

Scientific Report from DCE - Danish Centre for Environment and Energy

No. 193

2016

AARHUS UNIVERSITY DCE – DANISH CENTRE FOR ENVIRONMENT AND ENERGY

WASTEWATER TREATMENT AND DISCHARGE

Scientific Report from DCE – Danish Centre for Environment and Energy

No. 193

2016

Marianne Thomsen

Aarhus University, Department of Environmental Science

Data sheet

Series title and no.:	Scientific Report from DCE - Danish Centre for Environment and Energy No. 193
Title:	Wastewater Treatment and Discharge
Author: Institution:	Marianne Thomsen Aarhus University, Department of Environmental Science
Publisher: URL:	Aarhus University, DCE – Danish Centre for Environment and Energy © http://dce.au.dk/en
Year of publication: Editing completed:	August 2016 July 2016
Referees: Quality assurance, DCE:	Riitta Pipatti, Statistics Finland, Helsinki, Greenhouse Gas Inventory unit; Hans Oonk, OonKAY!, Apeldoorn, The Netherlands Vibeke Vestergaard Nielsen
Financial support:	No external financial support
Please cite as:	Thomsen, M., 2016. Wastewater treatment and discharge. Aarhus University, DCE – Danish Centre for Environment and Energy, 79 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 193. http://dce2.au.dk/pub/SR193.pdf
	Reproduction permitted provided the source is explicitly acknowledged
Abstract:	This sector report present a verification of the country-specific methane emissions factor of 1.3 % of the reported methane recovery in terms of biogas production at Danish wastewater treatment plants from anaerobic sludge treatment. The verification is based on a combination of national level COD balance, as recommended by the UNFCCC review team, supplemented by plant level reported data. Secondary, the correctness of the percentage of the Danish population not connected to the collective sewer system is documented. Lastly a first approach for including direct N_2O emissions from separate industries is presented.
Keywords:	WWTP, CH ₄ , N ₂ O, National GHG emission inventory
Layout: Front page photo:	Ann-Katrine Holme Christoffersen Billund BioRefinery
ISBN: ISSN (electronic):	978-87-7156-217-0 2245-0203
Number of pages:	79
Internet version:	The report is available in electronic format (pdf) at http://dce2.au.dk/pub/SR193.pdf

Contents

Lis	t of ab	obreviations	4
Pre	eface		5
Su	mmar	у	6
Sa	mmer	nfatning	8
1	Intro	oduction	10
2	Metl	nodology – Wastewater treatment and discharge	15
	2.1	National Methodology – Activity data	15
	2.2	National Methodology - Methane emission	15
	2.3	Activity data and Emission Factors – CH ₄ emission	19
	2.4	National Methodology - Nitrous oxide emission	22
	2.5	Activity data and Emission Factors – N ₂ O emissions	23
3	Veri	fication	27
	3.1	CH ₄ emissions	27
	3.2	N ₂ O emissions	50
4	Plan	ned Improvements	52
Re	ferenc	ces	53
An	nex A	. COD data	63
An	nex B	. Scattered settlements	69
An	nex C	2. Biogas conversion factors	76
An	nex D	. N flows and COD/N ratios at WWTPs	77
An		. Separate Industry - Industrial effluents, treatment levels direct emissions	78

List of abbreviations

AD Anaerobic Digestion **BAT Best Available Techniques** BOD Biological Oxygen Demand CH₄ Methane COD Chemical Oxygen Demand CO₂ Carbon dioxide CO₂e Carbon dioxide equivalents DCA Danish Centre for food and Agriculture DCE Danish Centre for Environment and energy DEA Danish Energy Agency DEPA Danish Environmental Protection Agency DM Dry Matter DME Danish Ministry of Environment DMEE Danish Ministry of Environment and Energy **EF Emission Factor** ENVS Department of ENVironmental Science, Aarhus University Gg Giga gram GHG Greenhouse gas **GWP** Global Warming Potential IPCC Intergovernmental Panel on Climate Change MBNDC Mechanical, Biological Nitrification, Denitrification and Chemical MCF Methane Conversion Factor N₂O Nitrous oxide NIR National Inventory Report NOVANA National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments QA Quality Assurance QC Quality Control TOW Total Organic Waste UNECE United Nations Economic Commission for Europe UNFCCC United Nations Framework Convention on Climate Change VS Volatile Solids WWTP WasteWater Treatment Plant

Preface

The Danish Centre for Environment and Energy (DCE) at Aarhus University is contracted by the Ministry of the Environment and Food, and the Ministry of Energy, Utilities and Climate, to report yearly emission inventories for Denmark. Department of Environmental Science, Aarhus University is responsible for calculation and reporting of the Danish national emission inventory to EU and the UNFCCC (United Nations Framework Convention on Climate Change) and UNECE CLRTAP (Convention on Long Range Transboundary Air Pollution) conventions.

This report forms part of the documentation for the inventories and documents the methodology for calculating emissions from wastewater handling. The results of inventories up to 2013 are included. The report updates the report published in 2005 by Thomsen and Lyck.

The previous version of this report was reviewed by Niels Iversen, Section of Environmental Engineering, Department of Life Sciences, Aalborg University, Denmark, and Mette Wolstrup Pedersen, Water office, Danish Environmental Protection Agency.

This report has been reviewed by Riitta Pipatti, Statistics Finland, Helsinki · Greenhouse Gas Inventory unit and Hans Oonk, OonKAY!, Apeldoorn, The Netherlands.

Summary

The Danish emission inventory for wastewater treatment and discharge is based on plant level monitoring data in the influent and effluent wastewater, reported data on flaring and methane loss at plant level and reported energy recovery data. For this reason, a country-specific methodology for calculating the national emissions from wastewater treatment and discharge have been developed (Thomsen & Lyck, 2005) as the default IPCC methodology do not fit countries having input-output monitoring data (IPCC, 2006, Chapter 5). The focus of the present sector report is to verify the country-specific methane (CH₄) emission factor calculated at 1.3 % of the reported methane recovery from biogas production at Danish wastewater treatment plants with anaerobic sludge treatment.

This report presents the status of methodological development within the sub-sector *5.D Wastewater treatment and discharge*. Focus of the report is to present a COD (Chemical Oxygen Demand) mass balance for the Danish wastewater treatment plants, verifying the country-specific methane emission factor, and the resulting level of methane emission from anaerobic sludge digestion, at the Danish wastewater treatment plants (WWTP). The latter requested for by the UNFCCC expert review team.

Varying plant design and sludge management strategies at the individual WWTPs results in varying methane production efficiencies and emissions, which has initiated an ongoing process of collection and combining activity data at plant level with the aim of documenting a country-specific emission inventory – optimally at plant level.

The present report presents status of COD mass balance for verification of the country-specific methane emission factor based on available information according to the status on the development of a plant level database. Plant level monitoring data extracted from reports published by: 1. The individual WWTPs, i.e. Environmental Reports, 2. Yearly reports published by the Danish Nature Agency, i.e. results obtained from National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments (NO-VANA) and 3. Energy Producer Account data received by the Danish Energy Agency.

Plant and National level COD mass balances and methane emission calculations is presented with the aim of data gap filling and verification of the emissions factor for methane emissions from anaerobic sludge digestion.

Another aspect that has been addressed by the UNFCCC expert review team is improved documentation of the fraction of the population, which are not connected to the collective sewer system. For this reason, the report includes a verification of the fraction of the population living within the scattered settlements, i.e. not connected to the collective sewer system, and the associated septic tank modelling approach used to calculate the methane emission from scattered settlements.

Lastly, a first evaluation of the possibility to include direct N₂O emissions from separate industries in future emission inventories to EU and the UN-FCCC for the sub-sector 5.D Wastewater treatment and discharge is presented.

The main objective of this report is to document the accuracy of the countryspecific emission factor (EF) value for methane emissions from anaerobic treatment of sludge, i.e. 1.3% of the recovered methane. The latter is obtained by setting up COD mass balances and associated methane budgets at national and plant level based on Danish monitoring data.

There is a general tendency for the methane recovered as calculated from the Energy Producer Account data to be lower than the reported methane recovery data in the Environmental Reports published by the individual WWTPs. There may be several reasons for this tendency. One reason may be that the methane conversion efficiency is lower than the IPCC default value of 80 % of the maximum CH₄ producing capacity (B_o). The error of propagation is within the range of uncertainty reported at tier 1 and 2 (Nielsen et al., 2014) justifying the country-specific EF of 1.3 % of the recovered methane.

The value of the country-specific methane emission factor for WWTPs with anaerobic sludge digestion is sufficiently justified at plant level. However, national and plant level COD balances indicate that it is important to take into account external carbon when calculating the EF value from COD mass balances and associated CH₄ budgets at plant level.

Sammenfatning

Danmark anvender en dansk udviklet metode til opgørelser af drivhusgasemissioner fra den danske spildevandssektor (Thomsen & Lyck, 2005; Nielsen et al., 2016). Baggrunden er den, at vi i Danmark har et moniteringsprogram, som skal sikre kvaliteten af vores vandmiljø og natur, en Energistatistik som årligt rapporterer energiproduktionen fra fossile og biomasse ressourcer, ligesom flere af de danske forsyningsselskaber årligt udgiver en miljørapport, som ligeledes indeholder information om vandkvalitetsparametre i indløbs- og udløbsspildevand, samt biogas til energiproduktion og gasafbrænding i fakkel, og tab fra rådnetanken. Sådanne datakilder udgør baggrundsdata for inputparametre i den danske model til beregning af de nationale emissioner fra spildevandsrensning og -udledning i modsætning til IPCC-standardmetoden, som er designet til lande, der ikke har relevante moniteringsdata og andre aktivitetsdata til brug for udarbejdelse af inputparametre i emissionsopgørelserne (IPCC, 2006, kapitel 5). Fokus for nærværende sektorrapport er at verificere den danske metan(CH₄)-emissionsfaktor opgjort til 1,3% af mængden af nyttiggjort metan fra biogasproduktionen på danske renseanlæg, som gør brug af slamudrådning (anaerob slambehandling) som slam behandlingsteknologi (Nielsen et al., 2015).

Denne rapport præsenterer status for metodeudvikling i emissionsopgørelserne for sektoren 5.D Spildevandsrensning og -udledning. Rapporten præsenterer COD (Chemical Oxygen Demand) massebalancer for de danske renseanlæg, på nationalt såvel som på anlægsniveau i det omfang datatilgængelighed tillader dette. Formålet er at verificere den danske metanemissionsfaktor, og dermed dokumentere korrektheden af den resulterende metanemission fra danske renseanlæg med anaerob slamudrådning. Danmark er igennem de sidste års review af UNFCCC's eksperthold, blevet anmodet om at levere en verifikation af den danske metanemissionsfaktor via opstilling af en komplet COD-massebalance.

Varierende anlægsdesign og slamforvaltningsstrategier på de enkelte renseanlæg resulterer i varierende metanproduktion og -emissioner. Dette har afstedkommet et behov for løbende indsamling af aktivitetsdata på anlægsniveau med henblik på at opstille anlægsspecifikke COD massebalancer og tilhørende emissionsfaktorer. Det oparbejdede datagrundlag er repræsentativt for de danske rensningsanlæg med anaerob slambehandling, og dokumenterer den nationale emissionsfaktor og muliggør endvidere anlægsspecifikke opgørelser som tager hensyn til de stadigt mere avancerede og varierende anlægsdesign (Thomsen et al., 2015).

Status for COD-massebalancer på nationalt hhv. anlægsniveau til brug for en verifikation af den danske metanemissionsfaktor er baseret på en sammenkobling af følgende datakilder: 1. Data fra de enkelte renseanlæg, dvs. årlige miljørapporter, 2. Årlige rapporter udgivet af Naturstyrelsen baseret på overvågningsdata fra det danske overvågningsprogram for vandmiljøet og naturen (NOVANA) og 3. Energiproducenttællingsdata fra Energistyrelsen.

COD-massebalancer baseret på anlægsniveaudata hhv. data på nationalt niveau anvendes, foruden verificering af den nationale beregning af metanemissionen, også til metodeforbedring, idet der i den anlægsspecifikke opgørelse over COD i indløb til anlæg med anaerob slambehandling opnås en verificering og forbedring af aktivitetsdata som kvantificerer fraktionen af slam, som behandles på anlæg med anaerob udrådning af slam.

Et andet aspekt, der er blevet adresseret af UNFCCC's eksperthold, er ønsket om en forbedret dokumentation for den del af befolkningen, som ikke er forbundet et kloaksystem. Derfor indeholder rapporten en forbedret dokumentation for den del af befolkningen, der hører ind under spredt bebyggelse. Spredt bebyggelse modelleres p.t. via septiktankmodellen, som er IPPC's standardmetode til at beregne metanemission fra den spredte bebyggelse.

Sidst præsenterer rapporten en metode til at inkludere den direkte N₂Oemission fra særskilt industri i fremtidige emissionsopgørelser til EU og UNFCCC, som grundet manglende data ikke tidligere har været inkluderet i emissionsopgørelsen for kategorien 5.D Spildevandsrensning og udledning.

Der er en generel tendens til, at den mængde metan der produceres beregnet ud fra energiproducenttællingen, er noget lavere end den rapporterede metanproduktion afrapporteret i de anlægsspecifikke miljørapporter. Der kan være flere grunde til denne tendens. En årsag kan være, at metanomdannelsesfaktoren er lavere end IPCC's standardværdi på 80 % af den maksimale CH₄-produktionskapacitet (Bo). Forskellen ligger dog indenfor usikkerhedsintervallet på tier 1 og 2 (Nielsen et al., 2014), hvilket understøtter korrektheden af den nationale emissionsfaktor på 1.3% af den producerede metan som genvindes.

Værdien af den nationale metanemissionsfaktor for renseanlæg med anaerob slambehandling vurderes tilstrækkeligt dokumenteret. Dog indikerer forskellen imellem COD-balancer baseret på nationale hhv. anlægsspecifikke data, at det er vigtigt at medregne tilførslen af eksternt kulstof til biogastanken i en beregning af anlægsspecifikke emissionsfaktorer fra CODmassebalancer og tilhørende CH₄-budgetter.

1 Introduction

The Danish wastewater treatment system is characterised by a few big and advanced wastewater treatment plants (WWTPs) and many smaller WWTPs. From 1993 to 2010, the amount of wastewater treated at the most technologically advanced WWTPs in Denmark has increased from 53 % to more than 90 %. Improvements of the decentralised wastewater treatment system as well as the sewer system are ongoing in Denmark (DEPA, 2010). For the part of the population not connected to the sewer system, i.e. scattered settlements, sludge from septic tanks are collected once per year or as appropriate by judgement of the local authorities (DME, 1999). Municipal collection and transportation of sludge from septic tanks for treatment at the centralised WWTPs occurs with a frequency set by the authorities. Emptying of septic tanks occur at a minimum one time each year.

The national emission inventory for wastewater handling includes an estimation of the emission of methane (CH₄) and nitrous oxide (N₂O) from wastewater treatment and discharge. CH₄ is produced during anaerobic conditions and treatment processes, while N₂O is emitted during biological N removal processes; i.e. during nitrification and denitrification processes under anaerobic as well as aerobic conditions as well as from anaerobic ammonia oxidation (e.g. Adouani et al., 2010; Kampschreur et al., 2009).

A significant part of the Danish industries are connected to the collective sewer system in Denmark and mixed wastewater from households and industries constitutes the influent wastewater at centralised WWTPs. The contribution from the industry to the influent wastewater at the centralised WWTPs has increased from zero in 1987 to around 40 % in 2006 with the highest influent contribution occurring at the biggest and most advanced technological WWTPs in Denmark (Thomsen & Lyck, 2005; DME 2014; Nielsen et al., 2014). No separate reporting on the emissions from industrial and municipal wastewater treatment occurs.

Activity data on wastewater treatment at industrial WWTPs is scarce and for this reason, the direct N₂O emissions from separate industries with internal wastewater treatment have so far only been included in the Danish inventory for category 5.D to the extent influent activity data are reported to the Danish Nature Agency. This report presents a first estimation of the direct N₂O emissions from industrial wastewater treatment plants (Annex E).

Input parameters for calculation of indirect N_2O emissions from separate industries originate from the yearly reported data on nitrogen in effluent wastewater. Such data are available at plant level and is reported yearly by the Danish Nature Agency and published by the Danish Ministry of Environment (DMEE, 1994a, b, 1995a, b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003a, 2004a, 2005, 2006, 2007, 2008, 2009a, 2010, 2011, 2012a, 2013, 2014).

Methane emissions from separate industries are included in the inventory as all WWTPs with bio-gasification of sludge are included in the Energy Statistics (DEA, 2014).

The IPCC 2006 guidelines provide a default methodology, which allocates different emission factors to different population groups according to their income and area of living. For each country default values for the distribution of different treatment pathways according to three categories: rural population, urban high-income population group, and urban low-income population group (IPCC, 2006, Chapter 5, Table 6.5). For each category, a specified distribution of treatment types (septic tanks, lagoons, anaerobic/anaerobic tanks etc.), default B_o and *MCF* values exists (IPCC, 2006, Chapter 5, Table 6.2 and 6.3) for calculating pathway specific EF values. The EFs for the individual treatment technologies are multiplied by the amount of organic material disappearing during treatment, i.e. influent TOW minus the final sludge, to derive a sum of emission, i.e. gross methane emission. The amount of recovered methane is subtracted to arrive at a net methane emission (IPCC guidelines 2006, Equation 6.1, page 6.11).

The Danish emission inventory for wastewater treatment and discharge is a country level methodology based on plant level monitoring activity data in the influent and effluent wastewater. At the present stage of development, the country level methodology applies national activity data and emission factors. Still, at a conceptual level the country-specific methodology follows the principles of the IPCC guidelines.

The principle of equation 6.1 in the IPCC 2006 is to allocate different emission factors to the different treatment pathways. Treatment pathways occurring in Denmark are mixed industrial and household wastewater transported via the collective sewer system (93 %) to 1) WWTPs using biological treatment processes and aerobic sludge stabilisation as sludge management strategy, or 2) WWTPs using biological treatment processes and anaerobic sludge digestion. A minor fraction of the total COD content in Danish wastewater (7%) is comprised by domestic wastewater, produced within scattered settlements not connected to the collective sewer system. Such wastewater is modelled as being managed in 3) septic tanks accompanied by sludge collection used as ingestate (initial substrate) at anaerobic WWTPs. A flow chart of the treatment pathways in Denmark is visualised in Figure 1.1 in units of COD flows.

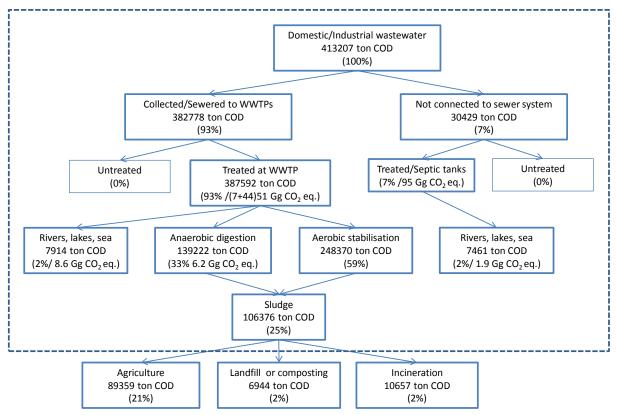


Figure 1.1 Overview of the COD flow through the treatment systems and discharge pathways in Denmark in 2013. Of the total COD (100 %) produced, 93 % is collected via the sewer system and transported to centralised WWTPs, while 7 % of the COD produced within scattered settlements not connected to the sewer system is modelled as septic tank systems. Of the 93 % COD treated at centralised WWTPs, 33 % enters WWTPs with anaerobic sludge digestion and 59 % enters WWTPs with aerobic sludge stabilisation. GHG emissions from aerobic mechanical and biological treatment processes occur prior to anaerobic digestion or aerobic sludge stabilisation at all WWTPs in Denmark. Of the 387592 Gg COD entering the Danish WWTPs, a GHG emission (primarily N_20) of 51 Gg CO₂e results from the aerobic biological treatment step common to both WWTPs with anaerobic and aerobic sludge management strategies. The main source of methane emission occurs from anaerobic sludge digestion corresponding to 6.2 Gg CO₂e (1.3 % of the recovered amount of methane). Approximately 25 % of the COD in the influent wastewater remains in the final sludge from anaerobic and aerobic stabilisation while 4 % of the total COD produced in DK is lost to the aquatic system (rivers, lakes and sea) resulting in indirect N_2O emissions summing up to 10.5 Gg CO₂e.

Figure 1.1 shows the COD flow and corresponding points of emissions. IPCC, 2006 recognized CH₄ and N₂O as the only GHG emissions from WWTP processes while CO₂ process emissions defined as biogenic carbonneutral emissions are not reported (IPCC, 2006). Therefore, only methane and nitrous oxide emissions have been included in Figure 1.1. In the box "Treated at WWTP", the 51 (7 +44) Gg CO₂e refers to methane and nitrous oxide emissions from sewer, mechanical and biological wastewater treatment processes. Methane emissions from anaerobic sludge digestion correspond to 6.2 Gg CO₂e. Methane emissions from the part of the population that are not connected to collective sewer system is modelled assuming septic tank systems only; i.e. representing an overestimation of the methane emission from scattered settlements in Denmark. Emissions from scattered settlements as well as emission from WWTP relate to nitrous oxide; i.e. corresponding to 1.9 and 8.8 Gg CO₂e from scattered settlements and WWTPs, respectively. Emissions from the combustion of sludge and digester gas with energy recovery are reported under biomass in the energy sector. Chapter 3 provides a description of the COD mass balances including losses to air during biological treatment and sludge digestion.

For the majority of the Danish WWTPs the mechanical (primary) and biological treatment processes occurs at well managed and regulated centralised plants with minimal CH₄ emissions (DME, 2014). Table 1.1 presents the percent wastewater treated at centralised WWTPs with advanced technology treatment for the removal of organic matter, nitrogen and phosphorus; i.e. wastewater treatment plants of the type MBNDC (Mechanical, Biological Nitrification, Denitrification and Chemical). Table 1.1 presents the environmental performance for the whole time series, quantified as the reduction efficiencies of organic matter, N and P in the effluent wastewater with reference to the influent wastewater at national level (DME, 1992, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003a, 2004a, 2005, 2007, 2008, 2009a, 2010, 2012a, 2012, 2013; DMEE, 1994a and 1994b, 1995b, 1999b).

Year	1990	1991	1992	1993	1994	1995						
Share of WWTPs of the type MBNDC	10	30	50	50	60	69						
BOD _{effluent} - percent reduction of influent	-	-	-	58	61	87 ³						
Total N_{effluent} - percent reduction of influent	-	-	-	41	43	56						
Total Peffluent - percent reduction of influent	-	-	-	74	75	80						
Year	1996	1997	1998	1999	2000	2001						
Share of WWTPs of the type MBNDC	72	86	84	85	85	90						
BOD _{effluent} - percent reduction of influent	80	94	94	94	95	96						
Total N _{effluent} - percent reduction of influent	61	76	74	74	77	79						
Total Peffluent - percent reduction of influent	84	89	90	90	91	92						
Year	2002	2003	2004	2005	2006	2007						
Share of WWTPs of the type MBNDC	86	90	90	90	90	90						
BOD _{effluent} - percent reduction of influent	96	96	93	95	96	96						
Total N_{effluent} - percent reduction of influent	77	81	80	na	82	78						
Total Peffluent - percent reduction of influent	91	93	96	na	93	93						
Year	2008	2009	2010	2011	2012	2013						
Share of WWTPs of the type MBNDC	90	90	90	90	90	91						
BOD _{effluent} - percent reduction of influent	96	95	96	92	92	95						
Total N_{effluent} - percent reduction of influent	82	80	82	78	81	82						
Total Peffluent - percent reduction of influent	93	91	93	90	92	92						

Table 1.1 Degree of utilization of modern, centralized WWT plants¹ and associated reduction in suspended and soluble organic matter in the effluent wastewater, [%]².

¹Centralized WWTPs of the most advanced technology type MBNDC (mechanical, biological nitrification, denitrification and chemical).

²BOD, the Biological Oxygen Demand, is an indirect measure of the amount of organic matter (that can be oxidized biologically) in the wastewater. The BOD test procedure is based on the activities of bacteria and other aerobic microorganisms (microbes), which feed on organic matter in presence of oxygen (DME, 1998).

³The significant increase in the reduction efficiency is partly explained by to the varying, but also changing methodology for measuring BOD. Reported number are represented by a mixture of modified (i.e. allylthiourea is added to the sample inhibiting the biological oxygenation of nitro-

gen/nitrification) and unmodified (simultaneous oxygenation of nitrogen) BOD measurement (Andersen, 1983; DME, 1996; DS/EN ISO 1899-1:2003; DS/EN ISO 1899-2:2004; DEPA, 2002 and 2005).

The increase in treatment efficiency is reflected in the number of plants types having the most advanced treatment technologies installed, which was 0.5 % before the first Water Environment Action Plan in 1983 (Thomsen & Lyck, 2005). As shown in Table 1.1, the fraction of influent wastewater at the Dan-

ish WWTPs treated by advanced organic matter, nitrogen and phosphorus removal technologies has increased further from 10 % in 1990 to 91 % in 2013 (DME, 2014).

The technological development of the Danish WWTPs has been accompanied by a centralisation of the wastewater treatment at fewer and bigger plants. As such, 1,989 WWTPs above 30 person equivalent (PE) were running in 1980, but since 1998, 1,074 Danish WWTPs has been closed, resulting in 906 WWTPs remaining today. 90 % of the Danish wastewater is treated at the 300 biggest WWTPs (DME, 2014; Niero et al., 2014; Jensen et al., 2015; Thomsen et al., 2015).

The centralisation of wastewater treatment at WWTPs using advanced treatment technologies have resulted in an increase in the N, P (phosphorus) and organic matter reduction efficiencies. As such, 41 %, 74 % and 58 % of the N, P and organic matter in the influent wastewater was reduced in the effluent wastewater in 1993 and the efficiency was increased to 82 % N, 92 % P and 95 % organic matter in 2013 (Thomsen and Lyck, 2005; DME, 2014). The above-described technological development for improved quality of the effluent wastewater has influenced the level of process emissions to air in negative direction. As such, a reduction in the indirect N₂O emissions, i.e. N₂O emissions originating from the N content in the effluent wastewater, corresponding to 78 % in 2013 compared to 1990 results. This reduction are accompanied by an increase in the direct N₂O and CH₄ emissions from the wastewater treatment processes of respectively a factor 2 and 3 as shown in Table 1.2.

