	38 914	38 510
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Cattle	9 793	9 773	10 040	10 100	8 605	8 751	8 723	8 965	8 829	8 809	9 068	9 084	9 071	8 847	8 782	
Swine	21 379	21 975	21 143	21 826	20 424	18 557	16 919	15 772	14 802	14 542	14 398	13 432	13 000	13 148	12 917	
Poultry	3 726	3 708	3 770	3 955	3 893	3 395	2 991	3 082	2 903	2 989	2 873	2 721	1 974	1 894	1 843	
Horsos	617	627	657	677	607	717	662	670	625	500	554	554	526	526	554	

Swine	21 379	21 975	21 143	21 826	20 424	18 557	16 919	15 772	14 802	14 542	14 398	13 432	13 000	13 148	12 917
Poultry	3 726	3 708	3 770	3 955	3 893	3 395	2 991	3 082	2 903	2 989	2 873	2 721	1 974	1 894	1 843
Horses	617	637	657	677	697	717	662	679	635	590	554	554	536	536	554
Sheep	107	106	110	113	114	116	101	96	94	91	76	74	72	72	69
Goats	9	8	9	10	10	10	10	11	13	13	10	10	11	10	9
Fur animals	4 035	4 231	4 119	4 725	5 146	5 240	5 181	5 299	5 403	5 699	5 633	5 820	4 682	4 955	5 252
Deer ^a	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Emission total	39 683	40 456	39 866	41 424	38 910	36 807	34 609	33 927	32 701	32 757	32 639	31 723	29 374	29 491	29 456

^a All N are deposited on grass

G)	Continued
----	-----------

3) Ammonia emission from manure distributed on the different parts of the production, tonnes NH₃-N

Ammonia emission	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Housing	30 077	30 937	30 574	31 177	31 076	29 516	29 243	29 996	29 224	28 544	27 336	27 284	28 009	29 079	28 138	28 416
Storage	13 935	13 927	13 374	13 137	12 838	12 470	12 262	12 279	12 284	11 721	11 198	11 023	11 042	11 254	10 779	10 078
Application	32 770	32 317	30 852	30 026	29 455	30 251	29 272	28 374	27 580	26 032	24 421	23 924	23 132	22 948	21 917	21 045
Pasture	2 565	2 503	2 402	2 368	2 361	2 378	2 430	2 434	2 478	2 426	2 469	2 491	2 441	2 440	2 401	2 404
Emission total	79 348	79 683	77 201	76 708	75 732	74 615	73 208	73 082	71 566	68 723	65 424	64 721	64 624	65 721	63 235	61 944
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Housing	29 543	30 704	30 582	32 010	31 922	30 253	30 153	29 577	28 535	28 585	28 508	27 652	25 203	25 237	25 199	
Storage	10 123	9 735	9 265	9 395	6 968	6 532	4 434	4 327	4 143	4 147	4 105	4 044	4 143	4 225	4 227	
Application	19 503	18 565	18 887	17 055	17 217	16 813	18 001	17 344	17 063	17 084	16 229	16 060	16 037	16 098	16 168	
Pasture	2 444	2 355	2 110	1 944	1 820	1 723	1 635	1 640	1 567	1 540	1 491	1 514	1 532	1 520	1 476	
Emission total	61 614	61 359	60 845	60 403	57 927	55 322	54 223	52 888	51 307	51 356	50 333	49 270	46 915	47 079	47 070	

H) N ex animal.

A) Cattle, large bree	d	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Dairy cows	Total N	125.0	127.3	129.5	131.8	134.0	133.0	132.0	131.0	130.0	129.0	128.0	127.8	127.7	127.5	127.3	128.0
Bulls ^a	Total N	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3
Heifers ^b	Total N	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2	39.2
Continued		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Dairy cows	Total N	128.0	130.0	132.8	134.5	136.3	137.4	140.2	140.6	140.9	141.4	141.4	140.9	141.8	146.4	146.6	
Bulls ^a	Total N	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	23.5	
Heifers ^b	Total N	39.2	39.2	39.2	39.2	43.7	48.1	52.6	52.6	52.6	50.0	50.4	50.4	50.4	50.4	50.4	

^a 6 month to slaughter. Kg N per produced animal.

^b 6 month to calving.

Continued																	
B) Swine		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Sows	Total N	31.9	31.2	30.6	29.9	29.3	28.7	28.1	27.5	26.9	26.3	25.7	26.0	26.2	26.5	26.6	26.6
Fattening pigs ^c	Total N	5.1	5.0	4.9	4.9	4.8	4.5	4.3	4.0	3.8	3.5	3.3	3.3	3.2	3.2	3.2	3.1
Weaners ^c	Total N	0.8	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6
Continued		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Sows (incl. piglets)	Total N	27.2	27.2	27.2	27.2	26.5	26.0	26.4	25.8	26.0	25.1	25.1	25.6	25.2	24.8	24.2	
Fattening pigs ^c	Total N	3.1	3.3	3.2	3.2	3.2	3.0	3.1	3.0	2.9	2.8	2.8	2.8	2.9	2.9	2.9	
Weaners ^c	Total N	0.6	0.7	0.6	0.6	0.7	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	

^c per. produced animal.

Continued																	
C) Poultry		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Battery hens ^d	Total N	61.1	64.6	68.0	71.4	74.9	75.2	75.6	75.9	76.3	76.6	77.0	77.0	77.0	77.0	76.9	67.1
Broilers ^e	Total N	40.7	40.7	48.3	52.2	56.0	55.2	54.4	53.7	52.9	52.1	51.3	51.3	51.3	51.3	51.3	53.3
Continued		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Battery hens ^d	Total N	67.1	67.9	72.5	73.2	77.9	77.9	68.4	69.5	69.5	69.5	69.3	66.8	67.6	70.2	67.9	
Broilers ^e	Total N	53.3	53.6	53.6	58.1	64.3	64.2	65.5	65.5	65.5	65.0	64.8	64.5	63.9	63.9	65.8	

^d pr. 100 animal. Change in methodology has taken place from N ex per produced hens to N ex per AAP (annual average population – see definition in section 4.1). In this table all years covers N ex per AAP.

^e pr. 1000 produced animal.

D) Fur animals		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Mink (incl. cubs)	Total N	5.2	5.1	5.0	5.0	4.9	4.8	4.8	4.7	4.7	4.6	4.6	4.6	4.6	4.6	4.6	4.6
Continued		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Mink (incl. cubs)	Total N	4.6	4.6	4.6	5.1	5.4	5.2	5.2	5.3	5.5	5.8	5.6	5.4	5.3	5.1	5.3	

Sources: Laursen (1994), Poulsen & Kristensen (1997), Poulsen et al. (2001), Poulsen (2016).

I) TAN ex animal										
kg per animal		2007	2008	2009	2010	2011	2012	2013	2014	2015
Cattle										
Dairy cows	TAN	66.67	67.00	65.70	65.69	67.20	65.82	65.72	66.32	66.06
Bulls ^a	TAN	16.11	16.11	16.11	16.11	16.11	16.11	16.11	16.11	15.56
Heifers ^b	TAN	35.86	35.86	35.86	33.49	33.85	33.85	33.85	33.85	33.85
Swine										
Sows	TAN	19.77	19.20	19.34	18.67	18.66	18.99	18.69	18.36	17.89
Fattening pigs ^c	TAN	2.04	2.03	1.96	1.87	1.86	1.88	1.88	1.93	1.90
Weaners ^c	TAN	0.31	0.33	0.31	0.29	0.29	0.31	0.29	0.28	0.29
Fur animals										
Mink	TAN	3.85	3.93	4.11	4.34	4.20	4.06	3.92	3.74	3.88
^a 6 month to claur	abtor Do	r produce	d animal							

^a 6 month to slaughter. Per produced animal.

^b 6 month to calving.

° per produced animal.

Source: Poulsen (2016).

J) Ammonia emission factors for housing units.

Swine			Urine	Slurry	Solid manure	Deep litter
			TAN	TAN	Total N	Total N
	Housing type	Floor or manure type	Pct. loss of	TAN ex animal	pct. loss of I	N ex animal
Sows	Individual, mating and gestation	Partly slatted floor	-	13	-	-
		Full slatted floor	-	19	-	-
		Solid floor	21	-	16	-
	Group, mating and gestation	Deep litter	-	-	-	15
		Deep litter + slatted floor	-	16	-	15
		Deep litter + solid floor	-	19	-	15
		Partly slatted floor	-	16	-	-
	Farrowing crate	Full slatted floor	-	13	-	-
		Partly slatted floor	-	26	-	-
	Farrowing pen	Solid floor	20	-	15	-
		Partly slatted floor	-	22	15	-
Weaners		Full slatted floor	-	24	-	-
		Drained + Partly slatted floor	-	21	-	-
		Deep litter (two-climate housing)	-	10	-	15
		Solid floor	37	-	25	-
		Deep litter	-	-	-	15
Fattening pigs		Partly slatted floor (50-75 % solid)	-	13	-	-
		Partly slatted floor (25-49% solid)	-	17	-	-
		Drained + Partly slatted floor	-	21	-	-
		Full slatted floor	-	24	-	-
		Solid floor	27	-	18	-
		Deep litter, divided	-	18	-	15
		Deep litter	-	-	-	15

Poultry			Solid manure	Deep litter
			Total N	Total N
	Housing type	Floor or manure type	pct. loss of N	ex animal
Hens and pullets	Free-range, organic and barn	Deep pit	40	25
		Deep litter	-	28
		Manure belt	10	25
		Floor on floor system	10	25
	Battery	Deep pit	12	-
		Manure belt	10	-
Broilers	Conventional	Deep litter	-	7
	Organic and barn	Deep litter	-	9
Turkeys, ducks and geese		Deep litter	-	20

J) Continued...

j oonunucu				
Other	Urine	Slurry	Solid manure	Deep litter
	TAN	TAN	Total N	Total N
	Pct. loss of T	AN ex animal	pct. loss of N	l ex animal
Fur animals	35	30	35	20
Horses, sheep and goats	-	-	-	15

K) Correction for lack of floating / fixed cover on slurry tanks.

