
ANNUAL DANISH INFORMATIVE INVENTORY REPORT TO UNECE

Emission inventories from the base year of the protocols to year 2014

No. 183

Scientific Report from DCE - Danish Centre for Environment and Energy

2016

[Blank page]

ANNUAL DANISH INFORMATIVE INVENTORY REPORT TO UNECE

Emission inventories from the base year of the protocols to year 2014

Scientific Report from DCE – Danish Centre for Environment and Energy No. 183

2016

Ole-Kenneth Nielsen Marlene S. Plejdrup Morten Winther Mette Hjorth Mikkelsen Malene Nielsen Steen Gyldenkærne Patrik Fauser Rikke Albrektsen Katja Hjelgaard Henrik G. Bruun Marianne Thomsen

Aarhus University, Department of Environmental Science

Data sheet

Series title and no.:	Scientific Report from DCE – Danish Centre for Environment and Energy No. 183
Title: Subtitle:	Annual Danish Informative Inventory Report to UNECE Emission inventories from the base year of the protocols to year 2014
Authors:	Ole-Kenneth Nielsen, Marlene S. Plejdrup, Morten Winther, Mette Hjorth Mikkelsen, Malene Nielsen, Steen Gyldenkærne, Patrik Fauser, Rikke Albrektsen, Katja Hjelgaard, Henrik G. Bruun, Marianne Thomsen
Institution:	Department of Environmental Science
Publisher: URL:	Aarhus University, DCE – Danish Centre for Environment and Energy © <u>http://dce.au.dk/en</u>
Year of publication: Editing completed:	February 2016 February 2016
Financial support:	No external financial support
Please cite as:	Nielsen, OK., Plejdrup, M.S., Winther, M., Mikkelsen, M.H., Nielsen, M., Gyldenkærne, S., Fauser, P., Albrektsen, R., Hjelgaard, K., Bruun, H.G. & Thomsen, M. 2016. Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2014. Aarhus University, DCE – Danish Centre for Environment and Energy, 491 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 183 http://dce2.au.dk/pub/SR183.pdf
	Reproduction permitted provided the source is explicitly acknowledged
Abstract:	This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2016. The report contains information on Denmark's emission inventories regarding emissions of (1) SOx for the years 1980-2014, (2) NOx, CO, NMVOC and NH ₃ for the years 1985-2014, (3) Particulate matter: TSP, PM10, PM2.5 for the years 2000-2014, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2014, (5) Polyaromatic hydrocarbons (PAH): Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene, PCDD/F and HCB for the years 1990-2014. Further, the report contains information on background data for emissions inventory
Keywords:	Emission Inventory; Emissions; Projections; UNECE; EMEP; LRTAP; NOx; CO; NMVOC; SOx; NH3; TSP; PM10; PM2.5; Pb; Cd; Hg; As; Cr; Cu; Ni; Se; Zn; Polyaromatic hydrocarbons; Dioxin; Benzo(a)pyrene, Benzo(b)fluoranthene
Layout: Front page photo:	Ann-Katrine Holme Christoffersen Ann-Katrine Holme Christoffersen
ISBN: ISSN (electronic):	978-87-7156-196-8 2245-0203
Number of pages:	491
Internet version:	The report is available in electronic format (pdf) at <u>http://dce2.au.dk/pub/SR183.pdf</u>

Table of Contents

Ac	know	ledgements	7			
Su	mmar	у	8			
	l Bao	ckground information on emission inventories	8			
	II Trends in emissions					
	III Re	ecalculations and Improvements	13			
Sa		nfatning	14			
		ggrund for emissionsopgørelser	14			
		lviklingen i emissioner	14			
	III Ge	enberegninger og forbedringer	19			
1	Intro	oduction	20			
	1.1	Background information on emission inventories	20			
	1.2	A description of the institutional arrangement for				
	1.0	inventory preparation	20			
	1.3	Brief description of the process of inventory preparation.				
		Data collection and processing, data storage and archiving	21			
	1.4	Brief description of methodologies and data sources	21			
		used	24			
	1.5	Key categories	30			
	1.6	Information on the Quality Control and Quality				
		Assurance plan including verification and treatment of				
		confidential issues where relevant	30			
	1.7	General uncertainty evaluation, including data on the	20			
	1.8	overall uncertainty for the inventory totals	30 31			
	1.0 1.9	General assessment of the completeness References	32			
2		ids in Emissions	34			
	2.1	Acidifying gases	34			
	2.2	Description and interpretation of emission trends by gas	35			
	2.3	Other air pollutants	37			
3		rgy (NFR sector 1)	45			
	3.1	Overview of the sector	45			
	3.2	Stationary combustion (NFR sector 1A1, 1A2 and 1A4)	46			
	3.3	Transport and other mobile sources (NFR sector 1A2,	100			
	24	1A3, 1A4 and 1A5)	128 209			
	3.4	Fugitive emissions	209			
4	Indu	istrial processes (NFR sector 2)	234			
	4.1	Overview of the sector	234			
	4.2	Mineral industry	236			
	4.3	Chemical industry	250			
	4.4 4.5	Metal production	257			
	4.5	Non-energy products from fuels and solvent use	267			

	4.6	Other product use	277
	4.7	Other production	280
	4.8	Wood processing	284
	4.9	Other production, consumption, storage, transportation	
		or handling of bulk products	285
	4.10	QA/QC and verification	287
		Uncertainty estimates	287
	4.12	References	287
5	Agric	ulture (NFR sector 3)	292
	5.1	Overview of the sector	292
	5.2	References - sources of information	295
	5.3	Manure management	298
	5.4	Soils	310
	5.5	Field burning of agricultural residues	320
	5.6	Agriculture other	321
	5.7	Uncertainties	322
	5.8	Quality assurance and quality control (QA/QC)	326
	5.9	Recalculations	327
	5.10	Planned improvements	328
	5.11	References	328
6	Wast	e	331
	6.1	Solid waste disposal	331
	6.2	Biological treatment of solid waste	331
	6.3	Waste incineration	337
	6.4	Wastewater handling	346
	6.5	Other waste	346
	6.6	Uncertainties and time series consistency	355
	6.7	QA/QC and verification	357
	6.8	Source-specific recalculations and improvements	358
	6.9	Source-specific planned improvements	358
	6.10	References	358
7	Othe	r and natural emissions	363
8	Grido	led emissions	364
	8.1	Background for reporting	364
	8.2	Methods and data for disaggregation of emission data	365
	8.3	Gridded emission data	370
	8.4	References	373
9	Reca	Iculations and Improvements	374
	9.1	Energy	376
	9.2		379
	9.3	•	382
	9.4	Waste	382
10	Proie	ctions	383
	-	References	383
11	Adiu	stments	384
- •	-	Accepted adjustments	385

11.2 Application for adjustment	387
11.3 References	387
Annex 1 – Key category analysis	388
Annex 2 – Information on the energy balance	389
Annex 3A - Stationary combustion	390
Annex 3B - Transport and other mobile sources	469
Annex 3C - Industrial processes (NFR 2)	486
Annex 3D - Agriculture	487
Annex 3E - Waste	489
Annex 4 – Completeness and use of notation keys	490

[Blank page]

Acknowledgements

The work of compiling the Danish air pollutant emission inventory requires the input of many individuals, companies and institutions. The authors of this report would, in particular, like to thank the following for their valuable input in the work process:

- The Danish Energy Agency, in particular Jane Rusbjerg, Ali Zarnaghi and Kaj Stærkind for valuable discussions concerning energy balance data.
- The Danish Environmental Protection Agency, in particular Hans E. Jensen, Christian Lange Fogh, Charlotte von Hessberg and Stine S. Justesen for valuable discussions concerning PRTR reporting, environmental accounts from companies and small combustion sources.
- DONG Energy A/S and Vattenfall A/S for providing detailed data on emissions at boiler level.
- Anette Holst, Statoil Refining Denmark A/S, for providing detailed data and information on calorific values and uncertainties related to processes at the refinery.
- Lis R. Rasmussen, A/S Danish Shell, Shell Refinery, for providing detailed data on emissions from the refinery.
- HMN Naturgas for providing detailed data on distribution of natural gas
- NGF Nature Energy Distribution A/S for providing detailed data on distribution of natural gas
- DTU Transport (Technical University of Denmark), in particular Thomas Jensen for valuable input and discussions on road transport fleet and mileage characterisation.
- DCA Danish Centre for Food and Agriculture, Aarhus University, for valuable input on animals feed consumption and excretion based on the Danish Normative System.
- Annette Vestergaard Knowledge Centre for Agriculture, for discussions on actual farming practice regarding acidification of manure during application to soils.
- The Danish AgriFish Agency for providing unrestricted access to all agricultural data.

Summary

I Background information on emission inventories

Annual report

This report is Denmark's Annual Informative Inventory Report (IIR) due March 15, 2016 to the UNECE-Convention on Long-Range Transboundary Air Pollution (LRTAP). The report contains information on Denmark's inventories for all years from the base years of the protocols to 2014.

The air pollutants reported under the LRTAP Convention are SO_2 , NO_X , NMVOC, CO, NH₃, TSP, PM₁₀, PM_{2.5}, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, dioxins/furans, HCB, PCBs and PAHs,.

The annual emission inventory for Denmark is reported in the Nomenclature for Reporting (NFR) 2014 format.

The issues addressed in this report are: trends in emissions, description of each NFR category, uncertainty estimates, recalculations, planned improvements and procedures for quality assurance and control. The structure of the report follows to the extent possible the proposed outline.

Information contained in this report is available to the public on the Danish Centre for Environment and Energy (DCE), Aarhus University's homepage:

http://envs.au.dk/videnudveksling/luft/emissioner/emissioninventory/

This report and the NFR tables are available on the Eionet central data repository:

http://cdr.eionet.europa.eu/dk/Air_Emission_Inventories/Submission_E MEP_UNECE

Responsible institute

DCE-Danish Centre for Environment and Energy, Aarhus University, is on behalf of the Danish Ministry of the Environment responsible for the annual preparation and submission to the UNECE-LRTAP Convention of the Annual Danish Emissions Report and the inventories in the NFR format. DCE participates in meetings under the UNECE Task Force on Emission Inventories and Projections and the related expert panels, where parties to the convention prepare the guidelines and methodologies on inventories.

II Trends in emissions

Acidifying gases

In 1990, the relative contribution in acid equivalents was almost equal for the three gases SO_2 , NO_x and NH_3 . In 2014, the most important acidification factor in Denmark is ammonia nitrogen and the relative contributions for SO_2 , NO_x and NH_3 were 5 %, 35 % and 60 %, respectively. However, with regard

to long-range transport of air pollution, SO_2 and NO_X are still the most important pollutants.

Sulphur dioxide (SO₂)

The main part of the SO₂ emission originates from combustion of fossil fuels, i.e. mainly coal and oil, in public power and district heating plants. From 1990 to 2014, the total emission decreased by 94 %. The large reduction is mainly due to installation of desulphurisation plants in public power and district heating plants and use of fuels with lower content of sulphur. Despite the large reduction of the SO₂ emissions, these plants make up 24 % of the total emission. Also emissions from industrial combustion plants, non-industrial combustion plants, other mobile sources and production of bricks and tiles are important. National sea traffic (navigation and fishing) contributes with about 13 % of the total SO₂ emission in 2014. This is due to the use of residual oil with high sulphur content.

Nitrogen oxide (NO_x)

The largest sources of emissions of NO_x are road transport followed by other mobile sources and combustion in energy industries (mainly public power and district heating plants). The transport sector is the sector contributing the most to the emission of NO_x and, in 2014, 44 % of the Danish emissions of NO_x stems from road transport, national navigation, railways and civil aviation. Also emissions from national fishing and off-road vehicles contribute significantly to the NO_x emission. For non-industrial combustion plants, the main sources are combustion of gas oil, natural gas and wood in residential plants. The emissions from energy industries have decreased by 82 % from 1990 to 2014. In the same period, the total emission decreased by 62 %. The reduction is due to the increasing use of catalyst cars and installation of low-NO_x burners and denitrifying units in power plants and district heating plants.

Ammonia (NH₃)

The majority of emissions of NH_3 result from agricultural activities. Only a minor part originates from stationary combustion (2 %), road transport (2 %), industrial processes (<1 %) and waste (1 %). The share for road transport increased during the 1990'ties and early 2000's due to growing use of catalyst cars. In more recent years the share is again decreasing due to more advanced catalysts being implemented.

The major part of the emission from agriculture stems from livestock manure (49 %) and the largest losses of ammonia occur during the handling of the manure in animal housing systems. The second largest agricultural source is agricultural soils contributing 46 % in 2014; this is mainly emissions from application of mineral fertiliser, application of animal manure and emissions from crowing crops.

The total ammonia emission decreased by 43 % from 1985 to 2014. Due to the action plans for the aquatic environment and the Ammonia Action Plan, a series of measures to prevent loss of nitrogen in agricultural production has been initiated. The measures have included demands for improved utilisation of nitrogen in livestock manure, a ban against field application of livestock manure in winter, prohibition of broad spreading of manure, requirements for establishment of catch crops, regulation of the number of livestock per hectare and a ceiling for the supply of nitrogen to crops. As a result, despite an increase in the production of pigs and poultry, the ammonia emission has been reduced considerably.

Other air pollutants

Non-methane volatile organic compounds (NMVOC)

The emissions of NMVOC originate from many different sources and can be divided into two main groups: incomplete combustion and evaporation. Road vehicles and other mobile sources such as national navigation vessels and off-road machinery are the main sources of NMVOC emissions from incomplete combustion processes. Road transportation vehicles are still the main contributors, even though the emissions have declined since the introduction of catalyst cars in 1990. The evaporative emissions mainly originate from the agricultural sector, use of solvents and the extraction, handling and storage of oil and natural gas. The total anthropogenic emissions have decreased by 50 % from 1990 to 2014, largely due to the increased use of catalyst cars and reduced emissions from use of solvents.

Carbon monoxide (CO)

Non-industrial combustion plants are the main source to the total CO emission. For the non-industrial sector, emissions from commercial/institutional sources have increased and emissions from agriculture/forestry/fishing sources have decreased from 1990 to 2014, while emissions from the residential sector have been fluctuating, but around the same level in 1990 and 2014.

Transport is the second largest contributor to the total CO emission in 2014, showing a decrease of 83 % from 1990 to 2014. The major transport source is passenger cars, which make up 58 % in 1990, but has decreased to 19 % in 2014. The main driver is the increase of catalyst cars.