Table 1.2 Nitrous oxide and methane emissions from WWTPs and percent change from 1990-2013.

Year	1990	1995	2000	2005	2010	2011	2012	2013	%-change
N ₂ O _{direct} [Mg]*	73	111	134	161	136	150	131	147	101
N ₂ O _{WWTP effluents} [Mg]	265	140	73	60	63	62	60	57	-78
CH _{4,WWTP} [Gg]	11	15	23	23	24	26	31	30	182

*Excluding the direct N₂O emissions from separate industries shown in Annex E.

This report presents the methodological approach used in the emission inventory for wastewater treatment and discharge and provides improved information regarding the country level methodology. Chapter 2 presents the methodology for estimating the CH₄ and N₂O emissions from Danish WWPTs and scattered settlements; including updated information on activity data and EF values. Sub-chapters 3.1 and 3.2 presents a verification of the activity data, input parameters and model approach for estimating CH₄ and N₂O emissions from Danish WWPTs, respectively. Lastly, Chapter 4 presents planned improvements.

2 Methodology – Wastewater treatment and discharge

The methodology developed for estimating emission of methane and nitrous oxide from wastewater treatment and discharge follows the IPCC Guidelines (IPCC, 2006). This section includes methodological issues related to the CH_4 and N_2O emission calculations, respectively.

2.1 National Methodology – Activity data

The Danish Nature Agency is responsible for monitoring and reporting of point sources within NOVANA (the National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments). Influent and effluent water quality monitoring data on nitrogen, phosphorous, biological and chemical oxygen demand (COD and BOD) are available for all public WWTPs in Denmark. For separate industrial wastewater, mainly data on effluent wastewater are reported (DMEE, 1989, 1990 1992, 1994a, b, 1995a, b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003a, 2004a, 2005, 2006, 2007, 2008, 2009a, 2010, 2011, 2012a, 2013, 2014). The Danish aquatic monitoring programme also includes measurements of emissions to the aquatic environment from aquaculture, rainwater conditioned effluents, and scattered settlements (Nature Agency, 2016). The Danish Nature Agency, reports yearly monitoring data at plant level and are responsible for data reported in a national water quality database (http://www.miljoeportal.dk/English).

Compared to other countries, Denmark is unique regarding the availability of monitoring data quantifying the input activity data at plant level. This implies that monitoring data on BOD as well as COD are available for all WWTPs in Denmark.

The Danish Energy Agency provides data on the energy production for all WWTP using anaerobic digestion as sludge management strategy.

2.2 National Methodology - Methane emission

Methane emissions from the Danish WWTPs are divided into contributions from 1) the sewer system, primary settling tank and aerobic biological N and P removal processes and 2) from anaerobic treatment processes in closed systems with biogas generation that are combusted for energy production. The methane emission from scattered settlements not connected to the collective sewer system in Denmark is modelled through 3) septic tanks using default parameters (IPCC, 2006).

The methane emissions from WWTPs are divided into a contribution from the sewer system, primary (mechanical) settling tank and aerobic biological N and P removal processes, $CH_{4,sewer+MB}$, and from anaerobic treatment processes in closed systems with biogas extraction for energy production, $CH_{4,AD}$:

$$CH_{4,WWTP} = CH_{4,sewer+MB} + CH_{4,AD}$$
 Eq. 1

Emission factors for estimating the methane emissions are provided in units of biological or chemical oxygen demand (BOD or COD) in the influent wastewater in accordance with the IPCC guidelines (IPCC, 2006). In simple terms, the difference between COD and BOD may be explained as follows: 1 kg COD corresponds to the amount of organic matter that consumes 1 kg O_2 by total digestion (including the recalcitrant fraction of organic pollutants), while BOD consumes an amount of O_2 corresponding to the biochemical degradable fraction of carbon.

In the National Inventory, the yearly reported BOD monitoring data on wastewater have been used for estimating the methane emissions throughout the time series in the reporting years 2006 to 2014 (Illerup et al., 2006-2007; Nielsen et al., 2008-2014). However, in the reporting year 2015, the more consistent COD data replaced BOD monitoring data.

The uncertainty in BOD data is higher than COD data. This is because different standard methodologies exist for measuring BOD (ISO 5815-1:2003; 5815-2:2003). Some BOD measurements include the biochemical oxidation of not only carbonaceous, but also nitrogenous compounds, making the BOD measures are inconsistent. This adds further to the uncertainty in the reported BOD data (DMEE, 1998). With C:N ratios in waste water of about 1:10 to 1:20, the latter BOD measurement standard results in an 5-10 % overestimation of TOW. However, upon accurate knowledge on the BOD measurement standard applied, it would be possible to correct for such overestimation.

A COD analysis oxygenates practically all organic material, while nitrogen compounds are not oxidised (Henze et al., 2010; DHI, 2001), which makes COD the best estimate of the maximum methane conversion potential. Furthermore, in Denmark the wastewater is a mixture of industrial and municipal household wastewater in which case COD may be the only feasible measure due to the presence of bacterial inhibitors or other chemical interferences, which interfere with the BOD determination. The most important reason for changing the methodology to be based on COD data is a more robust measure, that are used by the WWTPs for process control adjustments, for which reason more process specific measurements are available such as the COD content in the final sludge (Section 3.1.2 and 3.17 and Thomsen et al., 2015).

2.2.1 CH₄ emission from wastewater treatment processes

The fugitive emissions from the sewer system, primary (and secondary) settler tanks (clarifiers) and aerobic biological treatment processes, $CH_{4,sewer+MB}$, are estimated as:

$$CH_{4,sewer+MB} = EF_{sewer+MB} \cdot TOW_{inlet}$$
 Eq. 2

↓

$$CH_{4,sewer+MB} = B_o \cdot MCF_{sewer+MB} \cdot TOW_{inlet}$$

where TOW_{inlet} equals the influent organic degradable matter measured as the chemical oxygen demand (COD) in the influent wastewater flow, B_o is the default maximum CH₄ producing capacity, i.e. 0.25 kg CH₄ per kg COD (IPCC, 2006).

The fraction of *TOW* that is unintentionally converted to CH₄ in sewers, primary clarifiers and aerobic biological treatment processes, $MCF_{sewer+MB}$, is set equal to 0.003 based on an expert knowledge on the state and technological management of the Danish sewer systems (Vollertsen, personal commu-

nication, September, 2012). The emission factor, $EF_{sewer+MB}$, for these processes es equals 0.00075 kg CH₄ per kg COD in the inlet wastewater. In comparison, Johansen (2013) assumes that the contribution from the sewer system is insignificant, which is in agreement with the IPCC, 2006 guidelines reporting a default MCF for open and closed flowing sewer of 0.

Furthermore, Johansen (2013) reports a total methane emission from pumping and storage of digested sludge to be around 0.1 %-0.2 % of the total methane production, corresponding to a maximum emission factor (EF) of 0.00042 Nm³ CH₄ or 0.0003 kg CH₄ per kg COD from other processes than dedicated anaerobic digestion.

In conclusion, in the context of well-managed WWTPs, the applied country specific value for $EF_{sever+MB}$, i.e. 0.00075 kg CH₄ per kg COD in the inlet wastewater, represents a conservative estimate of methane from sewer, mechanical and biological treatment processes.

2.2.2 CH₄ emission from anaerobic sludge digestion

Anaerobic treatment in terms of sludge digestion occurs with capture of the CH₄ generated during digestion. The biogas produced contains between 55 and 70 % methane used for energy production. At present, most WWTPs combusts the produced biogas in a biogas-driven engine for the production of heat and electricity; however, emerging technologies such as upgrading of the biogas by CO₂ extraction (e.g. Frederica WWTP) or CO₂ conversion (<u>www.biofos.dk</u>) allows for the production of bio-natural gas that may be sold and distributed in the natural gas grid (Thomsen et al., 2015).

The methane emission from an anaerobic sludge digestion may occur via venting and to a minor extent from storage of the digestate (Johansen, 2013). Equation 3, provides a theoretical equation for calculating the methane emission from anaerobic sludge digestion:

$$CH_{4,AD,net} = CH_{4,AD,gross} - (B_o \cdot S) - CH_{4,AD,energy} - CH_{4,AD,flaring} \quad \text{Eq. 3}$$

where $CH_{4,AD,gross}$ is the gross methane emission quantifying the total methane potential contained in the ingestate COD ($S_{ingestate}$), B_o is the default maximum CH₄ producing capacity and S is the COD in the final sludge; i.e. recalcitrant carbon. The unconverted theoretical CH₄ potential in the recalcitrant carbon contained in the final sludge, S, may be expressed as MCF_s , the methane correction factor of the final sludge, multiplied by the COD content in the ingestate, $S_{ingestate}$, where MCF_s is equal to 1- MCF_{AD} . CH_4 , energy represents the amount of methane recovered for energy production and CH_4 , flaring quantifies the methane recovered and flared (cf. Chapter 3.1).

The gross methane emissions, *CH*_{4,AD,gross}, are calculated as:

$$CH_{4,AD,gross} = f_{AD} \cdot MCF_{AD} \cdot B_o \cdot TOW_{inlet}$$
 Eq. 4a

In case of co-digestion of external carbon sources equation 4a is slightly modified as shown in equation 4b

$$CH_{4,AD,gross} = B_o \cdot MCF_{AD} \cdot \left[\left(f_{AD} \cdot TOW_{inlet} \right) + TOW_{external} \right]$$
 Eq. 4b

where f_{AD} is the fraction of the COD in the influent wastewater that are conserved in the ingestate is ranging from 0.3 in 1990 increasing to a maximum level of 0.6 from 1999 to 2013 (Jensen et al., 2015; Thomsen et al., 2015 and Chapter 3);

*MCF*_{AD}, the methane correction factor, adjust the default maximum CH₄ producing capacity or theoretical methane yield to the expected conversion under real operating conditions and is set equal to 0.8 (IPCC, 2006);

*TOW*_{inlet} equals the influent organic degradable matter measured as the sum of chemical oxygen demand (COD) in the influent wastewater at WWTPs using anaerobic sludge digestion in a digester tank for the production of biogas.

 B_0 is the default maximum CH₄ producing capacity, i.e. 0.25 kg CH₄ per kg COD (IPCC, 2006). By dividing B_0 with the density of methane, i.e. 0.72 kg CH₄/m³, the theoretical methane yield of 0.35 Nm³ CH₄ per kg COD is obtained; a value which, as expected, is strongly above the yield in real operating conditions upon reference to the influent amount of COD (Table 2.5).

The above described eq. 4a and 4b is in line with IPCC-guidelines, and this concept is used for verifying the country-specific methane emission factor (chapter 3). However, the error propagation, associated to equations 4a and 4b, are high, and the verification of the country-specific EF value is unavoidable, based on a derived difference between two large numbers including also uncertainties. The criteria for verification of the country-specific EF value may therefore at best consist in verifying that the value calculated according to Eq. 5 lies within the uncertainty range of the COD mass balance.

The net methane emission from anaerobic digestion in biogas tanks are at present estimated according to equation 5 for the whole time series:

$$CH_{4,AD,net} = EF_{AD} \cdot CH_{4,AD,recoved}$$
 Eq. 5

where the emission factor, EF_{AD} , has been set equal to 1.3 % of the methane content in the gross energy production at national level reported by the Danish Energy Agency; i.e. 0.013 (see Table 3. and Chapter 3 on verification).

At the present stage of verification of activity data, equation 5 is the most appropriate equation for estimating the net methane emission from anaerobic digestion of sludge; i.e. the net methane emission from anaerobic digestion equals the methane emissions due to venting associated to the biogas production and storage tanks (Hjort-Gregersen, 2013; Nielsen et al., 2015).

2.2.3 CH₄ emissions from septic tanks

For the part of the population not connected to the collective sewer system, simple decentralised wastewater handling is modelled as septic tanks. Only little knowledge is available about the frequency of collection and no measurements of the methane emissions from septic tanks and the pumping and management of septage, including its transportation to a wastewater treatment facility exist. Methane emission from septic tanks is calculated as:

$$CH_{4,st} = EF_{st} \cdot f_{nc} \cdot P \cdot DOC_{st}$$
 Eq. 6

where the emission factor is calculated from the default IPCC value quantifying the maximum methane producing capacity B_0 of 0.25 kg CH₄ per kg COD multiplied by the methane conversion factor for septic tanks, corresponding to the amount of suspended organic material that settles in the septic tank, equal to 0.5 (IPCC, 2006). Hence, an EF_{st} value of 0.125 kg CH₄ per kg COD.

The fraction of the population, P, not connected to the collective sewer system, f_{nc} , is set equal to 10 % for the entire time series estimated from National statistics of scattered settlements in percent of the total number of households in Denmark (DME, 2014; Statistics Denmark).

Lastly, the default IPCC value of the per capita produced degradable organic matter, DOC_{st} , i.e. 22.63 kg BOD per person corresponding to 56.6 kg COD per person (IPCC, 2006), were used in place of default value of 18.25 kg BOD per 1000 persons per year according to the old IPCC guidelines (IPCC, 1996).

2.3 Activity data and Emission Factors - CH₄ emission

The "TOW, average" represents a key activity data set for deriving methane emissions from anaerobic and aerobic wastewater treatment processes (subchapter 2.1.1 and 2.1.2). Table 2.1 shows a first extract of a plant level data from a database especially developed with the purpose of performing plant level emission inventories for sector 5D wastewater treatment and discharge. For details regarding the calculation of "TOW, average" the reader is referred to Annex A. COD data, Table A 1.

Table 2.1 Total organic waste in the influent w	vastewater at Danish WWTPs measured in tonne COD.
---	---

5								
Year	1990	1995	2000	2005	2010	2011	2012	2013
TOW, country data	294,772	327,284	364,655	363,571	372,330	377,754	363,881	382,778
TOW, plant level data	NA	NA	350,689	-	369,873	371,713	349,876	386,151
Fraction of the TOW entering WWTPs using anaerobic sludge digestion, %	36	47	48	48	48	42	31	36
Fraction of the TOW entering WWTPs using aerobic sludge stabilization, %	64	53	52	52	52	58	69	64
TOW entering WWTPs using anaerobic sludge digestion	105,777	153,561	176,671	173,898	177,359	159,189	113,942	137,456
TOW entering WWTPs using aerobic sludge stabilization	188,995	173,723	187,984	189,672	194,971	218,565	249,939	245,322

*COD data calculated from modified BOD measurements multiplied by the COD/BOD conversion factor of 2.4. For a complete presentation of the dataset used for deriving the "TOW, average", which are the activity data set used in the emission inventory the reader is referred to Annex A, Table A1.1.

The activity data entitled "TOW, country level data" in Table 2.1 are based on reported BOD data converted into COD by multiplying with the default COD/BOD conversion factor of 2.4 (IPCC, 2006).

The "TOW, plant level data" are based on plant level COD monitoring data from the monitoring program published by the Danish Nature Agency (DME, 1992, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003a, 2004a, 2005, 2007, 2008, 2009a, 2010, 2012a, 2012, 2013, 2014; DMEE, 1994a and 1994b, 1995b, 1999b) and the Danish water quality database (www.miljoeportalen.dk). Data from the Danish water quality database consists of plant level unpublished monitoring data, which are part of the National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments.

The "TOW, plant level data" are furthermore part of a database designed specifically for the Danish emission inventories for the sector 5B Wastewater treatment and discharge, in which plant level IDs from the Danish monitoring program has been paired with plant level data from the Danish Energy Agency. Based on the present quality assurance of data, Table 2.1 shows that the plant level data closely resembles the country level data reported by the Danish Nature Agency. The plant level database allow for a differentiation between Danish WWTPs with, aerobic sludge stabilisation and anaerobic sludge digestion respectively (Table 2.2).

In this way, the total amount of organic matter in the influent wastewater, *TOW*, is used for estimating the unintentional methane emission from aerobic processes at both plant types. Aerobic processes comprise emissions from the sewer system, mechanical and aerobic biological treatment processes (see sub-chapter 2.1.12.2.1).

The fraction of the total TOW in Danish influent wastewater entering WWTPs using sludge digestion as sludge management strategy (Annex A, Table A 3) quantifies the key parameter *TOW*_{influent, anaerobic} in sub-chapter 2.1.2 on methane emission from anaerobic sludge digestion.

2.3.1 Wastewater treatment processes

The methane emissions from sewer, mechanical and aerobic biological treatment are common treatment steps for respectively all WWTPs whether they apply anaerobic digestion or aerobic stabilization as sludge management strategy (Jensen et al., 2015; Thomsen et al., 2015). For this reason, the activity data used for calculating the methane emission from sewer, mechanical, and biological treatment processes is the total national COD in the influent wastewater. Table 2.2 shows the TOW and resulting methane emission from mechanical and biological wastewater treatment processes allocated according to the percent influent COD at WWTPs with anaerobic and aerobic sludge management strategies (Annex A, Table A.3).

Year	1990	1995	2000	2005	2010	2011	2012	2013
TOW, [tonne COD]	294,772	327,284	364,655	363,571	372,330	377,754	363,881	382,778
TOW influent, anaerobic WWTP [% COD]	36	47	48	48	48	42	31	36
TOW influent, aerobic WWTP [% COD]	64	53	52	52	52	58	69	64
TOW _{influent, anaerobic WWTP} [tonne	105,777	153,561	176,671	173,898	177,359	159,189	113,942	137,456
COD]								
TOW influent, aerobic WWTP [tonne COD]	188,995	173,723	187,984	189,672	194,971	218,565	249,939	245,322
CH4sewer+MB, anaerobic WWTP [Gg CH4]	0.08	0.12	0.13	0.13	0.13	0.12	0.09	0.10
CH4sewer+MB, aerobic WWTP [Gg CH4]	0.14	0.13	0.14	0.14	0.15	0.16	0.19	0.18
CH _{4sewer+MB} , total [Gg CH ₄] ¹	0.22	0.25	0.27	0.27	0.28	0.28	0.27	0.29

Table 2.2 Amounts of TOW in the influent wastewater according to WWTP types (anaerobic sludge digestion and aerobic sludge stabilization), and CH₄ emissions from sewer system, mechanical and aerobic biological treatment steps.

¹ $EF_{sewer+MB} = B_o * MCF_{sewer+MB}$ and $MCF_{sewer+MB} = 0.003$ and $B_o = 0.25$ kg CH₄ per kg COD.

As mentioned in Chapter 2.1.1, the emission factor for mechanical and biological wastewater treatment processes are set equal to 0.00075 kg CH_4/kg COD in the influent wastewater with no further distinction between plant types as all WWTPs include an aerobic biological wastewater treatment step prior to aerobic sludge stabilization or anaerobic sludge digestion.

2.3.2 Anaerobic digestion

TOW data in the influent wastewater is a key parameter for calculating the methane emission from anaerobic digestion. Formerly, the fraction of sludge treated by anaerobic digestion was quantified by data on sludge statistics (Nielsen et al., 2013; Thomsen and Lyck, 2005). The sludge database, however, no longer exists (DMEE, 1999a and 2001; DME, 2003b, 2004b, 2009b and 2012b). For this reason, the methodological approach for quantifying the amount of sludge treated by anaerobic digestion is no longer based on sludge statistics, but on statistics on influent TOW data received at plant types including anaerobic digester tanks for biogas production (cf. Table 2.3).

At two-step plants, up to around 40 % of the COD in the influent wastewater, i.e. primary sludge from the primary clarifier tank, may be used as ingestate for the anaerobic digester tank (Figure 3.1 and Jensen et al., 2015; Thomsen et al., 2015).

Table 2.3 shows the development in TOW entering WWTPs with anaerobic sludge digestion, the fraction of COD conserved in the ingestate and the resulting gross methane production potential from WWTPs using anaerobic sludge digestion as sludge management strategy.

Table 2.3 Activity data and model parameters for WWTPs using anaerobic sludge digestion as sludge management strate-

<u>9</u> 7.								
Year	1990	1995	2000	2005	2010	2011	2012	2013
TOW _{influent, total} [tonne COD]	294,772	327,284	364,655	363,571	372,330	377,754	363,881	382,778
Fraction of TOW in influent at anaerobic WWTPs [%] ¹	36	47	48	48	48	42	31	36
TOW _{influent, anaerobic plants} [tonne COD] ²	105,777	153,561	176,671	173,898	177,359	159,189	113,942	137,456
f_{AD}^2	0.44	0.40	0.48	0.52	0.57	0.54	0.54	0.56
COD _{ingestate} [tonne COD] ²	46,542	61,425	84,802	89,732	100,740	85,325	61,073	76,975
$B_o *MCF * f_{AD}$ [tonne CH ₄ / tonne COD] ²	0.09	0.08	0.10	0.10	0.11	0.11	0.11	0.11
CH _{4AD,gross} [Gg CH ₄] ²	9.31	12.28	16.96	17.95	20.15	17.07	12.21	15.40

¹Annex A, Table A 3.

² Equation 4a and Annex A, Table A 2.

For WWTPs with anaerobic sludge digestion it is assumed that they belong to the WWTPs, which have implemented advanced treatment technologies, i.e. MBNDC type WWTPs ranging from 10 % in 1990 to more the 90 % in 2013 (Table 2.1). The fraction of the influent TOW reaching the digester tank, f_{AD} , is based on intra-calibration according to knowledge about the reduction efficiency of COD in the effluent wastewater, the amount of recovered methane and final sludge amounts. The full time series of the percent distribution of COD calibrated against these known parameters are provided in Annex A, Table A 2.

In this year's inventory, the methane emission from anaerobic digestion is still calculated according to equation 5, meaning that the recovered methane is calculated from the reported gross energy production (energy recovery and flaring) multiplied by an EF value of 0.013 assuming that 1.3 % of the gross energy production is lost as methane. For the moment, the EF is kept constant throughout the time series.

2.3.3 Scattered settlements

Activity data used for deriving methane emissions for the fraction of the population, not connected to the collective sewer system are shown in Table 2.4.

Table 2.4 Amount of TOW produced by households not connected to the collective sewer system.

Year	1990	1995	2000	2005	2010	2011	2012	2013
Population not connected to sewers, $P^* f_{nc}$	513,541	521,572	533,002	541,141	553,474	556,063	558,052	560,263
COD, septic tanks [tonne COD]	27,891	28,328	28,948	29,390	30,060	30,201	30,309	30,429
CH ₄ , septic tanks [Gg CH ₄]	3.49	3.54	3.62	3.67	3.76	3.78	3.79	3.80

It is assumed that half suspended organic matter settles in the septic tank. The MCF is therefore set equal to 0.5 throughout the time series and an emission factor of 0.125 CH_4 per kg COD is obtained according to the IPCC default parameters.

For scattered settlements, the fraction of the population not connected to the collective sewer system has been set equal to 10 %, P^*f_{nc} , which is low compared to statistics on residential property types included in the category "scattered settlements" (e.g. DME, 2014), however, scattered housing includes allotments and summer houses that are not used all year. For further details, the reader is referred to Chapter 3 on verification and Annex B., Table B 5.

2.4 National Methodology - Nitrous oxide emission

N₂O formation and releases both during the treatment processes at the WWTPs and from discharged effluent wastewater are included. The emission of N₂O from wastewater treatment and discharge is calculated as the sum of contributions from wastewater treatment processes at the WWTPs and from sewage effluents. The emission from effluent wastewater, i.e. indirect emissions, includes separate industrial discharges, rainwater-conditioned effluents, scattered settlements and aquaculture.

2.4.1 N₂O emissions - Wastewater treatment processes

All Danish wastewater treatment plants have implemented biological N-removal treatment processes, which are associated with some loss of N_2O due to incompleteness in the denitrification step (Thomsen et al., 2015). The nitrous oxide emissions from wastewater treatment processes are calculated according to equation 7:

$$N_2 O_{direct} = EF_{N_2 O, direct} \cdot \left(m_{N, influent} + m_{N, reject} \right)$$
Eq. 7

where

N₂O_{direct} refers to the process related emissions of N₂O

EF_{N2O,direct} is set equal to 4.99 g N₂O per kg N in the influent wastewater

 $m_{N,influent}$ is the total amount of N in the influent wastewater monitored and reported by the Nature Agency (section 2.1)

 $m_{N,reject}$ is the amount of N in the reject water originating from dewatering of biogasified sludge at WWTPs adding external carbon to ingestate, taking in-

to account the technology design; e.g. whether or not the specific plant have implemented Anammox (an alternative N removal technology that removes N without microbial use of COD) on the reject water to remove the additional N content introduced via the additional biomass digested (Thomsen et al., 2015).

2.4.2 N₂O emission from wastewater discharges

The indirect emission of N_2O from wastewater treatment plants refers to emission from the effluent wastewater as are calculated according to equation 8:

$$N_2 O_{indirect} = EF_{N_2 O, indirect} \cdot m_{effluent} \cdot \left(M_{N_2 O} / M_{N_2} \right)$$
Eq. 8

where

EF_{N2O,indirect} equals 0.005 kg N₂O-N/kg effluent N (IPCC, 2006)

 M_{N2O}/M_{N2} is the molecular mass ratio between N₂O and N₂ that transforms the mass u in unit of N into unit of N₂O.

Besides effluent from wastewater treatment plants, additional contributions to indirect N_2O emissions results from effluent from the separate industry, effluent from aquaculture, rainwater conditioned effluents and scattered settlements. The amount of N in the effluent wastewater is monitored by the National monitoring program of the aquatic environment and nature (section 2.1).

2.5 Activity data and Emission Factors – N₂O emissions

2.5.1 Wastewater treatment processes

The content of N in the influent wastewater at the Danish WWTPs represents a key activity data set for calculating the direct N_2O emissions from wastewater treatment.

Sources to N₂O emissions during wastewater treatment processes reveal that 90 % of the nitrous oxide emission originates from activated sludge processes; i.e. denitrification and nitrification processes. When bacteria and microorganisms break down proteins contained in the sludge, ammonium is released. At aerobic conditions, other bacteria transform ammonium to nitrate. Yet other bacteria can convert nitrate into free nitrogen, if fed with easily degradable organic matter under anaerobic conditions. Upon successive denitrification, free nitrogen is a gas that bubbles out of the wastewater. However, challenges in the design of alternating aerobic and anaerobic conditions in the biotank result in the emission of nitrous oxide (Kimochi et al., 1998; Tallec et al., 2006 and 2008).