	Emission factor ¹	Emissions faktor ⁵					
	NH₃-N in % of	NH3-N in % of	1985-1999 ²	2000-2001 ³	2002 ⁴	2003-2006 ⁴	2007-2015 ⁴
	N ex housing-total	TAN ex housing-total					
							TAN
Swine							
No cover	9%	11.4%	40%	20%	10%	5%	5%
Full cover	2%	2.5%	60%	80%	90%	95%	95%
Emission un- der storage			4.8%	3.4%	2.7%	2.4%	2.9%
Cattle							
No cover	6%	10.3%	20%	5%	5%	2%	2%
Full cover	2%	3.4%	80%	95%	95%	98%	98%
Emission under stora	ige		2.8%	2.2%	2.2%	2.1%	3.5%
Fur animals							
No cover		12.9%	20%	5%	5%	2%	2%
Full cover		2.9%	80%	95%	95%	98%	98%
Emission under stora	ige		4.9%	3.4%	3.4%	3.1%	3.1%

¹ Poulsen et al., 2001.

² COWI 1999.

³ COWI 2000.

⁴ Estimate – DCA.

⁵ Hansen et al., 2008.

,	Emission factor	Solid manure
	NH_3 -N in % of N ex housing-total	2007-2015
Cattle		
No cover	5%	50%
Full cover	3%	50%
Emission under storage		4%
Swine		
No cover	25%	50%
Full cover	13%	50%
Emission under storage		19%
Hens		
No cover	10%	50%
Full cover	5%	50%
Emission under storage		7.5%
Broilers		
No cover	15%	50%
Full cover	8%	50%
Emission under storage		11,5%
Fur animals		
No cover	15%	50%
Full cover	8%	50%
Emission under storage		11.5%
Horses, sheep and		
goats		
No cover	5%	50%
Full cover	3%	50%
Emission under storage		4%

L) Correction for lack of cover on manure heaps.

M) Estimate of how liquid and solid manure has been handled in practice, 1985-2015.

Cattle and other livestock except from swine:

Liquid manure:

Crop stage	Application time	Lying time				Percent	of N ex	storage p	per manu	ire type								
			1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Injection	<u>Hours</u>																
-	March	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
-	April	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	3
+	March	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	April	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Summer, grass injection	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2
-	Summer, before winter rape	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Hose application																	
-	March	4	0	0	0	0	0	0	1.1	2.2	3.3	4.4	5.6	6.7	7.8	8.9	10.0	9.1
-	April	4	0	0	0	0	0	0	0.6	1.1	1.7	2.2	2.8	3.3	3.9	4.4	5.0	4.5
+	March	< week	0	0	0	0	0	0	1	1	2	3	3	4	5	5	6	6
+	April	< week	0	0	0	0	0	0	2	3	3	5	6	8	9	11	12	13
+	Мау	< week	0	0	0	0	0	0	1	3	3	5	7	8	10	11	12	13
+	Summer	< week	0	0	0	0	0	0	1	2	3	3	4	5	5	4	4	4
-	Summer	4	0	0	0	0	0	0	1	1	2	2	3	3	3	2	2	2
+	Autumn	< week	0	0	0	0	0	0	0	1	2	3	3	4	4	4	4	4
-	Autumn	4	0	0	0	0	0	0	0	1	1	1	2	2	1	1	0	0
	Broad spreading																	
-	Winter-spring	< 12	26	27	28	29	30	26	25	24	23	22	21	20	18.3	16.7	15.0	13.6
-	Winter-spring	> 12	5	5	5	5	5	5	5	5	5	5	5	5	5.0	5.0	5.0	4.5
-	Winter-spring	< week	15	15	15	15	15	20	20	20	20	20	20	20	18.3	16.7	15.0	13.6
+	Spring-summer	< week	8	8	8	8	8	8	7	6	5	4	3	2	2.0	2.0	2.0	1.8
+	Late summer-autumn	< week	7	7	7	7	7	7	6.2	5.3	4.5	3.7	2.8	2	1.7	1.3	1.0	0.9
-	Late summer-autumn	< 12	2.4	2.8	3.2	3.6	4.0	4.4	4.2	3.9	3.7	3.5	3.2	3	2.7	2.3	2.0	1.8
-	Late summer-autumn	> 12	7.6	7.2	6.8	6.4	6.0	5.6	5.0	4.4	3.8	3.2	2.6	2	1.7	1.3	1.0	0.9
-	Late summer-autumn	< week	29	28	27	26	25	24	20	16	12	8	4	0	0	0	0	0
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

M)	Continued
----	-----------

Crop stage	Application time	Lying time				Perc	ent of N e	x storage	per manı	ure type							
_			2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
	Injection	<u>Hours</u>															
-	March	0	5	8	11	21	20	20	20	21	21	21	25	25	25	25	25
-	April	0	5	8	12	21	21	20	20	21	21	21	30	30	30	30	30
+	March	< week	0	0	0	0	1	2	3	3	3	3	8	6	6	6	4
+	April	< week	0	0	0	0	2	3	4	4	4	4	0	0	0	0	0
+	Summer, grass injection	0	3	4	4	5	5	6	6	7	7	7	10	15	15	15	15
-	Summer, before winter rape	0	0	0	1	6	6	7	7	7	7	7	3	3	3	3	3
+	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Hose application																
-	March	4	10	10	14	8	8	6	5	3	3	3	0	0	0	0	0
-	April	4	5	5	4	2	2	1	1	1	1	1	0	0	0	0	0
+	March	< week	7	7	7	5	5	5	4	4	4	4	5	6	6	6	8
+	April	< week	18	17	15	10	9	9	9	9	9	9	8	6	6	6	6
+	Мау	< week	18	17	15	10	9	9	9	9	9	9	7	5	5	5	5
+	Summer	< week	4	3	3	3	3	3	3	2	2	2	2	2	2	2	2
-	Summer	4	3	3	5	5	5	5	5	5	5	5	0	0	0	0	0
+	Autumn	< week	5	5	5	4	4	4	4	4	4	4	2	2	2	2	2
-	Autumn	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Broad spreading																
-	Winter-spring	< 12	6	5	2	0	0	0	0	0	0	0	0	0	0	0	0
-	Winter-spring	> 12	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Winter-spring	< week	6	4	2	0	0	0	0	0	0	0	0	0	0	0	0
+	Spring-summer	< week	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Late summer-autumn	< week	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	< 12	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	> 12	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

M) Continued... Solid manure:

Crop stage	Application time	Lying time					Perc	cent of N	ex stora	age per n	nanure ty	/pe						
			1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Broad spreading																	
-	Winter-spring	4	13	16	19	22	25	26	26	27	28	29	29	30	32	33	35	38
-	Winter-spring	6	18	16	14	12	10	11	11	12	13	14	14	15	15	15	15	14
-	Winter-spring	< week	19	18	17	16	15	14	14	13	12	11	11	10	10	10	10	9
+	Spring-summer	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Late summer-autumn	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	4	13	16	19	22	25	25	25	25	25	25	25	25	25	25	25	26
-	Late summer-autumn	6	13	11	9	7	5	5	5	5	5	5	5	5	5	5	5	5
-	Late summer-autumn	< week	24	23	22	21	20	19	19	18	17	16	16	15	13	12	10	9
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Continued			2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Broad spreading																	
-	Winter-spring	4	49	54	54	56	57	59	60	60	60	60	70	70	70	70	70	
-	Winter-spring	6	14	15	15	14	14	13	12	12	12	12	20	20	20	20	20	
-	Winter-spring	< week	10	11	11	11	10	9	9	9	9	9	0	0	0	0	0	
+	Spring-summer	< week	0	0	0	0	0	0	0	0	0	0	5	5	5	5	5	
+	Late summer-autumn	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	Late summer-autumn	4	18	13	15	15	16	16	17	17	17	17	5	5	5	5	5	
-	Late summer-autumn	6	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	
-	Late summer-autumn	< week	6	5	4	4	3	3	2	2	2	2	0	0	0	0	0	
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	

Swine:

Liquid manure:

Crop status	Application time	Lying time					Percent	of N ex s	storage p	oer manu	re type							
			1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Injection	<u>Hours</u>																
-	March	0	0	0	0	0	0	0	0	0.3	0.5	1	1	1	1	1	1	2
-	April	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3
+	March	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	April	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Summer, grass injection	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Summer, before winter rape	0	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2
+	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Hose application																	
-	March	4	0	0	0	0	0	0	1	1	2	3	4	5	6	6	10	7
-	April	4	0	0	0	0	0	0	1	2	3	3	5	5	6	7	5	7
+	March	< week	0	0	0	0	0	0	1	1	2	3	4	4	5	5	6	6
+	April	< week	0	0	0	0	0	0	1	3	3	6	6	9	10	12	13	14
+	Мау	< week	0	0	0	0	0	0	1	4	4	6	6	9	10	12	13	14
+	Summer	< week	0	0	0	0	0	0	1	1	2	3	3	4	4	4	4	4
-	Summer	4	0	0	0	0	0	0	1	1	2	2	3	3	3	2	2	2
+	Autumn	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Autumn	4	0	0	0	0	0	0	1	2	3	3	5	5	4	3	2	2
	Broad spreading																	
-	Winter-spring	< 12	26	27	28	29	30	26	25	24	23	22	21	20	18	17	15	13.6
-	Winter-spring	> 12	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4.5
-	Winter-spring	< week	15	15	15	15	15	20	20	20	20	20	20	20	18	17	15	13.6
+	Spring-summer	< week	8	8	8	8	8	8	7	6	5	4	3	2	2	2	2	1.8
+	Late summer-autumn	< week	7	7	7	7	7	7	6	5.3	4.5	4	3	2	2	1	1	0.9
-	Late summer-autumn	< 12	2	3	3	4	4	4	4	3.9	4	3	3	3	3	2	2	1.8
-	Late summer-autumn	> 12	8	7	7	6	6	6	5	4.4	4	3	3	2	2	1	1	0.9
-	Late summer-autumn	< week	29	28	27	26	25	24	20	16	12	8	4	0	0	0	0	0
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Crop status	Application time	Lying time				Perce	ent of N e	x storage	per manu	ure type							
			2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
	Injection	<u>Hours</u>															
-	March	0	5	8	6	6	7	7	8	10	10	10	14	14	14	14	14
-	April	0	6	8	7	7	7	8	8	9	9	9	11	11	11	11	11
+	March	< week	0	0	0	0	0	1	2	2	2	2	2	2	2	2	2
+	April	< week	0	0	0	0	0	2	3	3	3	3	3	3	3	3	3
+	Summer, grass injection	0	1	2	1	1	1	1	1	2	2	2	2	2	2	2	2
-	Summer, before winter rape	0	2	2	1	1	2	2	2	2	2	2	5	5	5	5	5
+	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Autumn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Hose application																
-	March	4	7	7	9	8	7	6	4	2	2	2	0	0	0	0	0
-	April	4	8	8	9	8	7	6	4	3	3	3	0	0	0	0	0
+	March	< week	11	11	13	14	14	14	14	14	14	14	14	14	14	14	14
+	April	< week	16	15	20	23	28	30	32	32	32	32	33	33	33	33	33
+	Мау	< week	16	15	21	23	18	14	13	13	13	13	13	13	13	13	13
+	Summer	< week	5	5	3	3	3	3	3	2	2	2	1	1	1	1	1
-	Summer	4	3	3	3	3	3	3	3	3	3	3	0	0	0	0	0
+	Autumn	< week	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2
-	Autumn	4	3	3	3	3	3	3	3	3	3	3	0	0	0	0	0
	Broad spreading																
-	Winter-spring	< 12	6	5	2	0	0	0	0	0	0	0	0	0	0	0	0
-	Winter-spring	> 12	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Winter-spring	< week	6	4	2	0	0	0	0	0	0	0	0	0	0	0	0
+	Spring-summer	< week	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Late summer-autumn	< week	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	< 12	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	> 12	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

. Solid manure:

Crop stage	Application time	Lying time					Percer	nt of N ex	storage	per manı	ire type							
			1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Broad spreading																	
-	Winter-spring	4	13	16	19	22	25	26	26	27	28	29	29	30	32	33	35	37.7
-	Winter-spring	6	18	16	14	12	10	11	11	12	13	14	14	15	15	15	15	13.6
-	Winter-spring	< week	19	18	17	16	15	14	14	13	12	11	11	10	10	10	10	9.1
+	Spring-summer	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+	Late summer-autumn	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Late summer-autumn	4	13	16	19	22	25	25	25	25	25	25	25	25	25	25	25	25.9
-	Late summer-autumn	6	13	11	9	7	5	5	5	5	5	5	5	5	5	5	5	4.5
-	Late summer-autumn	< week	24	23	22	21	20	19	19	18	17	16	16	15	13	12	10	9.1
		Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Continued			2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
	Broad spreading		49	54	54	56	57	59	60	60	60	60	60	60	60	60	60	
-	Winter-spring	4	14	15	15	14	14	13	12	12	12	12	16	16	16	16	16	
-	Winter-spring	6	10	11	11	11	10	9	9	9	9	9	0	0	0	0	0	
-	Winter-spring	< week	0	0	0	0	0	0	0	0	0	0	5	5	5	5	5	
+	Spring-summer	< week	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
+	Late summer-autumn	< week	18	13	15	15	16	16	17	17	17	17	19	19	19	19	19	
-	Late summer-autumn	4	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	
-	Late summer-autumn	6	6	5	4	4	3	3	2	2	2	2	0	0	0	0	0	
-	Late summer-autumn	< week	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
		Total	49	54	54	56	57	59	60	60	60	60	60	60	60	60	60	

N) Emission of particular matter, 1985-2015.

|--|

kt TSP	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Animal category																
Dairy cattle	1.11	1.07	1.01	0.97	0.95	0.95	0.94	0.90	0.91	0.89	0.90	0.90	0.86	0.85	0.81	0.86
Non-dairy cattle	1.27	1.21	1.13	1.09	1.06	1.07	1.04	1.03	1.00	0.94	0.91	0.91	0.87	0.86	0.81	0.79
Sheep	0.002	0.002	0.002	0.003	0.003	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
Goats	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Horses	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04
Swine	2.90	2.97	2.94	2.92	2.91	3.01	3.10	3.31	3.65	3.44	3.49	3.42	3.59	3.84	3.69	3.78
Laying hens	1.06	1.06	0.96	1.04	1.03	1.08	0.96	1.07	1.05	1.32	1.16	1.20	1.07	0.93	0.95	0.93
Broilers	0.34	0.34	0.38	0.37	0.43	0.39	0.40	0.50	0.54	0.48	0.50	0.52	0.50	0.52	0.60	0.64
Turkeys	0.034	0.046	0.025	0.024	0.034	0.026	0.036	0.035	0.058	0.050	0.050	0.044	0.063	0.052	0.048	0.050
Other poultry	0.053	0.048	0.044	0.044	0.054	0.045	0.047	0.044	0.042	0.051	0.059	0.039	0.037	0.040	0.044	0.033
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TSP total	6.83	6.82	6.57	6.55	6.57	6.65	6.60	6.98	7.31	7.24	7.14	7.10	7.06	7.17	7.03	7.17
Continued	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Animal category																
Dairy cattle	0.86	0.85	0.87	0.85	0.87	0.87	0.88	0.90	0.92	0.92	0.93	0.96	0.96	0.92	0.92	
Non-dairy cattle	0.81	0.76	0.48	0.47	0.45	0.46	0.49	0.49	0.48	0.48	0.49	0.49	0.50	0.49	0.49	
Sheep	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003	
Goats	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005	0.0004	
Horses	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
Swine	3.99	4.03	4.10	4.18	4.27	4.21	4.32	4.01	3.90	4.15	4.07	3.87	3.79	3.88	3.85	
Laying hens	0.89	0.87	0.93	0.91	0.98	0.74	0.79	0.94	0.84	0.99	1.08	1.05	1.09	1.05	1.08	
Broilers	0.62	0.61	0.49	0.45	0.48	0.52	0.47	0.39	0.59	0.51	0.50	0.50	0.53	0.49	0.44	
Turkeys	0.050	0.049	0.036	0.050	0.057	0.036	0.046	0.049	0.054	0.054	0.044	0.051	0.032	0.027	0.027	
Other poultry	0.040	0.045	0.039	0.038	0.035	0.038	0.021	0.023	0.019	0.018	0.017	0.017	0.011	0.009	0.010	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
TSP total	7.35	7.30	7.03	7.05	7.23	6.96	7.12	6.90	6.90	7.22	7.21	7.04	7.00	6.97	6.92	

N) Continued	
PM10.	