In 1990 a law forbidding the burning of agricultural crop residues on fields was implemented, which caused a significant reduction in CO emission.

The total CO emission decreased further by 58 % from 1990 to 2014, largely because of decreasing emissions from road transportation.

Particulate Matter (PM)

The particulate matter (PM) emission inventory has been reported for the years 2000 onwards. The inventory includes the total emission of particles Total Suspended Particles (TSP), emission of particles smaller than 10 μ m (PM₁₀) and emission of particles smaller than 2.5 μ m (PM_{2.5}).

The largest $PM_{2.5}$ emission sources are residential plants (59 %), road transport (10 %) and other mobile sources (9 %). Emissions from residential plants have increased by 84 % from 2000 to 2007, followed by a decrease of 48 % from 2007 to 2014. For other mobile sources, the most important sources are off-road vehicles and machinery in the industrial sector and in the agricultural/forestry sector (35 % and 33 %, respectively). For the road transport sector, exhaust emissions account for the major part (52 %) of the emissions. The $PM_{2.5}$ emission decreased by 24 % from 2000 to 2014 as the increasing wood consumption in the residential sector has been counterbalanced by decreasing emissions for the remaining sectors, the most important being the transport sector.

The largest TSP emission sources are agriculture and non-industrial combustion (72 % and 14 % of total TSP emission in 2014, respectively). Residential plants is the largest source in the non-industrial combustion sector, making up 13 % of the national total TSP emission in 2014. The TSP emissions from transport are also important and include both exhaust emissions and the non-exhaust emissions from brake and tyre wear and road abrasion. The non-exhaust emissions account for 72 % of the TSP emission from road transport in 2014.

Black carbon (BC)

The black carbon (BC) emission inventory is reported for the years 2000 onwards. The main sources are residential plants and road transport contributing 39 % and 21 % in 2014, respectively. From 2000 to 2014 the total BC emission decreases by 33 %. BC emissions from non-industrial plants have increased by 42 % from 2000 to 2007, followed by a decrease of 40 % from 2007 to 2014. The trend for non-industrial combustion is mainly controlled by the trend for the wood consumption in the residential sector. BC emissions from the transport sector decrease by 54 % from 2000 to 2014, mainly due to implementing of new EURO norms and improved technology. An important factor is the use of particle filters for heavy duty vehicles and personal cars, which reduce the BC emission effectively. BC emissions from fugitive emissions from fuels, which are mainly due to storage of coal, decrease by 29 % from 2000 to 2014, in accordance with the decrease of the coal consumption in electricity and heat production.

Heavy metals

In general, the most important sources of heavy metal emissions are combustion of fossil fuels and waste. The heavy metal emissions have decreased substantially in recent years, except for Cu. The reductions span from 19 % to 91 % for Zn and Pb, respectively. The reason for the reduced emissions is mainly increased use of gas cleaning devices at power and district heating plants (including waste incineration plants). The large reduction in the Pb emission is due to a gradual shift towards unleaded gasoline, the latter being essential for catalyst cars. The major source of Cu is automobile tyre and break wear (94 % in 2014) and the 29 % increase from 1990 to 2014 owe to increasing mileage.

Cadmium (Cd)

The main sources of emissions of cadmium (Cd) to air are mainly combustion of wood, wood waste and municipal waste. Non-industrial combustion contributes 72 % in 2014, of which 97 % comes from residential plants. Emissions from residential plants have increased by 215 % from 1990 to 2014 due to increasing wood consumption. Emissions from energy industries, manufacturing industries and construction, and industrial processes have decreased by 89 % from 1990 to 2014. The decreasing emission from energy industries are related to the decreasing combustion of coal. In the transport sector emissions from passenger cars is the main source contributing with 57 % of the sectoral emission in 2014.

Mercury (Hg)

The largest sources of mercury (Hg) emissions to air are waste incineration and coal combustion in energy industries. Due to improved flue gas cleaning and decreasing coal combustion the emissions from Energy industries decreased by 76 % from 1990-2000. The trend has continued in the following years and the corresponding decrease from 1990-2014 is 92 %. Nonindustrial combustion is dominated by wood combustion in residential plants while the main contributions to emissions from manufacturing industries and construction are food processing, beverages and tobacco, and nonmetallic minerals. The variations in emissions from industrial processes owe to shut down in 2002 followed by re-opening and a second shut down in 2005 of the only Danish electro-steelwork.

Lead (Pb)

The main lead (Pb) emission sources are transport, waste, non-industrial combustion and industrial processes. In earlier years combustion of leaded gasoline was the major contributor to Pb emissions to air but the shift toward use of unleaded gasoline for transport have decreased the Pb emission from transport by 94 % from 1990-2014. The trend in the Pb emission from non-industrial combustion from 1990 to 2014 is almost constant. In the non-industrial combustion sector the dominant source is wood combustion in residential plants, which has been increasing from 1990 to 2014, but counterbalanced by decreasing emissions from stationary combustion in commercial/institutional and in agriculture/forestry/fishing. The decreasing emission from Energy industries (97 % from 1990 to 2014) is caused by the decreasing coal combustion and more efficient particle abatement.

Polycyclic aromatic hydrocarbons (PAHs)

The present emission inventory for polycyclic aromatic hydrocarbons (PAH) includes four PAHs: benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene. Benzo(b)fluoranthene and Benzo(a)pyrene contribute the major PAH emission by 35 % and 31 %, respectively in 2014. The most important source of PAHs emissions is combustion of wood in the residential sector making up 68 % of the total emission in 2014. The increasing emission trend is due to increasing combustion of wood in the residential sector. The PAH emission from combustion in residential plants has increased by 22 % from 1990 to 2014.

Dioxins and furans

The major part of the dioxin emission owes to wood combustion in the residential sector, mainly in wood stoves and ovens without flue gas cleaning. Wood combustion in residential plants accounts for 48 % of the national dioxin emission in 2014. The contribution to the total dioxin emission from the waste sector (35 % in 2014) owes to accidental fires, especially building fires. The emissions of dioxins from energy industries mainly owe to the combustion of biomass as wood, wood waste and to a less extend agricultural waste

Hexachlorobenzene (HCB)

Stationary combustion accounts for 48 % of the estimated national hexachlorobenzene (HCB) emission in 2014. This owes mainly to combustion of municipal solid waste in heating and power plants. Transport is an important source, too, and has increased by 62 % since 1990 due to increasing diesel consumption. The HCB emission from stationary plants has decreased 74 % since 1990 mainly due to improved flue gas cleaning in MSW incineration plants. The emission from agriculture was very high in the early 1990'ties due to the use of pesticides containing impurities of HCB. The HCB emission from agriculture decreased by 94 % from 1990 to 1994 and by 99 % from 1990 to 2014, causing the share of HCB emission from agriculture to drop from 67 % in 1990 to 6 % in 2014.

Polychlorinated biphenyls (PCBs)

Transport accounts for 63 % of the estimated national polychlorinated biphenyls (PCBs) emission in 2013. This owes mainly to combustion of diesel in road transport. The emission from transport has decreased by 69 % since 1990 due to the phase out of leaded gasoline, which has a high PCBs emission factor. This has led to diesel fuel use being the most important source of PCBs emissions from transport in later years. The emission from manufacturing industries and non-industrial combustion is dominated by diesel fuel used in non-road machinery.

III Recalculations and Improvements

In general, considerable work is being carried out to improve the inventories. Investigations and research carried out in Denmark and abroad produce new results and findings which are given consideration and, to the extent which is possible, are included as the basis for emission estimates and as data in the inventory databases. Furthermore, the updates of the EMEP/EEA Guidebook, and the work of the Task Force on Emission Inventories and its expert panels are followed closely in order to be able to incorporate the best scientific information as the basis for the inventories.

The implementation of new results in inventories is made in a way so that improvements, as far as possible, better reflect Danish conditions and circumstances. This is in accordance with good practice. Furthermore, efforts are made to involve as many experts as possible in the reasoning, justification and feasibility of implementation of improvements.

In improving the inventories, care is taken to consider implementation of improvements for the whole time series of inventories to make it consistent. Such efforts lead to recalculation of previously submitted inventories. This submission includes recalculated inventories for the whole time series. A description of the recalculations is provided in Chapter 9 and more detail can be found in the sectoral chapters of this report. For sector specific planned improvements please also refer to the relevant sectoral chapters.

Sammenfatning

I Baggrund for emissionsopgørelser

Årlig rapport

Denne rapport er Danmarks årlige rapport om emissionsopgørelser sendt til UNECE-konventionen om langtransporteret grænseoverskridende luftforurening (LRTAP) 15. marts 2016. Rapporten indeholder oplysninger om Danmarks opgørelser for alle år fra basisårene for protokollerne til 2014.

Luftforureningskomponenterne der rapporteres til LRTAP-konventionen er SO₂, NO_x, NMVOC, CO, NH₃, TSP, PM_{10} , $PM_{2,5}$, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, dioxiner/furaner, HCB, PCBs og PAH.

Den årlige emissionsopgørelse for Danmark rapporteres i NFR 2013formatet.

Emnerne behandlet i rapporten er: Udvikling i emissioner, beskrivelse af hver NFR-kategori, usikkerheder, genberegninger, planlagte forbedringer og procedure for kvalitetssikring og -kontrol. Strukturen i rapporten følger, så vidt muligt, den foreslåede disposition.

Informationer fra denne rapport er tilgængelige for offentligheden på Aarhus Universitets hjemmeside:

http://envs.au.dk/videnudveksling/luft/emissioner/emissioninventory/

Den fulde rapport samt NFR-skemaer er tilgængelige på Eionets hjemmeside:

http://cdr.eionet.europa.eu/dk/Air_Emission_Inventories/Submission_E MEP_UNECE

Ansvarlig institution

DCE – Nationalt Center for Miljø og Energi, Aarhus Universitet, er på vegne af Miljøministeriet ansvarlig for udarbejdelse af den årlige danske emissionsrapport og opgørelserne i NFR. DCE deltager i møder under UNECEs arbejdsgruppe for emissionsopgørelser og –fremskrivninger samt ekspertpaneler, hvor parter i konventionen udarbejder retningslinjer og metoder for emissionsopgørelserne.

II Udviklingen i emissioner

Forsurende gasser

I 1990 var det relative bidrag af syreækvivalenter næsten ens for de tre gasarter. I 2014 var ammoniak den vigtigste forsurende faktor i Danmark og de relative bidrag for SO₂, NO_x og NH₃ var på henholdsvis 5 %, 35 % og 60 %. Med hensyn til langtransporteret luftforurening er det dog stadig SO₂ og NO_x, der er de vigtigste forureningskomponenter.

Svovldioxid (SO₂)

Hovedparten af SO₂-emissionerne stammer fra forbrænding af fossile brændsler, dvs. primært kul og olie, på kraftværker, kraftvarmeværker og fjernvarmeværker. Fra 1990 til 2014 er den totale udledning reduceret med 94 %. Den store reduktion er primært opnået gennem installation af afsvovlingsanlæg på kraftværker og fjernvarmeværker og brug af brændsler med lavere svovlindhold. Trods den store reduktion er disse værker kilde til 24 % af den samlede udledning. Også emissioner fra industrielle forbrændingsanlæg, ikke-industrielle forbrændingsanlæg, andre mobile kilder samt teglværker og produktion af ekspanderede lerprodukter er væsentlige bidragsydere til emissionen. National søfart (sejlads og fiskeri) bidrager med 13 % af den totale SO₂-emission. Dette skyldes brug af fuelolie med et højt svovlindhold.

Kvælstofilte (NO_x)

Den største kilde til emissioner af NO_x er transportsektoren efterfulgt af andre mobile kilder og forbrænding i energisektoren (hovedsageligt kraftværker og fjernvarmeværker). Transportsektoren er den sektor, der bidrager mest til udledningen af NO_x , og i 2014 stammede 44 % af de danske NO_x -emissioner fra vejtransport, national søfart, jernbaner og civil luftfart. Også emissioner fra nationalt fiskeri og off-road-køretøjer (entreprenør-, landbrugsmaskiner, m.m.) bidrager betydeligt til NO_x -emissionen. For ikkeindustrielle forbrændingsanlæg er de primære kilder forbrænding af gasolie, naturgas og træ i husholdninger. Emissionerne fra kraftværker og fjernvarmeværker er faldet med 82 % fra 1990 til 2014. I samme periode er den totale emission faldet med 62 %. Reduktionen skyldes øget brug af katalysatorer i biler og installation af lav- NO_x -brændere og de- NO_x -anlæg på kraftværker og fjernvarmeværker.

Ammoniak (NH_3)

Hovedparten af emissioner af NH_3 stammer fra aktiviteter i landbruget. Kun en mindre del skyldes stationær forbrænding (2 %), vejtransport (2 %), industrielle processer (<1 %) og affald (1 %). Andelen fra transporten var stigende gennem 1990'erne og i starten af 2000'erne pga. den øgede brug af biler med katalysator. I de senere år er andelen igen faldet på grund af mere implementeringen af mere effektive katalysatorer.

Hovedparten af emissionen fra landbruget stammer fra husdyrgødning (49 %), og de største tab af ammoniak optræder under håndtering af gødningen i stalden. Den næststørste kilde indenfor landbrug er landbrugsjorde som bidrager med 46 % i 2014. Emissionen stammer hovedsageligt fra anvendelse af handelsgødning, udbringning af husdyrgødning samt emissioner fra voksende afgrøder.

Den totale ammoniakemission er faldet 43 % fra 1985-2014. Dette skyldes implementeringen af vandmiljøplaner og ammoniakhandlingsplanen som introducerede en række tiltag for at mindske kvælstoftabet i landbruget. Tiltagene har inkluderet krav om forbedret udnyttelse af kvælstof i husdyrgødning, et forbud mod udbringning af husdyrgødning om vinteren, forbud mod bredspredning af gødning, regler for plantning af efterafgrøder, regulering af antallet af tilladte dyr per hektar og et loft for gødningsanvendelsen for afgrøder. På trods af en stigning i produktionen af svin og fjerkræ, så er emissionen faldet betydeligt.