The N₂O emission depends on several factors, such as pH, temperature, NO₃⁻, oxygen and COD content in a complex pattern not yet fully understood (Kampschreur et al., 2009). Studies of the biological denitrifying processes verify the complexity of processes and parameters influencing the resulting N₂O emission. Several studies found that N₂O emissions are strongly reduced at influent COD/N ratios above 3.5; at high ratios the N₂O emission were below 1 % while at COD/N ratios below 3.5 the N₂O emission were at 20-30 % of the influent N load (Hanaki et al., 1992; Itokawa et al., 2001; Kampschreur et al., 2008; Park et al., 2000). Pointing in the opposite di-

rection, a study by Van Niel et al. (1993) showed that a COD/N ratio above 10 could lead to enrichment of aerobic denitrification bacteria and increased N₂O emissions. The latter is supported by a study of Tallec et al. (2006), reporting the N₂O emissions to be positively related to oxygenation ($R^2 = 0.99$) during nitrification. Danish wastewater treatment plants have COD/N ratios in the influent wastewater in the range of 12-16 (Table 2.5).

Chiu and Chung (2003) measured the distribution of N_2 , N_2O and CO_2 under different NO_3^- and C/N ratios and found a distribution of respectively 96-99 %, 0.001-0.006 % and 1.1-3.8 %. This study does not report on the amount of inflowing N, whereas Adouani et al., 2009 reports on N_2O and NO emissions corresponding to up to 74 % and 19 % of denitrified N-NO₃⁻. Sharma et al. (2008) reports N_2O emissions up to 4000 ppm, which is the same range in the study of Chiu & Chung (2003). The CO₂, as reported by Chiu and Chung (2003), is short-cycle CO₂, not originating from fossil fuels, and therefore not to be included as a contribution to greenhouse gas in the emission inventory (e.g. Kampschreur et al., 2009). A recent review of N_2O emissions from wastewater treatment (Kampschreur et al., 2009) gives a thorough overview of existing studies showing a huge variation and uncertainty in the N₂O emission ranging between 0 and 95 % at lab-scale and in the range of 0-14.5 % of the nitrogen load at the full-scale level, in agreement with the differences in reported studies above.

In general, literature reveals insight into specific N₂O production mechanisms, however due to the complexity involved, no clear patterns in physico-chemical operational condition, micro-organisms composition and activity exists (Sivret et al., 2008) and measurements on N₂O emission in Denmark are scarce according to the knowledge of the authors (Thomsen et al., 2015). Nitrous oxide emission occur due to incomplete conversion of nitrate to free nitrogen and relies on a wide range of process conditions such as low oxygen levels in the process tanks, lack of COD for denitrification and fluctuating loads and modes of operation (Thomsen et al., 2015). The average of the two highest EF values from activated sludge processes was used to derive a national EF value of 0.32 % of the N content of the influent wastewater (Nielsen et al., 2014). The latter derived from an average of 0.6 and 0.035 % of the influent N multiplied by the ratio of the molecular weight of N₂O to N₂ and corresponds to an EF value of 4.99 in units of g N₂O/kg N in the influent wastewater.

The above emission factor is in good agreement with a recent Dutch study (Daelman et al., 2013; Thomsen et al., 2015) that indicates a N₂O emission factor of 28 g N₂O-N/kg of nitrogen in the influent wastewater. Danish studies show that the country specific emission factor, i.e. 24 g N₂O/PE in 2013 represents the higher end of measurements carried out at Danish wastewater treatment plants. Measurements performed at a high and low loaded WTTP in Denmark reveals an EF value in the range of 9 to 28 g N₂O/PE/ year (Thomsen et al., 2015). As such, the country specific EF value represents a conservative estimate of the direct N₂O EF. The EF value in units of g N₂O/PE has increased from 14 g N₂O/PE in 1990 to 24 g N₂O/PE in 2013. This increase do not reflect an increase in the population alone, but to a higher degree an increase in the contribution from industries to the N load of the influent wastewater. For this reason, and due to the fact that we have monitoring data on the influent amount of N, we use the emission factor 4.99 g N₂O/kg N in the influent wastewater. As such the country specific emission factor is kept constant throughout the time series; the increase in

the direct N₂O emission is to be found in the increasing amount of N in the influent wastewater. Still the emission factor is conservative compared to the IPCC guidelines, which provides an emission factor of 3.2 g N₂O/PE, representing a significant underestimation of the direct N₂O emission according to Danish state-of-art wastewater treatment technologies.

Table 2.5 shows, in addition to the activity data on the total influent amount of N, plant level data on the N content in the influent wastewater compared to national totals reported by the Danish Nature Agency revealing good agreement between the plant level database developed for future emission calculations and national data reported by the Danish Nature Agency.

Year	1990	1995	2000	2005	2010	2011	2012	2013
$m_{N,influent}$, country level, [tonne] ¹	14,679	22,340	26,952	32,288	27,357	30,049	26,316	29,557
$m_{N,influent}$, plant level, [tonne ¹	-	-	27,306	-	27,357	28,989	26,316	29,557
$m_{N,influent}$, anaerobic WWTPs, [tonne ^{]2}	-	-	14,779	-	12,855	11,829	7,416	10,317
$m_{N,influent}$, aerobic WWTPs, [tonne] ^{]2}	-	-	12,527	-	14,502	17,160	18,901	19,240
N _{influent} _anaerobic WWTPs, [%]	-	-	54	-	47	41	28	35
N _{influent} _aerobic WWTPs, [%]	-	-	46	-	53	59	72	65
COD/N ratio, plant level, all	-	-	13	-	14	12	13	13
Contribution from industrial inlet [%]	2.5	22.2	42.0	40.5	40.5	40.5	40.5	40.5
Population-Estimates (1000)	5,135	5,216	5,330	5,411	5,535	5,561	5,581	5,603

Table 2.5 Total nitrogen content in the influent wastewater at Danish WWTPs, reported in units of tonne TN.

¹DMEE, 1989, 1990 1992, 1994a, b, 1995a,b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003a, 2004a,2005, 2006, 2007, 2008, 2009a, 2010, 2011, 2012a, 2013, 2014.

²Selective extraction of plant level data on reported amounts of N in the influent wastewater for plants included in the Energy Producer Accounts (DEA, 2014).

At present, country level activity data has been used for calculation the nitrous oxide emissions from the Danish WWTPs as the present methodology do not differentiate between individual plant designs, e.g. with and without a biogas tank, struvite precipitation, etc. (Jensen et al., 2015; Thomsen et al., 2015). However, by combining plant level data from the energy producer accounts and the plant level data on nitrogen, it is possible to calculate the amount of N received at biogas producing plants, i.e. WWTPs having a biogas tank connected to the sludge line of the wastewater treatment plant (see Figure 3.1). Such data are presented in the third row of Table 2.5.

When calculating the nitrous oxide emission (see Chapter 2.3) it is assumed that approximately 90 % of the nitrous oxide emission originates from activated sludge processes; i.e. biological N and P removal processes performed by bacteria and microorganisms (Kampschreuer et al., 2009) occurring mainly prior to anaerobic digestion (Figure 3.1), aerobic stabilisation and additional treatment processes. For this reason, the methodology used for calculating the N₂O emission is the same for both plant types and the activity data used is the total amount of nitrogen in the influent wastewater provided in the first two rows of Table 2.5. The amount of N in the influent wastewater has increased by approximately 100 % since 1990; the latter caused by an increase in number of industries coupled to the public sewer system and increased population size (Table 2.5 and Nielsen et al., 2014).

2.5.2 Separate Industries

The total effluent amount of COD from 57 of the biggest industries in Denmark were reported to be around 88.000 tonne in 1985 corresponding to approximately 2 million person equivalents (DEPA, 1990). In the period 1985-1990, industries have implemented wastewater treatment technologies and less polluting processes resulting in a reduction of 80 % of the total industrial effluent amount of COD (DME, 1990 and 1998; Annex D, Table D.2). The total nitrogen discharge from industrial sources was reduced by around 80 % through the period 1989-98, while the discharge of phosphorus was reduced by approximately 90 % (DME, 1998). According to the knowledge of the author, the general picture is that no methane emission is occurring from separate industries. At present, only one industry is reporting biogas production to the Danish Energy Agency, which is included in the calculated amount of methane emitted and recovered from WWTP with anaerobic sludge digestion. The direct N2O emissions from separate industries have not been included in the National Inventory due to missing data. A first attempt to include direct N2O emissions from separate industries is presented in Annex E.

2.5.3 Wastewater discharges

For the wastewater discharges, the default IPCC emission factor of 0.005 kg N_2O -N per kg effluent N is used (IPCC, 2006). Discharges of N contained in effluent wastewater are comprised by: Effluent N from wastewater treatment plants, the separate industry, aquaculture, rain water conditioned effluents and scattered settlements. Activity data used for calculating N_2O emission from wastewater discharges of N to surface waters in the national inventory are presented in Table 2.6 (DME, 1992, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003a, 2004a, 2005, 2007, 2008, 2009a, 2010, 2012a, 2012, 2013, 2014; DMEE, 1994a and 1994b, 1995b, 1999b)

Year	1990	1995	2000	2005	2010	2011	2012	2013
Effluent from separate industry discharges	2,574	2,471	897	441	338	312	221	271
Rainwater conditioned effluent	921	867	762	622	762	703	729	1045
Effluent from scattered settlements	1,280	1,141	979	919	902	859	825	796
Effluent from aquaculture	1,737	1,735	2,714	1,225	933	1019	973	634
Effluent from WWTPs	16,884	8,938	4,653	3,831	4,025	3,916	3,849	3,652
Total effluent N	23,396	15,152	10,005	7,038	6,960	6,809	6,597	6,399

Table 2.6 N discharged with wastewater from different sources, [tonne N].

As may be observed from Table 2.6, the content of N in effluent wastewater is reduced by 78 % from 1990 to 2013. Effluents from separate industries has decreased by 89 % from 1990 to 2013 and in the same time interval the effluent N form scattered housed has decreased by 38 %; the latter may be explained by a reduction in the number of settlements(Annex B, Table B 2) reported to be reduced by 7 % (DME, 2015). Another cause for the reduction may be assigned to an improved treatment of wastewater within the scattered settlements (DME, 2015). The only source showing an increasing trend is the amount of N discharged to surface water in rainwater conditioned effluents, which has increased by 13 % from 1990 to 2013.

3 Verification

3.1 CH₄ emissions

Until the reporting year 2009, the emission factor used to calculate the potential methane production from anaerobic wastewater treatment processes was based on activity data extracted from the Danish sludge database, which has been closed down (Bagge, personal communication, February, 2013). Sludge statistics on the fraction of final sludge produced from anaerobic digestion were used as correction factor to derive at an EF_{AD} for the estimation of a gross methane conversion potential (Nielsen et al., 2009). The recovered (flared and used for energy production) amount of methane were estimated by summing up estimated amount of methane potential in different sludge disposal categories including sludge digested in a biogas reactor. The net methane emission was derived by subtraction the recovered amount of methane from the gross methane conversion potential.

Due to the low quality of data, including frequency of reporting, the activity data for the final disposal categories used for estimating the recovered amount of methane was underestimated, resulting in unrealistic high net methane emissions from wastewater treatment (Nielsen et al., 2009). For this reason, an inter-ministerial expert group recommended that the value of the theoretical emission factor for the fraction of sludge treated by anaerobic digestion only was defined. Based on the recommendation, the fractions of anaerobic and aerobic treated sludge were estimated, and used to derive an emission factor for the anaerobic digestion. Based on this change in methodology, the fugitive methane was at first estimated to be 10 % of the gross methane emissions (Nielsen et al., 2010).

From the reporting year 2011 until present, the methane recovery for anaerobic wastewater treatment with biogas production was set equal to 99 %; i.e. a reduction of the methane emission factor from 10 to 1 % of the biogas production (Nielsen et al., 2011). The UNFCCC review team were however, not satisfied with the approach of quantifying the methane emission factor; i.e. as $(1 - MR_{AD})$; MR_{AD} , the methane recovery, being defined as the Danish biogas generation and combustion efficiency of 99 % (UNFCCC, 2013). For this reason a review of plant specific data were initiated with the purpose of identifying process emissions from the biogas production at wastewater treatment plants, and emissions reported as biogas loss by venting were presented in Nielsen et al. (2014). Data on biogas lost via venting is scarce but based on a review of environmental account data reported voluntary by the single WWTPs the value used presently is 1.3 % of the gross energy production as documented in Nielsen et al. (2014). The UNFCCC review team is still not satisfied with the transparency and completeness in the national activity data and derived emissions factor, recommended better documentation (UNFCCC, 2013, 2014). For this reason, this chapter presents an overview and comparison of different data sources with the aim of further verification of the selected EF value used in the Danish emission inventory.

3.1.1 Completeness in TOW data

From the reporting year 2015 and forward, the total organic waste (*TOW*) entering the Danish WWTPs is quantified in units of COD. A plant level COD database has been designed for use in future plant level emission

modelling. Plant level COD data have been verified to sum up to the yearly national level reported COD data by the Danish Nature Agency as shown in Table 3.1.

Table 3.1 TOW data (DMEE, 1989, 1990 1992, 1994a, b, 1995a, b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014)⁶.

Unit of measure [tonne COD]	1990	1995	2000	2005	2010	2011	2012	2013
TOW, country data ¹	-	-	381,700	357,842	369,873	386,223	349,876	386,151
<i>TOW</i> , plant level data ²	-	-	350,689	-	369,873	371,713	349,876	386,151
TOW, default COD IPCC ³	278,914	283,276	289,484	-	300,603	302,009	303,089	304,290
Contribution from industrial COD in the inlet [%]	2.5	22.2	42.0	40.5	40.5	40.5	40.5	40.5
TOW, default COD IPCC, corrected ⁴	285,887	346,163	411,067	293,904	422,304	424,279	425,797	427,527
<i>TOW</i> , National Unit PE BOD value ⁵	303,657	308,405	315,164	412,893	327,269	328,800	329,976	331,283
TOW, average	294,772	327,284	364,655	319,976	372,330	377,754	363,881	382,778
Percent standard deviation [%]	4.4	10.1	15.4	23.8	15.0	15.0	15.0	15.2

¹"TOW, country data" are based on reported BOD data converted into COD by multiplying with the default COD/BOD conversion factor of 2.4 (IPCC, 2006).

²"TOW, plant level data" are based on plant level COD monitoring data that were extracted from respectively reports from the Danish Nature Agency and the Danish water quality database (www.miljoeportalen.dk).

³"TOW, default COD IPCC" are the default IPPC PE value of 62 g BOD/person/day multiplied by the default COD/BOD conversion factor of 2.4 (IPCC, 2006) multiplied by the population number of Denmark.

⁴"TOW, default COD IPCC, corrected" are the above corrected for the contribution from industries connected to the collective sewer system in Denmark.

⁵"TOW, National Unit PE BOD value" are the national BOD value of 21.9 kg BOD per year (<u>www.mst.dk</u>) multiplied by a national COD/BOD conversion factor of 2.7 obtained as an average of the yearly reported BOD and COD monitoring data throughout the time series and multiplied by the population number of Denmark.

*Data for the whole time series provided in Annex 1, Table 1.1.1.

The "*TOW*, average" is used as the key activity data set for deriving methane emissions from wastewater treatment. "TOW, average" is the average of available data throughout the time series. The relative standard deviation is above the 10 % provided in the NIR for the majority of the cases (Nielsen et al., 2015). However, upon using the plant level data, the uncertainty is insignificant as may be observed from comparing the national level country data reported by the Danish Nature Agency and our extracted plant level data in the two first rows of Table 3.1.

The "*TOW*, plant level data" are part of a database, designed specifically for the emission inventories, in which plant level data from the Danish monitoring program are paired with plant level data from the Danish Energy Agency. Country level data are the sum of the yearly monitoring data for the Danish WWTPs, while the plant level data consists of data from the water quality database. These data have been going through a quality control process to be sure that our plant level data resembles the yearly reported national sum as reported by the Danish Nature Agency. A first version of the plant level data is presented in the Table 3.1 showing that the plant level data resembles the country level data reported by the Danish Nature Agency (Data for the whole time series are provided in Annex A, Table A 1).

The average TOW data was used to allocate COD in the influent wastewater treated at WWTP using, respectively, aerobic stabilization and anaerobic digestion as sludge management strategy (Table 3.11 and Annex A, Table A 3). The allocation was performed by identifying and coupling plant level data from the water quality database with plant level data on energy production

from sludge-based biogas plant; i.e. the anaerobic digester tank at the Danish WWTPs.

Besides COD in the influent wastewater, data are also available on COD in the effluent wastewater and for primary, secondary and post digested sludge (Henze et al., 2010; Thomsen et al., 2015). Furthermore, COD data are measured and reported by the WWTPs themselves in the so-called Environmental Reports, which, in some cases, are published on a yearly basis as part of their continuous control, monitoring and optimization of their treatment technologies. The plant level environmental reports also include information about external carbon received as additional supply for biogas and fertilizer production at some WWTPs (cf. Chapter 3.1.3). As such, the plant level environmental reports represent a third data source in addition to the activity data reported by the Danish Nature Agency and the Danish Energy Agency.

3.1.2 COD mass balance - National level

An example of a COD mass balance for centralised Danish wastewater treatment plants treating the sludge by anaerobic digestion anno 2015 is visualised in Figure 3.1.

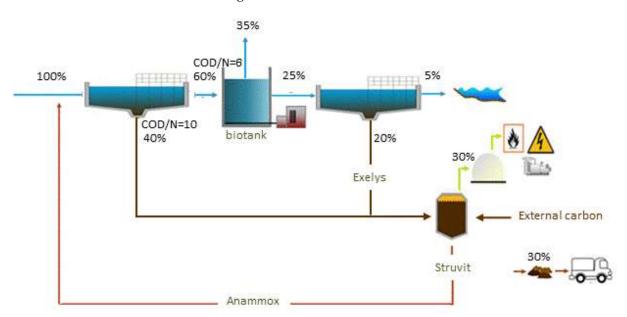


Figure 3.1 Visualization of the treatment steps and conversion processes that may be in play at Danish wastewater treatment plants. The most important for the present methodology report being the biotank, i.e. aerobic biological treatment, and brown the box in which anaerobic digestion takes place. Exelys is a sludge hydrolysis technology, which increases the methane conversion potential by increasing the biodegradable fraction of carbon in the ingestate, struvite precipitation as an example of a technology for N and P capture and reuse technology that reduces the N content in the reject water and thereby potentially the N₂O emission. Anammox representing an alternative N removal technology that reduces the reject water line supports a favourable COD/N ratio needed for optimal condition for conventional biological N removal in the biotank. N removal from the reject water becomes more important upon the use of externally supplied biomass for codigestion with the sludge to increase the bioenergy production (Thomsen et al., 2015).

In accordance with the recommendation of the UNFCCC review team, a TOW budget for the whole time series was set up, in units of Chemical Oxygen Demand (COD), according to Eq. 9, which follows the principle of equation 6.1 in the IPCC guidelines (IPCC, 2006):

 $COD_{influent} + COD_{external \ carbon} - (COD_{effluent} + COD_{final \ sludge} + COD_{air \ emission, \ biotank} + COD_{recovered}) = COD_{vented}$ Eq. 9

where

COD_{influent} is the organic matter in the influent wastewater

COD_{external carbon} is the external organic matter added to the digester tank

*COD*_{effluent} is the organic matter in the effluent wastewater

*COD*_{final sludge} is the organic matter in the final sludge

*COD*_{air emission, biotank} is the amount of organic matter that are transformed to gas during the biological treatment processes

COD_{recovered} is the organic matter transformed into biogas either converted into energy or flared

COD_{vented} is the organic matter converted into biogas, but lost via venting

The mass balance visualised in Figure 3.1 is a reproduction from Petersen (2013), representing a two-step plant with anaerobic sludge digestion and advanced technologies as described in more detail in Thomsen et al., 2015. For the WWTP using aerobic stabilization a simplified version of equation 9 was adopted as shown below.

$$COD_{influent} - (COD_{effluent} + COD_{final \ sludge} + COD_{air \ emission, \ biotank}) = 0 \qquad Eq. \ 10$$

The national level COD mass balances for the whole time series and for both WWTPs with anaerobic digestion and aerobic stabilization aligned according to reported data on effluent COD, energy statistics and final sludge amounts may be presented as shown in Table 3.2 (Data for the whole time series provided in Annex A, Table A 2).

Table 3.2 COD mass balance for Danish WWTPs, [tonne COD]^{*}.

Table 3.2 COD mass balance for Danish V	VWTPs, [to	nne COD] .						
Year	1990	1995	2000	2005	2010	2011	2012	2013
COD mass balance for WWTPs with aerob	ic sludge tr	eatment						
Biotanks, COD _{air emission} [%]	30	45	60	60	60	60	60	60
Effluent, COD _{effluent} [%]	52	7	5	5	4	8	8	5
Final sludge, COD _{sludge} [%]	18	48	35	35	36	32	32	35
Influent, COD _{influent} [tonne]	188,995	173,723	187,984	189,672	194,971	218,565	249,939	245,322
Biotanks, COD _{air emission} [tonne]	56,698	78,175	112,791	113,803	116,983	131,139	149,963	147,193
Effluent, <i>COD_{effluent}</i> [tonne]	97,360	11,835	9,399	10,432	7,799	17,485	19,995	12,266
Final sludge, COD _{sludge} [tonne]	34,936	83,713	65,795	65,437	70,190	69,941	79,980	85,863
Eq.10	0	0	0	0	0	0	0	0
COD mass balance for WWTPs with anaer								
Biotanks, <i>COD_{air emission}</i> [%]	20	30	35	30	25	25	25	25
Effluent, <i>COD_{effluent}</i> [%]	20	20	5	5	4	8	8	5
Digester tank, <i>COD_{ingestate}</i> [%]	44	40	48	52	57	54	54	56
Final sludge, COD _{sludae} [%]	11	40 10	12	13	14	13	13	14
Recovered, COD _{recovered} [%]	43	39	47	51	56	53	53	55
Vented, COD _{recovered} [%]	43 0.6	0.5	0.6	0.7	0.7	0.7	0.7	0.7
Influent, COD _{influent} [tonne]	105,777	153,561	176,671	173,898				
					177,359	159,189	113,942	137,456
Biotanks, <i>COD_{air emission}</i> [tonne]	21,155	46,068	61,835	52,170	44,340	39,797	28,486	34,364
Effluent, <i>COD_{effluent}</i> [tonne]	26,444	30,712	8,834	9,564	7,094	12,735	9,115	6,873
Ingestate, COD _{ingestate} [tonne]	58,177	76,781	106,003	112,164	125,925	106,657	76,341	96,219
Final sludge, <i>COD_{sludge}</i> [tonne]	11,635	15,356	21,201	22,433	25,185	21,331	15,268	19,244
Recovered, COD _{recovered} [tonne]	45,937	60,626	83,700	88,565	99,430	84,216	60,279	75,974
Vented, COD _{vented} [tonne], Eq. 9	605	799	1,102	1,167	1,310	1,109	794	1,001
Verification of final sludge amounts								
COD in digestate [tonne COD/tonne DM]	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Inorganics in digestate [%]	40	40	40	30	30	30	30	30
COD in aerobic stabilized sludge								
[tonne COD/tonne DM]	1.20	1.20	1.20	1.00	1.00	1.00	1.00	1.00
Inorganics in aerobic stabilized sludge								
[%]	50	50	50	40	40	40	40	40
Estimated amount of digestate [tonne DM]	24,241	31,992	44,168	40,059	44,973	38,092	27,265	34,364
Estimated amount of aerobic stabilized	77 044	198,661	157 202	109 526	116 690	115 070	122 700	140 704
sludge [tonne DM] *	77,844	198,001	157,393	108,536	116,689	115,979	132,709	142,734
Estimated amount of total final sludge	100.005	220 652	004 504	140 505	404 000	454.070	450.074	477.000
[tonne DM]*	102,085	230,653	201,561	148,595	161,663	154,070	159,974	177,098
Reported total final sludge [tonne DM]	-	187,430	163,422	76,084	-	-	-	116,998
%RSD total final sludge	-	15	15	46	-	-	-	29
TOW in final sludge [tonne COD]	44,070	98,132	86,781	87,554	95,199	90,918	94,894	104,884
Inorganic content [%]	-	48	47	-	-	-	-	10
Reported amount of digestate [%]	-	31	43	54	-	-	-	29
Amount of digestate [tonne DM]	-	58,103	69,945	41,085	-	-	-	34,329
%RSD digestate	-	40	31	2	-	-	-	0.07
Verification of reduction efficiency								
Reported reduction efficiencies [%]	58	87	95	92	96	92	92	95
Effluent COD, National level [tonne COD]	123,804	42,547	18,233	30,220	14,893	30,220	29,110	19,139
Verification of methane production	0,001	,0	. 0,200	_ 0,0	,000	50,220	_0,.10	. 0, 700
CH _{4,AD,gross} [Gg], (Eq. 5)	11.32	16.42	16.42	17.50	16.10	15.75	17.66	17.99
<i>CH_{4,AD,gross}</i> [Gg], (Eq. 3) <i>CH_{4,AD,gross}</i> [Gg], (Eq. 4a)	10.94	18.65	16.28	17.23	19.34	16.38	11.73	14.78
EF_{AD} [kg CH ₄ /kg COD] = B_0 * MCF_{AD} * f_{AD}	10.34	10.00	10.20	17.20	10.04	10.00	11.75	14.70
$(Eq.4a) = B_0 MC F_{AD} T_{AD}$	0.07	0.09	0.09	0.10	0.11	0.10	0.10	0.11
Estimated <i>EF_{AD}</i> [%]	-3.4	11.9	-0.9	-1.6	16.8	3.9	-50.6	-21.7
*Estimated from equation 9 and 10.	-3.4	11.9	-0.9	-1.0	10.0	5.9	-50.0	-21.1
Loundley non equalion of any to.								

*Estimated from equation 9 and 10.

COD mass balances (Table 3.2, part 1 and 2)

COD mass balances for WWTPs using 1. aerobic and 2. anaerobic sludge treatment have been approached from plant level integration of plant level data received from the Danish Nature Agency and the Danish Energy Agency, and calibrated against by 3. reported final sludge amounts (chapter 3.1.7), 4. effluent wastewater reduction efficiencies (Table 1.1) and 5. the gross energy production, which includes flaring (Tafdrup, DEA, personal communication, august, 2014).

Influent COD - COD influent

The absolute amounts of COD in the influent wastewater, is known (Table 2.3) and allocated to respectively WWTPs with anaerobic digestion and aerobic stabilization according to plant level data on biogas producing WWTPs by the Danish Energy Agency (Table 2.4 and Annex A, Table A 3).