<u>PM</u>10.

kt PM ₁₀	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Animal category																
Dairy cattle	0.51	0.49	0.46	0.44	0.44	0.44	0.43	0.41	0.42	0.41	0.41	0.41	0.39	0.39	0.37	0.40
Non-dairy cattle	0.59	0.56	0.52	0.50	0.49	0.49	0.48	0.47	0.46	0.43	0.42	0.42	0.40	0.39	0.37	0.37
Sheep	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Goats	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Horses	0.02	0.02	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Swine	0.87	0.89	0.89	0.89	0.89	0.92	0.95	1.02	1.14	1.06	1.07	1.05	1.10	1.24	1.19	1.22
Laying hens	0.22	0.22	0.20	0.22	0.22	0.23	0.20	0.23	0.22	0.28	0.24	0.25	0.22	0.19	0.20	0.20
Broilers	0.17	0.17	0.19	0.19	0.22	0.20	0.20	0.25	0.27	0.24	0.25	0.26	0.25	0.26	0.30	0.32
Turkeys	0.03	0.05	0.02	0.02	0.03	0.03	0.04	0.03	0.06	0.05	0.05	0.04	0.06	0.05	0.05	0.05
Other poultry	0.05	0.05	0.04	0.04	0.05	0.05	0.05	0.04	0.04	0.05	0.06	0.04	0.04	0.04	0.04	0.03
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM ₁₀ total	2.48	2.46	2.37	2.34	2.37	2.38	2.38	2.49	2.63	2.55	2.54	2.51	2.50	2.61	2.56	2.61
Continued	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Animal category																
Dairy cattle	0.39	0.39	0.40	0.39	0.40	0.40	0.40	0.42	0.42	0.43	0.43	0.44	0.44	0.43	0.42	
Non-dairy cattle	0.37	0.35	0.22	0.22	0.21	0.21	0.23	0.22	0.22	0.22	0.22	0.23	0.23	0.22	0.22	
Sheep	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	
Goats	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
Horses	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
Swine	1.28	1.29	1.31	1.34	1.37	1.35	1.39	1.28	1.23	1.32	1.30	1.23	1.20	1.22	1.19	
Laying hens	0.19	0.18	0.20	0.19	0.21	0.15	0.17	0.20	0.18	0.21	0.23	0.22	0.23	0.22	0.23	
Broilers	0.31	0.30	0.24	0.23	0.24	0.26	0.24	0.19	0.30	0.26	0.25	0.25	0.26	0.25	0.22	
Turkeys	0.05	0.05	0.04	0.05	0.06	0.04	0.05	0.05	0.05	0.05	0.04	0.05	0.03	0.03	0.03	
Other poultry	0.04	0.05	0.04	0.04	0.03	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM ₁₀ total	2.68	2.65	2.49	2.50	2.56	2.49	2.53	2.43	2.46	2.55	2.52	2.48	2.45	2.42	2.37	

N) Continued	
--------------	--

<u>PM_{2,5.}</u>

kt PM _{2,5}	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Animal category																
Dairy cattle	0.33	0.32	0.30	0.29	0.28	0.28	0.28	0.27	0.27	0.27	0.27	0.27	0.26	0.25	0.24	0.26
Non-dairy cattle	0.38	0.36	0.34	0.32	0.31	0.32	0.31	0.30	0.29	0.28	0.27	0.27	0.26	0.25	0.24	0.23
Sheep	0.0002	0.0002	0.0003	0.0003	0.0004	0.0004	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005
Goats	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00004	0.00004	0.00004
Horses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Swine	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.05	0.05
Laying hens	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01
Broilers	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03
Turkeys	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Other																
poultry	0.007	0.006	0.006	0.006	0.007	0.006	0.006	0.006	0.005	0.007	0.008	0.005	0.005	0.005	0.006	0.004
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM _{2,5} total	0.81	0.79	0.74	0.72	0.71	0.71	0.70	0.69	0.69	0.67	0.66	0.66	0.64	0.64	0.61	0.63
Continued	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Animal category																
Dairy cattle	0.26	0.25	0.26	0.26	0.26	0.26	0.26	0.27	0.27	0.28	0.28	0.29	0.29	0.28	0.28	
Non-dairy cattle	0.24	0.23	0.14	0.14	0.13	0.14	0.15	0.15	0.14	0.14	0.15	0.15	0.15	0.15	0.14	
Sheep	0.0006	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	
Goats	0.00004	0.00004	0.00005	0.00005	0.00005	0.00006	0.00006	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	
Horses	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Swine	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.05	0.06	0.06	0.05	0.05	0.05	0.05	
Laying hens	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	
Broilers	0.03	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.02	0.02	
Turkeys	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	
Other																
poultry	0.005	0.006	0.005	0.005	0.004	0.005	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.001	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM _{2.5} total	0.63	0.62	0.54	0.53	0.53	0.53	0.54	0.54	0.55	0.56	0.55	0.57	0.56	0.55	0.54	

O) Area of cultivated

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Winter wheat	328 501	342 612	386 583	295 267	431 306	522 171	507 031	567 311	608 673	559 619
Spring wheat	10 035	10 353	10 942	12 851	13 197	10 777	11 684	15 193	10 687	12 740
Wheat, total	338 536	352 964	397 525	308 118	444 502	532 949	518 715	582 504	619 360	572 359
Rye	125 918	119 939	135 505	80 280	99 961	108 545	79 622	88 178	78 273	87 937
Winter barley	59 509	60 504	61 412	44 085	81 899	139 468	140 195	151 328	174 568	182 087
Spring barley	1 034 213	1 017 599	881 700	1 110 203	905 689	761 647	795 382	759 064	534 883	517 670
Barley, total	1 093 722	1 078 103	943 112	1 154 288	987 588	901 115	935 577	910 392	709 451	699 756
Oats	36 410	20 843	18 063	39 958	26 495	20 212	21 462	27 646	28 165	39 757
Triticale etc	6 013	6 499	4 756	4 121	3 053	3 741	3 176	3 207	2 659	3 565
Cereals, total	1 600 599	1 578 349	1 498 962	1 586 764	1 561 601	1 566 562	1 558 552	1 611 927	1 437 908	1 403 374
Pulses	126 836	144 595	203 604	146 927	122 572	114 354	98 876	118 123	120 295	100 883
Seed potatoes	0	0	0	5 171	5 590	5 885	7 603	9 494	8 369	6 467
Potatoes for manufacturing	0	0	0	14 842	16 914	22 694	24 951	30 703	26 003	22 553
Potatoes for human consumption	0	0	0	13 145	11 015	10 999	10 934	13 485	12 137	9 782
Potatoes	30 384	30 710	29 604	33 158	33 519	39 579	43 487	53 682	46 509	38 803
Sugar beets	72 760	69 777	67 072	67 714	66 833	66 119	64 758	65 185	66 421	66 019
Fodder beets	124 782	120 466	113 052	110 184	107 369	102 347	93 170	80 979	70 993	60 380
Root crops, total	227 926	220 953	209 728	211 057	207 721	208 044	201 415	199 846	183 923	165 202
Winter rape, excl non food	0	0	0	0	0	0	0	0	0	0
Winter rape, non food	0	0	0	0	0	0	0	0	0	0
Winter rape	34 040	17 328	36 523	27 043	77 932	159 869	202 973	117 786	136 832	95 710
Spring rape, excl non food	0	0	0	0	0	0	0	0	0	0
Spring rape, non food	0	0	0	0	0	0	0	0	0	0
Spring rape, total	182 780	208 667	213 093	171 489	152 048	110 230	76 185	62 658	27 003	73 628
Rape, total	216 821	225 995	249 616	198 532	229 980	270 099	279 158	180 444	163 835	169 338
Flax	473	0	7 771	1 914	1 446	1 365	733	785	470	889
Other seeds for industrial use	2 992	4 501	2 791	2 556	1 880	821	428	135	246	683
Seeds for industrial use, total	220 287	230 496	260 390	203 002	233 306	272 285	280 319	181 364	164 551	170 910
Seeds for sowing	47 042	44 555	57 487	58 201	69 412	<u>51 743</u>	49 729	51 667	<u>56 150</u>	52 794

O) Area of cultivated, *Continued…*

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Lucerne	4 189	4 742	4 555	4 608	6 373	8 494	10 810	10 838	11 650	10 629
Maize for green fodder	20 374	24 715	24 967	16 607	17 106	18 735	19 164	20 245	26 187	31 269
Cereals and pulses for green fodder	50 629	55 220	47 416	52 819	50 104	47 772	53 621	63 761	68 015	77 696
Pulses, fodder cabbage etc.	3 532	2 701	2 815	3 056	2 335	2 584	2 969	2 667	1 814	2 610
Grass and clover in rotation	277 857	263 719	247 327	256 032	252 453	248 815	250 129	255 069	287 109	330 370
Grass and green fodder in rotation, to- tal Vegetables grown in the open, excl	356 582	351 097	327 080	333 122	328 372	326 400	336 694	352 580	394 774	452 575
peas for canning	7 282	7 491	7 013	7 613	7 143	7 314	6 987	7 642	6 442	6 530
Peas for canning	11 194	11 716	7 456	7 949	8 992	8 791	8 716	8 723	8 977	6 103
Vegetables grown in the open, total	18 476	19 207	14 469	15 562	16 135	16 105	15 703	16 365	15 418	12 633
Bulbs and flowers	362	574	324	411	368	323	291	382	353	253
Apples	3 615	3 338	3 172	3 105	2 772	2 726	2 462	3 006	2 209	2 061
Pears	444	367	383	417	344	351	497	436	438	328
Strawberries	1 364	1 372	1 330	1 198	1 188	1 096	1 049	992	1 018	947
Sour cherries	1 791	0	1 675	0	0	0	0	0	0	0
Sweet cherries	182	0	109	0	0	0	0	0	0	0
Cherries, total	1 973	1 674	1 784	0	0	0	0	0	2 022	2 441
Black current	773	0	844	0	0	0	0	0	1 919	2 351
Other fruits and berries	519	1 341	445	3 033	3 245	3 719	3 936	4 541	649	537
Fruits and berries, total	8 689	8 091	7 958	7 753	7 549	7 892	7 944	8 975	8 255	8 665
Nursery area	3 521	3 347	3 410	3 260	3 350	3 471	3 409	3 117	3 485	3 892
Horticultural crops, total	31 047	31 219	26 161	26 985	27 402	27 792	27 347	28 839	27 512	25 442
Permanent grass land out of rotation	220 564	214 446	210 480	216 775	219 085	217 235	212 030	207 932	197 229	316 668
Set aside with grass	0	0	0	0	0	0	0	0	0	0
Christmas trees	0	0	0	0	0	0	0	0	0	0
Other crops and fallow land	3 217	3 199	3 831	3 769	4 656	3 861	4 694	4 047	156 217	3 326
Other crops	0	0	0	0	0	0	0	0	0	0
Fallow land	0	0	0	0	0	0	0	0	0	0
Total agricultural area	2 834 100	2 818 910	2 797 723	2 786 603	2 774 128	2 788 276	2 769 657	2 756 327	2 738 559	2 691 174