Anden luftforurening

Flygtige organiske forbindelser (NMVOC)

Emissionen af flygtige organiske forbindelser ekskl. metan (NMVOC) stammer fra mange forskellige kilder og kan opdeles i to hovedgrupper: Ufuldstændig forbrænding og fordampning. Hovedkilderne til NMVOCemissioner fra ufuldstændige forbrændingsprocesser er brændeovne, vejtrafik og andre mobile kilder, som national sejlads og ikke vejgående maskiner. Køretøjer til vejtransport er fortsat den største bidragsyder, selvom emissionerne er faldet siden introduktionen af biler med katalysator i 1990. Emissionerne fra fordampning stammer hovedsageligt fra landbrug, anvendelse af opløsningsmidler og udvinding, lagring og transport af olie og gas. De totale menneskeskabte emissioner er faldet med 50 % fra 1990 til 2014, primært som følge af øget brug af biler med katalysator og reducerede emissioner fra anvendelse af opløsningsmidler.

Kulilte (CO)

Ikke-industriel forbrænding er den vigtigste kilde til CO-emissionen. Indenfor ikke-industriel forbrænding er emissionen fra handel & service steget og emissioner fra landbrug/skovbrug/gartneri er faldet fra 1990 til 2014, emissionen fra husholdninger har fluktueret gennem tidserien, men er på samme niveau i 2014 som i 1990.

Transport er den næst vigtigste kilde til CO-emission i 2013, på trods af et fald i emissionen på 83 % mellem 1990 og 2014. Den største bidragyder til emissionen fra transport er personbiler, som udgjorde 58 % i 1990, mens andelen er faldet til 19 % i 2014. Driveren for faldet i andelen er implementeringen af lovpligtige katalysatorer og stadigt strengere emissionskrav.

I 1990 trådte et forbud mod markafbrænding i kraft, som medførte et markant fald i CO-emissionen fra 1989 til 1990.

Samlet set, så faldt emissionen af CO med 58 % fra 1990 til 2014, hovedsageligt drevet af faldet i emissioner fra transportsektoren.

Partikler (PM)

Emissionsopgørelsen for partikler (Particulate Matter, forkortet PM) er blevet rapporteret for år 2000 og fremefter. Opgørelsen inkluderer den totale emission af partikler: Total Suspended Particles (TSP), emissionen af partikler mindre end 10 μ m (PM₁₀) og emissionen af partikler mindre end 2,5 μ m (PM_{2,5}).

De største kilder til PM_{2,5}-emission er husholdninger (59 %), vejtrafik (10 %) og andre mobile kilder (9 %). Emissionen fra husholdninger steg med 84 % fra 2000 til 2007 efterfulgt af et fald på 48 % fra 2007 til 2014. For andre mobile kilder er offroad-køretøjer i industrien samt landbrugs- og skovbrugsmaskiner de vigtigste kilder (hhv. 35 % og 33 %). I transportsektoren tegner udstødningsemissioner sig for størstedelen (52 %). PM_{2.5}-emissionen er faldet med 24 % fra 2000 til 2014, da det stigende træforbrug og dermed emissioner fra husholdninger modsvares fald i emissionen fra de øvrige sektorer især transportsektoren.

De største kilder til TSP-emission er landbrugssektoren og husholdningerne. TSP-emissionen fra transport er også vigtig og inkluderer både udstødningsemissioner og ikke-udstødningsrelaterede emissioner fra slid af bremser, dæk og vej. De ikke-udstødningsrelaterede emissioner udgør 72 % af TSP-emissionen fra transport.

Sod (BC)

Emissionsopgørelsen for sod (Black carbon – BC) er rapporteret for året 2000 og fremefter. De vigtigste kilder er husholdninger og vejtransport, der bidrager med henholdsvis 39 % og 21 % i 2014. Fra 2000 til 2014 er den samlede BC-emission faldet med 33 %. BC-emissionen fra ikke-industriel forbrænding steg med 42 % fra 2000 til 2007, men er efterfølgende faldet med 40 %. Udviklingen indenfor ikke-industriel forbrænding er domineret af udviklingen i træforbruget i husholdninger.

BC-emissionen fra transportsektoren er faldet med 54 % fra 2000 til 2014, hvilket skyldes implementeringen af nye EURO-normer og forbedret teknologi. En vigtig faktor er anvendelsen af partikelfiltre for lastbiler og personbiler, som effektivt begrænser udledningen af partikler og også BC.

BC-emissioner fra udvinding/lagring /transport af kul, olie og gas kommer hovedsageligt fra lagring af kul. Emissionen er fladet med 29 % fra 2000 til 2014 på grund af det faldende kulforbrug til produktion af el og varme.

Tungmetaller

Generelt er de vigtigste kilder til emissioner af tungmetaller forbrænding af fossile brændsler og affald. Emissionerne af tungmetaller er med undtagelse af kobber, faldet betydeligt de seneste år. Reduktionerne spænder fra 19 % til 91 % for henholdsvis Zn og Pb. Årsagen til de reducerede emissioner er hovedsageligt den øgede brug af røggasrensning på kraftværker og fjern-varmeværker (inklusive affaldsforbrændingsanlæg). Den store reduktion i emissionen af Pb skyldes et løbende skift til fordel for blyfri benzin, som er nødvendigt for biler med katalysator. Den største kilde til emission af kobber er slid af køretøjers dæk og bremser (93 % i 2014). Emissionen herfra er steget 29 % fra 1990 til 2014 pga. en stigning i antal kørte kilometer.

Cadmium (Cd)

Den største kilde til Cd-emissioner er forbrænding i energisektoren (hovedsageligt forbrænding af træ og husholdningsaffald). Emissionen fra ikkeindustriel forbrænding bidrager med 72 % i 2014 hvoraf 97 % kommer fra husholdninger. Emissionen fra husholdninger er steget med 215 % fra 1990 til 2014 på grund af et stigende træforbrug. Emissioner fra kraftværker, fremstillingsvirksomhed og industrielle processer er faldet med 89 % fra 1990 til 2014. Den faldende emission fra kraftværker skyldes faldende forbrug af kul. Emissioner fra personbiler er den dominerende kilde i transportsektoren og udgør 57 % i 2014.

Kviksølv (Hg)

Den største kilde til Hg-emission er forbrænding af affald og kul i energisektoren. Forbedret røggasrensning og faldende kulforbrug har medført et fald i emissionen fra energisektoren på 76 % fra 1990 til 2000. Denne udvikling er fortsat således at emissionen fra 1990 til 2014 samlet set er faldet med 92 %. Emissionen fra ikke-industriel forbrænding kan hovedsageligt tilskrives forbrænding af træ i husholdninger. Emissionen fra fremstillingsvirksomhed stammer hovedsageligt fra forbrænding i undersektorerne fødevareindustri og mineralsk industri. Emissionerne fra industrielle processer varierer meget pga. lukning af elektrostålvalseværket i 2002 efterfulgt af genåbning og endnu en lukning i 2005.

Bly (Pb)

Den vigtigste kilde til emission af bly er transport, affald, ikke-industriel forbrænding og industrielle processer. I tidligere år var den største kilde forbrænding af blyholdigt benzin, men overgangen til blyfri benzin i transportsektoren har medført et fald i bly-emissionen fra transport på 94 % fra 1990 til 2014. Udviklingen i emissionen fra ikke-industriel forbrænding har været stort set konstant fra 1990-2014. Forbrænding af træ i husholdningsanlæg er den største kilde til emission af bly fra ikke-industriel forbrænding, og denne emission har været stigende fra 1990 til 2014, men er modvirket af faldende emissioner fra handel & service og landbrug/skovbrug/fiskeri. Emissionen fra energifremstilling er faldet med 97 % fra 1990 til 2014 hovedsageligt pga. faldende forbrug af kul og forbedret røggasrensning.

Polycycliske aromatiske hydrocarboner (PAH'er)

Den nuværende emissionsopgørelse for polycycliske aromatiske hydrocarboner (PAH'er) inkluderer de fire PAH'er: Benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene og indeno(1,2,3-cd)pyrene. Hovedparten af den samlede PAH-emission kan tilskrives benzo(b)fluoranthene og Benzo(a)pyrene der står for hhv. 35 % og 31 %. Den vigtigste kilde til emission af PAH er forbrænding af træ i husholdningerne, der udgør 64 % af den samlede PAH-emission i 2014. De stigende emissioner skyldes øget forbrænding af træ i brændeovne og kedler i husholdningerne. Emissionen fra stationær forbrænding i husholdninger er steget med 22 % fra 1990 til 2014.

Dioxiner og furaner

Størstedelen af dioxinemissionen skyldes forbrænding i husholdninger, hovedsageligt forbrænding af træ i brændeovne og –kedler uden røggasrensning. Forbrænding af træ i stationære anlæg i husholdninger udgør 48 % af den nationale dioxin emission i 2014. Emissioner fra affaldssektoren udgør 35 % af den nationale total i 2014, og skyldes hovedsageligt brande i bygninger. Forbrænding af træ og halm er den største kilde til dioxin emission fra energifremstilling.

Hexachlorbenzen (HCB)

Stationær forbrænding udgør 48 % af den samlede beregnede hexachlorbenzen(HCB)-emission i 2014. Emissionen stammer hovedsageligt fra forbrænding af affald i kraftvarmeværker og fjernvarmeværker. Transport er også en vigtig kilde, og emissionen er steget med 62 % siden 1990 pga. det stigende dieselforbrug. HCB-emissionen fra stationære anlæg er faldet med 74 % siden 1990 hovedsageligt pga. forbedret røggasrensning på affaldsforbrændingsanlæg. Emissionen fra landbrug var høj i starten af 1990'erne pga. anvendelse af pesticider, der indeholdt urenheder af HCB. HCB-emissionen fra landbrug faldt med 94 % fra 1990 til 1994 og med 99 % fra 1990 til 2014. Dette har medført, at landbrugets andel af den samlede emission er faldet fra 67 % i 1990 til 6 % i 2014.

Polychlorerede bifenyler (PCBs)

Transport udgør 63 % af den samlede beregnede emission af polychlorerede bifenyler (PCBs) i 2014. Det største bidrag kommer fra forbrænding af diesel i vejtransport. Emissionen er faldet med 69 % siden 1990 pga. udfasningen af blyholdig benzin, som har en høj PCBs emissionsfaktor. Udfasningen af blyholdig benzin har medført, at diesel er blevet den vigtigste kilde til PCBs emission i de senere år. Emissionen fra fremstillingsvirksomhed & bygge/anlæg samt ikke-industriel forbrænding er domineret af diesel forbrænding i ikke-vejgående maskiner.

III Genberegninger og forbedringer

Generelt pågår der et betydeligt arbejde med at forbedre emissionsopgørelserne. Nye undersøgelser og forskning fra Danmark og udlandet inkluderes så vidt muligt som basis for emissionsestimaterne. Desuden følges arbejdet med opdateringer af EMEP/EEA Guidebook for emissionsopgørelser nøje, med henblik på at indarbejde de bedste videnskabelige informationer som basis for opgørelserne.

Opgørelserne opdateres løbende med ny viden, således at opgørelserne bedst mulig afspejler danske forhold. Ved forbedringer lægges vægt på at opdateringer omfatter hele tidsserier, for at sikre konsistente data. Disse tiltag medfører genberegning af tidligere indberettede opgørelser. Begrundelserne for genberegningerne er inkluderet i kapitel 9 samt i de enkelte sektorkapitler i denne rapport. For planlagte sektorspecifikke forbedringer henvises der til sektorkapitlerne.

1 Introduction

1.1 Background information on emission inventories

DCE (Danish Centre for Environment and Energy), Aarhus University is contracted by the Ministry of the Environment and Food and the Ministry of Energy, Utilities and Climate to complete emission inventories for Denmark. Department of Environmental Science, Aarhus University is responsible for calculation and reporting of the Danish national emission inventory to EU and the UNFCCC (United Nations Framework Convention on Climate Change) and UNECE CLRTAP (Convention on Long Range Transboundary Air Pollution) conventions.

1.1.1 Annual report

According to the guidelines for reporting emission data under the Convention on Long-Range Transboundary Air Pollution (ECE/EB.AIR/125) prepared by the Task Force on Emission Inventories and Projections and approved by the Executive Body, countries that are parties to the UNECE-Convention on Long-Range Transboundary Air Pollution should annually submit an informative inventory report to the Secretariat. The current reporting Guidelines (ECE/EB.AIR/125) were accepted at the meeting of the Executive Body in December 2013. Due to a lack of resources, it has not been possible to incorporate the new elements of the reporting guidelines in this submission nor has the previous reporting guidelines (ECE/EB.AIR/75) been fully implemented.

This report is Denmark's Annual Informative Inventory Report due March 15, 2016. The report contains information on Denmark's inventories for all years from the base years of the protocols to 2014.

The annual emission inventory for Denmark is reported in the Nomenclature for Reporting (NFR) 2014 format.

The issues addressed in this report are: trends in emissions, description of each NFR category, uncertainty estimates, recalculations, planned improvements and procedures for quality assurance and control. The outline in annex V of the reporting guidelines is followed as far as possible.

This report and NFR tables are available to the public on the Danish emission inventory webpage: http://envs.au.dk/videnudveksling/luft/emissioner/emissioninventory/

and on the Eionet central data repository:

http://cdr.eionet.europa.eu/dk/Air_Emission_Inventories/Submission_E MEP_UNECE

1.2 A description of the institutional arrangement for inventory preparation

DCE (Danish Centre for Environment and Energy, Aarhus University, is responsible for the annual preparation and submission to the UNECE-LRTAP Convention of the Annual Danish Emissions Report, and the inventories in the NFR format in accordance with the guidelines. DCE participates in meetings under the UNECE Task Force on Emission Inventories and Projections and the related expert panels where parties to the convention prepare the guidelines and methodologies on inventories. DCE is also responsible for estimating emissions for reporting to the NEC Directive, but the Danish EPA is responsible for the reporting.

The work concerning the annual emission inventory is carried out in cooperation with other Danish ministries, research institutes, organisations and companies:

Danish Energy Agency (DEA), Ministry of Energy, Utilities and Climate: Annual energy statistics in a format suitable for the emission inventory work and fuel-use data for the large combustion plants.

Danish Environmental Protection Agency (DEPA), Ministry of Environment and Food:

Company reporting to e.g. the PRTR. Database on waste.

<u>Statistics Denmark, Ministry of Social Affairs and the Interior:</u> Statistical yearbook, production statistics for manufacturing industries, agricultural statistics and import/export/production figures.

<u>DCA (Danish Centre for Food and Agriculture), Aarhus University:</u> Data on use of mineral fertiliser, feeding stuff consumption and nitrogen turnover in animals.

<u>The Road Directorate, Ministry of Transport and Building:</u> Number of vehicles grouped in categories corresponding to the EU classification, mileage (urban, rural, highway), trip speed (urban, rural, highway).