Effluent COD - COD_{effluent}

The effluent COD is obtained from the reported reduction efficiencies of the influent COD provided in Table 1.1, which makes it possible to estimate the absolute amount of COD in the effluent wastewater at national level. Tradeoffs in terms of a lower performance of the WWTPs starting (also) to implement anaerobic digester tanks in the early nineteens is anticipated, while WWTPs with aerobic sludge stabilisation is expected to perform better having reached a mature level of technology performance (Thomsen & Lyck, 205; Henze et al., 2014).

Air emissions during the biological process tank - CODair emission, biotank

The COD mineralised during biological wastewater treatment is set equal to 30 % in 1990 increasing to 60 % from 2000 and forward at WWTPs with aerobic stabilization (cf. Annex A, Table A 2). The argumentation for this is technological development of the biological treatment processes driven by quality requirement to the N content in the effluent wastewater (Henze et al., 2014).

For WWTPs designed for optimized biogas production, the COD loss during biological wastewater treatment was set equal to the trend for WWTPs without biogas production. The increase in COD reached a maximum of 35 % in the years 1996-2004, after which the COD loss decreased to a constant level of 25 % from 2008 and forward. From 2008-2013 an optimisation of the conservation of COD is presumed due to the development of 2-step WWTPs with the possibility for using primary in addition to the secondary sludge used in 1-step plants as ingestate as shown in Figure 3.1 (Kristensen & Jørgensen, 2008; Niero et al., 2014; Jensen et al., 2015; Thomsen et al., 2015).

COD_{recovered} and COD_{vented}

The above described trends were calibrated to respect that the amount of recovered and flared methane should be equal or greater than the reported amounts of recovered methane for energy production (cf. Table 3.8) for the anaerobic plants; i.e. for zero methane loss situation, the percent COD recovered equals f_{AD} in equation 4a. Still, the sum of effluents, i.e. $COD_{effluent}$, from both plant types should equal the monitored and reported amount of effluent COD in Table 3.2.

COD in the final sludge - COD_{final sludge}

For the WWTPs with aerobic sludge stabilisation the percent COD in the final sludge were calculated according to eq. 10, while for the WWTPs with anaerobic sludge digestion eq. 9 is applied adopting the IPCC methane correction factor MCF_{AD} ingestate, meaning that the unconverted COD or recalcitrant amount of carbon in the final sludge, MCF_s , equals $1-MCF_{AD}$ (1-0.8=0.2). In short, the percent COD in the digestate is calculated as percent COD in the influent minus the COD loss in the effluent and biological treatment step multiplied by the MCF_s (Eq. 3).

Finally, the COD mass balance should respect the amounts of produced final sludge as presented in Table 3.10 and discussed below.

Verification of sludge amounts (Table 3.2, part 3)

Final sludge amounts produced by WWTPs using anaerobic digestion and aerobic stabilisation, respectively, is reported in the Danish sludge database held by the Danish EPA reported in unit of dry matter (DM) (Table 3.10).

Conversion of the final sludge amounts from units of units of COD into units of dry matter was performed using a value of 0.8 tonne COD/tonne DM sludge for anaerobic digested sludge. The conversion into dry matter, corrected to take into account an inorganic matter content of 40 % (Henze, 2010), reduced to 30 % from 2005 and forward based on increase in biological phosphorous removal replacing the use of chemical precipitation agents (Jensen et al., 2015).

For WWTPs producing aerobic stabilized sludge $CaCO_3$ may be added in amounts corresponding to 10-30 % of the dry matter (Henze et al., 2010). The total content of inorganics in aerobic stabilized final sludge was set equal to 50 % in the period 1990-2004 and reduced to 40 % from 2005 and forward as a not all aerobic stabilized sludge are being calcified (DMEE, 1999 and 2001; DME, 2003b, 2004b, 2009b and 2012b; DCCA, 2014).

In general, the organic matter content in sludge is around 60-70 % of the total dry matter content; the remaining 30-40 % of the dry matter is of inorganic origin. Of the 60-70 % organic dry matter, approximately 40 % represent organic degradable matter, while the residual non-degradable represents the recalcitrant carbon fraction remaining in the final sludge at plant with anaerobic sludge digestion (Eq. 3).

The nitrogen content represents the largest share of about 30 kg total N per tonne of dry matter, while the phosphorus (P) content is about 20 kg P per tonne of dry matter and the potassium content is approximately 2 kg per tonne dry matter. The content of metal salts varies greatly from one sludge producer to another according to the number of metal emitting industries in the catchment area of the individual WWTPs. The average metal contents in the final sludge are: 25 kg Fe (iron)/tonne of dry matter, 2 kg Zn (zinc)/tonne, 0.25 kg Cu (copper)/tonne, 0.4 kg Cd (cadmium)/ tonne and 40 g Ni (nickel)/ tonne dry matter (BAI, 2011; Henze, 2008; Jensen et al., 2015; Niero et al., 2014; Pizzol et al., 2015). Verification of the final sludge amounts, reflected in the percent relative standard deviation (%RSD total final sludge) ranging between 3 and 30 %, when comparing the estimated amount of total final sludge in dry matter with the reported amount of total final sludge in tonne DM.

The COD content in the final sludge is verified by deriving a measure of the inorganic content of the final total amount of sludge. This is obtained by 1 minus the sum of the calculated COD in final anaerobic digested and aerobic

stabilised sludge (provided in Table 3.2 part 1 and 2) divided with the reported produced amount of total dry matter final sludge resulting (part 3). The result of this exercise is an estimated content of inorganics which is inside the range of parameters (30-50 %) used for transforming aerobic and anaerobic treated final sludge into units of tonne DM, with exception for 2007 and 2013 (cf. Annex A, Table A 2).

Finally, the amount of final sludge from WWTPs with anaerobic sludge treatment was verified by comparing the derived amount from the COD mass balance (part 2 in Table 3.2) transformed into units of dry matter, with the reported amount of final sludge from anaerobic treatment. The percent relative standard deviation (%RSD digestate) is ranging from 1 to 40 %, which is acceptable taken into account the uncertainty in the COD mass balance as well as reporting frequency in the national statistics.

Verification of reduction efficiency and methane production (Table 3.2, part 4 and 5)

Regarding verification of respecting the reduction efficiencies, the percent distribution of COD consumption during the biological treatment were calibrated to match the sum of effluent from the two plant types. Still, the amount of recovered and vented COD should equal the gross methane emission calculated according to equation 4a or at least correspond to the amount of recovered methane (Eq. 5) or the gross energy production reported by the Danish Energy Agency.

As may be observed from Table 3.2 it was not possible to obtain gross methane production data from the COD mass balance that exceeds the methane content in the biogas based energy production reported by the Danish Energy Agency. A likely reason for this is the tendency for increased use of external carbon as feedstock for the biogas production which is so far not reported, an therefore not accounted for in the national methodology. Data on the addition of external carbon at plant level is still not complete but may be obtained from plant level Environmental reports published by the WWTPs themselves (e.g. Billund Vand A/S, 2014; Chapter 3.1.3).

The above COD mass balance supports that the country-specific methane emission from anaerobic sludge treatment, i.e. venting, is conservative; the latter presuming an insignificant addition of external carbon to the ingestate at WWTPs using anaerobic sludge digestion in a national perspective.

3.1.3 COD mass balance - Plant level

This chapter presents a COD mass balance for two WWTPs using anaerobic sludge digestion as sludge management strategy.

WWTP1 is a big wastewater treatment plant, with an influent wastewater load of 205,833 PE in 2013, receiving no external carbon except for septic sludge. WWTP2 is a small plant with an influent wastewater treatment load of 10,137 PE in 2013 (DME, 2014) receiving 10 times as much ingestate TOW in terms of external carbon the ingestate compared to in the sludge from the WWTP if self. COD mass balances and associated methane budgets for the two plants are presented in the below sub-chapters.

WWTP1

WWTP1 represents a plant receiving an insignificant amount of external carbon added to the digester tank. Table 3.3 presents data from the environmental report (ER) of WWTP1.

Table 3.3 Plant level COD mass balance, Eq. 9, based on reported data for WWTP1, tonne COD/year.

Year	2008	2009	2010	2011	2012	2013
COD _{influent} ¹	13,900	15,800	13,000	12,500	11,400	11,563
COD _{external carbon} ¹	-	-	-	-	2,474	2,413
CODair emission, biotank ²	4,048	3,616	3,013	2,012	3,958	4,135
% COD loss in the aerobic biotank	29	23	23	16	35	36
COD _{effluent} ¹	720	790	769	757	586	564
% COD in effluent	5	5	6	6	5	5
DM in ingestate ¹	8,800	10,400	8,724	9,417	9,028	9,028
FeCl in ingestate ¹	1,190	911	1,068	1,318	1,303	1,303
COD _{ingestate} ³	9,132	11,387	9,187	9,719	9,270	9,270
%COD in the ingestate (f _{ad})	66	72	71	78	60	59
Nm ³ biogas ¹	3,400,000	3,100,000	3,300,000	3,100,000	3,300,000	3,211,263
$COD_{recovered}^{4}$ (ER)	6,365	5,803	6,178	5,803	6,178	6,011
MCF _{ad}	0,70	0,51	0,67	0,60	0,81	0,78
COD _{recovered} (IPCC, 2006)	7,306	9,109	7,350	7,775	7,416	7,416
MCF _{ad}	0.80	0.80	0.80	0.80	0.80	0.80
COD _{recovered} (DEA)	5,983	5,325	5,242	4,886	5,615	5,302
MCF _{ad}	0.66	0.47	0.57	0.50	0.61	0.57
Sludge_combustion [tonne DM]	5,200	5,570	5,496	5,874	7,914	5,105
<i>COD</i> _{final sludge} ⁵ (ER)	2,496	2,674	2,638	2,820	3,799	2,450
% COD in the sludge (ER)	0.18	0.17	0.20	0.23	0.27	0.18
COD _{final sludge} ⁶ (Eq. 3)	1,826	2,277	1,837	1,943	1,854	1,854
% COD in the sludge (Eq. 3)	0.13	0.14	0.14	0.16	0.13	0.13
COD _{vented} ⁷	271	2,917	403	1,108	-646	815
COD _{vented} ⁸	941	3,313	1,203	1,984	1,298	1,412
COD _{vented} ⁹	1,323	3,792	2,139	2,901	1,861	2,121
COD lost via venting, [% of recovered COD]	4	50	7	19	-10	4

¹Reported in the Environmental Report.

²Calculated as COD_{air emission, biotank} = COD_{influent} + COD_{external carbon} - COD_{effluent} - COD_{ingestate}.

³ Reported in units of dry matter. Transformed into units of COD by subtracting the amount of FeCl added for the chemical precipitation of phosphorous before multiplying by a factor of 1.2 tonne COD/tonne DM sludge (Henze et al., 2010).

⁴Calculated from the reported biogas production multiplied by a volume percent content of methane of 65 % and a density of 0.72 kg CH_4 / Nm^3 and lastly converted into unit of COD by dividing with the methane conversion factor of 0.25 kg CH_4 /kg COD.

⁵ Reported in units of dry matter. Transformed into units of COD by correction for the content of inorganic material, i.e. multiplying with 0.6, an multiplying by 0.8 tonne COD/tonne DM (Henze et al., 2010).

⁶ Calculated according to Eq. 3: COD_{final sludge}=(1- MCF_{AD})*S_{ingestate}, using WWTP1 derived data to quantify S_{ingestate}, tet (=COD_{ingestate}).

⁷ Calculated according to equation 9 basd on WWTP1 ER data.

⁸ Calculated according to equation 9 basd on WWTP1 ER data, except or the *COD*_{final sludge} which is based on Eq. 3.

⁹ Calculated according to equation 9 basd on WWTP1 ER data, except or the *COD*_{recovered} which were replaced by DEA data.

COD data in the influent and effluent wastewater as well as ingestate amount and final sludge for combustion (digstate) presented in Table 3.3 originates from the environmental report of WWTP1.

For reported received external carbon in terms of septic sludge in tonnes of dry matter, a COD content of 0.8 kg COD kg DM is assumed (Henze et al., 2010).

For the reported amount of the dry matter final sludge, it is assumed to contain 40 % inert mass and for the remaining organic dry matter fraction a COD content of 0.8 kg per kg DM is assumed.

The recovered amount of COD was derived from the reported amount of biogas production in tonne CH_4 using the maximum methane conversion potential of 0.25 kg CH_4 per kg COD.

The plant reports that around 24 % of the influent COD is lost during aerobic biological treatment processes, corresponding to the level presumed for the latest years in the national COD mass balance for WWTPs with anaerobic sludge treatment (Annex A, Table A 2). In 2012 and 2013 the COD lost during the aerobic biological treatment at WWTP1 is higher estimated based on the lower reported amount of ingestate sludge.

The calculated f_{AD} value, quantifying the amount of COD conserved in the ingestate is highest in 2011 and may be influenced by missing data on external carbon in terms of septic sludge. The national level COD mass balance shows an average f_{AD} value for the whole time series of 0.6 (Nielsen et al., 2014) while the average value for the reporting years 2008-2013 of WWTP1 is slightly lower; i.e. 0.54.

The percent COD remaining in the final sludge is higher for WWTP1 compared to the average national level of 12 % (cf. Table 3.2 and Annex A, Table A.2) as the WWTP1 derived COD value in the final sludge shows an value of 20 %.

By using the COD data in Table 3.3 as input parameters in equation 9, the methane lost via venting expressed in units of COD in percent of the recovered COD is ranging from 0 to 50 %.

The mass balance presented in Table 3.3 shows differences in COD recovered between data derived from the WWTP1 Environmental report, the energy statistics as well IPCC derived data. Especially, the methane correction factors (MCF_{AD}) derived from the ratio between the recovered COD and the COD in the ingestate, indicates that the performance of biogas production at WWTP1 is lower (0.51-0.81) compared to the default IPCC MCF_{AD} of 0.8 (cf. Table 3.3).

Table 3.4 presents a resume of the COD mass balance in Table 3.3 using the DEA derived COD recovery (i.e. " $COD_{recovered}$ (DEA)") in place of the theoretical WWTP1 derived COD recovery data (" $COD_{recovered}^4$ (ER)" in Table 3.3).

Table 3.4	Plant level COD	mass balance	for WWTP1,	[tonne	COD/year].
-----------	-----------------	--------------	------------	--------	------------

			/ L			
Year	2008	2009	2010	2011	2012	2013
CODinfluent	13,900	15,800	13,000	12,500	11,400	11,563
COD _{external carbon}	-	-	-	-	2,474	2,413
COD _{effluent}	720	790	769	757	586	564
COD _{ingestate}	9,132	11,387	9,187	9,719	9,270	9,270
COD _{final sludge}	2,496	2,674	2,638	2,820	3,799	2,450
CODair emission, biotank	4,048	3,616	3,013	2,012	3,958	4,135
COD _{recovered (ER)}	6,365	5,803	6,178	5,803	6,178	6,011
COD _{vented}	271	2.910	372	1.096	-706	808
Venting in percent of recovered COD [%]	4	50	6	19	-11	13

The COD lost by venting is calculated as the WWTP1 derived data on COD in the ingestate, *COD*_{ingestate}, and final sludge, *COD*_{final}; i.e as *COD*_{ingestate} - *COD*_{final} - *COD*_{recovered} (DEA).

The methane potential lost via venting in percent of the recovered methane, expressed in units of COD, range between 0 to 50 %.

The mass balance for the methane conversion, recovery and loss calculated according to Equation 3 as recommended by the UNFCCC review team are represented in Table 3.5.

Table 3.5 COD in the influent wastewater and resulting methane budget according to equation 3 and 4, [tonne CH₄] for WWTP1.

Data source	2008	2009	2010	2011	2012	2013
COD _{influent (ER)} [tonne]	13,900	15,800	13,000	12,500	11,400	11,563
COD _{influent (DNA)} [tonne]	13,352	17,424	9,930	12,947	11,899	11,252
%RSD	3	7	19	2	3	2
CH _{4,AD,gross (Eq.4a}) (NM) ¹	1,602	2,091	1,192	1,554	1,428	1,350
$CH_{4,AD,gross(Eq.4b)}(ER)^2$	1,826	2,277	1,837	1,944	1,854	1,854
$CH_{4, AD, net energy} + CH_{4,AD, flaring}$ (DEA)	1,496	1,331	1,310	1,221	1,404	1,325
Bo*(1- MCF _{AD})*COD _{ingestate} ³	624	668	659	704	949	612
Bo*(1- MCF _{AD})*COD _{ingestate} ³	457	569	459	486	464	464
CH _{4, AD, net} ⁴	-126	377	68	236	-13	65
Venting in percent of recovered CH ₄	-8%	28%	5%	19%	-1%	5%

¹Calculated according to equation 4a.

²Calculated according to Equation 4b.

³Calculated according to Equation 3; the part of the equation relation to the methane potential remaining in the final sludge.

⁴Calculated according to Equation 3.

Table 3. shows the plant level COD data reported in the Environmental Report (WWTP2 ER) and Danish Nature Agency (DNA) and reflects an uncertainty level, quantified as the percent relative standard deviation, in the range of 2-19 %.

Calculation of the gross emission is according to Equation 4a. For the National Methodology (NM), the default *MCF* (0.8) and B_o (0.25 kg CH₄/kg COD) have been applied to the DNA reported data according to equation 4a, while for the "*CH*_{4,AD,gross (Eq.4a and 4b)} (WWTP1 ER)", the B_o was multiplied with the actual amount of COD conserved in the ingestate as reported in Table 3.4.

The methane recovered for energy production and flaring reported by the Danish Energy Agency (DEA) was selected for quantifying the last part of equation 3, i.e. " $CH_{4, AD, net energy} + CH_{4,AD, flaring}$ ", while methane recovery data from the Environmental Report (ER) was excluded as these are reported as "calculated".

The methane potential contained in the final sludge, was obtained by multiplying the WWTP1 ER derived COD content in the final sludge (Table 3.3) by the B_o value 0.25 tonne CH₄/tonne COD.

The reported data on the COD content in the ingestate were used to estimate the methane content in the final sludge; i.e. $B_o *S = B_o *(1 - MCF_{AD}) * COD_{inges-tate}$.

The net emission, $CH_{4, AD, net}$, represents the amount of methane lost via venting and is calculated according to equation 3. The results on venting in percent of recovered methane indicates that the country-specific emission factor (eq. 5) may be overestimated as the results show an average value of 10.6 %; still acceptable, the uncertainty range of the input data taken into account.

WWTP2

WWTP2 is a small plant with a wastewater influent load of 10,137 PE in 2013 (DME, 2014). The plant receives four types of external carbon (Thomsen et al., 2015):

- Organic household waste (OHW) corresponding to 729 tonne COD and an estimated B_o value of 0.28 kg CH₄/kg COD. The B_o value were derived by multiplying a methane conversion potential of 0.5 Nm³ CH₄/kg dry matter (DM) OHW with a COD content of 1.3 kg COD/kg DM OHW resulting in a B_o value of 0.38 Nm³ CH₄/kg COD corresponding to 0.28 kg CH₄/kg COD (DME, 2003).
- 2. Sludge from a neighbouring WWTPs with a dry matter content of approximately 20 % and a COD content of 1.1 kg COD/kg dm sludge corresponding to 1210 tonne COD. The default B_0 value of 0.25 kg CH₄/kg COD is used.
- 3. Industrial liquid waste with a high content of fats corresponding to 930 tonne COD and an estimated B_0 value of 0.22 kg CH₄/kg COD. The B_0 value were derived by multiplying a methane conversion potential of 0.73 Nm³ CH₄/kg fat with a COD content of 2.4 kg COD/kg fat resulting in a B_0 value of 0.3 Nm³ CH₄/kg COD corresponding to 0.22 kg CH₄/kg COD.
- 4. Liquid waste from an airport with a high ethanol/glycol content corresponding to 516 tonne COD and an estimated B_o value of 0.13 kg CH₄/kg COD. The B_o value were derived by multiplying a methane conversion potential of 0.38 Nm³ CH₄/kg EtOH with a COD content of 2.15 kg COD/kg EtOH resulting in a B_o value of 0.18 Nm³ CH₄/kg COD corresponding to 0.13 kg CH₄/kg COD.

The COD mass balance for WWTP2 for the year 2013 is presented in Table 3.6.

	WWTP2 ER	DNA, DEA	% difference
COD _{influent}	632	565	11
COD _{external carbon}	3,385	3,385*	-
COD _{effluent}	69	31.6	54
CODingestate	3,773	3,723	
COD _{final sludge}	425	753*	-77%
CODair emission, biotank	221	198	11
COD _{recovered}	3,018 ¹	2,979 ¹	1
COD _{vented}	315 ²	39 ³	88
% COD lost via venting	10%	1.3%	

Table 3.6 COD mass balance using input data received from WWTP2 (WWTP2 ER) and data reported by, respectively, the Danish Nature Agency (DNA) and Energy Agency (DEA), [tonne COD].

*WWTP2 ER data on external sludge were used in the DNA, DEA column to estimate the final sludge and the amount of recovered COD.

¹Calculated according to equation 4b.

²Calculated according to equation 9.

³Calculated according to equation 5.

Plant level data for WWTP2 shows that the reduction efficiency of COD, i.e. the concentration in the effluent wastewater, is 54 % higher (double) than

the national COD reduction efficiency of 95 % (cf. Annex A. COD data, Table A 2).

The COD entering the digester tank is set equal to the sum of 60 % of the COD in the influent wastewater (Figure 3.1) and the external carbon. For the "WWTP2 ER" column an additional smaller contribution of 9 tonnes COD from reject water (Thomsen et al., 2015) is added. Such contribution is judged insignificant and not taken into account in the "DNA, DEA" column.

Both the influent and effluent COD data reported in the national monitoring program is smaller compared to the data reported in the plant specific Environmental Reports. One explanation may be that the plant level environmental reports are based on a higher number of samples compared to the 12 samples included in the National Monitoring Program (Rindel, personal communication, august, 2014).

The COD in the final sludge (column 2 (WWTP2 ER)) is based on the reporting of 4200 tonnes final sludge for agricultural application, with a dry matter content of 20 %. Of the 20 % dry matter content, 40 % consist of inert carbon and inorganic material (i.e. the concentration of Pb (lead), Cd (cadmium), Cu (copper), Hg (mercery), Ni (nickel), Zn (zinc), TN (total nitrogen) and TP (total phosphorus) being respectively 32, 2, 172, 1, 34, 883, 92, 47 ppm total dry matter).

Another approach was to use the measured organic matter content by loss on ignition (504 tonnes), which was corrected for 40 % contribution from inorganic. Both numbers were converted into units of COD using the plant specific number on the COD content of 874 mg COD/kg TS resulting in final sludge values of respectively 293.6 and 264.3 tonnes COD. The average value, 279 tonnes COD, was used adding the contribution from external carbon for which it was assumed that a fraction of 0.2 of the OHW and the external sludge remains in the final sludge resulting in a total value of 425 tonnes COD as reported in Table 3.6. This value is 77 % lower than the number obtained using equation 3, i.e. which assumes a fraction of 0.2 (1-(f_{AD} ·MCF_{AD})) as explained in Chapter 2. The reason is that the MCF_{AD} is set equal to 1 for the industrial liquids.

The loss of COD during the aerobic biological treatment were set equal to 35 % (Eq. 9) in both columns "WWTP2 ER" and "DNA, DEA" column (Annex A, Table A 2 and Figure 3.1).

For the purpose of verification of the recovered amount of COD calculated based on knowledge of the amount and characteristics of the types of external carbon added to the ingestate, a back-calculation from the reported gross energy production (DEA, 2014) from biogas were performed according to equation 11:

$$COD_{recovered} = (E/H)/(MCF \cdot B_o/d)$$
 Eq. 11

where *E* is the reported gross energy production, in the case of WWTP2 equal to 7303, multiplied by the conversion factor 0.0036 GJ/kWh

H is the calorific value of methane equal to 0.035 GJ/Nm^3 ; corresponding to 0.023 GJ/Nm^3 biogas with a methane content of 65 % (DEA, 2014)

MCF is the methane conversion factor 0.8

 B_0 is the maximum methane producing capacity of 0.25 kg CH₄/kg COD

d is the density of methane equal to 0.72 kg/Nm^3

In the case of WWTP2 a value of 2979 tonnes recovered COD is obtained which is a bit lower than the reported 3018 tonnes recovered COD in Table 3.6. This may partly be explained by differences in MCF^*B_o values for the industrial liquids compared to the default values applied in equation 11. In fact, Table 3.7 shows that it is crucial to include information about amounts and characteristics of external carbon added to the ingestate if the national methodology is to be based on the COD mass balance.

In Table 3.6, the amount of COD vented was set equal to 1.3 % of the recovered COD, assuming a linear proportional relationship between the COD mass balance and CH_4 conversion potentials. From Table 3.6 one may tend to conclude that a more conservative estimate of the amount of methane lost by venting is 10 % of the recovered COD used for energy production and flared.

The methane budget associated with the COD mass balance of WWTP2 in Table 3.6 is provided in Table 3.7.

Data source	WWTP2 ER	DNA, DEA	% difference
CH _{4,AD,gross}	665 ¹	745 ²	-12
CH4, AD, net energy + CH4, AD, flaring	541 ³	596 ³	-10
MCFs*B _o *S ²	116 ⁴	188	-62
CH4, AD, net	8 ⁴	8 ⁵	2
Venting in percent of recovered CH ₄	1	1.3	11

Table 3.7 COD in the influent wastewater and resulting methane budget according to equation 3 and 4, [tonne CH₄] for WWTP2 for the year 2013.

¹Calculated according to Eq. 4b.

²Calculated according to Eq. 4a.

³Calculated as by multiplying with B_o *MCF.

⁴Calculated according to Eq. 3.

⁵Calculated according to Eq. 5.

Activity data for calculating the gross emission, i.e. the maximum methane potential in the ingestate, according to equation 4b, are based on the influent TOW as shown in Table 3.6.

As described in the methodology Chapters 2.1 and 2.2, activity data used in the National Methodology are the influent TOW at the wastewater treatment plants. These are used for calculating the gross emission according to equation 4a, while the methane emission via venting is calculated according to equation 5; i.e. at present calculated as 1.3 % of the recovered CH₄.

Table 3.7 represents one case study of the plant level COD mass balance and the associated CH₄ conversion potentials and loss. The amount of recovered methane in the "WWTP2 ER" column is calculated according to equation 11 excluding " $MCF*B_0$ " in the equation.