O) Area of cultivated, *Continued…*

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Winter wheat	600 341	669 495	671 570	666 826	611 437	611 183	624 198	564 819	651 023	650 114
Spring wheat	6 324	4 712	13 264	6 383	7 944	7 977	8 506	10 930	12 587	15 755
Wheat, total	606 666	674 207	684 835	673 209	619 381	0	0	575 749	663 610	665 869
Rye	95 720	75 495	88 320	103 171	49 180	50 472	65 059	46 205	32 666	31 430
Winter barley	185 419	197 545	176 416	162 039	150 508	144 514	146 219	116 840	129 750	121 978
Spring barley	528 872	565 693	562 578	497 796	550 680	586 574	591 088	701 795	575 487	571 359
Barley, total	714 292	763 238	738 994	659 836	701 188	0	0	818 635	705 237	693 337
Oats	25 530	26 396	30 059	28 614	25 784	44 448	59 498	54 725	49 064	54 588
Triticale etc	5 286	5 839	13 058	29 153	52 216	54 546	41 948	36 130	36 735	40 414
Cereals, total	1 447 494	1 545 175	1 555 265	1 493 983	1 447 749	1 499 714	1 536 516	1 531 443	1 487 312	1 485 639
Pulses	74 178	69 158	95 256	106 051	65 762	35 590	31 964	40 184	31 356	26 593
Seed potatoes	6 600	6 645	5 426	4 827	4 606	4 522	4 757	3 414	3 359	5 079
Potatoes for manufacturing	24 756	24 876	23 794	21 969	22 376	22 642	21 620	20 484	20 461	19 392
Potatoes for human consumption	11 000	11 690	10 096	8 705	10 964	11 524	11 809	13 754	12 226	16 578
Potatoes	42 356	43 210	39 316	35 502	37 946	0	0	37 651	36 046	41 050
Sugar beets	67 771	69 732	69 495	65 698	62 898	59 167	56 323	57 806	49 600	48 745
Fodder beets	52 927	41 347	37 414	32 188	22 917	17 577	13 302	9 953	7 991	6 233
Root crops, total	163 055	154 289	146 225	133 387	123 761	115 433	107 811	105 410	93 637	96 027
Winter rape, excl non food	84 844	54 298	67 490	83 865	86 383	63 677	54 743	59 921	83 675	109 833
Winter rape, non food	23 229	13 871	5 727	6 406	18 392	17 501	16 203	17 640	18 532	10 448
Winter rape	108 073	68 169	73 217	90 272	104 775	0	0	77 561	102 207	120 281
Spring rape, excl non food	33 411	25 711	25 884	18 551	26 708	12 181	3 760	3 074	1 634	851
Spring rape, non food	10 589	11 413	4 413	3 056	8 327	5 765	3 901	3 122	2 502	494
Spring rape, total	44 001	37 124	30 297	21 607	35 035	0	0	6 196	4 136	1 345
Rape, total	152 074	105 293	103 514	111 879	139 810	0	0	83 758	106 343	121 626
Flax	1 195	3 438	3 461	3 871	10 698	5 029	1 422	221	117	113
Other seeds for industrial use	931	100	52	0	7	21	17	47	28	16
Seeds for industrial use, total	154 200	108 831	107 027	115 751	150 515	104 175	80 047	84 025	106 488	121 755
Seeds for sowing	61 556	60 964	61 212	84 515	80 979	78 949	84 958	71 040	87 193	90 781

Area of cultivated, Continued	1005	1006	1007	1009	1000	2000	2001	2002	2002	2004
Lucerne	10 000	11 145	7 342	6 850	5 514	5 245	3 451	3 566	3 946	<u> </u>
Maize for green fodder	36 583	41 652	42 701	46 992	48 452	61 493	78 814	95 741	118 267	129 317
Cereals and pulses for green fodder	87 893	58 007	101 12/	115 657	117 782	118 763	113 50/	112 /60	110 089	102 0/1
Pulses, fodder cabbage etc.	2 964	1 082	۲۵۱ ۱۲۲ 411	673	622	585	843	48	52	61
Grass and clover in rotation	238 384	257 398	235 285	2/0 128	238 107	246 656	2/0 320	218 000	211 950	106 375
Grass and green fodder in rotation, total	375 923	370 274	386 863	419 300	410 478	432 741	436 932	429 823	444 303	431 941
Vegetables grown in the open, excl peas for canning	7 055	7 041	6 251	6 084	6 157	6 479	6 015	6 066	6 396	6 656
Peas for canning	5 529	3 758	3 124	3 962	4 172	4 149	3 441	2 689	3 386	2 979
Vegetables grown in the open, total	12 583	10 798	9 374	10 046	10 329	0	0	8 755	9 783	9 635
Bulbs and flowers	332	255	180	156	194	175	160	148	150	128
Apples	1 658	1 854	1 697	1 660	1 623	1 679	1 783	1 574	1 624	1 673
Pears	545	469	430	555	431	441	469	420	457	439
Strawberries	1 135	983	1 095	983	991	984	1 066	788	805	899
Sour cherries	0	0	2 505	2 490	2 626	2 639	2 569	2 558	2 615	2 380
Sweet cherries	0	0	89	101	130	163	134	113	152	133
Cherries, total	2 654	2 823	2 594	2 591	2 756	0	0	2 671	2 767	2 513
Black current	1 827	1 783	1 531	1 280	1 411	1 492	1 850	1 939	2 028	1 976
Other fruits and berries	548	543	523	435	472	612	576	584	648	756
Fruits and berries, total	8 367	8 457	7 874	7 505	7 683	0	0	7 976	8 330	7 816
Nursery area	3 437	3 298	3 261	2 997	2 925	2 866	2 817	2 600	2 626	2 503
Horticultural crops, total	24 719	22 808	20 689	20 703	21 132	21 678	20 880	19 478	20 889	20 522
Permanent grass land out of rotation	207 122	192 851	167 600	156 260	159 530	166 261	173 702	177 546	177 635	172 536
Set aside with grass	216 493	190 701	147 400	141 432	182 905	191 295	201 817	204 721	206 584	196 972
Christmas trees	0	0	0	0	0	0	0	0	0	0
Other crops and fallow land	1 308	982	477	468	1 236	1 146	940	1 834	2 309	2 538
Other crops	0	0	0	0	0	0	0	0	0	0
Fallow land	0	0	0	0	0	0	0	0	0	0
Total agricultural area	2 726 048	2 716 034	2 688 014	2 671 850	2 644 048	2 646 982	2 675 566	2 665 507	2 657 706	2 645 304

O) Area of cultivated, Continued...

O) Area of cultivated, Continued...

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Winter wheat	666 512	682 080	683 764	638 724	716 472	743 911	724 487	588 724	542 051	651 530	608 733
Spring wheat	12 223	10 257	7 906	10 716	9 379	13 753	20 221	30 981	28 803	16 910	12 641
Wheat, total	678 735	692 337	691 670	649 440	725 851	757 663	744 708	619 705	570 854	668 441	621 374
Rye	28 474	29 755	30 047	30 975	42 197	51 336	56 097	57 537	88 181	104 093	125 540
Winter barley	139 855	161 241	168 824	126 516	141 270	142 560	130 882	104 214	110 853	145 209	114 178
Spring barley	562 991	527 158	457 408	580 879	443 183	425 510	471 143	623 447	578 675	490 533	524 952
Barley, total	702 845	688 398	626 232	707 395	584 453	568 070	602 025	727 661	689 528	635 743	639 131
Oats	58 261	60 288	55 563	71 873	53 381	41 907	42 304	51 010	53 488	34 830	37 797
Triticale etc	42 518	42 036	41 646	45 526	54 977	50 192	45 472	39 263	32 730	31 667	30 054
Cereals, total	1 510 833	1 512 814	1 445 158	1 505 210	1 460 859	1 469 168	1 490 606	1 495 177	1 434 781	1 474 773	1 453 896
Pulses	15 819	11 353	5 639	4 910	6 332	10 349	7 109	6 252	7 912	8 793	12 229
Seed potatoes	5 094	4 032	4 654	4 380	4 551	5 189	5 151	6 535	4 957	5 302	5 851
Potatoes for manufacturing	19 110	18 712	20 880	20 018	17 728	16 637	18 948	21 322	21 217	21 562	22 012
Potatoes for human consumption	16 278	15 210	15 689	17 981	15 787	16 312	16 433	13 764	14 218	15 753	13 716
Potatoes	40 482	37 954	41 224	42 379	38 067	38 138	40 532	41 622	40 392	42 617	41 579
Sugar beets	47 439	41 653	39 301	36 182	37 674	39 074	39 945	42 893	38 680	35 859	25 004
Fodder beets	4 974	4 035	3 819	5 206	5 257	4 118	3 985	4 562	5 736	6 708	5 188
Root crops, total	92 895	83 642	84 343	83 768	80 998	81 331	84 462	89 077	84 809	85 183	71 771
Winter rape, excl non food	87 530	97 559	148 559	172 606	160 326	163 436	150 402	124 449	173 746	164 221	192 535
Winter rape, non food	21 742	24 389	30 253	0	0	0	0	0	0	0	0
Winter rape	109 271	121 948	178 812	172 606	160 326	163 436	150 402	124 449	173 746	164 221	192 535
Spring rape, excl non food	1 282	1 064	404	388	613	1 372	1 818	2 467	1 371	1 375	699
Spring rape, non food	2 859	1 456	626	0	0	0	0	0	0	0	0
Spring rape, total	4 141	2 521	1 030	388	613	1 372	1 818	2 467	1 371	1 375	699
Rape, total	113 412	124 469	179 842	172 994	160 940	164 808	152 220	126 915	175 117	165 595	193 234
Flax	98	212	59	211	134	90	39	16	29	100	6
Other seeds for industrial use	60	145	113	198	706	823	854	541	583	897	752
Seeds for industrial use, total	113 571	124 840	180 072	173 580	161 779	165 721	153 113	127 472	175 729	166 592	193 992
Seeds for sowing	96 122	103 941	87 262	82 058	90 112	66 655	66 122	75 529	79 616	77 825	74 512