<u>Civil Aviation Agency of Denmark, Ministry of Transport and Building:</u> City-pair flight data (aircraft type and origin and destination airports) for all flights leaving major Danish airports.

<u>Danish Railways, Ministry of Transport and Building:</u> Fuel-related emission factors for diesel locomotives.

Danish companies:

Audited environmental reports and direct information gathered from producers and agency enterprises.

Formerly, the provision of data was on a voluntary basis, but now formal agreements are in place with the most important data suppliers, e.g. the Danish Energy Agency and DCA.

1.3 Brief description of the process of inventory preparation. Data collection and processing, data storage and archiving

The background data (activity data and emission factors) for estimation of the Danish emission inventories is collected and stored in central databases located at DCE. The databases are in Access format and handled with software developed by the European Environmental Agency (EEA) and DCE. As input to the databases, various sub-models are used to estimate and aggregate the background data in order to fit the format and level in the central databases. The methodologies and data sources used for the different sectors are described in Chapter 1.4 and Chapters 3 to 6. As part of the QA/QC plan (Chapter 1.5), the data structure for data processing support the pathway from collection of raw data to data compilation, modelling and final reporting.

For each submission, databases and additional tools and submodels are archived together with the resulting NFR reporting format. This material is placed on central institutional servers, which are subject to routine back-up services. Material, which has been backed up is archived safely. A further documentation and archiving system is the official journal for DCE, for which obligations apply to DCE, as a governmental institute. In this journal system, correspondence, both in-going and out-going, is registered, which in this case involves the registration of submissions and communication on inventories with the UNECE-LRTAP Secretariat, the European Commission, review teams, etc.

Figure 1.1 shows a schematic overview of the process of inventory preparation. The figure illustrates the process of inventory preparation from the first step of collecting external data to the last step, where the reporting schemes are generated for the UNFCCC and EU (in the CRF format (Common Reporting Format)) and to the United Nations Economic Commission for Europe/Cooperative Programme for Monitoring and Evaluation of the Longrange Transmission of Air Pollutants in Europe (UNECE/EMEP) (in the NFR format (Nomenclature For Reporting)). For data handling, the software tool is CollectER II and for reporting the software tool is developed by DCE. Data files and programme files used in the inventory preparation process are listed in Table 1.1.

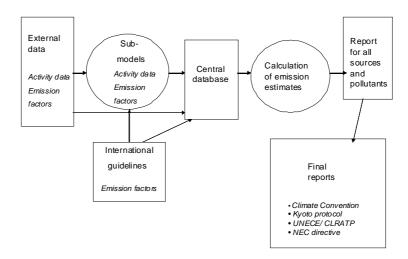


Figure 1.1 Schematic diagram of the process of inventory preparation.

QA/QC	Name	Application	Path	Туре	Input sources
Level		type			
4 store	CFR Submis- sions (UNFCCC and EU) NFR Submis- sions (UNECE and EU)	External report	U:\ST_ENVS- LUFT- EMI\Inventory\AllY ears\8_AllSectors\L evel_4a_Storage\	MS Excel, xml	CRF Report- er
3 process	CRF Reporter	Management tool	Working path: local machine Archive path: U:\ST_ENVS- LUFT- EMI\Inventory\AllY ears\8_AllSectors\L evel_3b_Processe s		manual input and Import- er2CRF
3 process	Importer2CRF	Help tool	U:\ST_ENVS- LUFT- EMI\Inventory\AllY ears\8_AllSectors\L evel_3b_Processe s	MS Access	CRF Report- er, Collec- lec- tEr2CRFand excel files
3 process	CollectER2CRF	Help tool	U:\ST_ENVS- LUFT- EMI\Inventory\AllY ears\8_AllSectors\L evel_3b_Processe s	MS Access	NERIRep
2 process 3 store	NERIRep	Help tool	Working path: U:\ST_ENVS- LUFT- EMI\Inventory\AllY ears\8_AllSectors\L evel_3a_Storage	MS Access	CollectER databases; dk1972.mdb. .dkxxxx.mdb
2 process	CollectER	Management tool	Working path: local machine Archive path: U:\ST_ENVS- LUFT- EMI\Inventory\AIIY ears\8_AIISectors\L evel_2b_Processe		manual input
2 store	dk1980.mdb.dkx xxx.mdb	Datastore	s U:\ST_ENVS- LUFT- EMI\Inventory\AllY ears\8_AllSectors\L evel_2a_Storage	MS Access	CollectER

1.4 Brief description of methodologies and data sources used

Denmark's air emission inventories are based on the EMEP/EEA Guidebook, the CORINAIR methodology as well as the 2006 IPCC Guidelines (IPCC, 2006). CORINAIR (COoRdination of INformation on AIR emissions) is a European air emission inventory programme for national sector-wise emission estimations, harmonised with the IPCC guidelines. In 2013 the latest edition of the EMEP/EEA Guidebook (EEA, 2013) was adopted for use by the EMEP Executive Body, the changes in the 2013 edition have only been reflected to a limited extent in this submission and the changes will be implemented depending on the availability of resources. In 2009 the EMEP/CORINAIR Guidebook changed name to the EMEP/EEA Guidebook (EEA, 2009). In this change the Guidebook switched nomenclature from SNAP to NFR.

The Danish inventory is prepared at the more detailed SNAP level rather than at the NFR level that is only suitable for reporting. To ensure estimates are as timely, consistent, transparent, accurate and comparable as possible, the inventory programme has developed calculation methodologies for most subsectors and software for storage and further data processing.

A thorough description of the CORINAIR inventory programme used for Danish emission estimations is given in Illerup et al. (2000). The CORINAIR calculation principle is to calculate the emissions as activities multiplied by emission factors. Activities are numbers referring to a specific process generating emissions, while an emission factor is the mass of emissions pr unit activity. Information on activities to carry out the CORINAIR inventory is largely based on official statistics. The most consistent emission factors have been used, either as national values or default factors proposed by international guidelines.

A list of all subsectors at the most detailed level is given in Illerup et al. (2000) together with a translation between CORINAIR and IPCC codes for sector classifications.

1.4.1 The specific methodologies regarding stationary combustion

Stationary combustion plants are part of the CRF emission sources 1A1 Energy Industries, 1A2 Manufacturing Industries and 1A4 Other sectors.

The Danish emission inventory for stationary combustion plants is based on the former CORINAIR system. The emission inventory for stationary combustion is based on activity rates from the Danish energy statistics. General emission factors for various fuels, plants and sectors have been determined. Some large plants, such as power plants, are registered individually as large point sources and plant-specific emission data are used.

The fuel consumption rates are based on the official Danish energy statistics prepared by the Danish Energy Agency (DEA). DCE aggregates fuel consumption rates to SNAP categories. The fuel consumption of the NFR category 1A2 Manufacturing industries and construction is disaggregated to subsectors according to the DEA data prepared and reported to Eurostat.

For each of the fuel and SNAP categories (sector and e.g. type of plant), a set of general emission factors has been determined. Some emission factors refer to the EMEP/EEA Guidebook and some are country specific and refer to Danish legislation, Danish research reports or calculations based on emission data from a considerable number of plants.

A number of large plants, e.g. power plants, municipal waste incineration plants and large industrial plants are registered individually as large point sources. This enables use of plant-specific emission factors that refer to emission measurements stated in annual environmental reports. Emission factors of SO₂, NO_X, HM and PM are often plant specific.

Please refer to Chapter 3.2 and Annex 3A for further information on emission inventories for stationary combustion plants.

1.4.2 Specific methodologies regarding transport

The emissions from transport referring to SNAP category 07 (Road transport) and the sub-categories in 08 (Other mobile sources) are made up in the NFR categories; 1A3b (Road transport), 1A2f (Industry-other), 1A3a (Civil aviation), 1A3c (Railways), 1A3d (Navigation), 1A4c (Agricul-ture/forestry/-fisheries), 1A4a (Commercial/institutional), 1A4b (Residential) and 1A5 (Other).

An internal DCE model with a structure similar to the European COPERT IV emission model (EEA, 2013) is used to calculate the Danish annual emissions for road traffic. The emissions are calculated for operationally hot engines, during cold start and fuel evaporation. The model also includes the emission effect of catalyst wear. Input data for vehicle stock and mileage is obtained from DTU Transport and Statistics Denmark, and is grouped according to average fuel consumption and emission behaviour. For each group, the emissions are estimated by combining vehicle type and annual mileage figures with hot emission factors, cold:hot ratios and evaporation factors.

For air traffic, from 2001 onwards estimates are made on a city-pair level, using flight data provided by the Danish Civil Aviation Agency (CAA-DK) for flights between Danish airports and flights between Denmark and Greenland/Faroe Islands, and LTO and distance-related emission factors from the CORINAIR guidelines (Tier 2 approach). For previous years, the background data consists of LTO/aircraft type statistics from Copenhagen Airport and total LTO numbers from CAA-DK. With appropriate assumptions, consistent time series of emissions are produced back to 1990 and include the findings from a Danish city-pair emission inventory in 1998.

Off-road working machines and equipment are grouped in the following sectors: inland waterways (pleasure craft), agriculture, forestry, industry, and household and gardening. The sources for stock and operational data are various branch organisations and key experts. In general, the emissions are calculated by combining information on the number of different machine types and their respective load factors, engine sizes, annual working hours and emission factors.

The inventory for navigation consists of regional ferries, local ferries and other national sea transport (sea transport between Danish ports and between Denmark and Greenland/Faroe Islands). For regional ferries, the fuel consumption and emissions are calculated as a product of number of round trips per ferry route (Statistics Denmark), sailing time per round trip, share of round trips per ferry, engine size, engine load factor and fuel consumption/emission factor. The estimates take into account the changes in emission factors and ferry specific data during the inventory period.

For the remaining navigation categories, the emissions are calculated simply as a product of total fuel consumption and average emission factors. For each inventory year, this emission factor average comprises the emission factors for all present engine production years, according to engine life times.

Please refer to Chapter 3.3 and Annex 3B for further information on emissions from transport.

1.4.3 The specific methodologies regarding fugitive emissions

Fugitive emissions from oil (1.B.2.a)

Fugitive emissions from oil are estimated according to the methodology described in the Emission Inventory Guidebook (EEA, 2013). The sources include offshore extraction of oil and gas, onshore oil tanks, onshore and offshore loading of ships, and gasoline distribution. Activity data are given in the Danish Energy Statistics by the Danish Energy Agency. The emission factors are based on the figures given in the guidebook except in the case of onshore oil tanks and gasoline distribution where national values are included.

The VOC emissions from petroleum refinery processes cover noncombustion emissions from feed stock handling/storage, petroleum products processing, and product storage/handling. SO_2 is also emitted from non-combustion processes and includes emissions from product processing and sulphur-recovery plants. The emission calculations are based on information from the Danish refineries.

Fugitive emissions from natural gas (1.B.2.b)

Inventories of NMVOC emission from transmission and distribution of natural gas and town gas are based on annual environmental reports from the Danish gas transmission company and annual reports for the gas distribution companies. The annual gas composition is based on from the national transmission company.

Fugitive emissions from flaring (1.B.2.c)

Emissions from flaring offshore, in gas treatment and storage plants, and in refineries are included in the inventory. Emissions calculations are based on annual reports from the Danish Energy Agency and environmental reports from gas storage and treatment plants and the refineries. Calorific values are based on the reports for the EU ETS for offshore flaring, on annual gas quality data from Energinet.dk, and on additional data from the refineries. Emission factors are based on national studies and the EMEP/EEA Guidebook (EEA, 2013).

Please refer to Chapter 3.4 for further information on fugitive emissions from fuels.

1.4.4 Specific methodologies regarding industrial processes and product use

Energy consumption associated with industrial processes and the emissions thereof is included in the inventory for stationary combustion plants. This is due to the overall use of energy balance statistics for the inventory.

Mineral industry

The sub-sector includes production of cement, lime, container glass/glass wool, mineral wool, other production (consumption of lime), and roofing and road paving with asphalt. The activity data as well as emission data are primarily based on information from Environmental Reports (In Danish: "Grønne regnskaber") prepared by companies according to obligations under Danish law. Also, data on production and import/export from Statistics Denmark are used. The published information is supplemented with information obtained directly from companies or by use of standard emission factors. The distribution of TSP between PM_{10} and $PM_{2.5}$ is based on European average data.

Chemical industry

The sub-sector includes production of nitric and sulphuric acid (ceased in 1997 and 2004, respectively), catalysts, fertilisers and pesticides. The activity data as well as emission data are based on information from the companies as accounted for and published in the Environmental Reports combined with information obtained by contact to the companies. The distribution of TSP between PM_{10} and $PM_{2.5}$ is based on European average data.

Metal industry

The sub-sector includes electro steelwork, production of steel sheets and bars (electro steelwork until 2005 and thereafter, only rolling mills), cast iron, aluminium (ceased in 2008), lead and lead products and various other metal products. The activity data as well as emission data for the steelworks are based on information from the companies as accounted for and published in the Environmental Reports, combined with information obtained through contact with the companies. The activity data for the other processes are based on information from Statistics Denmark combined with Danish average emission factors and standard emission factors. The particle size distribution of TSP (PM_{10} and $PM_{2.5}$) is based on European average data.

Other production

The sub-sector includes breweries, production of spirits and other activities within the food sector e.g. sugar production, meat curing and production of margarine and solid cooking fats. The activity data are obtained from Statistics Denmark and the emission factors are obtained from the EMEP/EEA Guidebook combined with emission factors (EF) derived from specific emission measurements at the companies.

Solvent and other product use

The approach for calculating the emissions of Non-Methane Volatile Organic Carbon (NMVOC) from industrial and household use in Denmark focuses on single chemicals rather than activities. This leads to a clearer picture of the influence from each specific chemical, which enables a more detailed differentiation on products and the influence of product use on emissions. The procedure is to quantify the use of the chemicals and estimate the fraction of the chemicals that is emitted as a consequence of use. The detailed approach in EMEP/EEA Guidebook (2013) is used. Here all relevant consumption data on all relevant solvents must be inventoried or at least those together representing more than 90 % of the total NMVOC emission. Simple mass balances for calculating the use and emissions of chemicals are set up 1) use = production + import - export, 2) emission = use emission factor. Production, import and export figures are extracted from Statistics Denmark, from which a list of more than 400 single chemicals, a few groups and products is generated. For each of these, a "use" amount in tonnes per year (from 1990 to 2014) is calculated. For some chemicals and/or products, e.g. propellants used in aerosol cans and ethanol used in windscreen washing agents, use amounts are obtained from the industry as the information from Statistics Denmark does not comply with required specificity. It is found that approximately 40 different NMVOCs comprise over 95 % of the total use and it is these 40 chemicals that are investigated further. The "use" amounts are distributed across industrial activities according to the Nordic SPIN (Substances in Preparations in Nordic Countries) database, where information on industrial use categories is available in a NACE coding system. The chemicals are also related to specific products according to the Use Category (UCN) system. Emission factors are obtained from regulators, literature or the industry.