Table 3.7 suggests that the national EF_{AD} value of 0.013 applied to the gross energy production (Equation 5) is a good estimate of methane loss via venting.

3.1.4 CH₄ recovery and venting - plant level data

Plant level data on biogas produced and consumed at the plant together with information on the amount of biogas vented and flared reported in the Environmental Reports (ER) published by the WWTPs compared to biogas production data reported by the Danish Energy Agency (DEA) are presented in Table 3.88.

Table 3.8 Plant level for WWTPs that includes reporting on flaring and venting in environmental reports (ER) reports compared to data on biogas production from the energy producer accounts (DEA).

to uata on biogas product	lion nom the energy pro	Juucei accou	$\Pi S (DEA).$				
Plant	Unit	2007	2008	2009	2010	2011	2012
WWTP1							
Biogas produced, ER	Nm ³	-	6,330,381	5,942,571	5,792,838	6,695,142	7,154,932
Biogas consumed, ER	Nm ³	-	6,045,766	5,282,995	5,297,866	5,748,674	6,251,319
Flaring, ER	Nm ³	-	284,615	659,576	494,972	946,468	903,613
CH ₄ produced, ER	Tonne	-	2,963	2,781	2,711	3,133	3,349
CH ₄ flared, ER	Tonne	-	133	309	232	443	423
CH ₄ flared, ER	%	-	4.5	11.1	8.5	14.1	12.6
Biogas produced, DEA	GJ	101,606	113,940	106,966	104,271	91,295	143,780
Biogas produced, ER	GJ	-	145,599	136,679	133,235	153,988	164,563
CH₄ produced, DEA	Tonne	2,067	2,318	2,177	2,122	1,858	2,926
Percent difference	%		22	22	22	41	13
WWTP2							
Biogas produced, ER	Nm ³	-	2,690,037	1,665,416	2,123,357	1,997,333	1,918,325
Biogas consumed, ER	Nm ³	-	2,632,287	1,607,666	1,816,022	1,903,183	1,681,375
Flaring, ER	Nm ³	-	57,750	57,750	307,335	94,150	236,950
CH₄ produced, ER	Tonne	-	1,259	779	994	935	898
CH₄ flared, ER	Tonne	-	27	27	144	44	111
CH₄ flared, ER	%	-	2.1	3.5	14.5	4.7	12.4
Biogas produced, DEA	GJ		45,765	na	31,475	-	11,042
Biogas produced, ER	GJ	-	61,871	38,305	48,837	45,939	44,121
CH ₄ produced, DEA	Tonne	-	931	na	640	-	225
Percent difference	%	-	26	na	36	-	75
WWTP3 ¹		-	-	-	-	-	-
Venting, accidental	Nm ³	-	-	-		12,100	10,700
Venting total	-	-	-	-		-	142,667
Venting	-%	-	-	-		-,	1.6
WWTP4							
Biogas produced, ER	Nm ³	3,300,000	3,400,000	3,100,000	3,300,000	3,100,000	3,300,000
Biogas consumed, ER	Nm ³	3,200,000	3,300,000	3,000,000	3,200,000	2,900,000	3,300,000
Flaring, ER	Nm ³	140,000	140,000	54,000	170,000	36,000	10,000
CH₄ produced, ER	Tonne	1,544.4	1,591.2	1,450.8	1,544.4	1,450.8	1,544.4
CH₄ flared, ER	Tonne	65.52	65.52	25.27	79.56	16.85	4.68
CH₄ flared, ER	%	4.2	4.1	1.7	5.2	1.2	0.3
Biogas produced, DEA	GJ	66,123	72,709	64,713	63,701	59,373	68,235
Biogas produced, ER	GJ	75,900	78,200	71,300	75,900	71,300	75,900
CH₄ produced, DEA	Tonne	1,345	1,479	1,317	1,296	1,208	1,388
Percent difference	%	12.9	7.0	9.2	16.1	16.7	10.1
Venting, accidental, ER	Tonne CO ₂ -eq./tonne		0.001	0.003	0.022	0.052	0.020
Venting, accidental	Tonne CH ₄	0.00	0.48	1.43	10.50	24.82	9.55
Venting, accidental	%	0.0	0.03	0.1	0.7	1.7	0.6
WWTP5				-			
Biogas produced, ER	Nm ³	3,074,000	2,160,000	1,879,000	1,890,000	1,692,000	1,820,000
Biogas consumed, ER	Nm ³	-	_, ,		-	-,,	-
Flaring, ER	Nm ³	-	-	-	-	-	-
CH ₄ produced, ER	Tonne	1,439	1,011	879	885	792	852
CH ₄ flared, ER	Tonne	-	-	-	-	-	
CH₄ flared, ER	%	-	-	-	-	-	-
Biogas produced, DEA	GJ	52,811	36,758	30,047	28,092	37,333	41,438
Biogas produced, ER	GJ	70,702	49,680	43,217	43,470	38,916	41,860
CH ₄ produced, DEA	Tonne	1,075	748	611	572	760	843
Percent difference	%	25.3	26.0	30.5	35.4	4.1	1.0
	/0	20.0	20.0	50.5	55.4	4.1	1.0

¹There have been nine cases of leakage of biogas from the digesters in 2012 corresponding to approximately 10,700 m³ biogas. The accidents represent 5-10 % of the total biogas loss via ventilation etc.

The plant level data presented in Table 3.8 include biogas production data reported in the Environmental Reports (ER), which are reported as calculated data in most cases, while the biogas production data reported to the Danish Energy Agency are measured. The data presented supports a general trend of the calculated biogas production data being above the monitored energy and derived biogas production data reported by the Danish Energy Agency. The difference may to some extent reflect the methane emission via venting or other unintentional causes to some extent reported in the plant level Environmental Reports.

The amount of reported data on venting and flaring are scarce. Flaring is included in the gross energy production data reported by the Danish Energy Agency. In the emission inventory for the reporting year 2015, a value of 1.3 % of the produced biogas were applied (Equation 5) to calculate the amount of methane lost by venting, while a value of 10 % of the gross methane production were reported as recovered and flared. The values are in agreement with the above shown values, where the average percentage of the produced biogas flared is 7 % ± 5 % with a maximum value of 14.5 %, while the maximum reported value on venting is 1.7 %, the average value is 0.7 % ± 0.7 %.

Regarding venting, the data presented are mainly reported as accidental emissions from operational failures at the plant. In one occasion, the accidental emission is reported to be 5-10 % of the total biogas emission due to ventilation. In general, diffuse methane emissions from anaerobic digestion are difficult to determine. The information of such emissions are scarce, but in a report from the Danish EPA on treatment technologies in the fish industry, the total fugitive methane emission from anaerobic digestion is estimated to vary between 0-10 % of the gas production by full digestion (DEPA, 2000) and numbers in the lower end of this range have been documented for Danish WWTPs.

The UNFCCC have asked for further documentation of the size of the methane emission factor from anaerobic digestion of sludge in terms of a verification of the mass balance as provided in the IPCC guidelines (Chapter 5, page 6.11, equation 6.1 in IPCC, 2006). The mass balance is to verify the methane emissions factor from anaerobic treatment processes, at present quantified as 1.3 % of the methane content in the gross energy produced as shown in Nielsen et al., 2014.

The data presented in Table 3.8 on available data on methane emissions caused by venting, indicate that the methane emission, due to loss of biogas via venting, is in agreement with the national emission inventory.

3.1.5 Biogas production and Gross Energy parameters

The default maximum CH_4 producing capacity (B_o) represents the theoretical methane production given the condition of 100 % efficient conversion of the COD in the ingestate and no emission loss during conversion of biomass into biogas. However, losses do occur as described in the former chapters.

The minor part of the methane emission originating from the biogas driven engine, i.e. emissions originating from energy production, is included in the energy sector, while only the emission from wastewater treatment and anaerobic sludge digestion are included in sector 5.D Wastewater treatment and discharge. Methane emissions may potentially occur from gas engine generator unit, in the form of fugitive emissions from digester tank and after the degassed residue left biogas plant to be applied to agricultural land. For gas engine generator units biogas emissions are in the order of 1-7 % of the produced gas depending on engine type. The methane emission from biogas driven engines are included in the energy sector. However, for the purpose of clarification, the emission factor for biogas to energy conversion at wastewater plant has been investigated and reported in two reports on emissions from decentralised CHP (combustion heat plant) plant based on monitoring data from 2002 and 2006, respectively (Nielsen et al., 2002; Nielsen et al., 2009). Furthermore, monitoring data reported by the Danish Gas Technological Centre in 2009 verify that the content of methane in the uncombusted hydrocarbons, UHC, contained in the gas emission from biogas driven engines at wastewater treatment plants consists of more than 98 % methane (DGC, 2009). The UHC emission factor for gas engines running on biogas originating from manure, landfills and from anaerobic digested sludge at wastewater treatment plants are reported in Nielsen et al. (2003; 2009). For gas engines running on biogas from anaerobic digested sludge, an EF is reported to be 276 g UHC per GJ resulting in a methane emission factor of 270 g CH₄ per GJ. Methane emission from incomplete combustion of the biogas in biogas driven engines are not included in this sector as it belongs to the gross to net energy budget.

The above described methane loss during combustion in a biogas driven engine or boiler including the biogas to energy conversion efficiency calculation, which belongs to the energy sector; i.e. the gross energy numbers reported presented in this report, do not include biogas or energy losses during conversion of the biogas into heat and electricity. As such, loss of biogas via venting influences the Danish biogas generation and recovery efficiency, but is not associated to the energy conversion or combustion efficiency as discussed in the introductory part of Chapter 3.1.

In Sector 5.D the gross energy production numbers are used to verify or calculate the amount of recovered methane, which are input parameters in Equation 3. Gross energy production numbers, derived from the energy statistics reported, by the Danish Energy Agency, as well as the Environmental report at plant level, includes flaring, but not venting.

In conclusion, sector 5.D includes methane emissions from wastewater treatment process of wastewater and sludge to final product; i.e. wastewater effluents, final sludge and biogas production.

Methane emission during conversion of biogas to electricity and heat is included in the energy sector (Nielsen et al., 2014). Table 3.9 provides key parameters used for transforming reported gross energy production in PJ into tonne CH₄.

Table 3.9 Key parameters for gross energy production and component content in biogas.								
Parameter	Unit	Biogas from AD	Methane					
Calorific value, lower	GJ/Nm ³	0.023	0.035					
	kWh/Nm³	6.5	10					
	GJ/kWh	0.0036	0.0036					
	GJ/tonne	20.2	31.1					
Density	kg/Nm³	1.2	0.67 ¹ /0.72 ²					
Methane	vol-%	65	100					
Carbon dioxide	vol-%	35.00						

duction and

¹NTP - Normal Temperature and Pressure - is defined as 20°C (293.15 K, 68°F) and 1 atm (101.325 kN/m², 101.325 kPa, 14.7 psia, 0 psig, 30 in Hg, 760 torr).

²STP - Standard Temperature and Pressure - is defined as 0°C (273.15 K, 32°F) and 1 atm (101.325 kN/m², 101.325 kPa, 14.7 psia, 0 psig, 30 in Hg, 760 torr).

At national level, the gross biogas production calculated based on the COD in the influent wastewater is for the majority of the years higher than the gross energy production derived value based on the Danish Energy statistics. In the national model, the density of methane at normal temperature and pressure were applied.

3.1.6 Sludge production

In the former inventories, national sludge statistics were used to derive the fraction of the influent TOW that was treated by anaerobic digestion. However, the sludge database, which was based on voluntary reporting, has been closed down and is now only partly included in the new waste reporting system (Nielsen et al., 2014). In the absence of high quality statistics on sludge data according to sludge management strategies at the Danish wastewater treatment plants, an integration of data from the Danish Energy agency on WWTPs producing biogas with WWTP resource flow data from the Danish Nature Agency have been performed for the time period 1998-2013 as shown in Annex A, Table A 2. An estimation of the amount of TOW in the influent wastewater treated at WTTPs, with anaerobic and anaerobic sludge management technologies, was derived from integration of plant level data on energy production and measured COD data in the influent wastewater. Final sludge amounts from the two types of plants were verified by a comparison with reported sludge data reported in national statistics as shown in Table 3.10.

10.

ludge amounts in units of tonne dry matter.						
Year	1990	1991	1992	1993	1994	1995
Final sludge, aerobic treatment [tonne COD]	35,642	41,459	38,027	36,406	41,290	85,558
Final sludge, digested [tonne COD]	11,871	11,522	11,395	9,775	12,021	15,695
Final sludge, total [tonne COD]	47,513	52,981	49,422	46,181	53,311	101,252
Final sludge, digested, national statistics [tonne COD]	-	-	-	-	-	27,890
%RSD	-	-	-	-	-	40
Final sludge, national statistics [tonne COD]	-	-	-	-	-	103,087
%RSD	-	-	-	-	-	1
TOW in aerobic stabilized sludge [tonne DM]	85,542	99,501	91,264	87,374	99,097	205,338
TOW in digested sludge [tonne DM]	24,730	24,005	23,739	20,365	25,044	32,697
TOW in total amount of final sludge [tonne DM]	110,272	123,506	115,003	107,739	124,140	238,035
Final sludge, national statistics [tonne DM]*	-	-	-	-	-	187,430
%RSD	-	-	-	-	-	17
Year	1996	1997	1998	1999	2000	2001
Final sludge, aerobic treatment [tonne COD]	65,685	51,719	59,290	58,317	66,567	59,080
Final sludge, digested [tonne COD]	14,568	18,522	21,985	22,733	21,449	24,563
Final sludge, total [tonne COD]	80,253	70,242	81,275	81,050	88,017	83,643
Final sludge, digested, national statistics [tonne COD]	24,525	23,247	-	-	20,144	20,344
%RSD	36	16	-	-	4	1:
Final sludge, national statistics [tonne COD]	90,652	85,925	87,659	88,298	89,882	90,35
%RSD	9	14	5	6	1	4
TOW in aerobic stabilized sludge [tonne DM]	157,645	124,127	142,297	139,962	159,761	141,792
TOW in digested sludge [tonne DM]	30,349	38,588	45,802	47,360	44,686	51,173
TOW in total amount of final sludge [tonne DM]	187,994	162,715	188,099	187,322	204,447	192,96
Final sludge, national statistics [tonne DM]*	164,821	156,227	159,379	160,542	163,422	164,27
%RSD	9	3	12	11	16	1 [.]
Year	2002	2003	2004	2005*	2006*	200
Final sludge, aerobic treatment [tonne COD]	64,598	58,625	57,925	66,469	71,894	76,60
Final sludge, digested [tonne COD]	21,972	24,567	21,034	22,787	21,436	21,162
Final sludge, total [tonne COD]	86,570	83,192	78,959	89,256	93,330	97,76
Final sludge, digested, national statistics [tonne COD]	19,110	-	-	16,105	-	23,53
%RSD	10	-	-	24	-	
Final sludge, national statistics [tonne COD]	81098	-	77486	49,454	49,561	78,04
%RSD	5	-	1	41	43	1
TOW in aerobic stabilized sludge [tonne DM]	129,195	117,250	115,849	110,782	119,823	127,66
TOW in digested sludge [tonne DM]	45,775	51,180	43,822	40,691	38,279	37,78
TOW in total amount of final sludge [tonne DM]	174,971	168,430	159,671	151,472	158,102	165,45
Final sludge, national statistics [tonne DM]*	147,451	-	140,884	76,084	76,247	120,07
%RSD	12	-	9	47	49	2
Year	2008	2009	2010	2011	2012	201
Final sludge, aerobic treatment [tonne COD]	74,496	67,095	71,019	70,759	80,955	86,86
Final sludge, digested [tonne COD]	18,220	23,960	25,483	21,581	15,454	19,46
Final sludge, total [tonne COD]	92,716	91,055	96,501	92,340	96,410	106,329

Table 3.10 Estimated aerobic stabilized, anaerobic digested and total dry weight final sludge compared to reported final sludge amounts in units of tonne dry matter.

Continued						
Final sludge, digested, national statistics [tonne COD]	-	-	-	-	-	13,457
%RSD	-	-	-	-	-	26
Final sludge, national statistics [tonne COD]	-	-	-	-	-	76,049
%RSD	-	-	-	-	-	23
TOW in aerobic stabilized sludge [tonne DM]	124,159	111,825	118,365	117,932	134,925	144,770
TOW in digested sludge [tonne DM]	32,536	42,785	45,504	38,537	27,597	34,764
TOW in total amount of final sludge [tonne DM]	156,695	154,610	163,869	156,469	162,523	179,533
Final sludge, national statistics [tonne DM]*	-	-	-	-	-	116,998
%RSD	-	-	-	-	-	30

*DMEE, 1999 and 2001; DME, 2003b, 2004b, 2009b and 2012b - for the years 2005 and 2006 a very low reporting frequency was obtained and the sludge amounts are incorrect; underestimated (DME, 2009b).

** DCCA, 2014.

A comparison between final sludge amounts estimated from the COD mass balance (Table 3.2) with the national sludge statistics shows a maximum percent difference of 32 %. There is a general tendency for the plant level methodology to underestimate the final sludge amounts. This may on the one hand indicate that the national level MCF is set to high, which would also explain the overestimation of the gross methane production. On the other hand, Chapter 3.1.1 has verified that the missing external carbon added to the ingestate is for sure one reason for the underestimated final sludge amounts at national level (see Table 3.7). Furthermore, Chapter 3.1.1 indicates that the national level emission factor quantifying the methane lost via venting may be underestimated (cf. Table 3. and Table 3.7). The percent difference between the COD in the final sludge derived from the COD mass balance and the old sludge statistics is within the level of reported uncertainties on TOW.

Table 3.10 verifies that the COD data and associated mass balance derived as shown in Table 3.2 and Annex 2, Table A2 are able to quantify the COD remaining in the final sludge.

The fraction of sludge treated by anaerobic digestion, formerly estimated from national statistics on final sludge amounts (Nielsen et al., 2014), have from the reporting year 2015 been replaced by COD data (Table 2.1). In future inventories calculated amounts of COD treated by anaerobic digestion will be calculated from plant level knowledge on the COD content in the influent wastewater at plants registered in the Energy Producer Account database; the results of plant level data on COD from plants producing energy is shown in Annex A. COD data

3.1.7 Population living in the scattered settlements

As only 90 % of the population are documented to be connected to the collective sewer system, a third treatment pathway is modelled by septic tanks. A visualization of the treatment systems and discharge pathways is shown in Figure 1.1.

The fraction of the population not connected to the collective sewer system is derived from reported data on scattered settlements by the Danish Nature Agency. An estimate of the number of people living in a permanent habitation not connected to the sewer system may be obtained by multiplying the number of permanent habitation with a PE number of 2.5 persons per permanent habitation. The results of comparing the number of people living in permanent habitation with the population number of Denmark are shown in Table 3.11.

Year	2002	2004	2006	2008	2010	2011	2012
Persons not connected to sewer system	579,705	600,043	522,413	518,080	536,158	514,685	518,290
Population - estimate	5,368 354	5,397 640	5,427 459	5,475 791	5,534 738	5,560 628	5,580 516
f _{nc} [%]	10.80	11.12	9.63	9.46	9.69	9.26	9.29

Table 3.11 Fraction of the population not connected to the collective sewer system.

Table 3.11 shows one of several approaches for estimating the fraction of the population not connected to the sewer system. Using a unit value of 2.5 PE for the property type permanent habitation as defined by the Danish Nature Agency (see Annex B., Table B 1), a percent estimate of the fraction of the population not connected to the collective sewer system were derived.

Instead when calculating the fraction of the population from the reported number of permanent habitation within the scattered settlements in percent of the total number of permanent habitation in Denmark, the percent of the population not connected to the sewer system is 13.6 to 14.1 in the time range 2010-2012 (see Annex B., Table B 5).

The numbers provided in Table 3.11 may be underestimated as only one of the four residential property types is included in the estimate (see Annex B., Table B 5). Until the results of mapping the extension of the collective sewer system is released by the Danish EPA, a constant value of 10 % is considered verified as a best estimate (Villumsen, personal communication, June, 2014).

3.1.8 Scattered settlements - CH₄ emission from septic tanks

Wastewater solutions in the scattered settlements are modelled by the default septic tank system (see Chapter 2). Different simple technologies for wastewater handling in scattered settlements exist and collection of the settled COD occurs at minimum one time per year. In the default methodology, it is assumed that 50 % of the TOW settles resulting in an emission factor of 0.125 kg CH_4 per kg COD.

The calculated amount of produced TOW and methane emissions per property type and in total for the years 2002, 2004, 2006, 2008 and 2010-2013, is presented in Table 3.12. In the grey shaded rows of Table 3.12, a comparison with the estimated TOW and CH_4 emission using the National Methodology, is presented.

compared to the Nationa	ai ivietnoo	Jology.				
Residential Properties	Year	Permanent habitation	Summer house	Allotment	Other	Total
COD _{inflow} *	2013	28,008	2,894	291	1,184	32,378
COD _{effluent} **	2013	6,970	104	91	296	7,461
COD _{inflow} -COD _{effluent}	2013	21,038	2,790	200	888	24,917
CH _{4, septic tanks}	2013	2,630	349	25	111	3,115
COD _{inflow}	2013					31,697
Percent difference [%]	2013					-2
CH _{4, septic tanks}	2013					3,962
Percent difference [%]	2013					21
COD _{inflow} *	2012	28,376	2,949	227	1,210	32,762
COD _{effluent} **	2012	7,325	109	55	303	7,793
COD _{inflow} -COD _{effluent}	2012	21,051	2,840	172	908	24,970
CH _{4, septic tanks}	2012	2,631	355	22	113	3,121
COD _{inflow}	2012					31,572
Percent difference [%]	2012					-4
CH4, septic tanks	2012					3,946
Percent difference [%]	2012					21
COD _{inflow} *	2011	28,179	3,128	227	1,280	32,814
COD _{effluent} **	2011	7,563	218	58	320	8,158
COD _{inflow} -COD _{effluent}	2011	20,617	2,911	169	960	24,657
CH4, septic tanks	2011	2,577	364	21	120	3,082
COD _{inflow}	2011					31,459
Percent difference [%]	2011					-4
CH _{4, septic tanks}	2011					3,932
Percent difference [%]	2011					22
COD _{inflow} *	2010	28,376	2,949	227	1,210	32,762
COD _{effluent} **	2010	3,025	87	23	128	3,263
COD _{inflow} -COD _{effluent}	2010	25,351	2,862	204	1,082	29,499
CH _{4, septic tanks}	2010	3,169	358	26	135	3,687
COD _{inflow}	2010					31,313
Percent difference [%]	2010					-4
CH _{4, septic tanks}	2010					3,914
Percent difference [%]	2010					6
COD _{inflow} *	2008	28,365	2,755	291	550	31,960
COD _{effluent} **	2008	8,005	95	5	138	8,243
COD _{inflow} -COD _{effluent}	2008	20,360	2,660	286	413	23,718
CH _{4, septic tanks}	2008	2,545	332	36	52	2,965
COD _{inflow}	2008					30,979
Percent difference [%]	2008					-3
CH _{4, septic tanks}	2008					3,872
Percent difference [%]	2008					23
COD _{inflow} *	2006	28,365	2,755	291	550	31,960
COD _{effluent} **	2006	8,005	95	5	138	8,243
COD _{inflow} -COD _{effluent}	2006	20,360	2,660	286	413	23,718
CH _{4, septic tanks}	2006	2,545	332	36	52	2,965

Table 3.12 TOW and CH₄ emissions produced per property type and in total from scattered house compared to the National Methodology.

Continued						
COD _{inflow}	2006					30,706
Percent difference [%]	2006					-4
CH4, septic tanks	2006					3,838
Percent difference [%]	2006					23
COD _{inflow} *	2004	28,602	2,744	284	590	32,220
COD _{effluent} **	2004	7,410	105	5	148	8,745
COD _{inflow} -COD _{effluent}	2004	21,192	2,639	279	443	23,475
CH _{4, septic tanks}	2004	2,649	330	35	55	2,934
COD _{inflow}	2004					30,537
Percent difference [%]	2004					-5
CH4, septic tanks	2004					3,817
Percent difference [%]	2004					23
COD _{inflow} *	2002	31,739	3,035	300	530	35,604
COD _{effluent} **	2002	9,218	150	3	133	9,500
COD _{inflow} -COD _{effluent}	2002	22,521	2,885	298	398	26,104
CH4, septic tanks	2002	2,815	361	37	50	3,263
COD _{inflow}	2002					30,371
Percent difference [%]	2002					-15
CH4, septic tanks	2002					3,796
Percent difference [%]	2002					14
COD _{inflow} *	1997	31,739	3,035	300	530	35,604
COD _{effluent} **	1997	9,218	150	3	133	9,500
COD _{inflow} -COD _{effluent}	1997	22,521	2,885	298	398	26,104
CH4, septic tanks	1997	2,815	361	37	50	3,263
COD _{inflow}	1997					29,844
Percent difference [%]	1997					-16
CH _{4, septic tanks}	1997					3,730
Percent difference [%]	1997					13

*The content of BOD, N, P in the influent wastewater have been calculated using the Danish PE unit numbers, which are 21.9 kg organic matter in BOD/PE/year, 4.4 kg N/PE/year, 1.0 kg P/PE/year and 50 m³ wastewater/year, and are presented in Annex B, Table B 2. The person equivalents (PE) per permanent habitation is set to 2.5 PE, 2 PE for summer houses and allotments for 3 months per year (DME, 2003) and for the property type "other" a back-calculation from reported effluent amounts of BOD in Annex B, Table B 1 was performed. Reduction efficiencies calculated from the reported effluent and calculated influent data are reported in Annex B., Table B 3.

**Effluent data reported according to residential property types within the scattered settlements by the Danish Nature Agency are presented in Annex B., Table B 1. Property types comprises permanent habitation, summer houses, allotments and other, which includes a typical household wastewater load such as schools, institutions, office buildings, restaurants etc.

The comparison between the total TOW produced within the scattered settlements, i.e. using the Danish PE unit values for BOD, and estimates from the National Methodology, i.e. allocation of 10 % of the total TOW in the influent wastewater to scattered settlements, show a percent difference in the COD_{inflow} , between -2 and -16 %. This level of uncertainty are within the range of uncertainty reported for TOW used in the National Inventory Report (Nielsen et al., 2014) and verifies the correctness of the National Methodology for estimating methane emissions from scattered settlements. The methane emission calculated according to property type is lower than the number calculated by the National Methodology; the percent difference is between 6 and 23 %. The reason is that the effluent COD was subtracted before multiplying with the MCF value of 0.5 and the B_o . This implies that 50 % of the COD remaining, instead of 50 % of the input COD to the collection/septic tank, is used in the calculation of the methane emission. Precipitation tanks may be extended with infiltration, sand filters and micro WWTPs, which may result in a higher degree of suspended organic matter in the outlet and i.e. a reduced COD available for precipitation, while only collective tanks has no effluents.