O) Area of cultivated, Continued...

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Lucerne	4 575	3 982	3 682	3 756	5 366	6 405	6 926	4 715	3 715	3 814	2 579
Maize for green fodder	131 027	135 245	144 869	159 030	168 917	172 168	173 693	183 570	182 935	183 370	177 908
Cereals and pulses for green fodder	75 512	63 998	60 348	52 251	55 848	62 845	56 672	54 333	58 945	61 100	56 621
Pulses, fodder cabbage etc.	43	20	31	19	0	26	0	0	0	0	0
Grass and clover in rotation	253 007	270 840	262 429	300 251	305 476	320 914	329 135	326 797	320 131	312 536	255 623
Grass and green fodder in rotation, total Vegetables grown in the open, excl	464 164	474 084	471 359	515 306	535 607	562 358	566 426	569 415	565 725	560 820	492 732
peas for canning	6 432	7 089	7 077	7 456	7 726	8 043	8 209	7 382	7 675	9 209	8 331
Peas for canning	2 999	2 841	2 741	3 592	3 737	2 677	2 935	2 837	2 209	2 505	2 749
Vegetables grown in the open, total	9 430	9 930	9 817	11 048	11 462	10 720	11 144	10 219	9 884	11 714	11 080
Bulbs and flowers	127	141	161	293	101	92	71	86	46	31	39
Apples	1 751	1 645	1 812	1 797	1 730	1 684	1 550	1 703	1 563	1 484	1 501
Pears	416	413	465	442	372	357	336	344	299	308	317
Strawberries	1 091	1 277	1 135	1 144	983	1 137	1 160	1 185	1 1 1 9	1 455	1 227
Sour cherries	1 977	1 967	2 006	1 757	0	0	0	0	0	0	0
Sweet cherries	155	162	161	193	0	0	0	0	0	0	0
Cherries, total	2 132	2 128	2 167	1 950	1 864	1 743	1 466	1 401	1 380	1 317	1 059
Black current	2 000	1 846	1 855	2 071	1 848	1 935	2 041	1 855	2 167	1 719	1 121
Other fruits and berries	848	774	887	889	913	927	1 031	1 006	1 047	1 308	1 102
Fruits and berries, total	8 237	8 083	8 322	8 294	7 723	7 797	7 596	7 508	7 604	7 611	6 348
Nursery area	2 318	2 275	2 255	2 519	1 827	1 521	1 041	1 247	1 199	1 061	2 270
Horticultural crops, total	20 113	20 429	20 556	22 154	21 114	20 130	19 852	19 060	18 733	20 417	19 737
Permanent grass land out of rotation	192 968	189 384	196 630	189 962	191 529	199 859	186 652	200 413	195 484	192 617	254 770
Set aside with grass	175 200	167 502	153 570	70 662	5 699	9 874	4 367	5 018	9 123	4 930	4 501
Christmas trees	0	0	0	0	18 281	19 521	17 609	20 593	18 928	23 461	22 101
Other crops and fallow land	25 551	22 518	18 173	20 285	51 665	41 435	43 906	36 782	37 126	36 943	33 058
Other crops	0	0	0	0	18 556	16 569	23 217	17 230	20 010	20 091	11 013
Fallow land	0	0	0	0	33 108	<u>2</u> 4 866	<u>2</u> 0 689	1 <u>9 551</u>	<u>1</u> 7 116	1 <u>6 853</u>	22 045
Total agricultural area	2 707 236	2 710 507	2 662 761	2 667 895	2 623 975	2 646 400	2 639 944	2 644 631	2 627 817	2 652 026	2 632 947

P) Number of operations; soil cultivation, harvesting, cleaning and drying a) Soil cultivation

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Winter wheat	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Spring wheat	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Rye	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Winter barley	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Spring barley	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Oats	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Triticale etc	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Seed potatoes	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
Potatoes for manufacturing	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Potatoes for human consumption	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Sugar beets	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Fodder beets	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Winter rape, excl non food	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Winter rape, non food	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Spring rape, excl non food	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Spring rape, non food	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Flax	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Other seeds for industrial use	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Seeds for sowing	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Lucerne	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Maize for green fodder	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Cereals and pulses for green fodder	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Pulses, fodder cabbage etc.	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Grass and clover in rotation	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Peas for canning	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Permanent grass land out of rotation	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2

a) Soil cultivation, Continued...

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Winter wheat	10	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Spring wheat	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Rye	9	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Winter barley	8	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Spring barley	8	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Oats	7.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	6	6	6	6	6
Triticale etc	9	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Seed potatoes	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	16.5	20.5	19	19	19	19	19
Potatoes for manufacturing	15	16	17	17	17	17	17	17	19	22	19	19	19	19	19
Potatoes for human consumption	15	15	15	15	15	15	15	15	17	20	16	16	16	16	16
Sugar beets	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Fodder beets	11	11	11	10	10	10	11	11	11	11	11	11	11	11	11
Winter rape, excl non food	9	8	9	9	9	9	9	9	9	9	9	9	9	9	9
Winter rape, non food	9	8	9	9	9	9	9	9	9	9	9	9	9	9	9
Spring rape, excl non food	8	6	6	6	6	6	6	6	6	7	7	7	7	7	7
Spring rape, non food	8	6	6	6	6	6	6	6	6	7	7	7	7	7	7
Flax	8.5	7	7.5	7.5	7.5	7.5	7.5	7.5	7.5	8	8	8	8	8	8
Other seeds for industrial use	8.5	7	7.5	7.5	7.5	7.5	7.5	7.5	7.5	8	8	8	8	8	8
Seeds for sowing	4.7	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.6	3.6
Lucerne	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Maize for green fodder	8	8	8	8	7	7	7	7	7	7	7	7	7	7	7
Cereals and pulses for green fodder	8	7	7	7	7	7	7	6	6	6	6	6	6	6	6
Pulses, fodder cabbage etc.	8	7	7	7	7	7	7	6	6	6	6	6	6	6	6
Grass and clover in rotation	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Peas for canning	8	6	6	6	6	6	7	7	7	7	7	7	7	7	7
Permanent grass land out of rotation	3.2	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8

h)	Harvesting
,	i lui vootii ig

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Winter wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Rye	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Winter barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Oats	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Triticale etc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Seed potatoes	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potatoes for manufacturing	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potatoes for human consumption	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sugar beets	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fodder beets	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Winter rape, excl non food	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Winter rape, non food	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring rape, excl non food	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring rape, non food	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Flax	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Other seeds for industrial use	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Seeds for sowing	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Lucerne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maize for green fodder	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cereals and pulses for green fodder	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pulses, fodder cabbage etc.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Grass and clover in rotation	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Peas for canning	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Permanent grass land out of rotation	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

b)	Harvesting,	Continued
----	-------------	-----------

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Winter wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Rye	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Winter barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Oats	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Triticale etc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Seed potatoes	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potatoes for manufacturing	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potatoes for human consumption	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sugar beets	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fodder beets	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1
Winter rape, excl non food	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Winter rape, non food	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring rape, excl non food	1	2	2	2	2	2	2	2	2	1	1	1	1	1	1
Spring rape, non food	1	2	2	2	2	2	2	2	2	1	1	1	1	1	1
Flax	1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1	1	1	1	1
Other seeds for industrial use	1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1	1	1	1	1
Seeds for sowing	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Lucerne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maize for green fodder	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cereals and pulses for green fodder	2	1	1	1	1	2	2	2	2	2	2	2	2	2	2
Pulses, fodder cabbage etc.	2	1	1	1	1	2	2	2	2	2	2	2	2	2	2
Grass and clover in rotation	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Peas for canning	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Permanent grass land out of rotation	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	~ ~														
------------	-----														
C) Cleanir	101														