The same method is used for calculating emissions from the use of fireworks, tobacco, candles and charcoal for barbeques (BBQ). These activities lead to emissions of SO_2 , NO_x , CO, NH_3 , particles, As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn, dioxins/furans and PAHs.

Please refer to Chapter 4 and Annex 3C for further information on industrial processes and product use.

1.4.5 Specific methodologies regarding agriculture

The emission from agricultural activities covers NH₃, NO_x, NMVOC and particles from animal husbandry/manure management and agricultural soils. Furthermore, the inventory includes emissions from field burning of straw which covers NH₃, PM, NO_x, CO, NMVOC, SO₂, heavy metals, dioxin and PAH.

Emissions from agricultural activities are estimated according to the methodology described in the EMEP/EEA air pollutant emission inventory guidebook (EEA, 2013). Activity data and national data regarding emission factors are collected, evaluated and discussed in cooperation with Statistics Denmark, DCA-Danish Centre for Food and Agriculture (Aarhus University), the Danish Agricultural Advisory Service, Danish Environmental Protection Agency and the Danish AgriFish Agency. It means that data are evaluated continuously according to the latest knowledge and information.

The Danish agricultural emissions are calculated and managed in a comprehensive model complex called IDA (Integrated Database model for Agricultural emissions), which is used to calculate both air pollutants compounds and greenhouse gas related emissions. The livestock production has a great influence on the Danish agricultural emissions. IDA works with approximately 40 different livestock categories, dependent on livestock category, weight class and age. Each of these subcategories is subdivided according to housing type and manure type, which results in about 200 different combinations of subcategories and housing type and the emissions are calculated from each of these combinations and aggregated to relevant main categories in the reporting format.

Most of the emissions from agricultural activities are directly related to livestock production. The remaining part comes from the use of synthetic fertiliser, growing crops, NH₃ treated straw, field burning of agricultural residues and sewage sludge applied to fields as fertiliser. The number of animals can be considered as the most important activity data in estimation of the agricultural emissions.

The number of animals is mainly based on data from Statistics Denmark. For data covering pigs, bulls and poultry, the number is based on slaughter data also collected from the Agricultural Statistics. The production of sheep, goats and horses typically takes place on small farms below five hectare, which are not included in the annual statistics and the production of these categories as well as for deer and ostriches are therefore based on the Central Houseanimal farm Register (CHR) managed by the Ministry of Food, Agriculture and Fisheries.

Data concerning nitrogen excretion, distribution of housing types until 2004 and handling of manure is based on data and information from DCA-Danish Centre for Food and Agriculture at Aarhus University and the Danish Agricultural Advisory Service. From 2005 annual statistics covering housing types are available from the Danish AgriFish Agency.

Data related to use of synthetic fertiliser, both the amount of fertiliser and the nitrogen content is based on statistics published by the Danish AgriFish Agency.

Please refer to Chapter 5 and Appendix 3D for further information on emission inventories for agriculture.

1.4.6 Specific methodologies regarding waste

The waste sector consists of the four main NFR categories 5A Solid waste disposal, 5B Biological treatment of solid waste, 5C Waste incineration, 5D Wastewater treatment and discharge and 5E Other waste.

Emissions from solid waste disposal and wastewater treatment and discharge are currently not estimated.

Composting includes four types of biological waste; garden and park waste, organic waste from households and other sources, sludge and home composting of garden and vegetable food waste. Individual emission factors are found for each waste category.

Waste incineration covers the cremation of human bodies and animal carcasses. Both are calculated as an activity multiplied by an emission factor.

The Other waste category includes accidental building- and vehicle fires

Emissions from building fires are calculated by multiplying the number of building fires with selected emission factors. Six types of buildings are separated with different emission factors; detached houses, undetached houses, apartment buildings, industrial buildings, additional buildings and containers.

Activity data for building fires are classified in four categories; full scale, large, medium and small. The emission factors comply for full scale building fires and the activity data are therefore recalculated as a full scale equivalent where it is assumed that a large, medium and small fire leads to 75 %, 30 % and 5 % of a full scale fire, respectively.

Emissions from vehicle fires are calculated by multiplying the total burnt vehicle mass with selected emission factors. 14 different vehicle types are included in the total mass of burned vehicle. Emission factors are not available for different vehicle types, why it is assumed that all the different vehicle types lead to similar emissions. As with accidental building fires, four different sizes are known in relation to damage; full scale (100 % burnout), large (75 %), medium (30 %) and small (5 %).

Please refer to Chapter 6 and Annex 3E for further information on emission inventories for agriculture.

1.5 Key categories

The determination of key categories has not been made due to insufficient resources being available at the moment.

1.6 Information on the Quality Control and Quality Assurance plan including verification and treatment of confidential issues where relevant

In the Danish National Inventory Report to UNFCCC (Nielsen et al., 2015) as well as in the QA/QC manual for the Danish Greenhouse gas inventory (Nielsen et al., 2012), the plan for Quality Control (QC) and Quality Assurance (QA) for greenhouse gas emission inventories prepared by the DCE is outlined. The plan is in accordance with the guidelines provided by the UNFCCC (IPCC, 2006). The ISO 9000 standards are also used as important input for the plan. The plan also, to a limited extent, includes the gases reported to the UNECE-LRTAP Convention. Due to a lack of resources it has not been possible to extend the QA/QC system for the greenhouse gas inventory to also cover the air pollutants.

1.7 General uncertainty evaluation, including data on the overall uncertainty for the inventory totals

The uncertainty estimates are based on the simple Tier 1 approach in the EMEP/CorinAir *Good Practice Guidance for LRTAP Emission Inventories* (Pulles & Aardenne, 2004).

The uncertainty estimates are based on emission data for the base year and year 2014, and on uncertainties for activity rates and emission factors for each of the main SNAP sectors. For particulate matter and black carbon (BC), the year 2000 is considered as the base year, but for all other pollutants 1990 is used as the base year.

Uncertainty estimates include uncertainty of the total emission as well as uncertainty of the trend. The estimated uncertainties are shown in Table 1.2. The uncertainty estimates include all sectors.

Table 1.2 Danish uncertainty estimates, 2014.					
Pollutant	Uncertainty	Trend	Uncertainty		
	Total emission	1990 ¹⁾ -2014	Trend		
	[%]	[%]	[%-age points]		
SO ₂	27	-94	1.6		
NO _x	49	-62	8		
NMVOC	103	-48	25		
CO	48	-58	15		
NH₃	22	-42	10		
TSP	190	-14	13		
PM ₁₀	102	-20	15		
PM _{2.5}	114	-24	22		
BC	372	-32	103		
Arsenic	156	-76	24		
Cadmium	427	-48	185		
Chromium	251	-75	54		
Copper	944	29	101		
Mercury	91	-90	12		
Nickel	439	-83	48		
Lead	488	-91	30		
Selenium	362	-68	81		
Zinc	482	-19	215		
PCDD/F	265	-67	90		
Benzo(b)fluoranthene	632	33	182		
Benzo(k)fluoranthene	591	36	122		
Benzo(a)pyrene	685	24	149		
Indeno(1,2,3-c,d)pyrene	610	-1	208		
НСВ	507	-91	46		
PCBs	713	-60	118		

Table 1.2 Danish uncertainty estimates, 2014.

¹The base year for PM and BC is 2000.

1.8 General assessment of the completeness

Annex 4 provides a full and comprehensive explanation on the use of notation keys in the Danish inventory. The Danish emission inventory due 15 February 2016 includes all sources identified by the EMEP/EEA guidebook except the following.

1.8.1 Industrial processes

Categories reported as not estimated:

- Emissions from storage, handling and transport of mineral products
- Emissions from pulp and paper production

1.8.2 Agriculture

Categories reported as not estimated:

• Emissions from off-farm storage, handling and transport of agricultural products

1.8.3 Waste

Categories reported as not estimated:

- Emissions from solid waste disposal on land
- Emissions from wastewater handling

• Emissions from small scale waste burning

1.8.4 Categories reported as "included elsewhere"

The following table lists the categories reported as IE (included elsewhere) and provides information on where the associated emissions are reported, more detailed information is provided in Annex 4.

Table 1.3. List of categories reported as included elsewhere.

Category reported as IE	Category where emissions are included
2 A 1 Cement production	1 A 2 f Stationary combustion in manufacturing industries and construction: Non-metallic minerals
2 A 2 Lime production	1 A 2 f Stationary combustion in manufacturing industries and construction: Non-metallic minerals
2 A 3 Glass production	1 A 2 f Stationary combustion in manufacturing industries and construction: Non-metallic minerals

1.8.5 General description on the use of notation keys

The NFR as reported by Denmark makes use of five notation keys: NO (Not Occurring), NA (Not Applicable), NE (Not Estimated), IE (Included Elsewhere) and NR (Not Reported).

NO is used in instances where the activity does not occur in Denmark, e.g. adipic acid production, buffaloes, etc.

NA is used in instances where the activity occurs in Denmark but the emission of a certain pollutant is not believed to be relevant, e.g. heavy metals from dairy cattle.

NE is used in instances where the activity occurs in Denmark and emissions of a certain pollutant are thought to occur but the emission has not been estimated; see Chapter 1.8.3 and Annex 4.

IE is used where emissions of a certain pollutant or the whole source category are reported under another source category; see Chapter 1.8.4 and Annex 4.

NR is used for pollutants prior to the base year, e.g. PM emissions prior to the year 2000.

1.9 References

EEA, 2009: EMEP/EEA air pollutant emission inventory guidebook — 2009 prepared by the UNECE/EMEP Task Force on Emissions Inventories and Projections. Available at: <u>http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009</u> (30-12-2014)

EEA, 2013: EMEP/EEA air pollutant emission inventory guidebook — 2013 prepared by the UNECE/EMEP Task Force on Emissions Inventories and Projections. Available at: <u>http://www.eea.europa.eu/publications/emep-eea-guidebook-2013</u> (30-12-2014)

Illerup, J.B., Lyck, E., Winther, M. & Rasmussen, E. 2000: Denmark's National Inventory Report – Submitted under the United Nations Framework Convention on Climate Change. Samfund og Miljø – Emission Inventories. Research Notes from National Environmental Research Institute, Denmark no. 127, 326 pp. Available at: http://www.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rapporter/ /ar127.pdf

IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. & Tanabe K. (eds). Published: IGES, Japan. Available at:

http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (18-01-2016)

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Gyldenkærne, S., Thomsen, M., Fauser, P., Nielsen, M. Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L. & Bruun, H.G. 2012. Quality manual for the Danish greenhouse gas inventory. Version 2. Aarhus University, DCE – Danish Centre for Environment and Energy, 44 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 4. Available at: http://www.dmu.dk/Pub/SR47.pdf

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Møller, I.S., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2015. Denmark's National Inventory Report 2015. Emission Inventories 1990-2013 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy, 911pp. Scientific Report from DCE – Danish Centre for Environment and Energy. Available at: http://dce2.au.dk/pub/SR171.pdf

Pulles, T. & Aardenne, J.v., 2004: Good Practice Guidance for LRTAP Emission Inventories, 24. June 2004.

2 Trends in Emissions

2.1 Acidifying gases

Acid deposition of sulphur and nitrogen compounds mainly derives from emissions of SO_2 , NO_X and NH_3 . The effects of acidification may appear in a number of ways, including defoliation and reduced vitality of trees, and declining fish stocks in acid-sensitive lakes and rivers.

 SO_2 and NO_X can be oxidised into sulphate (SO_4^{--}) and nitrate (NO_3^{-}) - either in the atmosphere or after deposition - resulting in the formation of two and one H⁺, respectively. NH_3 may react with H⁺ to form ammonium (NH_4^{+}) and, by nitrification in soil, NH_4^{+} is oxidised to NO_3^{-} and H⁺ ions are formed.

Weighting the individual substances according to their acidification effect, total emissions in terms of acid equivalents can be calculated as:

$$A = \frac{m_{SO_2}}{M_{SO_2}} \cdot 2 + \frac{m_{NO_x}}{M_{NO_x}} + \frac{m_{NH_3}}{M_{NH_3}} = \frac{m_{SO_2}}{64} \cdot 2 + \frac{m_{NO_x}}{46} + \frac{m_{NH_3}}{17}$$

where A is the acidification index in Mmole
 m_i is the emission of pollutant *i* in tonnes
 M_i is the mole weight [tonne/Mmole] of pollutant *i*

The actual effect of the acidifying substances depends on a combination of two factors: the amount of acid deposition and the natural capacity of the terrestrial or aquatic ecosystem to counteract the acidification. In areas where the soil minerals easily weather or have a high lime content, acid deposition will be relatively easily neutralised.

Figure 2.1 shows the emission of Danish acidifying gases in terms of acid equivalents. In 1990, the relative contribution in acid equivalents was almost equal for the three gases. In 2014, the most important acidification factor in Denmark is ammonia nitrogen and the relative contributions for SO₂, NO_X and NH₃ were 5 %, 35 % and 60 %, respectively. However, with regard to long-range transport of air pollution, SO₂ and NO_X are still the most important pollutants.

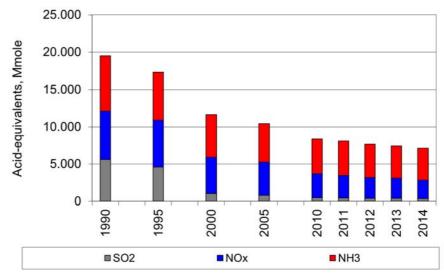


Figure 2.1 Emissions of NH₃, NO_X and SO₂ over time in acid equivalents.

2.2 Description and interpretation of emission trends by gas

2.2.1 Sulphur dioxide (SO₂)

The main part of the sulphur dioxide (SO₂) emission originates from combustion of fossil fuels, i.e. mainly coal and oil, in public power and district heating plants. From 1990 to 2014, the total emission decreased by 94 %. The large reduction is mainly due to installation of desulphurisation plant and use of fuels with lower content of sulphur in public power and district heating plants. Despite the large reduction of the SO₂ emissions, these plants make up 24 % of the total emission. Also emissions from industrial combustion plants, non-industrial combustion plants and other mobile sources are important. National sea traffic (navigation and fishing) contributes with about 13 % of the total SO₂ emission in 2014. This is due to the use of residual oil with high sulphur content.