The National Methodology provides a sufficiently accurate estimate of the methane emission from scattered settlements and the approach is verified by the effluent amount of COD less than 50 % of the inlet COD assuming to be precipitation and anaerobic digested (see Annex B. , Table B 3).

3.2 N₂O emissions

3.2.1 Direct N₂O emissions

The emission factor for nitrous oxide in PE units has been rising due to increasing amounts of industrial wastewater to the public sewer system. The share of industrial wastewater led to the public sewer system compared to the total wastewater treated increased from 2.5 % in 1990 to 40.5 % in 2004 and onwards. This has led to increased inputs of nitrogen to the Danish wastewater treatment plants, with resulting higher nitrous oxide emissions.

The Danish EF value is higher than the default IPCC EF value of $3.2 \text{ g } \text{N}_2\text{O}$ per person. The development in the Danish EF value is presented in Table 3.13.

· ,							,
Year	1990	1995	2000	2005	2010	2011	2012
Population number	5,135,409	5,215,718	5,330,020	5,411,405	5,534,738	5,560,628	5,580,516
TN _{influent} , country data	14,679	22,340	26,952	32,288	27,357	30,049	26,316
EF [g N ₂ O per person]	15.8	23.7	28.0	33.1	27.4	30.0	26.1
EF _{default IPPC} , % underestimated	80	87	89	90	88	89	88

Table 3.13 Population number, influent N and time trend for the Danish EF value in units of g N₂O/person/year.

As may be observed from Table 3.3, the Danish EF value in units of g N₂O per person is fluctuating with an increasing tendency. From 1990 to 2013 the increase is 70 % in units of g N₂O per person. As such, use of the default IPCC value would result in an underestimation the Danish N₂O emissions by 80 % in 1990 and 88 % in 2013. The increase in the Danish EF value when expressed in units g N₂O per person is partly to be explained by the increase in the contribution from industries to the influent wastewater content of N.

Measurements done at Danish wastewater treatment plants shows values for the N₂O emission factor between 9 and 28 g N₂O per PE per year at respectively low (Ejby Mølle) and high (Marselisborg) loaded plants (Andreasen, 2013). The Danish emission factor used for estimating the direct N₂O emissions, i.e. 4.99 g N₂O per kg N in the influent wastewater, corresponding to 26-30 g N₂O/person is in the higher end of the reported measurements.

3.2.2 Indirect N₂O emissions

The activity data used for calculating the indirect nitrous oxide emissions are the total N content in the effluent wastewater presented in Chapter 2.4.

For activity data on N in the effluent wastewater from WWTPs, plant data have been extracted, but is not yet verified against the national level data reported by the Danish Nature Agency; i.e. as was done for the N and COD in influent wastewater (Table 2.1 and Table 2.8). Additionally, no efforts was done to verify the N content in the effluents from scattered settlements (Annex B. , Table B 1), neither regarding the contribution from rainwater conditioned effluents, aquaculture or separate industries.

4 Planned Improvements

For next year's emission inventory it is considered to use equation 3 to derive a percent COD lost as venting at national level. In addition, it is important is to setup plant level COD mass balances for WWTPs with biogas production.

Plant level mass balance is also required for nitrogen as external carbon in the ingestate influences the N_2O emission. Lastly, a review and documentation for the country specific N_2O EF based on changes in N removal technologies implemented at the WWT plants is needed (Thomsen et al., 2015).

Lastly, direct N₂O emissions from separate industries, as presented in Annex E, will also be included in future GHG inventories for sub-category *5.D Wastewater treatment and Discharge*.

References

Adouani, N., Lendormi, T., Limousy, L., Sire, O., 2010: Effect of the carbon source on N₂O emissions during biological denitrification. Resources, Conservation and Recycling 54(5), 299-302. doi:10.1016/j.resconrec.2009.07.011.

Andersen, J.M., 1983: Sammenligning mellem modificeret og umodificeret BOD og betydning af forskelle for udlederkrav (English title: Comparrison of modified and unmodified BOD and the influence of differences on the regulatory effluent criteria), 15, 50-58. News from the reference laboratory on chemical water analysis, Danish EPA.

Andreasen, P., 2013. Monitorering og minimering af lattergasemission fra renseanlæg. Rapportering til VTUF om opnåede resultater og målopfyldelse.

Billund Vand A/S, 2014: Miljøredegørelse 2013 for Billund Energi og Grindsted renseanlæg. Available at: <u>http://www.billundvand.dk/files/files/2014-</u> <u>1_Billund_Vand_redeg%C3%B8relse.pdf</u>

Bagge, L., personal communication, The National Sludge Database, 18-2-2013. Miljøstyrelsen - Jord & Affald, phone: 7254 4156, e-mail: bagge@mst.dk

BAI, 2011: Spildevand- Slambehandling. Undervisningsministeriet.

Chiu, Y.-C. & Chung, M.-S., 2003: Determination of optimal COD=nitrate ratio for biological denitrification. International Biodeterioration & Biodegradation 51:43 – 49.

Daelman, M.R.J., van Voorthuizen, E.M., van Dongen, L.G.J.M., Volcke, E.I.P. & van Loosdrecht, M.C.M., 2013: Methane and nitrous oxide emissions from municipal wastewater treatment – results from a long-term study. Water Sci Technol., in press. Available at:

http://users.ugent.be/~evolcke/pdf/2013_Daelman_WST_CH4_N2O_Lon gtermstudy.pdf (05-05-2016).

DCCA (Danish Competition and Consumer Authority), (In Danish: Konkurrence og forbrugerstyrelsen, Forsyningssekretariatet), 2014: version 2. Determination of individual efficiency requirements of price caps for 2015 (In Danish: Results-oriented benchmarking for 2015. Fastsættelse af individuelle effektiviseringskrav i prislofterne for 2015). Available at: http://www.kfst.dk/Vandtilsyn/Benchmarking/Benchmarking-2015

DGC, 2009: Gasmotoranlæg, MAN, renseanlæg. Målerapport 731-28-7. Available at: <u>http://www.energinet.dk/DA/KLIMA-OG-</u> <u>MILJOE/Emissionskortlægning/Sider/Maalerapporter-fra-</u> <u>emissionskortlægningsprojektet.aspx</u>

DEA (Danish Energy Agency), 2014: Danish Energy Production Account (unpublished).

DEPA, 2014: Organiske restprodukter - vurdering af potentiale og behandlet mængde Organiske restprodukter - vurdering af potentiale og behandlet mængde. Miljøprojekt nr. 1529. ISBN nr. 978-87-93026-83-4. Available at: http://www2.mst.dk/Udgiv/publikationer/2014/01/978-87-93026-83-4.pdf

DEPA, 2010: Anvendelse af affald til jordbrugsformål. Vejledning fra Miljøstyrelsen Nr. 1 2010. Available at:

http://www.landbrugsinfo.dk/Regelinfo/Kommenteringer/Filer/pl_ri_11 _054_b1.pdf (28/02-2014).

DEPA, 2005: Betydning af erstatning af DS metoder med EN metoder - Bestemmelse af biokemisk oxygenforbrug (BOD) Miljøstyrelsens Referencelaboratorium. Available at:

http://www.reference-lab.dk/media/7799829/bod.pdf

DEPA, 2002: Miljøstyrelsens Referencelaboratorium Metodeafprøvning BOD5 i afløbsvand fra renseanlæg Interlaboratorieundersøgelse 2002.

DEPA, 2000: Livscyklus-Screening af renseteknologier indenfor fiskeindustrien. Arbejdsrapport fra Miljøstyrelsen nr. 18. Available at: <u>http://www2.mst.dk/common/Udgivramme/Frame.asp?http://www2.m</u> <u>st.dk/udgiv/Publikationer/2000/87-7944-240-4/html/default.htm</u>

DEPA, 1990: Danmarks udledning af industrielt spildevand. Miljøprojekt 153. Available at: <u>http://www2.mst.dk/Udgiv/publikationer/1990/87-503-8610-7/pdf/87-</u> 503-8610-7.pdf

DHI, 2001: Regulering af belastningsparametre fra industrier i Lynettefælles-

skabets opland. Teknisk og miljømæssig udredning. Available at: http://www.spildevandsinfo.dk/lynette/itf5.50/knw/wit/ltfknowledge.ns f/WebLTFEmbedView/807E2E6AA50EDF5CC1256F000032AE70/\$FILE/50 858%20notat.pdf

DME (Danish Ministry of Environment), 1990: Danmarks udledning af industrielt spildevand. Available at:

http://www2.mst.dk/Udgiv/publikationer/1990/87-503-8610-7/pdf/87-503-8610-7.pdf

DME (Danish Ministry of Environment), 1992: Forfældning af spildevand ved kvælstoffjernelse (English title: Precipitation of wastewater with N removal). Available at:

http://www2.mst.dk/Udgiv/publikationer/1992/87-7810-052-6/pdf/87-7810-052-6.pdf

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 1996: Punktkilder 1995 (English title: "Point sources 1995"). Available at: <u>http://mst.dk/service/publikationer/publikationsarkiv/1997/jan/punktkilder-1995/</u>

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 1997: Punktkilder 1996 (English title: "Point sources 1996"). Available at: http://mst.dk/service/publikationer/publikationsarkiv/1998/feb/punktki lder-1996/ DME (Ministry of Environment), DEPA (Danish Environmental Agency), 1998: Punktkilder 1997 (English title: "Point sources 1997"). Available at: <u>http://mst.dk/service/publikationer/publikationsarkiv/1998/dec/punktki</u> <u>lder-1997/</u>

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 1999. Punktkilder 1998 (English title: "Point sources 1998"). Available at: http://mst.dk/service/publikationer/publikationsarkiv/2000/jan/punktkilder-1998/

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 2000: Punktkilder 1999 (English title: "Point sources 1999"). Available at: <u>http://mst.dk/90264</u>

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 2001: Punktkilder 2000 (English title: "Point sources 2000"). Available at: <u>http://mst.dk/service/publikationer/publikationsarkiv/2001/dec/punktkilder-2000/</u>

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 2002: Punktkilder 2001 (English title: "Point sources 2001"). Available at: http://mst.dk/service/publikationer/publikationsarkiv/2002/dec/punktkilder-2001/

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 2003a: Punktkilder 2002 (English title: "Point sources 2002"). Available at: http://mst.dk/service/publikationer/publikationsarkiv/2003/dec/punktki lder-2002/

DME (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 2003b Spildevandsslam fra kommunale og private renseanlæg i 2000 og 2001 (English title: "Sewage sludge from municipal and private wastewater treatment plants in 2000 and 2001"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/2003/okt/spildev andsslam-fra-kommunale-og-private-renseanlaeg-i-2000-og-2001/

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 2004a: Punktkilder 2003 (English title: "Point sources 2003"). Available at: <u>http://mst.dk/service/publikationer/publikationsarkiv/2004/dec/punktkilder-2003/</u>

DME (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 2004b: Spildevandsslam fra kommunale og private renseanlæg i 2002 (English title: "Sewage sludge from municipal and private wastewater treatment plants in 2002"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/2004/mar/spildev andsslam-fra-kommunale-og-private-renseanlaeg-i-2002/

DME (Ministry of Environment), DEPA (Danish Environmental Agency) 2005: Punktkilder 2004 (English title: "Point sources 2004"). Available at: <u>http://mst.dk/service/publikationer/publikationsarkiv/2005/nov/punktk</u> <u>ilder-2004/</u>

DME (Ministry of Environment), DEPA (Danish Environmental Agency), 2007: Punktkilder 2006 (English title: "Point sources 2006"). Available at: <u>http://naturstyrelsen.dk/publikationer/2008/okt/punktkilder-2006-det-nationale-program-for-overvaagning-af-vandmiljoeet-fagdatacenterrapport/</u>

DME (Ministry of Environment), URA (Urban and Rural Agency), 2008: Punktkilder 2007 (English title: "Point sources 2007"). Available at: http://naturstyrelsen.dk/media/nst/70839/Punktkilderendelig.pdf

DME (Ministry of Environment), URA (Urban and Rural Agency), 2009a: Punktkilder 2008 (English title: "Point sources 2008"). Available at: <u>http://naturstyrelsen.dk/publikationer/2010/feb/punktkilderapport-</u>2008/

DME (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 2009b: Spildevandsslam fra kommunale og private renseanlæg i 2005 (English title: "Sewage sludge from municipal and private wastewater treatment plants in 2005"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/2009/maj/spildev andsslam-fra-kommunale-og-private-renseanlaeg-i-2005/

DME (Ministry of Environment), NA (Nature Agency), 2010: Punktkilder 2009 (English title: "Point sources 2009"). Available at: http://naturstyrelsen.dk/publikationer/2011/jan/punktkilder-2009/

DME (Ministry of Environment), NA (Nature Agency), 2011: Punktkilder 2010 (English title: "Point sources 2010"). Available at: http://naturstyrelsen.dk/publikationer/2011/dec/punktkilderapport-2010/

DME (Ministry of Environment), NA (Nature Agency), 2012a: Punktkilder 2011 (English title: "Point sources 2011"). Available at: http://naturstyrelsen.dk/publikationer/2012/dec/punktkilder-2011/

DME (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 2012b: Spildevandsslam fra kommunale og private renseanlæg i 2005 (English title: "Sewage sludge from municipal and private wastewater treatment plants in 2008 and 2009"). Unpublished.

DME (Ministry of Environment), NA (Nature Agency), 2013: Punktkilder 2012 (English title: "Point sources 2012"). Available at: http://naturstyrelsen.dk/media/nst/89739/Punktkilderapport2012.pdf

DME (Ministry of Environment), NA (Nature Agency), 2014. Punktkilder 2013 (English title: "Point sources 2013"). Available at: http://naturstyrelsen.dk/publikationer/2015/feb/punktkilder-2013/

DMEE (Danish Ministry of Environment and Energy), Danish Environmental Protection Agency (DEPA), 1989: Spildevandsslam fra kommunale og private renseanlæg i 1987 (English title: Wastewater from municipal and private wastewater treatment plants in 1987). Available at:

http://www2.mst.dk/Udgiv/publikationer/1989/87-503-7944-5/pdf/87-503-7944-5.pdf DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 1994a: Vandmiljø – 1994 (English title: Water Environment – 1994). Available at: <u>http://www2.mst.dk/Udgiv/publikationer/1994/87-</u> 7810-273-1/pdf/87-7810-273-1.pdf

DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency) 1994b: Punktkilder 1993 (English title: "Point sources 1993"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/1995/jan/punktki lder-1993/

DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 1995a: Spildevandstilladelser og renere teknologi. Available at: <u>http://www2.mst.dk/Udgiv/publikationer/1995/87-7810-390-8/pdf/87-7810-390-8.pdf</u>

DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 1995b: Punktkilder 1994 (English title: "Point sources 1994"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/1996/jan/punktki lder-1994/

DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 1999a: Spildevandsslam fra kommunale og private renseanlæg i 1997 (English title: "Sewage sludge from municipal and private wastewater treatment plants in 1997"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/1999/maj/spildev andsslam-fra-kommunale-og-private-renseanlaeg-i-1997/

DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 1999b: Vandmiljø-9. Status for vandmiljøets tilstand i Danmark. Available at: <u>http://www2.mst.dk/udgiv/Publikationer/1999/87-7909-531-</u> <u>3/pdf/87-7909-530-5.pdf</u>

DMEE (Ministry of Environment and Energy), DEPA (Danish Environmental Agency), 2001: Spildevandsslam fra kommunale og private renseanlæg i 1999 (English title: "Sewage sludge from municipal and private wastewater treatment plants in 1999"). Available at:

http://mst.dk/service/publikationer/publikationsarkiv/2001/feb/spildev andsslam-fra-kommunale-og-private-renseanlaeg-i-1999/

DS/EN ISO 1899-1:2003: Vandundersøgelse. Biokemisk oxygenforbrug over n døgn, (BODn) Del 1: Fortyndingsmetode med podning og tilsætning af Nallylthiourinstof (English title: Water quality – Determination of biochemical oxygen demand after n days (BODn) – Part 1: Dilution and seeding method with allylthiourea addition) (EN 1899-1:1998). Available at: https://webshop.ds.dk/Files/Files/Products/52500_attachPV.pdf

DS/EN ISO 1899-2:2004: Water quality – Determination of biochemical oxygen demand after n days (BODn) – Part 2: Method for undiluted samples. Available at:

https://webshop.ds.dk/Files/Files/Products/54648_attachPV.pdf

Hanaki, K., Hong, Z. & Matsuo, T. 1992: Production of nitrous oxide gas during denitrification of wastewater. Wat. Sci. Technol. 26:1027-1036. Henze, M., Sørensen, P.E. & Petersen, G., 2014: Spildevandsrensning i Danmark 1969-2014. Vand & Jord 21. årgang nr. 4, december 2014. Available at: <u>http://www.kruger.dk/krugeras/ressources/documents/3/39561,VJ-</u> <u>4_14_s160_167.pdf</u>

Henze, M., Petersen, G., Kristensen, G.H. & Höök, B., 2010: Drift af Renseanlæg. Teknik, 3. udgave, Kommuneforlaget A/S. 978-87-7848-977-7-pdf

Henze. M., 2008: Biological Wastewater Treatment: Principles Modelling and Design. Edited by M. Henze, M.C.M. van Loosdrecht, G.A. Ekama and D. Brdjanovic. ISBN: 9781843391883. Published by IWA Publishing, London, UK. Available at:

http://ocw.unesco-

<u>ihe.org/pluginfile.php/462/mod_resource/content/1/Urban_Drainage_an</u> <u>d_Sewerage/5_Wet_Weather_and_Dry_Weather_Flow_Characterisation/D</u> WF_characterization/Notes/Wastewater%20characterization.pdf

Hjort-Gregersen, K., 2013: Methane emission from Danish biogas plants. Economic Impact of Identified Methane Leakages. AgroTech, Project: ForskEl 2013-1-12093. Available at:

http://www.agrotech.dk/sites/agrotech.dk/files/public/economic_impact_of_identified_methane_leakages.pdf (05-05-2016).

Illerup, J.B.; Lyck, E.; Nielsen, O.-K.; Mikkelsen, M.H.; Hoffmann, L.; Gyldenkærne, S.; Nielsen, M.; Sørensen, P.B.; Vesterdal, L.; Fauser, P.; Thomsen, M.; Winther, M., 2006: Denmark 's National Inventory Report 2006. Submitted under the United Nations Framework Convention on Climate Change, 1990-2004. National Environmental Research Institute, 2006. 555 s. (NERI Technical Report, Vol. 589).

Illerup, J.B., Lyck, E., Nielsen, O.-K., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Vesterdal, L., 2007: Denmark's National Inventory Report 2007. Emission Inventories - Submitted under the United Nations Framework Convention on Climate Change, 1990-2005. Danmarks Miljøundersøgelser, Aarhus Universitet. (NERI Technical Report, Vol. 632).

ISO 5815-1, 2003: Water quality -- Determination of biochemical oxygen demand after n days (BODn) -- Part 1: Dilution and seeding method with allylthiourea addition.

ISO 5815-2, 2003: Water quality -- Determination of biochemical oxygen demand after n days (BODn) -- Part 2: Method for undiluted samples

IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available at:

http://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pd f

IPCC, 1996: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: <u>http://www.ipcc-</u>nggip.iges.or.jp/public/gl/invs5e.html

Itokawa, H.,Hanaki, K. & Matsuo, T., 2001: Nitrous oxide production in high-loading biological nitrogen removal process under low cod/n ratio condition. Wat. Res. 35:657-664.

Jensen, M.D., Tychsen, P., Thomsen, M., Martinsen, L. & Hasler, B., 2015: Bæredygtig udnyttelse af fosfor fra spildevand. En operativ vejledning til de danske vandselskaber. Danish Environmental Protection Agency, Ministry of Environment, Environmental Project no. 1661. Available at:

http://mst.dk/service/publikationer/publikationsarkiv/2015/mar/baered ygtig-udnyttelse-af-fosfor-fra-spildevand

Johansen, R., 2013: Intelligent Carbon and Energy Utilization. Available at: <u>http://www.envidan.dk/Publikationer/Artikler.aspx</u>

Kampschreur,_M.J., van der Star, W.R.L., Wielders, H.A., Mulder, J.W., Jetten, M.S.N. & van Loosdrecht, M.C.M., 2008: Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 42:812-826

Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M. and van Loosdrecht, M.C.M., 2009: Nitrous oxide emission during wastewater treatment.Water Research, 43:4093-4103

Kimochi, Y., Inamori, Y., Mizuochi, M., Xu, K.-Q. & Matsumura, M., 1998: Nitrogen removal and N₂O emission in a full-scale domestic wastewater treatment plant with intermittent aeration. Journal of Fermentation and Bioengineering, 86: 202-206.

Kristensen, G.H. & Jørgensen, P.E., 2008: Renseteknologi – oversigt over ny miljøteknologi indenfor spildevandshåndtering (English title: Wastewater treatment tenologies – overview of novel environmental technology within the wastewater sector). A report from the Ministry of Environment. Available at: <u>http://www2.blst.dk/udgiv/Publikationer/2008/978-87-92256-39-3/pdf/978-87-92256-40-9.pdf</u>

Nature Agency (2016). The National Programme for monitoring of the aquatic environment and the nature (in Danish). Available at: <u>http://naturstyrelsen.dk/media/194550/novana2016-programbeskrivelse.pdf</u>

Nielsen, M. & Illerup, J.B., 2003: Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme: Eltra PSO projekt 3141. Kortlægning af emissioner fra decentrale kraftvarmeværker. Delrapport 6. Available at: http://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter /FR442.pdf

Nielsen, O.-K., Lyck, E., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Winther, M., Nielsen, M., Fauser, P., Thomsen, M., Plejdrup, M.S., Illerup, J.B., Sørensen, P.B. & Vesterdal, L., 2008: Denmark's National Inventory Report 2008: Emission Inventories 1990-2006 - Submitted under the United Nations Framework onvention on Climate Change. National Environmental Research Institute, Aarhus University. NERI Technical Report, no. 667.

Nielsen, O.-K., Lyck, E., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Winther, M., Nielsen, M., Fauser, P., Thomsen, M., Plejdrup, M.S., Al-

brektsen, R., Hjelgaard, K., Vesterdal, L., Møller, I.S. & Baunbæk, L. 2009: Denmark's National Inventory Report 2009. Emission Inventories 1990-2007 - Submitted under the United Nations Framework Convention on Climate Change. National Environmental Research Institute, Aarhus University. 826 pp. – NERI Technical Report No 724. Available at: http://www.dmu.dk/Pub/FR724.pdf

Nielsen, O.-K., Lyck, E., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Winther, M., Nielsen, M., Fauser, P., Thomsen, M., Plejdrup, M.S., Albrektsen, R., Hjelgaard, K., Johannsen, V.K., Vesterdal, L., Rasmussen, E., Arfaoui, K. & Baunbæk, L., 2010: Denmark's National Inventory Report 2010. Emission Inventories 1990-2008 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. National Environmental Research Institute, Aarhus University, Denmark. 1178 pp. – NERI Technical Report No 784. Available at: http://www.dmu.dk/Pub/FR784.pdf

Nielsen, M., Nielsen, O.-K. & Thomsen, M., 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. Available at: <u>http://www.dmu.dk/Pub/FR786.pdf</u>.

Nielsen, O.-K., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Winther, M., Nielsen, M., Fauser, P., Thomsen, M., Plejdrup, M.S., Albrektsen, R., Hjelgaard, K., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Bastrup-Birk, A., Vesterdal, L., Stupak, I., Rasmussen, E., Arfaoui, K., Baunbæk, L. & Hansen, M.G. 2011: Denmark's National Inventory Report 2011. Emission Inventories 1990-2009 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. National Environmental Research Institute, Aarhus University. NERI Technical Report, no. 827.

Nielsen, O.-K., Mikkelsen, M.H., Hoffmann, L., Gyldenkærne, S., Winther, M., Nielsen, M., Fauser, P., Thomsen, M., Plejdrup, M.S., Albrektsen, R., Hjelgaard, K., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Bastrup-Birk, A., Vesterdal, L., Møller, I.S., Rasmussen, E., Arfaoui, K., Baunbæk, L. & Hansen, M.G. 2012: Denmark's National Inventory Report 2012. Emission Inventories 1990-2010 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE - Danish Centre for Environment and Energy. Scientific Report from DCE – Danish Centre for Environment and Energy, no. 19.

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Hoffmann, L., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Stupak, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2013: Denmark's National Inventory Report 2013. Emission Inventories 1990-2011 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus Universitet, DCE - Nationalt Center for Miljø og Energi. Scientific Report from DCE - Danish Centre for Environment and Energy, no. 56.

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Hoffmann, L.,

Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Møller, I.S., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2014: Denmark's National Inventory Report 2014. Emission Inventories 1990-2012 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy, 1214pp. Scientific Report from DCE – Danish Centre for Environment and Energy. Available at: http://dce2.au.dk/pub/SR101.pdf

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Møller, I.S., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2015: Denmark's National Inventory Report 2015. Emission Inventories1990-2013 – Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. vol. 171, Aarhus University, DCE – Danish Centre for Environment and Energy.

Niero, M., Pizzol, M., Bruun, H.G. & Thomsen, M., 2014: Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. Journal of Cleaner Production, 68, 25–35.

Park, K.Y., Inamori, Y., Mizuochi, M. & Ahn, K.H., 2000: Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration, Journal of Bioscience and Bioengineering 90: 247–252.

Petersen, G. 2013: Døgnkursus nov. 2013: "Intelligent kulstof og energi udnyttelse på renseanlæg". Available at: http://www.envidan.dk/Publikationer/Pr%C3%A6sentationer.aspx

Sharma, A.K., Guildal, T., Jacobsen, B.N., Rindel, K., Gustavsson, D., Nyberg, U., la Cour Jansen, J., Lindblom, E., Jeppsson, U., Petersen, J., Thomsen, H.A. & Önnerth, T., 2008: V Behandlingskapacitet og Optimering af Drift af Afløbssystemer og Renseanlæg I Øresundsregionen. - Resumé rapport. EU project, INTERREG IIIA: "OpDrift".