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Winter wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Rye	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Winter barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Oats	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Triticale etc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Seed potatoes	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Potatoes for manufacturing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Potatoes for human consumption	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sugar beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fodder beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Winter rape, excl non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Winter rape, non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spring rape, excl non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spring rape, non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other seeds for industrial use	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Seeds for sowing	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Lucerne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maize for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cereals and pulses for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulses, fodder cabbage etc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grass and clover in rotation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peas for canning	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Permanent grass land out of rotation	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

c)	Cleaning,	Continued
ς,	•••••••••••••••••••••••••••••••••••••••	

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Winter wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring wheat	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Rye	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Winter barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Spring barley	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Oats	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Triticale etc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Seed potatoes	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
Potatoes for manufacturing	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Potatoes for human consumption	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1
Sugar beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fodder beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Winter rape, excl non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Winter rape, non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spring rape, excl non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Spring rape, non food	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flax	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other seeds for industrial use	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Seeds for sowing	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Lucerne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maize for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cereals and pulses for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulses, fodder cabbage etc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grass and clover in rotation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peas for canning	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
Permanent grass land out of rotation	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

• • •		
a)	1)r	Vino
u,		ynng

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Winter wheat	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring wheat	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Rye	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Winter barley	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring barley	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Oats	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Triticale etc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Seed potatoes	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Potatoes for manufacturing	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Potatoes for human consumption	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sugar beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fodder beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Winter rape, excl non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Winter rape, non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring rape, excl non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring rape, non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Flax	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Other seeds for industrial use	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Seeds for sowing	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lucerne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maize for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cereals and pulses for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulses, fodder cabbage etc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grass and clover in rotation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peas for canning	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Permanent grass land out of rotation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

d) Drying, <i>Continued</i>		
-----------------------------	--	--

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Winter wheat	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring wheat	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Rye	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Winter barley	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring barley	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Oats	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Triticale etc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Seed potatoes	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Potatoes for manufacturing	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Potatoes for human consumption	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sugar beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fodder beets	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Winter rape, excl non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Winter rape, non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring rape, excl non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Spring rape, non food	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Flax	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Other seeds for industrial use	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Seeds for sowing	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lucerne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maize for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cereals and pulses for green fodder	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulses, fodder cabbage etc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grass and clover in rotation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peas for canning	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Permanent grass land out of rotation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Pollutants	Unit	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
NH ₃	kt	1.53	1.32	1.25	0.93	0.98	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.10	0.12	0.12	0.11
CH ₄	kt	1.72	1.48	1.41	1.05	1.11	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.11	0.14	0.13	0.13
N ₂ O	kt	0.045	0.038	0.036	0.027	0.029	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.003	0.003
NO _x	kt	1.53	1.32	1.25	0.93	0.98	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.10	0.12	0.12	0.11
CO	kt	37.58	32.29	30.67	22.93	24.13	1.89	1.97	1.88	2.06	1.98	2.24	2.23	2.37	2.98	2.83	2.79
CO ₂	kt	966.54	830.46	788.90	589.70	620.62	48.73	50.66	48.44	52.89	51.00	57.72	57.40	60.85	76.60	72.77	71.68
SO ₂	kt	0.19	0.16	0.16	0.12	0.12	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
NMVOC	kt	4.02	3.45	3.28	2.45	2.58	0.20	0.21	0.20	0.22	0.21	0.24	0.24	0.25	0.32	0.30	0.30
PM																	
TSP	kt	3.70	3.18	3.02	2.26	2.38	0.19	0.19	0.19	0.20	0.20	0.22	0.22	0.23	0.29	0.28	0.27
PM ₁₀	kt	3.70	3.18	3.02	2.26	2.38	0.19	0.19	0.19	0.20	0.20	0.22	0.22	0.23	0.29	0.28	0.27
PM _{2.5}	kt	3.51	3.01	2.86	2.14	2.25	0.18	0.18	0.18	0.19	0.19	0.21	0.21	0.22	0.28	0.26	0.26
BC	kt	0.32	0.27	0.26	0.19	0.20	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02
Metals																	
Pb	t	0.55	0.47	0.45	0.34	0.35	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04
Cd	t	0.031	0.027	0.026	0.019	0.020	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Hg	t	0.0051	0.0044	0.0042	0.0031	0.0033	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0004	0.0004
As	t	0.037	0.032	0.030	0.023	0.024	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003
Cr	t	0.140	0.121	0.115	0.086	0.090	0.007	0.007	0.007	0.008	0.007	0.008	0.008	0.009	0.011	0.011	0.010
Ni	t	0.113	0.097	0.092	0.069	0.073	0.006	0.006	0.006	0.006	0.006	0.007	0.007	0.007	0.009	0.009	0.008
Se	t	0.023	0.020	0.019	0.014	0.015	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Zn	t	0.018	0.015	0.015	0.011	0.011	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Cu	t	0.0002	0.0002	0.0002	0.0001	0.0001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00001	0.00001
Dioxin	g l- TEQ	0.38	0.32	0.31	0.23	0.24	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03
PAH																	
Benzo(a)pyrene	t	1.78	1.53	1.45	1.08	1.14	0.09	0.09	0.09	0.10	0.09	0.11	0.11	0.11	0.14	0.13	0.13
Benzo(b)fluoran- thene	t	1.74	1.50	1.42	1.06	1.12	0.09	0.09	0.09	0.10	0.09	0.10	0.10	0.11	0.14	0.13	0.13
Benzo(k)fluoran- thene	t	0.68	0.59	0.56	0.42	0.44	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05
Indeno(1,2,3-cd)py- rene	t	0.65	0.56	0.53	0.40	0.42	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.04	0.05	0.05	0.05
HCB	kg	2.22	1.90	1.80	1.33	1.40	0.08	0.08	0.08	0.09	0.08	0.10	0.09	0.10	0.12	0.12	0.12
PCB	kg	0.002	0.002	0.002	0.001	0.001	0.00002	0.00002	0.00001	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002

Q) Emission of different pollutants from field burning of agricultural residue.

Q) Continued	
--------------	--

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	2014 2015
	2011 2010
NH ₃ kt 0.12 0.10 0.12 0.13 0.13 0.13 0.11 0.10 0.12 0.09 0.09 0.10 0.11	0.11 0.11
CH ₄ kt 0.13 0.11 0.13 0.14 0.14 0.14 0.13 0.12 0.14 0.10 0.10 0.11 0.12	0.12 0.12
N ₂ O kt 0.003 0.003 0.004 0.004 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003	.003 0.003
NO _x kt 0.12 0.10 0.12 0.13 0.13 0.13 0.11 0.10 0.12 0.09 0.09 0.10 0.11	0.11 0.11
CO kt 2.93 2.44 2.93 3.07 3.12 3.16 2.73 2.53 2.98 2.17 2.15 2.47 2.67	2.63 2.61
CO ₂ kt 75.33 62.66 75.33 78.98 80.14 81.30 70.35 65.15 76.64 55.89 55.32 63.57 68.71	7.65 67.10
SO ₂ kt 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01	0.01 0.01
NMVOC kt 0.31 0.26 0.31 0.33 0.33 0.34 0.29 0.27 0.32 0.23 0.23 0.26 0.29	0.28 0.28
<u>PM</u>	
TSP kt 0.29 0.24 0.29 0.30 0.31 0.31 0.27 0.25 0.29 0.21 0.21 0.24 0.26	0.26 0.26
PM ₁₀ kt 0.29 0.24 0.29 0.30 0.31 0.31 0.27 0.25 0.29 0.21 0.21 0.24 0.26	0.26 0.26
PM _{2.5} kt 0.27 0.23 0.27 0.29 0.29 0.30 0.26 0.24 0.28 0.20 0.20 0.23 0.25	0.25 0.24
BC kt 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.02	0.02 0.02
Metals	
Pb t 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.04 0.04	0.04 0.04
Cd t 0.002 0.002 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	.002 0.002
Hg t 0.0004 0.0003 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003	0.0004 0.0004
As t 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 0.002 0.002	.003 0.003
Cr t 0.011 0.009 0.011 0.012 0.012 0.010 0.009 0.011 0.008 0.008 0.009 0.010	.010 0.010
Ni t 0.009 0.007 0.009 0.009 0.009 0.009 0.008 0.008 0.009 0.007 0.006 0.007 0.008	.008 0.008
Se t 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.002	.002 0.002
Zn t 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	.001 0.001
Cu t 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00001 0.00000000	001 0.00001
Dioxin g I-TEQ 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03	0.03 0.03
PAH	
Benzo(a)pyrene t 0.14 0.12 0.14 0.15 0.15 0.15 0.13 0.12 0.14 0.10 0.10 0.12 0.13	0.12 0.12
Benzo(b)fluoranthene t 0.14 0.11 0.14 0.14 0.14 0.15 0.13 0.12 0.14 0.10 0.10 0.11 0.12	0.12 0.12
Benzo(k)fluoranthene t 0.05 0.04 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.05 0.05	0.05 0.05
Indeno(1,2,3-cd)pyrene t 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.04	0.05 0.05
HCB kg 0.12 0.10 0.12 0.13 0.13 0.13 0.11 0.11 0.12 0.09 0.09 0.10 0.11	0.11 0.11
PCB kg 0.00002 0.00000000	002 0.00002

nj dioss energy p	EI KY DIVI I	or uairy cat		015, Ivio pei	KY DIVI											
	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
MJ per kg DM	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.7	18.7	18.7	18.7	18.7	18.7	18.7
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
MJ per kg DM	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.9	18.9	18.9	18.9	18.9	18.9	