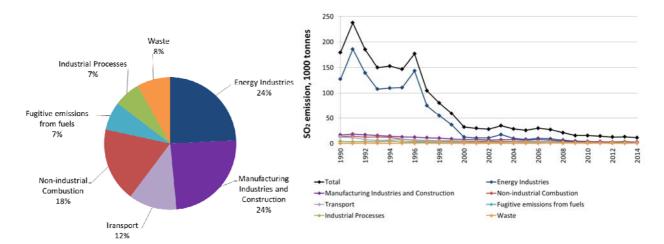


Figure 2.2 SO₂ emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.2.2 Nitrogen oxide (NO_x)

The largest sources of emissions of nitrogen oxides (NO_x) are road transport followed by other mobile sources and combustion in energy industries (mainly public power and district heating plants). The transport sector is the sector contributing the most to the emission of NO_x and, in 2014, 44 % of the Danish emissions of NO_x stems from road transport, national navigation, railways and civil aviation. Also emissions from national fishing and offroad vehicles contribute significantly to the NO_x emission. For nonindustrial combustion plants, the main sources are combustion of gas oil, natural gas and wood in residential plants. The emissions from energy industries have decreased by 82 % from 1990 to 2014. In the same period, the total emission decreased by 62 %. The reduction is due to the increasing use of catalyst cars and installation of low- NO_x burners and denitrifying units in power plants and district heating plants.

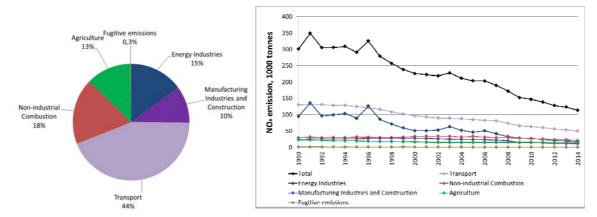


Figure 2.3 NO_X emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.2.3 Ammonia (NH_3)

Almost all atmospheric emissions of ammonia (NH₃) result from agricultural activities. Only a minor fraction originates from stationary combustion (2%), road transport (2 %), industrial processes (<1 %) and waste (1 %). The share for road transport was increasing during the 1990's and early 2000's due to increasing use of catalyst cars. In more recent years the share has been decreasing due to more advanced catalysts being implemented. The major part of the emission from agriculture stems from livestock manure (49 %) and the largest losses of ammonia occur during the handling of the manure in animal housing systems. The second largest agricultural source is agricultural soils contributing 46 % in 2014, this is mainly emissions from application of mineral fertiliser, application of animal manure and emissions from crowing crops. The total ammonia emission decreased by 44 % from 1985 to 2014. Due to the action plans for the aquatic environment and the Ammonia Action Plan, a series of measures to prevent loss of nitrogen in agricultural production has been initiated. The measures have included demands for improved utilisation of nitrogen in livestock manure, a ban against field application of livestock manure in winter, prohibition of broadspreading of manure, requirements for establishment of catch crops, regulation of the number of livestock per hectare and a ceiling for the supply of nitrogen to crops. As a result, despite an increase in the production of pigs and poultry, the ammonia emission has been reduced considerably.

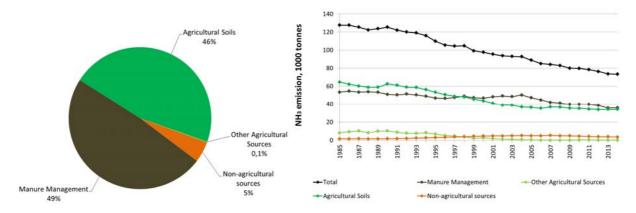


Figure 2.4 NH₃ emissions. Distribution on the main sectors (2014) and time series for 1985 to 2014.

2.3 Other air pollutants

2.3.1 Non-Methane Volatile Organic Compounds (NMVOC)

The emissions of Non-Methane Volatile Organic Compounds (NMVOC) originate from many different sources and can be divided into two main groups: incomplete combustion and evaporation. Road vehicles and other mobile sources such as national navigation vessels and off-road machinery contribute approximately 30 % of the NMVOC emissions from combustion processes. NMVOC from road transportation vehicles have been decreasing since 1990, due to the introduction of catalyst cars. The evaporative emissions mainly originate from the agricultural sector, use of solvents, and the extraction, handling and storage of oil and natural gas. The total anthropogenic emissions have decreased by 50 % from 1990 to 2014, largely due to the increased use of catalyst cars and reduced emissions from use of solvents.

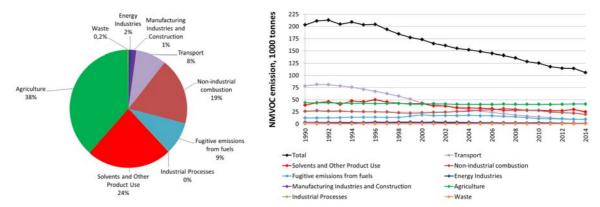


Figure 2.5 NMVOC emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.3.2 Carbonmonoxid (CO)

Non-industrial combustion plants are the main source to the total CO emission. For the non-industrial sector, emissions from commercial/institutional sources have increased and emissions from agriculture/forestry/fishing sources have decreased from 1990 to 2014, while emissions from the residential sector have been fluctuating, but around the same level in 1990 and 2014. Transport is the second largest contributor to the total CO emission in 2014, showing a decrease of 83 % from 1990 to 2014. The major transport source is passenger cars, which make up 58 % in 1990, but has decreased to 19 % in 2014. The main driver is the increase of catalyst cars. In 1990 a law forbidding the burning of agricultural crop residues on fields was implemented, which caused a significant reduction in CO emission. The total CO emission decreased further by 58 % from 1990 to 2014, largely because of decreasing emissions from road transportation.

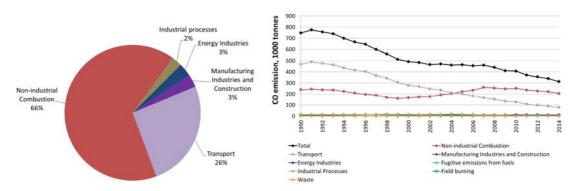


Figure 2.6 CO emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.3.3 Particulate matter (PM)

The particulate matter (PM) emission inventory is reported for the years 2000 onwards. The inventory includes the total emission of particles TSP (Total Suspended Particles), emission of particles smaller than 10 μ m (PM₁₀) and emission of particles smaller than 2.5 μ m (PM_{2.5}).

The largest $PM_{2.5}$ emission source is residential plants (59 %), road transport (10 %) and other mobile sources (9 %). Emissions from residential plants have increased by 84 % from 2000 to 2007, followed by a decrease of 48 % from 2007 to 2014. For road transport, the most important sources are off-road vehicles and machinery in the industrial sector and in the agricultural/forestry sector (35 % and 33 %, respectively). For the road transport sector, exhaust emissions account for the major part (52 %) of the emissions. The $PM_{2.5}$ emission decreased by 24 % from 2000 to 2014 as the increasing wood consumption in the residential sector has been counterbalanced by decreasing emissions for the remaining sectors, the most important being the Transport sector.

The largest TSP emission sources are agriculture and non-industrial combustion (73 % and 14 % of total TSP emission in 2014, respectively). Residential plants is the largest source in the non-industrial combustion sector, making up 13 % of the national total TSP emission in 2014. The TSP emissions from transport are also important and include both exhaust emissions and the non-exhaust emissions from brake and tyre wear and road abrasion. The non-exhaust emissions account for 72 % of the TSP emission from road transport in 2014.

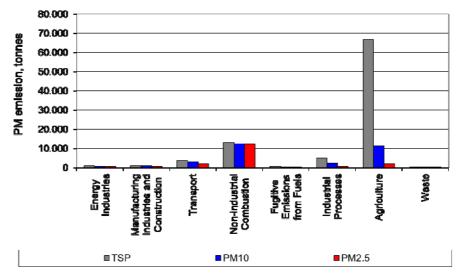


Figure 2.7 PM emissions per sector for 2014.

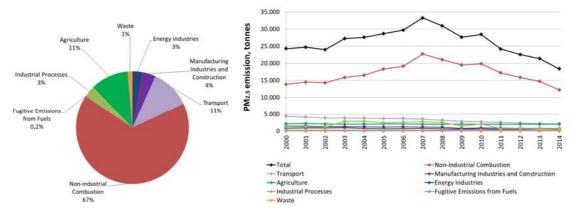


Figure 2.8 PM_{2.5} emissions. Distribution according to the main sectors (2014) and time series for 2000 to 2014.

2.3.4 Black carbon (BC)

The black carbon (BC) emission inventory is reported for the years 2000 onwards. The main sources are residential plants and road transport contributing 39 % and 21 % in 2014, respectively. From 2000 to 2014 the total BC emission decreases by 33 %. BC emissions from non-industrial plants have increased by 42 % from 2000 to 2007, followed by a decrease of 40 % from 2007 to 2014. The trend for non-industrial combustion is mainly controlled by the trend for the wood consumption in the residential sector. BC emissions from the transport sector decreased by 54 % from 2000 to 2014, mainly due to implementing of new EURO norms and improved technology. An important factor is the use of particle filters for heavy duty vehicles and personal cars, which reduce the BC emission effectively. BC emissions from fugitive emissions from fuels, which is mainly due to storage of coal, decreased by 29 % from 2000 to 2014, in accordance with the decrease of the coal consumption in electricity and heat production.

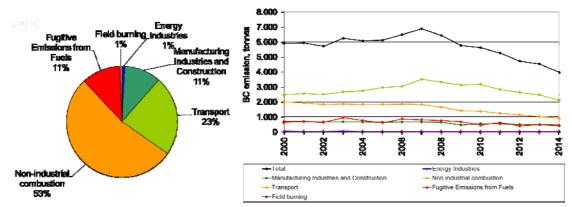


Figure 2.9 BC emissions. Distribution according to the main sectors (2014) and time series for 2000 to 2014.

2.3.5 Heavy metals

In general, the most important sources of heavy metal emissions are combustion of fossil fuels and waste. The heavy metal emissions have decreased substantially in recent years, except for Cu. The reductions span from 19 % to 91 % for Zn and Pb, respectively. The reason for the reduced emissions is mainly increased use of gas cleaning devices at power and district heating plants (including waste incineration plants). The large reduction in the Pb emission is due to a gradual shift towards unleaded gasoline, the latter being essential for catalyst cars. The major source of Cu is automobile tyre and break wear (93 % in 2014) and the 29 % increase from 1990 to 2014 owe to increasing mileage.

Table 2.1 Emissions of heavy metals.

Heavy metals,									
kilogramme	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
1990	1 345	1 095	5 813	32 187	3 172	21 064	128 304	4 853	68 928
2014	327	564	1 425	41 505	332	3 656	11 413	1 553	55 516
Reduction, %	76	48	75	-29	90	83	91	68	19

According to the UNECE Heavy Metal Protocol, the priority metals are Pb, Cd and Hg and the objective is to reduce emissions of these heavy metals.

Cadmium (Cd)

The main sources of emissions of cadmium (Cd) to air are mainly combustion of wood, wood waste and municipal waste. Non-industrial combustion contributes 72 % in 2014, of which 97 % comes from residential plants. Emissions from residential plants have increased by 215 % from 1990 to 2014 due to increasing wood consumption. Emissions from energy industries, manufacturing industries and construction, and industrial processes have decreased by 89 % from 1990 to 2014. The decreasing emission from energy industries are related to the decreasing combustion of coal. In the transport sector emissions from passenger cars is the main source contributing with 57 % of the sectoral emission in 2014.

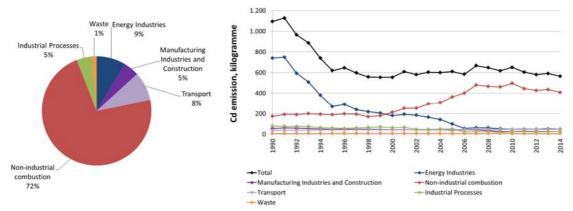


Figure 2.10 Cd emissions. Distribution by main sectors (2014) and time series for 1990 to 2014.

Mercury (Hg)

The largest sources of mercury (Hg) emissions to air are waste incineration and coal combustion in energy industries. Due to improved flue gas cleaning and decreasing coal combustion the emissions from Energy industries decreased by 76 % from 1990-2000. The trend has continued in the following years and the corresponding decrease from 1990-2014 is 92 %. Nonindustrial combustion is dominated by wood combustion in residential plants while the main contributions to emissions from manufacturing industries and construction are food processing, beverages and tobacco, and nonmetallic minerals. The variations in emissions from industrial processes owe to shut down in 2002 followed by re-opening and a second shut down in 2005 of the only Danish electro-steelwork.

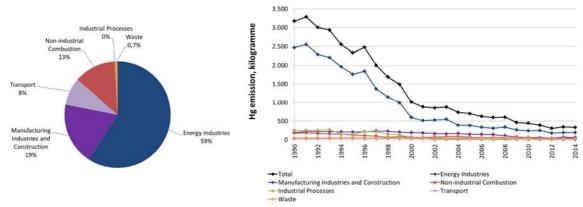


Figure 2.11 Hg emissions. Distribution by main sectors (2014) and time series for 1990 to 2014.

Lead (Pb)

The main lead (Pb) emission sources are transport, waste, non-industrial combustion and industrial processes. In earlier years combustion of leaded gasoline was the major contributor to Pb emissions to air but the shift toward use of unleaded gasoline for transport have decreased the Pb emission from transport by 94 % from 1990-2014. The trend in the Pb emission from non-industrial combustion from 1990 to 2014 is almost constant. In the non-industrial combustion sector the dominant source is wood combustion in residential plants, which has been increasing from 1990 to 2014, but counterbalanced by decreasing emissions from stationary combustion in commercial/institutional and in agriculture/forestry/fishing. The decreasing emission from Energy industries (97 % from 1990 to 2014) is caused by the decreasing coal combustion and more efficient particle abatement.