Sivret, E.C., Peirson, W.L. & Stuetz, R.M., 2008: Nitrous Oxide Monitoring for Nitrifying Activated Sludge Aeration Control: A Simulation Study. Biotechnology and Bioengineering, 110:109-118

Tafdrup, Søren, personal communication, Gross energy production, August 2014, Consultant, Danish Energy Agency, phone: +45 +3392 6771, e-mail: <u>st@ens.dk</u>.

Tallec, G., Garnier, J., Billen, G. & Gousailles, M., 2008: Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation.Bioresource Technology, 99:2200-2209.

Thomsen, M., With Ottosen, T. & Nyrup Drejer, L., 2015: Analyse af potentialer for ressourceudnyttelse i vand- og spilde-vandsforsyningen. Naturstyrelsen, Miljøministeriet, 2015. 85 s. Available at: <u>http://ecoinnovation.dk/media/130961/analyse-af-potentialer-for-</u> ressourceudnyttelse-i-vand-og-spildevandsforsyningen.pdf Thomsen, M. & Lyck, E. 2005: Emission of CH_4 and N_2O from Wastewater Treatment Plants (6B). National Environmental Research Institute, Denmark. 46 pp. – Research Notes from NERI no. 208. Available at:

http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rapporter /AR208.pdf

Van Niel, E.W.J., Arts, P.A.M., Wesselink, B.J., Robertson, L.A. & Kuenen, J.G., 1993: Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiology Ecology 102(2), 109-118.

Villumsen, C. R., personal communication, Extension of the sewer system in Denmark, 02-09-2014. Special consultant, Climate Adaption, Water sector and groundwater, Danish EPA, e-mail: <u>carvi@nst.dk</u>.

Vollertsen, J., personal communication, $MCF_{sewer+MB.}$ 16-09-2012. Aalborg University, Section of Water and Soil, Department of Civil Engineering, Mobile: +45 2895 9195, E-mail: jv@civil.aau.dk

UNFCCC, 2013: Report of the individual review of the annual submission of Denmark submitted in 2012. Available at: http://unfccc.int/resource/docs/2013/arr/dnk.pdf

UNFCCC, 2014: Report of the individual review of the annual submission of Denmark submitted in 2013. Available at: https://unfccc.int/documentation/documents/advanced_search/items/69

https://unfccc.int/documentation/documents/advanced_search/items/69

https://unfccc.int/documentation/documents/advanced_search/items/69

https://unfccc.int/documents/advanced_search/items/69

https://unfccc.int/documents/advanced_search/items/69

Annex A. COD data

Table A 1 TOW in the influent wastewater measures in units of tonne COD.

nne COD.					
1990	1991	1992	1993	1994	1995
-	-	-	-	-	-
-	-	-	-	-	-
290,536	291,161	292,047	293,093	294,000	295,079
2.5	2.5	2.5	5.,0	13.6	22.2
297,799	298,441	299,348	307,748	333,984	360,587
303,657	304,311	305,237	306,330	307,277	308,405
300,728	301,376	302,292	307,039	320,631	334,496
1996	1997	1998	1999	2000	2001
-	-	-	371,250	381,700	364,177
-	-	258,586	347,385	350,689	363,687
297,077	298,440	299,557	300,616	301,546	302,632
30.8	39.4	48.0	41.0	42.0	38.0
388,577	416,025	443,344	423,868	428,195	417,632
310,493	311,918	313,085	314,192	315,164	316,299
349,535	363,972	378,214	369,770	375,020	366,036
2002	2003	2004	2005	2006	2007
350,798	360,630	339,637	357,842	334,007	368,355
350,798	360,630	339,637	-	-	369,006
303,715	304,572	305,371	306,150	307,058	308,169
38.0	37.0	40.5	40.5	40.5	40.5
419,126	417,264	429,003	430,097	431,373	432,933
317,431	318,327	319,162	319,976	320,926	322,086
362,452	365,407	362,601	369,305	362,102	374,458
2008	2009	2010	2011	2012	2013
290,988	345,295	369,873	386,223	349,876	386,151
290,988	342,131	369,873	371,713	349,876	386,151
309,793	311,810	313,128	314,593	315,718	316,969
40.5	40.5	40.5	40.5	40.5	40.5
435,215	438,049	439,900	441,958	443,538	445,341
323.784	325,892	327,269	328,800	329,976	331,283
, -	,				
	- - 290,536 2.5 297,799 303,657 300,728 1996 - - 297,077 30.8 388,577 310,493 349,535 2002 350,798 350,798 350,798 350,798 350,798 350,798 350,798 350,798 350,798 350,798 350,798 350,798 303,715 38.0 419,126 317,431 362,452 2008 290,988 290,988 290,988 309,793 40.5 435,215	1990 1991 - - - - 290,536 291,161 2.5 297,799 298,441 303,657 304,311 300,728 301,376 1996 1997 - - 297,077 298,440 300,728 301,376 1996 1997 - - 297,077 298,440 30.8 39.4 388,577 416,025 310,493 311,918 349,535 363,972 2002 2003 350,798 360,630 350,798 360,630 350,798 360,630 303,715 304,572 38.0 37.0 419,126 417,264 317,431 318,327 362,452 365,407 2008 2009 290,988 342,2131 309,793 311,810	199019911992290,536291,161292,0472.52.52.5297,799298,441299,348303,657304,311305,237300,728301,376302,292199619971998258,586297,077298,440299,557308,577298,440299,55730.839.448.0388,577416,025443,344310,493311,918313,085349,535363,972378,214200220032004350,798360,630339,637350,798360,630339,637350,798360,630339,637303,715304,572305,37138.037.040.5419,126417,264429,003317,431318,327319,162362,452365,407362,601200820092010290,988342,131369,873290,988342,131369,873309,793311,810313,12840.540.540.540540.540.5	1990199119921993290,536291,161292,047293,0932.52.52.55.,0297,799298,441299,348307,748303,657304,311305,237306,330300,728301,376302,292307,0391996199719981999371,250258,586347,385297,077298,440299,557300,61630.839.448.041.0388,577416,025443,344423,868310,493311,918313,085314,192349,535363,972378,214369,7702002200320042005350,798360,630339,637-350,798360,630339,637357,842350,798360,630339,637306,15038.037.040.540.5419,126417,264429,003430,097317,431318,327319,162319,976362,452365,407362,601369,3052008200920102011290,988342,131369,873386,223290,988342,131369,873371,713309,793311,810313,128314,59340.540.540.540.540.540.540.540.5	19901991199219931994290,536291,161292,047293,093294,0002.52.55.013.6297,799298,441299,348307,748333,984303,657304,311305,237306,330307,277300,728301,376302,292307,039320,63119961997199819992000371,250381,700-258,586347,385350,689297,077298,440299,557300,616301,54630.839.448.041.042.0388,577416,025443,344423,868428,195310,493311,918313,085314,192315,164349,535363,972378,214369,770375,02020022003200420052006350,798360,630339,637303,715304,572305,371306,150307,05838.037.040.540.540.5419,126417,264429,003430,097431,373317,431318,327319,162319,976320,926362,452365,407369,873366,223349,876290,988342,131369,873371,713349,876309,793311,810313,128314,593315,718309,793311,8103

"TOW, country data" are based on reported BOD data converted into COD by multiplying with the default COD/BOD conversion factor of 2.5 (IPCC, 2006).

"TOW, plant level data" are based on plant level COD monitoring data that were extracted from respectively reports from the Danish Nature Agency (DMEE, 1989, 1990 1992, 1994a, b, 1995a,b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014) and the Danish water quality database (www.miljoeportalen.dk).

"TOW, default COD IPCC" are the default IPCC PE value of 62 g BOD/person/day multiplied by the default COD/BOD conversion factor of 2.5 (IPCC, 2006) multiplied by the population number of Denmark.

"TOW, default COD IPCC, corrected" are the above corrected for the contribution from industries connected to the collective sewer system in Denmark.

"TOW, National Unit PE BOD value" are the national BOD value of 21.9 kg BOD per year multiplied by a national COD/BOD conversion factor of 2.7 and multiplied by the population number of Denmark.

The "TOW, average" is used as the key activity data set for deriving methane emissions from wastewater treatment. For the years 1990-1998 an average of the TOW data based on the "TOW, default COD IPCC, adding Danish industrial influent loads" and the "TOW, National PE for BOD using IPCC 2000 COD/BOD CF of 2.7". For the years 1999-2013 "TOW, country data" were included in the calculation of an average best TOW value; except for the years 2011 and 2013 where the plant level COD data were used instead of the country level data.

The "TOW, plant level data" are part of a database designed specifically for the emission inventories, in which plant level IDs from the Danish monitoring program has been paired with plant level data from the Danish Energy Agency. These data are presently going through a quality control process. Results presented in the table above showing that the plant level data resamples the country level data reported by the Danish Nature Agency (DMEE, 1989, 1990 1992, 1994a, b, 1995a, b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014) and the Danish water quality database (www.miljoeportalen.dk).

Table A 2 COD mass balance in percent of the COD in the influent wastewater fitted to reported data on effl	luent reduction
efficiencies (bold), final sludge amounts (bold) and gross energy production data (bold) reported by the Dani	sh EPA and the
Danish Energy Agency.	

Year 1	1990	1991	1992	1993	1994	1995
WWTPs with aerobic sludge treatment						
Biotanks, COD _{air emission} [%]	30	30	30	35	35	45
Effluent, COD _{effluent} [%]	52	48	51	48	44	7
Final sludge, <i>COD_{sludge}</i> [%]	18	22	19	17	21	48
Influent, COD _{influent} [tonne] 192	,814	188,411	198,703	209,287	200,420	177,551
Biotanks, COD _{air emission} [tonne] 57	,844	56,523	59,611	73,250	70,147	79,898
Effluent, COD _{effluent} [tonne] 99	,327	90,429	101,066	99,631	88,983	12,095
Final sludge, COD _{sludge} [tonne] 35	,642	41,459	38,027	36,406	41,290	85,558
WWTPs with anaerobic sludge treatment						
Biotanks, COD _{air emission} [%]	20	17	20	20	20	30
Effluent, COD _{effluent} [%]	25	32	25	30	30	20
Digestor tank, COD _{ingestate} [%]	44	41	44	40	40	40
Final sludge, <i>COD_{sludge}</i> [%]	11	10	11	10	10	10
Recovered, COD _{recovered} [%]	43	40	43	39	39	39
Vented, COD _{vented} [%]	0.57	0.53	0.57	0.52	0.52	0.52
Influent, COD _{influent} [tonne] 107	,914	112,965	103,589	97,752	120,211	156,945
Biotanks, COD _{air emission} [tonne] 21	,583	19,204	20,718	19,550	24,042	47,084
Effluent, COD _{effluent} [tonne] 26	,979	36,149	25,897	29,326	36,063	31,389
Ingestate, COD _{ingestate} [tonne] 59	,353	57,612	56,974	48,876	60,105	78,473
Final sludge, <i>COD_{sludge}</i> [tonne] 11	,871	11,522	11,395	9,775	12,021	15,695
Recovered, <i>COD_{recovered}</i> [tonne] 46	,865	45,490	44,987	38,592	47,459	61,962
Vented, COD _{vented} [tonne]	617	599	593	508	625	816
Verification of final sludge amounts						
COD in digestate [tonne COD/tonne DM]	0.80	0.80	0.80	0.80	0.80	0.80
Inorganics in digestate [%]	40	40	40	40	40	40
COD in aerobic stab. sludge [tonne COD/tonne DM]	1.20	1.20	1.20	1.20	1.20	1.20
Inorganics in aerobic stab. sludge [%]	50	50	50	50	50	50
Estimated amount of digestate [tonne DM] 24	,730	24,005	23,739	20,365	25,044	32,697
Estimated amount of aerobic stabilised sludge [tonne DM] 85	,542	99,501	91,264	87,374	99,097	205,338
Estimated amount of total final sludge [tonne DM] 110	,272	123,506	115,003	107,739	124,140	238,035
Reported amount of total final sludge [tonne DM]	-	-	-	-	-	187,430
%RSD	-	-	-	-	-	17
TOW in total amount of final sludge [tonne COD] 47	,513	52,981	49,422	46,181	53,311	101,252 ²
Inorganic content [%]	-	-	-	-	-	46
Reported amount of digestate [%]	-	-	-	-	-	31
Amount of digestate [tonne DM]		-	-	-	-	58,103
%RSD	-					
Verification of reduction efficiency	-	-	-	-	-	40
	-	-	-	-	-	40
Reported reduction efficiencies [%]	- - 58	- 58	- 58	- 58	- 61	40 87 ²
	- - 58 ;,306		- 58 126,963	- 58 128,956	- 61 125,046	
		58				87 ²

Continued						
<i>CH</i> _{4,AD,gross} [Gg], (Eq. 4a)	9.5	9.2	9.1	7.8	9.6	12.
EF_{AD} [kg CH ₄ /kg COD] = $B_0 * MCF_{AD} * f_{AD}$ (Eq.4a)	0.09	0.08	0.09	0.08	0.08	0.0
Estimated <i>EF_{AD}</i> [%]	7.7	0.6	8.1	0.5	4.7	8.
Year	1996	1997	1998	1999	2000	200
WWTPs with aerobic sludge treatment						
Biotanks, COD _{air emission} [%]	45	45	55	60	60	6
Effluent, COD _{effluent} [%]	20	22	6	6	5	
Final sludge, <i>COD_{sludge}</i> [%]	35	33	39	34	35	3
Influent, COD _{influent} [tonne]	187,672	158,169	152,027	171,522	190,192	164,11
Biotanks, CODair emission [tonne]	84,453	71,176	83,615	102,913	114,115	98,46
Effluent, COD _{effluent} [tonne]	37,534	35,273	9,122	10,291	9,510	6,56
Final sludge, <i>COD_{sludge}</i> [tonne]	65,685	51,719	59,290	58,317	66,567	59,08
WWTPs with anaerobic sludge treatment						
Biotanks, COD _{air emission} [%]	35	35	35	35	35	3
Effluent, COD _{effluent} [%]	20	20	6	6	5	
Digestor tank, COD _{ingestate} [%]	36	36	47	47	48	4
Final sludge, <i>COD_{sludge}</i> [%]	9	9	12	12	12	1
Recovered, COD _{recovered} [%]	36	36	47	47	47	4
Vented, <i>COD_{vented}</i> [%]	0.47	0.47	0.61	0.61	0.62	0.6
nfluent, COD _{influent} [tonne]	161,862	205,803	186,311	192,652	178,746	201,33
Biotanks, COD _{air emission} [tonne]	56,651	72,031	65,209	67,428	62,561	70,46
Effluent, <i>COD_{effluent}</i> [tonne]	32,372	41,161	11,179	11,559	8,937	8,05
Ingestate, COD _{ingestate} [tonne]	72,838	92,611	109,924	113,664	107,247	122,81
Final sludge, <i>COD_{sludge}</i> [tonne]	14,567	18,522	21,985	22,733	21,449	24,56
Recovered, COD _{recovered} [tonne]	57,512	73,126	86,796	89,749	84,682	96,97
Vented, COD _{vented} [tonne]	758	963	1,143	1,182	1,115	1,27
Verification of final sludge amounts	100	000	1,140	1,102	1,110	1,21
COD in digestate [tonne COD/tonne DM]	0.80	0.80	0.80	0.80	0.80	0.8
Inorganics in digestate [%]	40	40	40	40	40	4
COD in aerobic stab. sludge [tonne COD/tonne	-10	10	40	10	10	
	1.20	1.20	1.20	1.20	1.20	1.2
Inorganics in aerobic stab. sludge [%]	50	50	50	50	50	5
Estimated amount of digestate [tonne DM]	30,349	38,588	45,802	47,360	44,686	51,17
Estimated amount of aerobic stabilised sludge	457 045	404 407	440.007	100.000	450 704	4 4 4 70
[tonne DM]	157,645	124,127	142,297	139,962	159,761	141,79
Estimated amount of total final sludge [tonne DM]	187,994	162,715	188,099	187,322	204,447	192,96
Reported amount of total final sludge [tonne DM]	164,821	156,227	159,379	160,542	163,422	164,27
%RSD	9	3	12	11	16	1
TOW in total amount of final sludge [tonne COD]	80,253	70,242	81,275	81,050	88,017	83,64
norganic content [%]	51	55	49	50	46	4
Reported amount of digestate [%]	31	31	-	-	43	4
Amount of digestate [tonne DM]	51,095	48,430	-	-	69,945	70,64
%RSD	36	16	-	-	31	2
Verification of reduction efficiency						
Reported reduction efficiencies [%]	80	79	94	94	95	g
Effluent COD, National level [tonne]	69,906	76,434	20,300	21,850	18,447	14,61

Continued						
Verification of methane production						
<i>CH</i> _{4,AD,gross} [Gg], (Eq. 5)	11.3	13.8	13.5	14.8	16.4	16.4
<i>CH</i> _{4,AD,gross} [Gg], (Eq. 4a)	11.7	14.8	17.6	18.2	17.2	19.7
EF_{AD} [kg CH ₄ /kg COD] = $B_0 * MCF_{AD} * f_{AD}$ (Eq.4a)	0.07	0.07	0.09	0.09	0.10	0.10
Estimated <i>EF_{AD}</i> [%]	2.9	6.8	23.5	18.6	4.3	16.4
Year	2002	2003	2004	2005	2006	2007
WWTPs with aerobic sludge treatment						
Biotanks, COD _{air emission} [%]	60	60	60	60	60	60
Effluent, COD _{effluent} [%]	4	4	7	5	4	4
Final sludge, COD _{sludge} [%]	36	36	33	35	36	36
Influent, COD _{influent} [tonne]	179,438	162,847	175,529	192,664	199,705	212,780
Biotanks, COD _{air emission} [tonne]	107,663	97,708	105,318	115,598	119,823	127,668
Effluent, COD _{effluent} [tonne]	7,178	6,514	12,287	10,597	7,988	8,511
Final sludge, COD _{sludge} [tonne]	64,598	58,625	57,925	66,469	71,894	76,601
WWTPs with anaerobic sludge treatment						
Biotanks, COD _{air emission} [%]	35	35	35	30	30	30
Effluent, COD _{effluent} [%]	4	4	7	5	4	4
Digestor tank, COD _{ingestate} [%]	49	49	46	52	53	53
Final sludge, COD _{sludge} [%]	12	12	12	13	13	13
Recovered, COD _{recovered} [%]	48	48	46	51	52	52
Vented, COD _{vented} [%]	0.63	0.63	0.60	0.67	0.69	0.69
Influent, COD _{influent} [tonne]	180,100	201,365	181,331	176,641	162,397	160,315
Biotanks, COD _{air emission} [tonne]	63,035	70,478	63,466	52,992	48,719	48,095
Effluent, COD _{effluent} [tonne]	7,204	8,055	12,693	9,715	6,496	6,413
Ingestate, COD _{ingestate} [tonne]	109,861	122,833	105,172	113,934	107,182	105,808
Final sludge, COD _{sludge} [tonne]	21,972	24,567	21,034	22,787	21,436	21,162
Recovered, COD _{recovered} [tonne]	86,746	96,989	83,044	89,962	84,631	83,546
Vented, COD _{vented} [tonne]	1,143	1,277	1,094	1,185	1,115	1,100
Verification of final sludge amounts						
COD in digestate [tonne COD/tonne DM]	0.80	0.80	0.80	0.80	0.80	0.80
Inorganics in digestate [%]	40	40	40	30	30	30
COD in aerobic stab. sludge [tonne COD/tonne						
DM]	1.00	1.00	1.00	1.00	1.00	1.00
Inorganics in aerobic stab. sludge [%]	50	50	50	40	40	40
Estimated amount of digestate [tonne DM]	45,775	51,180	43,822	40,691	38,279	37,789
Estimated amount of aerobic stabilised sludge	100 105	117,250	115 940	110 700	110 000	107 669
[tonne DM] Estimated amount of total final sludge [tonne DM]	129,195		115,849 150 671	110,782	119,823	127,668
Estimated amount of total final sludge [tonne DM] Reported amount of total final sludge [tonne DM]	174,971 147 451	168,430	159,671	151,472	158,102	165,456
%RSD	147,451 12	-	140,884	76,084 47	76,247 49	120,070
TOW in total amount of final sludge [tonne COD]	12 86 570	- 83 102	9 78 050			22 97,762
Inorganic content [%]	86,570 41	83,192	78,959 44	89,256	93,330	97,762
Reported amount of digestate [%]	41	-	44	- 54	-	50
Amount of digestate [tonne DM]	45 66,353	-	-	54 41,085	-	60,035
%RSD	26	-	-	41,005	-	
Verification of reduction efficiency	20	-	-	I	-	32

Continued						
Reported reduction efficiencies [%]	96	96	93	95	96	96
Effluent COD, National level [tonne]	14,382	14,569	24,980	20,312	14,484	14,924
Verification of methane production						
<i>CH</i> _{4,AD,gross} [Gg], (Eq. 5)	16.6	16.6	15.9	17.5	16.8	16.6
<i>CH</i> _{4,AD,gross} [Gg], (Eq. 4a)	17.6	19.7	16.8	18.2	17.1	16.9
EF_{AD} [kg CH ₄ /kg COD] = $B_0 * MCF_{AD} * f_{AD}$ (Eq.4a)	0.10	0.10	0.09	0.10	0.11	0.11
Estimated <i>EF_{AD}</i> [%]	5.5	15.4	5.4	4.0	1.8	2.1
Year	2008	2009	2010	2011	2012	2013
WWTPs with aerobic sludge treatment						
Biotanks, COD _{air emission} [%]	60	60	60	60	60	60
Effluent, COD _{effluent} [%]	4	5	4	8	8	Ę
Final sludge, COD _{sludge} [%]	36	35	36	32	32	3
Influent, COD _{influent} [tonne]	206,932	191,700	197,275	221,122	252,985	248,177
Biotanks, COD _{air emission} [tonne]	124,159	115,020	118,365	132,673	151,791	148,906
Effluent, COD _{effluent} [tonne]	8,277	9,585	7,891	17,690	20,239	12,409
Final sludge, COD _{sludge} [tonne]	74,496	67,095	71,019	70,759	80,955	86,862
WWTPs with anaerobic sludge treatment						
Biotanks, COD _{air emission} [%]	25	25	25	25	25	25
Effluent, COD _{effluent} [%]	4	5	4	8	8	4
Digestor tank, COD _{ingestate} [%]	57	56	57	54	54	5
Final sludge, <i>COD_{sludge}</i> [%]	14	14	14	13	13	1
Recovered, COD _{recovered} [%]	56	55	56	53	53	5
Vented, COD_{vented} [%] ¹	0.74	0.73	0.74	0.70	0.70	0.73
Influent, COD _{influent} [tonne]	128,311	171,142	179,454	161,052	115,331	139,05
Biotanks, CODair emission [tonne]	32,078	42,785	44,864	40,263	28,833	34,764
Effluent, COD _{effluent} [tonne]	5,132	8,557	7,178	12,884	9,227	6,953
Ingestate, COD _{ingestate} [tonne]	91,101	119,799	127,413	107,905	77,272	97,338
Final sludge, <i>COD_{sludge}</i> [tonne]	18,220	23,960	25,483	21,581	15,454	19,468
Recovered, COD _{recovered} [tonne]	71,933	94,593	100,605	85,201	61,014	76,858
Vented, COD _{vented} [tonne]	947	1,246	1,325	1,122	804	1,012
Verification of final sludge amounts						
COD in digestate [tonne COD/tonne DM]	0.80	0.80	0.80	0.80	0.80	0.8
Inorganics in digestate [%]	30	30	30	30	30	3
COD in aerobic stab. sludge [tonne COD/tonne						
DM]	1.00	1.00	1.00	1.00	1.00	1.0
Inorganics in aerobic stab. sludge [%]	40	40	40	40	40	4
Estimated amount of digestate [tonne DM] ³	32,536	42,785	45,504	38,537	27,597	34,76
Estimated amount of aerobic stabilised sludge						
[tonne DM] ⁴	124,159	111,825	118,365	117,932	134,925	144,770
Estimated amount of total final sludge [tonne DM] ⁵	156,695	154,610	163,869	156,469	162,523	179,533
Reported amount of total final sludge [tonne DM]	-	-	-	-	-	116,998
%RSD ⁶	-	-	-	-	-	3
TOW in total amount of final sludge [tonne COD] ⁷	92,716	91,055	96,501	92,340	96,410	106,329
Inorganic content [%]	-	-	-	-	-	9.12
Reported amount of digestate [%] ⁵	-	-	-	-	-	29
Amount of digestate [tonne DM]	-	-	-	-	-	3432

Continued						
%RSD ⁶	-	-	-	-	-	0.89
Verification of reduction efficiency						
Reported reduction efficiencies [%]	96	95	96	92	92	95
Effluent COD, National level [tonne]	13,410	18,142	15,069	30,574	29,465	19,362
Verification of methane production						
<i>CH_{4,AD,gross}</i> [Gg], (Eq. 5) ⁸	16.2	16.1	16.1	15.7	17.2	18.5
CH _{4,AD,gross} [Gg], (Eq. 4a)	14.6	19.2	20.4	17.3	12.4	15.6
EF_{AD} [kg CH ₄ /kg COD] = $B_0 * MCF_{AD} * f_{AD}$ (Eq.4a) ¹	0.11	0.11	0.11	0.11	0.11	0.11
Estimated EF_{AD} [%] ¹	-10.9	16.2	21.0	8.8	-39.2	-19.1

¹Venting is provided in percent COD of the influent COD, while the methane emission via venting provided in equation 5 is expressed as a percent of the produced methane. ²The increase in the final sludge amount in 1995 is explained by the increase in the industrial contribution to the COD in the

influent wastewater and the sharp increase in the reduction efficiency.

³The amount of dry matter digested sludge was derived from the COD content in the final sludge assuming a COD content of 0.8 kg COD/ kg DM. Furthermore, a content of 40 % inorganic material was assumed from 1990-2004, which were reduced to 30 % in 2005 to 2013 reflecting an increased focus on replacing chemical precipitation with biological removal of phosphorous from the wastewater.

⁴To convert the COD in the final aerobic stabilized sludge into units of dry matter a COD content of 1 kg COD/kg DM sludge and an inorganic content of 50 % to account for the addition of 10-30 % CaCO₃. The content of inorganics in the final sludge was reduced from 50 to 40 % from 2005 and forward as explained above.

 5 DMEE, 1999 and 2001; DME, 2003b, 2004b, 2009b and 2012b; DCCA, 2014. For the years 2005 and 2006 a very low reporting frequency was obtained and the sludge amounts are incorrect; underestimated (DME, 2009b).