R) Gross energy per kg DM for dairy cattle, 1985-2015, MJ per kg DM

Winter feeding plans		Feeding code	Pct. dm	Pct. Crude	Pct. Raw	Pct. Raw	Pct. Carbon-	FU per	kg feed	MJ per day	MJ per FU
				protein	fat	ashes	hydrates	kg dm	per day		
		AgriFish (2002)									
Heifers:	Straw	781	85.0	4.0	1.9	4.5	89.6	0.2	33.4	571.8	
	Maize silage	593	31.0	8.7	2.2	4.2	84.9	0.9	57.5	1 009.0	
	Toasted soya	155	87.5	49.1	3.2	7.4	40.3	1.4	8.1	161.7	
	Total	-	-	-	-	-	-	-	99.0	1 742.4	25.8
Suckling cattle:	Straw	781	85.0	4.0	1.9	4.5	89.6	0.2	1.6	119.1	
Period 1 (2 mth)	Toasted soya	155	87.5	49.1	3.2	7.4	40.3	1.4	3.4	49.6	
	Barley	201	85.0	11.2	2.9	2.2	83.7	1.1	1.8	29.2	
Period 2 (4 mth)	Straw	781	85.0	4.0	1.9	4.5	89.6	0.2	3.2	238.2	
	Toasted soya	155	87.5	49.1	3.2	7.4	40.3	1.4	3.0	29.1	
	Barley	202	85.0	11.2	2.9	2.2	83.7	1.1	3.2	52.0	
	Total	-	-	-	-	-	-	-	15.2	517.1	34.0
Horses:	Straw	781	85.0	4.0	1.9	4.5	89.6	0.2	4.0	58.2	
	Hay	665	85.0	12.1	2.6	7.7	77.6	0.6	3.0	44.0	
	Oat	202	86.0	12.1	5.7	2.7	79.5	0.9	2.5	40.1	
	Supplemental		86.4	15.4	4.3	6.6	73.7	1.0	1.0	15.5	
	Total	-	-	-	-	-	-	-	-	157.7	29.8
Sheep and Goats:	Straw	781	85.0	4.0	1.9	4.5	89.6	0.2	1.0	14.6	
	Toasted soya	155	87.5	49.1	3.2	7.4	40.3	1.4	0.1	1.8	
	Barley	202	85.0	11.2	2.9	2.2	83.7	1.1	0.4	6.2	
	Grass pills (dried)	707	92.0	17.0	3.1	11.0	68.9	0.6	1.0	15.7	
	Total	-	-	-	-	-	-	-	-	38.2	30.0
Summer grazing ¹											
Grazing	Clover grass, 2 weeks old	422	18.0	22.0	4.1	9.4	64.5	1.0	1.0	18.8	
	Total	-	-	-	-	-	-	-	1.0	18.8	18.8
Swine:	Full feeding										
	Sows	-	87.1	16.1	5.2	5.5	73.2	1.2	-	64.2	17.5
	Weaners	-	87.4	18.8	5.7	5.5	70.0	1.3	-	2.1	16.5
	Fattening pigs	-	86.9	17.0	4.7	5.1	73.3	1.2	-	9.6	17.3

S) Feeding plans - average feeding level.

T) National MCF for liquid manure, 1985-2015

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Cattle - untreated liquid manure	4.85	4.85	4.85	4.85	4.85	4.85	4.83	4.86	4.82	4.79	4.76	4.73	4.87	5.00	4.99	5.03
Cattle - biogas treated liquid manure	2.68	2.68	2.68	2.68	2.68	2.68	2.66	2.69	2.65	2.63	2.61	2.57	2.72	2.86	2.86	2.88
Swine - untreated liquid manure	15.19	15.19	15.19	15.19	15.19	15.19	15.23	15.26	15.20	15.14	15.12	15.08	15.05	14.99	14.94	14.94
Swine - biogas treated liquid manure	11.94	11.94	11.94	11.94	11.94	11.94	11.97	11.98	11.90	11.82	11.79	11.73	11.70	11.62	11.55	11.55
Fur bearing animals - liquid manure	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	11.40	10.35	10.35
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Cattle - untreated liquid manure	5.02	5.03	4.99	5.00	4.92	4.88	4.91	4.92	4.89	4.88	4.90	4.91	5.00	4.88	4.82	
Cattle - biogas treated liquid manure	2.87	2.87	2.83	2.84	2.77	2.73	2.75	2.76	2.77	2.75	2.77	2.85	2.93	2.78	2.62	
Swine - untreated liquid manure	14.88	14.89	14.89	14.84	14.18	14.20	14.17	14.08	14.13	14.14	14.07	14.00	13.95	13.93	13.92	
Swine - biogas treated liquid manure	11.48	11.49	11.49	11.43	10.70	10.73	10.70	10.60	10.66	10.66	10.59	10.52	10.46	10.39	10.25	
Fur bearing animals - liquid manure	10.35	10.35	10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	

U) Model calculation of nitrogen leaching nationwide by SKEP/DAISY and N-LES.

Cattle

Swine

Mixed

Basic DAISY calculations of N-leaching

Farm type

Crop

Up scaling by the SKEP model

V) QA/QC procedure, stage I - III.

Stage I: Check of input data	Variable	Reference					
Livestock production	- number of animal	DSt					
	- slaughter data						
Normative figures	- N-excretion	DCA					
	- use of straw						
	- amount of manure						
	- feed intake						
	- milk vield						
Housing types	- distribution	DAAS + DAFA					
Grazing days		DAAS					
Crons	- land use	DSt					
01005		501					
	- crop production						
Synthetic fartiliser	- N-content						
Synthetic Tertiliser							
N loophing	- Tertiliser types	DCE					
Atmospheric deposition							
Atmospheric deposition	- all NH ₃ emission sources						
Sewage sludge and industrial waste	- Amount of sludge applied to solls	EPA + DAFA					
Stage II: Check of IDA data – overall	Emission source						
Recalculation	- CO_2 eqv. total emission	- compared with latest submission					
	- CH_4 , N_2O , $NMVOC$						
	- emission from field burning						
Time series	- CO_2 eqv. total emission	- trends					
	- CH ₄ , N ₂ O, NMVOC	- jumps and dips					
	- emission from field burning						
Stage III: Check of IDA data – specific	Emission source	Variable					
CH ₄	- enteric fermentation	- IEF (jumps and dips)					
		- Ym (dairy cattle + heifer)					
		- GE					
CH ₄	- manure management	- IEF (jumps and dips)					
		- VS					
		- biogas					
N ₂ O	- manure management	- trends (jumps and dips)					
		- IEF					
		- biogas					
N ₂ O	- synthetic fertiliser	- trends (jumps and dips)					
		- IEF					
N ₂ O	- animal waste applied to soil	- trends (jumps and dips)					
		- IEF					
N ₂ O	- N-fixing crops	- trends (jumps and dips)					
		- IEF					
N ₂ O	- crop residue	- trends (jumps and dips)					
		- IEF					
N ₂ O	- pasture, range and paddock	- trends (jumps and dips)					
		- IEF					
N ₂ O	- atmospheric deposition	- trends (jumps and dips)					
-		- IEF					
N₂O	- N-leaching and run-off	- trends (jumps and dips)					
-		- IEF					
N2O	- sewage sludge + industrial waste	- trends (jumps and dips)					
· · <u>2</u> =		- IEF					
NMVOC	- crops	- trends (jumps and dips)					

[Blank page]

DANISH EMISSION INVENTORIES FOR AGRICULTURE

Inventories 1985 - 2015

Regulations in international conventions obligate Denmark to prepare annual emission inventories and document the methodologies used to calculate emissions. The responsibility for preparing the emission inventories for agriculture is undertaken by the Danish Centre for Environment and Energy (DCE), Aarhus University, Denmark. This report contains a description of the emissions from the agricultural sector from 1985 to 2015 and includes a detailed description of methods and data used to calculate the emissions, which is based on international guidelines as well as national methodologies. The emissions are calculated by using an Integrated Database model for Agricultural emissions (IDA). IDA covers all aspects of the agricultural inputs and estimates both greenhouse gases and air pollutants, methane (CH_4), nitrous oxide (N_2O), ammonia (NH_3), particulate matter (PM), non-methane volatile organic compounds (NMVOC) and other pollutants, which mainly are related to the field burning of agricultural residue such as NOx, CO₂, CO, SO₂, heavy metals, dioxins, PAHs, HCB and PCBs. The largest contribution to agricultural emissions originates from livestock production, which is dominated by production of cattle and swine. The agricultural NH₃ emission from 1985 to 2015 has decreased from 128 800 tonnes NH3 to 69 000 tonnes NH₃, corresponding to a reduction of approximately 46 %. The emission of greenhouse gases in 2015 is estimated at 10.4 million tonnes CO₂ equivalents and reduced from 13.2 million tonnes CO₂ equivalents in 1985. Since 1990, which is the base year of the Kyoto protocol a reduction of 18 % is obtained. Improvements in feed efficiency, the utilisation of nitrogen in livestock manure and a significant decrease in the consumption of inorganic N-fertiliser are the most important explanations for the reduction of NH₃. This has furthermore resulted in a significant reduction of N₂O emission, which is the main reason for a considerable decline in the total greenhouse gas.

ISBN: 978-87-7156-300-9 ISSN: 2245-0203