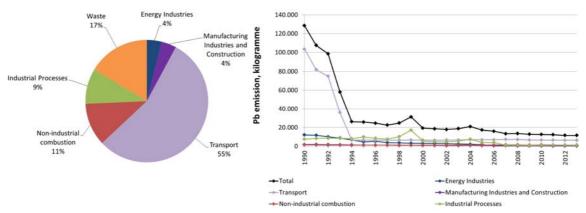


Figure 2.12 Pb emissions. Distribution by main sectors (2014) and time series for 1990 to 2014.

2.3.6 Polycyclic aromatic hydrocarbons (PAHs)

The present emission inventory for polycyclic aromatic hydrocarbons (PAH) includes four PAHs: benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene. The major part of the total PAH emission is Benzo(b)fluoranthene and benzo(a)pyrene, which contribute by 35 % and 31 %, respectively in 2014.

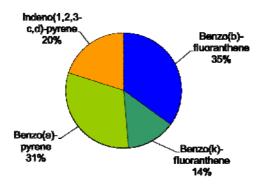


Figure 2.13 PAH emissions. Distribution according to reported PAHs in 2014.

The most important source of PAHs emissions is combustion of wood in the residential sector making up 64 % of the total emission in 2014. The increasing emission trend is due to increasing combustion of wood in the residential sector. The PAH emission from combustion in residential plants has increased by 22 % from 1990 to 2014.

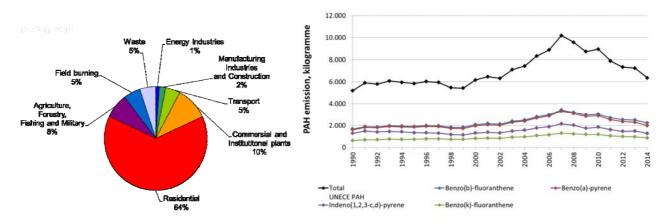


Figure 2.14 PAH emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.3.7 Dioxins and furans

The major part of the dioxin emission owes to wood combustion in the residential sector, mainly in wood stoves and ovens without flue gas cleaning. Wood combustion in residential plants accounts for 48 % of the national dioxin emission in 2014. The contribution to the total dioxin emission from the waste sector (35 % in 2014) mainly owes to accidental fires, especially building fires. The emissions of dioxins from energy industries are dominated by emissions from combustion of biomass as wood, wood waste and to a less extend agricultural waste.

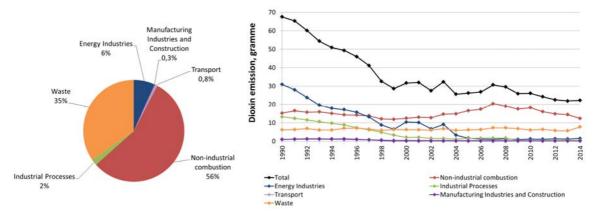


Figure 2.15 Emissions of dioxins and furans. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.3.8 Hexachlorobenzene (HCB)

Stationary combustion accounts for 48 % of the estimated national hexachlorobenzene (HCB) emission in 2014. This owes mainly to combustion of municipal solid waste in heating and power plants. Transport is an important source, too, making up 28 % of the total emission in 2014. Emissions from transport have increased by 62 % since 1990 due to increasing diesel consumption. The HCB emission from stationary plants has decreased 74 % since 1990 mainly due to improved flue gas cleaning in MSW incineration plants. The emission from agriculture was very high in the early 1990'ties due to the use of pesticides containing impurities of HCB. The HCB emission from agriculture decreased by 94 % from 1990 to 1994 and by 99 % from 1990 to 2014, causing the share of HCB emission from agriculture to drop from 67 % in 1990 to 6 % in 2014. The emission from industrial processes has decreased due to the closure of steel production and secondary aluminium production in Denmark.

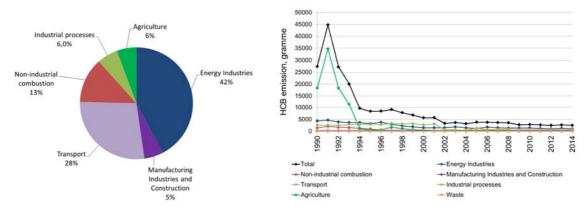


Figure 2.16 HCB emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

2.3.9 Polychlorinated biphenyls (PCBs)

Transport accounts for 63 % of the estimated national polychlorinated biphenyls (PCBs) emission in 2014. This owes mainly to combustion of diesel in road transport. The emission from transport has decreased by 69 % since 1990 due to the phase out of leaded gasoline, which has a high PCBs emission factor. This has led to diesel fuel use being the most important source of PCBs emissions from transport in later years. The emission from manufacturing industries and non-industrial combustion is dominated by diesel fuel used in non-road machinery.

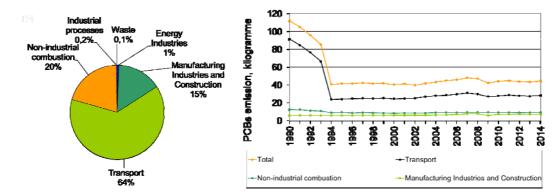


Figure 2.17 PCBs emissions. Distribution according to the main sectors (2014) and time series for 1990 to 2014.

3 Energy (NFR sector 1)

3.1 Overview of the sector

The energy sector is reported in three main chapters:

3.2 Stationary combustion (NFR sector 1A1, 1A2 and 1A4)

3.3 Transport and other mobile sources (NFR sector 1A2, 1A3, 1A4 and 1A5) 3.4 Fugitive emissions (NFR sector 1B)

Summary tables for the emissions from the energy sector are shown below.

	NOx	NMVO	SOx	NH₃	PM _{2.5}	PM_{10}	TSP	BC	CO
		С							
	kt NO ₂	kt	kt SO ₂	kt	kt	kt	kt	kt	kt
1A1 Energy Industries	16.83	1.00	2.76	0.01	0.52	0.64	0.81	0.03	9.85
1A2 Manufacturing industries and Construc- tion	11.69	1.27	2.77	0.00	0.70	0.77	0.84	0.43	9.51
1A3 Transport	49.68	8.88	1.35	1.17	2.08	2.80	3.74	0.92	79.91
1A4 Other Sectors	19.23	19.24	2.00	1.11	12.10	12.43	13.05	2.09	201.62
1A5 Other	1.45	0.34	0.07	0.00	0.09	0.09	0.09	0.04	3.45
1B1 Fugitive Emissions from fuels, Solid fuels	-	-	-	-	0.03	0.27	0.68	0.45	-
1B2 Fugitive Emissions from fuels, Oil and Natural gas	0.14	9.40	0.80	-	0.00	0.00	0.00	0.00	0.23
Energy, Total	99.02	40.13	9.75	2.30	15.52	17.01	19.22	3.96	304.58

Table 3.1.2 HM emissions from the energy sector, 2014.

	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn
	t	t	t	t	t	t	t	t	t
1A1 Energy Industries	0.41	0.05	0.20	0.14	0.18	0.19	0.42	0.73	0.47
1A2 Manufacturing industries and Construction	0.49	0.03	0.06	0.07	0.09	0.11	1.09	0.09	1.52
1A3 Transport	5.94	0.05	0.03	0.04	0.20	39.22	1.71	0.06	26.52
1A4 Other Sectors	1.19	0.41	0.04	0.03	0.74	0.26	0.16	0.07	17.17
1A5 Other	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
1B1 Fugitive Emissions from fuels, Solid fuels	-	-	-	-	-	-	-	-	-
1B2 Fugitive Emissions from fuels, Oil and Natural gas	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Energy, Total	8.12	0.53	0.33	0.27	1.22	39.79	3.38	0.96	45.78

Table 3.1.3 PAH, dioxin and HCB emissions from the energy sector, 2014.

	PCDD/	Ben-	Ben-	Ben-	Indeno-	HCB	PCB
	PCDF	zo(a)-	zo(b)-	zo(k)-	(1,2,3-		
		pyrene	fluoran-	fluoran-	cd)-		
			thene	thene	pyrene		
	g I-Teq	t	t	t	t	kg	kg
1A1 Energy Industries	1.47	0.01	0.03	0.02	0.01	1.06	0.25
1A2 Manufacturing industries and Construction	0.06	0.02	0.08	0.02	0.01	0.14	6.78
1A3 Transport	0.18	0.06	0.09	0.08	0.06	0.70	28.15
1A4 Other Sectors	12.39	1.69	1.81	0.64	1.06	0.32	8.29
1A5 Other	0.00	0.00	0.00	0.00	0.00	0.01	0.73
1B1 Fugitive Emissions from fuels, Solid fuels	-	-	-	-	-	-	-
1B2 Fugitive Emissions from fuels, Oil and Natural gas	0.00	0.00	0.00	0.00	0.00	-	-
Energy, Total	14.11	1.79	2.01	0.76	1.14	2.22	44.21

3.2 Stationary combustion (NFR sector 1A1, 1A2 and 1A4)

This chapter includes stationary combustion plants in the NFR sectors 1A1, 1A2 and 1A4.

3.2.1 Source category description

Source category definition

In the Danish emission database, all activity rates and emissions are defined in SNAP sector categories (Selected Nomenclature for Air Pollution) according to the CORINAIR system¹. The emission inventories are prepared from a complete emission database based on the SNAP sectors. Aggregation to the NFR sector codes is based on a correspondence list between SNAP and NFR enclosed in Annex 3A-1. Stationary combustion is defined as combustion activities in the SNAP sectors 01-03, not including SNAP 0303.

Stationary combustion plants are included in the emission source subcategories:

- 1A1 Energy, Fuel consumption, Energy Industries
 - o 1A1a Public electricity and heat production
 - o 1A1b Petroleum refining
 - 1A1c Oil and gas extraction
- 1A2 Energy, Fuel consumption, Manufacturing Industries and Construction
 - o 1A2a Iron and steel
 - 1A2b Non-ferrous metals
 - 1A2c Chemicals
 - o 1A2d Pulp, Paper and Print
 - o 1A2e Food processing, beverages and tobacco
 - o 1A2f Non-metallic minerals
 - o 1A2 g viii Other manufacturing industry
 - 1A4 Energy, Fuel consumption, Other Sectors
 - $\circ \quad 1A4a \ i \ Commercial/Institutional \ plants.$
 - o 1A4b I Residential plants.
 - 1A1c I Agriculture/Forestry.

The emission and fuel consumption data included in tables and figures in Chapter 3.2 only include emissions originating from stationary combustion plants of a given NFR sector.

Emission share from stationary combustion compared to national total

Table 3.2.1 gives an overview of the emission share from stationary combustion compared to national total. Main emission sources are discussed in chapter 3.2.3. Key category analysis has not been performed.

¹ And some additional SNAP added for industrial combustion.

Table 3.2.1 Emiss	sion share from stationary o	combustion compared to nationa
Pollutant	Emission share, %	
SO ₂	63	
NO _x	23	
NMVOC	12	
CO	32	
NH₃	1.5	
TSP	15	
PM ₁₀	41	
PM _{2.5}	66	
BC	44	
As	70	
Cd	84	
Cr	69	
Cu	1.3	
Hg	87	
Ni	45	
Pb	18	
Se	56	
Zn	32	
HCB	53	
PCDD/F	62	
Benzo(a)pyrene	86	
Benzo(b)fluoranthe		
Benzo(k)fluoranthe		
Indeno(123cd)pyre		
PCB	0.89	

Table 2.2.1 Emissi etationa ombuetic d to nation al total, 2014.

3.2.2 Fuel consumption data

In 2014, the total fuel consumption for stationary combustion plants was 401 PJ of which 276 PJ was fossil fuels and 125 PJ was biomass.

Fuel consumption distributed according to the stationary combustion subcategories is shown in Figure 3.2.1 and Figure 3.2.2. The majority - 58 % - of all fuels is combusted in the source category, Public electricity and heat production. Other source categories with high fuel consumption are Residential plants and Industry.

Fuel consumption including biomass

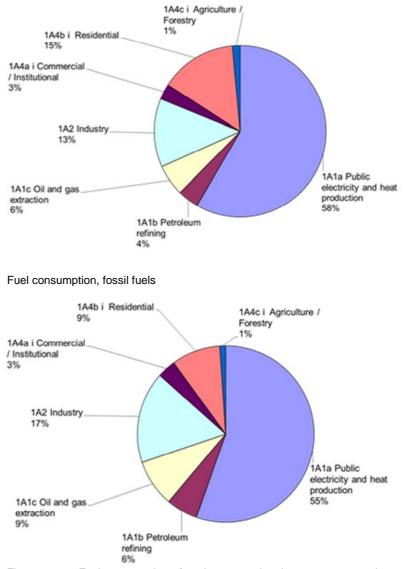


Figure 3.2.1 Fuel consumption of stationary combustion source categories, 2014. Based on DEA (2015a).

Coal, natural gas and wood are the most utilised fuels for stationary combustion plants. Coal is mainly used in power plants and natural gas is used in power plants and decentralised combined heating and power (CHP) plants, as well as in industry, residential plants and off-shore gas turbines (see Figure 3.2.2). Wood is mainly applied for public electricity and heat production and in residential plants.

Detailed fuel consumption rates are shown in Annex 3A-2.

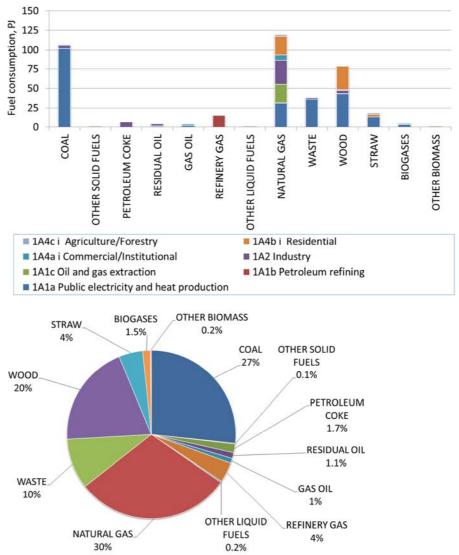
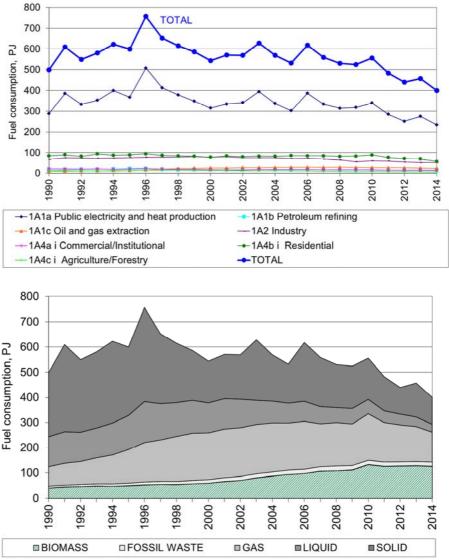
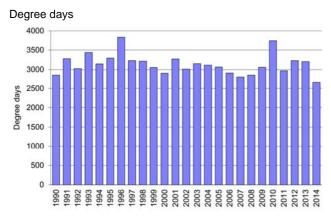
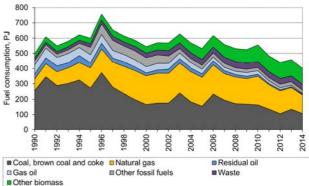


Figure 3.2.2 Fuel consumption of stationary combustion 2014, disaggregated to fuel type. Based on DEA (2015a).