⁶Percent difference between the estimated and reported dry matter final sludge.

⁷TOW is total amount of final sludge. It is calculated from the estimated percent distribution of COD and the COD content in the influent wastewater water.

⁸The CH_{4,AD,gross} in equation 5 is derived from reported gross energy production data reported by the Danish Energy Agency, which includes flaring (Tafdrup, 2014).

CODJ.					
Year*	Total influent TOW	Influent TOW, aerobic	Influent TOW, anaerobic	F_{As}	F _{AD}
		[tonne COD]	[tonne COD]	[%]	[%]
1998	258,586	116,191	142,394	44.9	55.1
1999	347,385	163,615	183,770	47.1	52.9
2000	350,689	180,785	169,905	51.6	48.4
2001	363,687	163,320	200,367	44.9	55.1
2002	350,798	175,076	175,722	49.9	50.1
2003	360,630	161,246	199,384	44.7	55.3
2004	339,637	167,058	172,579	49.2	50.8
2005	24,396	13,455	10,941	55.2	44.8
2006	-	-	-	-	-
2007	369,006	210,448	158,558	57.0	43.0
2008	290,988	179,615	111,373	61.7	38.3
2009	342,131	180,758	161,373	52.8	47.2
2010	369,873	193,685	176,189	52.4	47.6
2011	371,713	215,069	156,643	57.9	42.1
2012	349,876	240,319	109,557	68.7	31.3
2013	386,151	247,446	138,704	64.1	35.9

Table A 3 Influent wastewater TOW data grouped according to WWTPs applying respectively sludge stabilization (aerobic sludge treatment) and digestion (anaerobic sludge treatment) as sludge management strategy, [tonne

*Data from the year 2005 at plant level are not complete from the report series point sources. However, data at national level has been extracted directly from the Danish water quality database (Annex 1, Table 1.1). Likewise, plant level data from the reports from 1994-1997 are incomplete (DMEE, 1989, 1990 1992, 1994a, b, 1995a,b; DME 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014),

Annex B. Scattered settlements

The Danish Nature Agency are responsible for the reporting of the effluent load of nutrients and organic matter to surface waters from scattered settlements, i.e. households not connected to the collective sewer system. The category scattered settlements includes an estimation of all wastewater solutions of a load less than 30 PE. The effluent loads from scattered housed are estimated based on theoretic PE unit numbers combined with the information recorded in the Buildings and Housing Registry (BBR). The person equivalents (PE) per property per permanent habitation is set to 2.5 and unit numbers are 21.9 kg organic matter in BOD/PE/year, 4.4 kg N/PE/year, 1.0 kg P/PE/year and 50 m³ wastewater/year (DME, 2003).

Table B 1 Effluent from scattered settlements and number of settlements not connected to the collective sewer system according to type.

Residential Properties	Year	Permanent habitation ¹	Summer house ²	Allot- ment ²	Other	Total
BOD _{effluent} [tonne]	2013	2,788	42	36	118	2,984
TN _{effluent} [tonne]	2013	744	11	9	32	796
TP _{effluent} [tonne]	2013	166	2	2	7	178
Wastewater _{effluent} [1000m ³]	2013	9,516	137	118	405	10,176
Number of residential property	2013	204,627	105,728	10,635	1304	322,294
BOD _{effluent} [tonne]	2012	2,930	44	22	121	3,117
TN _{effluent} [tonne]	2012	776	11	6	32	825
TP _{effluent} [tonne]	2012	174	3	1	7	185
Wastewater _{effluent} [1000m ³]	2012	9,896	142	73	410	10,521
Number of residential property	2012	207,316	107,716	8,293	1293	324,618
BOD _{effluent} [tonne]	2011	3,025	87	23	128	3,263
TN _{effluent} [tonne]	2011	797	23	6	34	860
TP _{effluent} [tonne]	2011	179	5	1	8	193
Wastewater _{effluent} [1000m ³]	2011	10,145	286	74	427	10,932
Number of residential property	2011	205,874	114,279	8,278	1321	329,752
BOD _{effluent} [tonne]	2010	3,270	45	23	132	3,470
TN _{effluent} [tonne]	2010	851	12	6	34	903
TP _{effluent} [tonne]	2010	192	3	1	8	204
Wastewater _{effluent} [1000m ³]	2010	10,779	147	74	434	11,434
Number of residential property	2010	214,463	110,733	8,078	1305	334,579
BOD _{effluent} [tonne]	2009	-	-	-	-	3,519
TN _{effluent} [tonne]	2009	-	-	-	-	939
TP _{effluent} [tonne]	2009	-	-	-	-	214
Wastewater _{effluent} [1000m ³]	2009	-	-	-	-	11,944
Number of residential property	2009	-	-	-	-	-
BOD _{effluent} [tonne]	2008	3,202	38	2	55	3,297
TN _{effluent} [tonne]	2008	837	9	0	15	862
TP _{effluent} [tonne]	2008	189	2	0	3	194
Wastewater _{effluent} [1000m ³]	2008	10,798	129	5	205	11,138
Number of residential property	2008	207,232	100,630	10,617	1036	319,515

Continued						
BOD _{effluent} [tonne]	2006	2,964	42	2	59	3,498
TN _{effluent} [tonne]	2006	770	10	0	16	907
TP _{effluent} [tonne]	2006	174	2	0	4	206
Wastewater _{effluent} [1000m ³]	2006	9,983	144	5	219	11,780
Number of residential property	2006	208,965	100,237	10,373	1171	320,746
BOD _{effluent} [tonne]	2004	3,516	42	2	55	3,614
TN _{effluent} [tonne]	2004	905	10	0	15	931
TP _{effluent} [tonne]	2004	205	2	0	3	211
Wastewater _{effluent} [1000m ³]	2004	11,693	143	5	206	12,046
Number of residential property	2004	240,017	98,106	10,578	1036	349,737
BOD _{effluent} [tonne]	2003	3,630	47	2	54	3,732
TN _{effluent} [tonne]	2003	931	11	1	15	957
TP _{effluent} [tonne]	2003	207	3	1	3	218
Wastewater _{effluent} [1000m ³]	2003	12,004	161	5	199	12,369
Number of residential property	2003	-	-	-	-	-
BOD _{effluent} [tonne]	2002	3,687	60	1	53	3,800
TN _{effluent} [tonne]	2002	941	14	1	14	3,800
TP _{effluent} [tonne]	2002	214	3	1	3	221
Wastewater _{effluent} [1000m ³]	2002	12,098	198	4	191	12,491
Number of residential property	2002	231,882	110,861	10,970	1015	354,728
BOD _{effluent} [tonne]	1997	4,208	68	8	12	4,295
TN _{effluent} [tonne]	1997	1,104	14	1	3	1,123
TP _{effluent} [tonne]	1997	252	5	0	1	257
Wastewater _{effluent} [1000m ³]	1997	-	-	-	-	-
Number of residential property	1997	232,100	104,972	11,528		348,600

¹The category "Other" includes settlements with an atypical household Wastewater load such as schools, institutions, office buildings, restaurants etc.

²For summer houses and allotment a load value of 20 PE/property with a load period of 3 months a year. For scattered settlements, the load is set equal to 25 PE/property throughout the year.

Residential Properties	Year	Permanent habitation	Summer house	Allotment	Other	Total
BOD _{inflow} [tonne]	2013	11,203	1,158	116	474	12,951
TN _{inflow} [tonne]	2013	2,251	930	94	127	3,402
TP _{inflow} [tonne]	2013	512	53	5	28	598
Wastewater _{inflow} [1000m ³]	2013	25,578	2,643	266	1,620	30,107
Number of residential property	2013	204,627	105,728	10,635	1,304	322,294
BOD _{inflow} [tonne]	2012	11,351	1,179	91	484	13,105
TN _{inflow} [tonne]	2012	2,280	948	73	128	3,429
TP _{inflow} [tonne]	2012	518	54	4	29	605
Wastewater _{inflow} [1000m ³]	2012	25,915	2,693	207	1,640	30,455
Number of residential property	2012	207,316	107,716	8,293	1,293	324,618
BOD _{inflow} [tonne]	2011	11,272	1,251	91	512	13,126
TN _{inflow} [tonne]	2011	2,265	1,006	73	136	3,479
TP _{inflow} [tonne]	2011	515	57	4	32	608
Wastewater _{inflow} [1000m ³]	2011	25,734	2,857	207	1,708	30,506
Number of residential property	2011	205,874	114,279	8,278	1,321	329,752
BOD _{inflow} [tonne]	2010	11,742	1,213	88	528	13,571
TN _{inflow} [tonne]	2010	2,359	974	71	136	3,541
TP _{inflow} [tonne]	2010	536	55	4	32	628
Wastewater _{inflow} [1000m ³]	2010	26,808	2,768	202	1,736	31,514
Number of residential property	2010	214,463	110,733	8,078	1,305	334,579
BOD _{inflow} [tonne]	2009	-	-	-	-	0
TN _{inflow} [tonne]	2009	-	-	-	-	0
TP _{inflow} [tonne]	2009	-	-	-	-	0
Wastewater _{inflow} [1000m ³]	2009	-	-	-	-	0
Number of residential property	2009	-	-	-	-	0
BOD _{inflow} [tonne]	2008	11,346	1,102	116	220	12,784
TN _{inflow} [tonne]	2008	2,280	886	93	60	3,319
TP _{inflow} [tonne]	2008	518	50	5	12	586
Wastewater _{inflow} [1000m ³]	2008	25,904	2,516	265	820	29,505
Number of residential property	2008	207,232	100,630	10,617	1,036	319,515
BOD _{inflow} [tonne]	2006	11,441	1,098	114	236	12,888
TN _{inflow} [tonne]	2006	2,299	882	91	64	3,336
TP _{inflow} [tonne]	2006	522	50	5	16	594
Wastewater _{inflow} [1000m ³]	2006	26,121	2,506	259	876	29,762
Number of residential property	2006	208,965	100,237	10,373	1,171	320,746
BOD _{inflow} [tonne]	2004	13,141	1,074	116	220	14,551
TN _{inflow} [tonne]	2004	2,640	863	93	60	3,657
TP _{inflow} [tonne]	2004	600	49	5	12	666
Wastewater _{inflow} [1000m ³]	2004	30,002	2,453	264	824	33,543
Number of residential property	2004	240,017	98,106	10,578	1,036	349,737
BOD _{inflow} [tonne]	2003	-	-	-	216	216
TN _{inflow} [tonne]	2003	-	-	-	60	60
TP _{inflow} [tonne]	2003	-	-	-	12	12

Table B 2 Inflow from scattered settlements and number of settlements not connected to the collective sewer system according to type.

Continued						
Wastewater _{inflow} [1000m ³]	2003	-	-	-	796	796
Number of residential property	2003	-	-	-	-	-
BOD _{inflow} [tonne]	2002	12,696	1,214	120	212	14,242
TN _{inflow} [tonne]	2002	2,551	976	97	56	3,679
TP _{inflow} [tonne]	2002	580	55	5	12	653
Wastewater _{inflow} [1000m ³]	2002	28,985	2,772	274	764	32,795
Number of residential property	2002	231,882	110,861	10,970	1,015	354,728
BOD _{inflow} [tonne]	1997	12,696	1,214	120	48	14,078
TN _{inflow} [tonne]	1997	2,551	976	97	12	3,635
TP _{inflow} [tonne]	1997	580	55	5	4	645
Wastewater _{inflow} [1000m ³]	1997	28,985	2,772	274	-	32,031
Number of residential property	1997	231,882	110,861	10,970	1,015	354,728

The category "Other" includes settlements with an atypical household wastewater load such as schools, institutions, office buildings, restaurants etc.

The person equivalents (PE) per property per permanent habitation is set to 25 (DME, 2003) and unit numbers are 219 kg organic matter in BOD/PE/year, 44 kg N/PE/year, 10 kg P/PE/year and 50 m³ wastewater/year.

For summer houses and allotment a load value of 2 PE/property with a load period of 3 months a year. For permanent habitation, the load is set equal to 2.5 PE/property throughout the year.

Residential Properties	Year	Permanent habitation	Summer house	Allotment	Other	Total
BOD _{inflow}	2012	26%	4%	24%	25%	24%
TN _{inflow}	2012	34%	1%	8%	25%	24%
TP _{inflow}	2012	33%	5%	31%	25%	31%
Wastewaterinflow	2012	38%	5%	35%	25%	35%
BOD _{inflow}	2011	27%	7%	25%	25%	25%
TN _{inflow}	2011	35%	2%	8%	25%	25%
TP _{inflow}	2011	35%	9%	24%	25%	32%
Wastewaterinflow	2011	39%	10%	36%	25%	36%
BOD _{inflow}	2010	28%	4%	26%	25%	26%
TN _{inflow}	2010	36%	1%	8%	25%	26%
TP _{inflow}	2010	36%	5%	25%	25%	33%
Wastewaterinflow	2010	40%	5%	37%	25%	36%
BOD _{inflow}	2009	na	na	na	na	na
TN _{inflow}	2009	na	na	na	na	na
TP _{inflow}	2009	na	na	na	na	na
Wastewaterinflow	2009	na	na	na	na	na
BOD _{inflow}	2008	28%	3%	2%	25%	26%
TN _{inflow}	2008	37%	1%	0%	25%	26%
TP _{inflow}	2008	36%	4%	0%	25%	33%
Wastewaterinflow	2008	42%	5%	2%	25%	38%
BOD _{inflow}	2006	26%	4%	2%	25%	27%
TN _{inflow}	2006	33%	1%	0%	25%	27%
TP _{inflow}	2006	33%	4%	0%	25%	35%
Wastewaterinflow	2006	38%	6%	2%	25%	40%
BOD _{inflow}	2004	27%	4%	2%	25%	25%
TN _{inflow}	2004	34%	1%	0%	25%	25%
TP _{inflow}	2004	34%	4%	0%	25%	32%
Wastewaterinflow	2004	39%	6%	2%	25%	36%
BOD _{inflow}	2003	na	na	na	25%	na
TN _{inflow}	2003	na	na	na	25%	na
TP _{inflow}	2003	na	na	na	25%	na
Wastewaterinflow	2003	na	na	na	25%	na
BOD _{inflow}	2002	29%	5%	1%	25%	27%
TN _{inflow}	2002	37%	1%	1%	25%	103%
TP _{inflow}	2002	37%	5%	18%	25%	34%
Wastewaterinflow	2002	42%	7%	1%	25%	38%

Table B 3 Effluent in percent of inflow from scattered settlements grouped according to settlement type.

		Permanent	Summer			Weighted	
Residential Properties	Year	habitation	house	Allotment	Other	Average	%RSD
	2002	0.0530	0.0018	0.0003	0.1741	0.0357	4.1
	2004	0.0488	0.0014	0.0006	0.1770	0.0344	4.2
	2006	0.0473	0.0014	0.0006	0.1679	0.0364	3.9
	2008	0.0515	0.0013	0.0006	0.1770	0.0344	4.2
	2010	0.0508	0.0014	0.0095	0.3372	0.0346	8.0
BOD _{inlet} /Property type [tonne BOD/property	2011	0.0490	0.0025	0.0093	0.3230	0.0330	7.6
type]	2012	0.0471	0.0013	0.0088	0.3119	0.0320	7.4
51 - 1	2013	0.0454	0.0013	0.0114	0.3027	0.0309	7.1
	Average	0.0496	0.0016	0.0043	0.2383	0.0344	
	Rel. Stdev. [%]	0.09	0.02	0.18	2.76	0.07	
	National PE	0.0548	0.0110	0.0110	-	0.0548	
	IPCC PE	0.0566	0.0113	0.0113		0.0566	
	2002	0.1431	0.0049	0.0008	0.4700	0.0964	11.0
	2004	0.1318	0.0039	0.0017	0.4778	0.0930	11.2
	2006	0.1277	0.0038	0.0017	0.4535	0.0982	10.6
	2008	0.1391	0.0034	0.0017	0.4778	0.0929	11.2
	2010	0.1372	0.0037	0.0256	0.9103	0.0933	21.6
COD _{inlet} /Property type [tonne BOD/property	2011	0.1322	0.0069	0.0250	0.8721	0.0891	20.6
type]	2012	0.1272	0.0036	0.0239	0.8422	0.0864	20.0
iype]	2013	0.1226	0.0035	0.0307	0.8172	0.0833	19.3
	Average	0.1326	0.0042	0.0139	0.6651	0.0916	
	Rel. Stdev. [%]	0.24	0.04	0.47	7.45	0.18	
	Netherstope	0.1478	0.0296	0.0296		0.1478	
	National PE	0.1470	0.0290	0.0290	-	0.1470	

Table B 4 TOW produced per property type as reported by the Danish EPA, back-calculated from reported effluents from scattered settlements assuming that the reported effluents corresponds to 30 % of the inlet TOW.

Table B 4 shows the TOW produced in scattered settlements. The inlet TOW is estimated based on reported estimations of BOD in the effluent from scattered settlements assuming an average loss of nutrient and organic matter with the effluent wastewater of 30 % (DME, 2003). In DME (2014) it is stated that scattered settlements are likely to have the same cleaning efficiency as mechanical wastewater treatment plant, reported as 26 % for BOD (Table D.1).

The estimated amount of BOD and COD produced per property type based on data reported by the Danish Nature Agency is compared to the estimated amounts based on the default IPCC value and the national PE unit value (grey shaded rows) respectively.

Year	Permanent habitation	Summer house	Allotment	Other	Total
	Residential	property not connec	ted to the co	llective se	wer system
2013	204,627	105,728	10,635	1,304	322,294
2012	207,316	107,716	8,293	1,293	324,618
2011	205,874	114,279	8,278	1,321	329,752
2010	214,463	110,733	8,078	1,305	334,579
2008	207,232	100,630	10,617	1,036	319,515
2006	208,965	100,237	10,373	1,171	320,746
2006	208,965	100,237	10,373	1,171	320,746
2004	240,017	98,106	10,578	1,036	349,737
2002	231,882	110,861	10,970	1,015	354,728
Settlem	ents in the whole country*	•			
2014	1,539,664	19,930	na	49,502	1,609,096
2013	1,533,468	19,501	na	52,256	1,605,225
2012	1,527,391	18,861	na	52,400	1,598,652
2011	1,523,129	18,305	na	52,710	1,594,144
2010	1,516,530	17,857	na	54,293	1,588,680
Percent	of the population not con	nected to the collec	tive sewer		
system					
2013	13.3				
2012	13.6				
2011	13.5				
2010	14.1				

Table B 5 Percent of the population not connected to the collective sewer system based on residential property types.

*The Danish statistics do not differentiate between summerhouses and allotments, but instead they use a grouping into leisure houses.

Na: not available

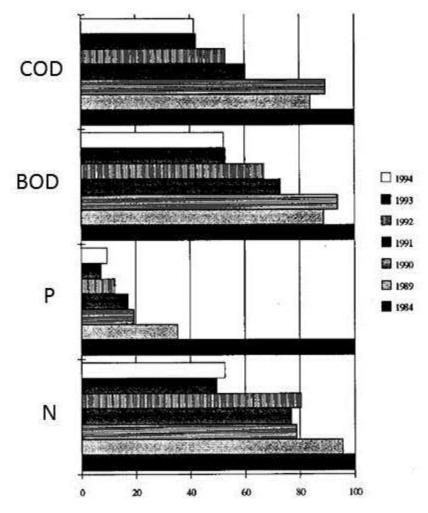
Table B 5 shows the number of residential property types not connected to the collective sewer system in the time period 2002-2013 compared to national statistics on the total number of residential property types in the whole country for the time range 201-2014. For the overlapping time range 2010-2012 covered by both data sets, the fraction of the population not connected to the collective sewer system were derived for the property type permanent habitation.

Annex C. Biogas conversion factors

The methane content of biogas depends on various factors, i.e. the production process, the raw material used for anaerobic digestion etc. Typical for biogas is that the main constituents of the gas are methane and carbon dioxide. Table C 1 shows a comparison between landfill gas, biogas from anaerobic digestion and natural gas.

Parameter Unit Landfill gas Biogas from AD Natural gas Methane Calorific value, lower MJ/Nm³ 40.00 16.00 23.00 35.38 kWh/Nm³ 4.40 6.50 11.00 10.00 GJ/kWh 0.0036 0.0036 0.0036 0.0036 12.3 20.20 31.08 MJ/kg 48.00 Density kg/Nm³ 1.30 1.20 0.83 0.72 Methane vol-% 45.00 65.00 89.00 100.00 35-65 60-70 100.00 Methane, range vol-% -0.00 Long-chain hydrocarbons vol-% 0.00 10.00 Hydrogen vol-% 0-3 0.00 0.00 0.00 0.00 0.00 Carbon monoxide vol-% Carbon dioxide vol-% 40.00 35.00 0.90 Carbon dioxide, range vol-% 15-50 30-40 Nitrogen vol-% 15.00 0.20 0.30 Nitrogen, range 14732.00 vol-% vol-% 1.00 0.00 0.00 Oxygen Oxygen, range vol-% 0-5 3.00 Hydrogen sulphide ppm < 100 < 500 Hydrogen sulphide, range 0-100 0-4000 42217.00 ppm Ammonia ppm 5.00 100.00 0.00 Total chlorine as Cl⁻ mg/N 20-200 0-5

Table C 1 Content of biogas.


Annex D. N flows and COD/N ratios at WWTPs

	WW	'TPs	Efflu	Effluents [tonne]			Reduction efficiency [%]		
Plant type	Number	1000 PE	Tot-N	Tot-P	BI5	Tot-N	Tot-P	BI5	
Untreated	2	1	4	1	15	-	-	-	
Mechanical	433	89	219	37	594	36	20	26	
MC	24	150	123	7	286	81	48	85	
MB	501	383	498	82	208	81	43	48	
MBC	237	863	857	45	294	87	58	87	
MBND	10	107	47	11	28	88	76	56	
MBNDC	268	10,466	3,419	418	2,100	92	85	92	
Total	1,475	12,059	5,166	601	3,525	-	-	-	

Table D 1 Distribution of WWTPs according to type, treatment capacity, effluents and reduction efficiency in 1998.

The abbreviations represent the following treatment levels: MC - mechanical/chemical; MB - mechanical/biological; MBC - mechanical/biological/chemical; MBND - mechani-

cal/biological/nitrogen removal; MBNDC - mechanical/biological/nitrogen removal/chemical. (DMEE, 1999b).

Annex E. Separate Industry - Industrial effluents, treatment levels and direct emissions

Figure E 1 Industrial effluents in percent of the effluent data for 1984.

		3
Plant type/ Treatment level	1986 [%]	1993 [%]
U	0.7	0.1
Μ	19.4	2.3
MB	65.8	5
MBN	5.4	1.1
MBND	2.3	0.3
MC	1.5	0.2
MBC	3.3	0.1
MBNC	0.7	10.1
MBNDC	0.9	80.8

Table E 2 Percentage distribution of industrial wastewater process configurations.

Table E 3 Effluents, back-calculated influent N loads and direct N ₂ O emissions from separate indus	stries.
---	---------

Year	1993	1994	1995	1996	1997	1998
Number of companies	103	100	107	99	-	-
Effluent wastewater [1000 m ³]	78,215	86,257	462,692	482,927	-	63,562
N in the effluent wastewater [tonne]	2,574	1,737	2,472	1,731	1,801	0
P in the effluent wastewater [tonne]	246	320	206	120	145	0
BOD in the effluent wastewater [tonne]	26,029	25,684	13,768	8,962	11,366	10,733
COD in the effluent wastewater [tonne]	53,619	54,572	36,811	28,326	-	24,081
COD/N ratio	20.8	31.4	14.9	16.4	-	-
N in the influent wastewater [tonne]	32,175	21,713	30,900	21,638	22,513	-
N ₂ O emission, direct, separate industries [tonne N ₂ O]	160.5	108.3	154.2	107.9	112.3	-
Year	1999	2000	2001	2002	2003	2004
Number of companies	-	-	192	183	179	-
Effluent wastewater [1000 m ³]	65,000	73,684	65,070	61,186	54,007	-
N in the effluent wastewater [tonne]	970	902	813	753	509	469
P in the effluent wastewater [tonne]	73	59	52	50	33	31
BOD in the effluent wastewater [tonne]	8,322	4,918	4,301	5,913	3,754	1,022
COD in the effluent wastewater [tonne]	16,444	9,661	8,182	9,952	7,915	-
COD/N ratio	17.0	10.7	10.1	13.2	15.6	-
N in the influent wastewater [tonne]	12,125	11,275	10,163	9,413	6,363	5,863
N ₂ O emission, direct, separate industries [tonne N ₂ O]	60.5	56.3	50.7	47.0	31.7	29.2
Year	2006	2007	2008	2009	2010	2011
Number of companies	176	159	114	121	197	178
Effluent wastewater [1000 m ³]	61,527	48,353	61,298	49,151	54,395	52,796
N in the effluent wastewater [tonne]	441	325	398	245	338	312
P in the effluent wastewater [tonne]	24	19	20	13	23	20
BOD in the effluent wastewater [tonne]	1,154	839	1,415	608	1,098	740
COD in the effluent wastewater [tonne]	3,420	1,820	2,392	827	2,650	1,651
COD/N ratio	7.8	5.6	6.0	3.4	7.8	5.3
N in the influent wastewater [tonne]	5,513	4,063	4,975	3,063	4,225	3,900
N ₂ O emission, direct, separate industries [tonne N ₂ O]	27.5	20.3	24.8	15.3	21.1	19.5
Year	2012	2013				
Number of companies	178	178				
Effluent wastewater [1000 m ³]	44,752	45,512				
N in the effluent wastewater [tonne]	221	271				
P in the effluent wastewater [tonne]	18	23				
BOD in the effluent wastewater [tonne]	455	874				
COD in the effluent wastewater [tonne]	1,890					
COD/N ratio	8.6	-				
N in the influent wastewater [tonne]	2,763	3,388				
N ₂ O emission, direct, separate industries [tonne N ₂ O]	13.8	16.9				

WASTEWATER TREATMENT AND DISCHARGE

This sector report present a verification of the countryspecific methane emissions factor of 1.3 % of the reported methane recovery in terms of biogas production at Danish wastewater treatment plants from anaerobic sludge treatment. The verification is based on a combination of national level COD balance, as recommended by the UN-FCCC review team, supplemented by plant level reported data. Secondary, the correctness of the percentage of the Danish population not connected to the collective sewer system is documented. Lastly a first approach for including direct N2O emissions from separate industries is presented.