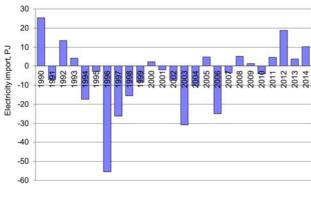
Fuel consumption time series for stationary combustion plants are presented in Figure $3.2.3^2$. The fuel consumption for stationary combustion was 20 % lower in 2014 than in 1990, while the fossil fuel consumption was 40 % lower and the biomass fuel consumption 3.1 times the level in 1990.

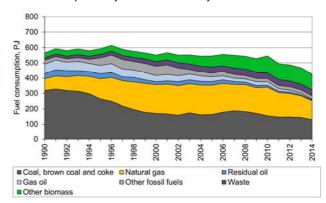
The consumption of natural gas, waste and biomass has increased since 1990 whereas the consumption of coal has decreased.


Figure 3.2.3 Fuel consumption time series, stationary combustion. Based on DEA (2015a).

The fluctuations in the time series for fuel consumption are mainly a result of electricity import/export, but also of outdoor temperature variations from year to year. This, in turn, leads to fluctuations in emission levels. The fluctuations in electricity trade, fuel consumption and NO_x emission are illustrated and compared in Figure 3.2.4. In 1990, the Danish electricity import was large causing relatively low fuel consumption, whereas the fuel consumption was high in 1996 due to a large electricity export. In 2014, the net electricity import was 10 PJ, whereas there was a 4 PJ electricity import in 2013. The large electricity export that occurs some years is a result of low rainfall in Norway and Sweden causing insufficient hydropower production in both countries.


To be able to follow the national energy consumption as well as for statistical and reporting purposes, the Danish Energy Agency produces a correction of the actual fuel consumption without random variations in electricity imports/exports and in ambient temperature. This fuel consumption trend is also illustrated in Figure 3.2.4. The corrections are included here to explain the fluctuations in the time series for fuel rate and emissions.


Fuel consumption

Electricity trade

Fuel consumption adjusted for electricity trade

Fluctuations in electricity trade compared to fuel consumption

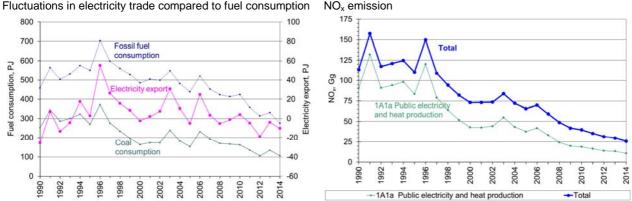


Figure 3.2.4 Comparison of time series fluctuations for electricity trade, fuel consumption and NO_x emission. Based on DEA (2015a).

Fuel consumption time series for the subcategories to stationary combustion are shown in Figure 3.2.5 - 3.2.7.

Fuel consumption for Energy Industries fluctuates due to electricity trade as discussed above. The fuel consumption in 2014 was 13 % lower than in 1990 and the fossil fuel consumption was 35 % lower. The fluctuation in electricity production is based on fossil fuel consumption in the subcategory Public electricity and Heat Production. The energy consumption in Oil and gas extraction is mainly natural gas used in gas turbines in the off-shore industry. The biomass fuel consumption in Energy Industries in 2014 added up to 81 PJ, which is 5.0 times the level in 1990 and almost the same as in 2013.

The fuel consumption in Industry was 24 % lower in 2014 than in 1990 (Figure 3.2.6). The fuel consumption in industrial plants decreased considerably as a result of the financial crisis. The biomass fuel consumption in *Industry* in 2014 added up to 5 PJ which is a 12 % increase since 1990.

The fuel consumption in *Other Sectors* decreased 36 % since 1990 (Figure 3.2.7) and decreased 17 % since 2013³. The biomass fuel consumption in *Other sectors* in 2014 added up to 39 PJ which is 2.1 times the consumption in 1990 but a 4 % decrease since 2013. Wood consumption in residential plants in 2014 was 2.1 times the consumption in year 2000.

Time series for subcategories are shown in Chapter 3.2.4.

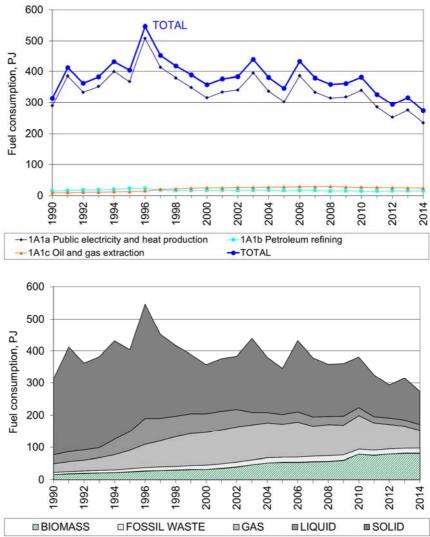
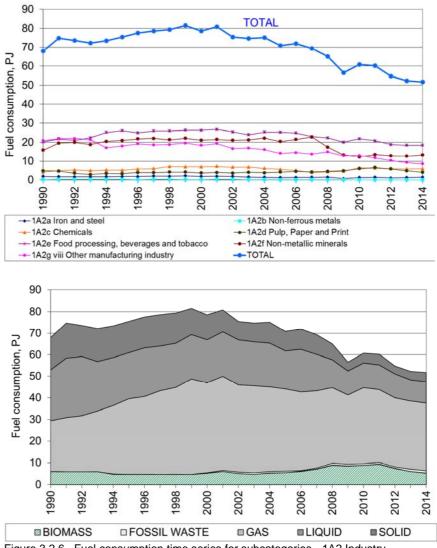
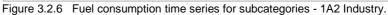
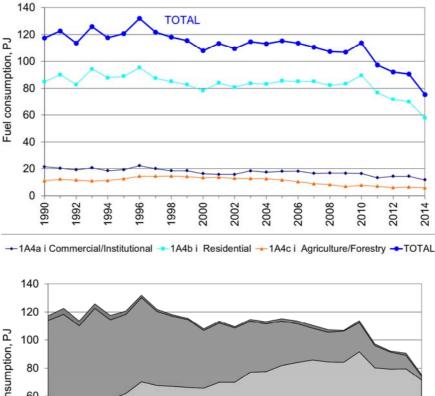





Figure 3.2.5 Fuel consumption time series for subcategories - 1A1 Energy Industries.

 3 The disaggregation of gas oil consumption is currently discussed with the Danish Energy Agency. The disaggregation might be revised. This, however, will not affect the total CO₂ emission reported from gas oil combustion.

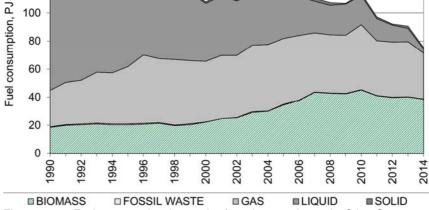


Figure 3.2.7 Fuel consumption time series for subcategories - 1A4 Other Sectors.

3.2.3 Emissions

SO_2

Stationary combustion is the most important emission source for SO_2 accounting for 63 % of the national emission. Table 3.2.2 presents the SO_2 emission inventory for the stationary combustion subcategories.

The largest emission sources are *Public electricity and heat production* and *Manufacturing industries and construction* accounting for 36 % and 38 % of the emission from stationary combustion.

For *Public electricity and heat production* the SO₂ emission share is however lower than the fuel consumption share for this source category, which is 58 %. This is a result of effective flue gas desulphurisation equipment installed in power plants combusting coal. In the Danish inventory, the source category *Public electricity and heat production* is further disaggregated. Figure 3.2.8 shows the SO₂ emission from *Public electricity and heat production* on a disaggregated level. District heating boilers < 50 MW and Power plants >300MW_{th} are the main emission sources, accounting for 44 % and 33 % of the emission. The SO₂ emission from industrial plants adds up to 38 % of the emission from stationary combustion, a remarkably high emission share compared with fuel consumption. The main emission sources in the industrial category are combustion of coal and emissions from the cement industry, mineral wool industry and sugar production plants. Until year 2000, the SO₂ emission from the industrial category only accounted for a small part of the emission from stationary combustion, but as a result of reduced emissions from power plants, the share has now increased.

The time series for SO₂ emission from stationary combustion is shown in Figure 3.2.9. The SO_2 emission from stationary combustion plants has decreased by 95 % since 1990. The large emission decrease is mainly a result of the reduced emission from Public electricity and heat production, made possible due to installation of desulphurisation plants and due to the use of fuels with lower sulphur content. Despite the considerable reduction in emission from public electricity and heat production plants, these still account for 36 % of the emission from stationary combustion, as mentioned above. The emission from other source categories also decreased considerably since 1990. Time series for subcategories are shown in Chapter 3.2.4.

The emission of SO₂ has decreased since 2005, but the emission level has steadied since 2009.

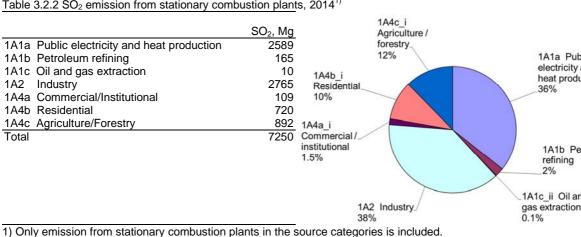


Table 3.2.2 SO₂ emission from stationary combustion plants, 2014¹⁾

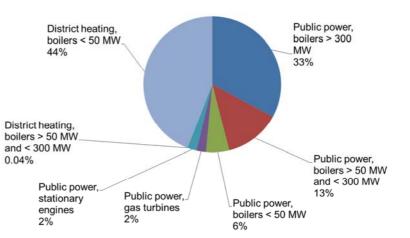


Figure 3.2.8 Disaggregated SO₂ emissions from 1A1a Public electricity and heat production.

1A1a Public electricity and

36%

heat production

1A1b Petroleum

refining 2%

1A1c_ii Oil and

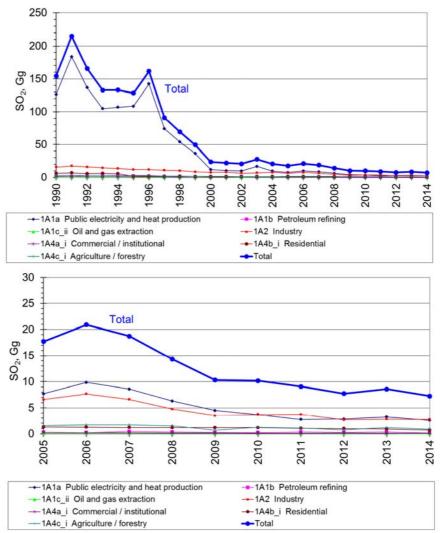
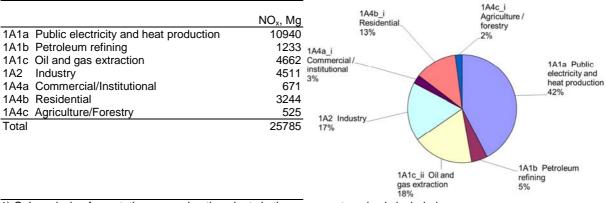


Figure 3.2.9 SO₂ emission time series for stationary combustion.

NOx

Stationary combustion accounts for 23% of the national NO_x emission. Table 3.2.3 shows the NO_x emission inventory for stationary combustion subcategories.

Public electricity and heat production is the largest emission source accounting for 42 % of the emission from stationary combustion plants. The emission from public power boilers > 300 MW_{th} accounts for 26 % of the emission in this subcategory.


Industrial combustion plants are also an important emission source accounting for 17 % of the emission. The main industrial emission source is cement production, which accounts for 35 % of the emission.

Residential plants account for 13 % of the NO_x emission. The fuel origin of this emission is mainly wood accounting for 71 % of the residential plant emission.

Oil and gas extraction, which is mainly off-shore gas turbines accounts for 18 % of the NO_x emission.

Time series for NO_x emission from stationary combustion are shown in Figure 3.2.10. NO_x emission from stationary combustion plants has decreased by 77 % since 1990. The reduced emission is largely a result of the reduced emission from public electricity and heat production due to installation of low NO_x burners, selective catalytic reduction (SCR) units and selective non-catalytic reduction (SNCR) units. The fluctuations in the time series follow the fluctuations in public electricity and heat production, which, in turn, result from electricity trade fluctuations.

The emission has also decreased considerably since 2005, see figure 3.2.10.

1) Only emission from stationary combustion plants in the source categories is included.

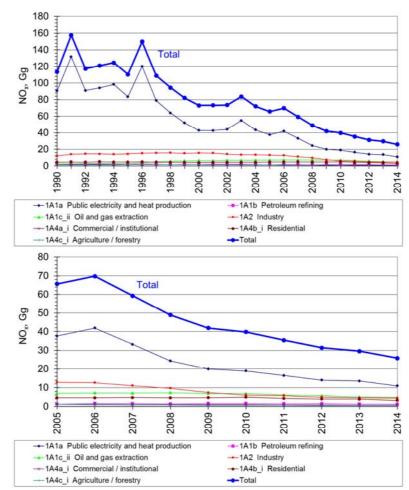


Figure 3.2.10 NO_x emission time series for stationary combustion.

NMVOC

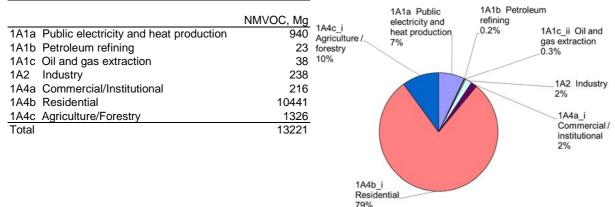
Stationary combustion plants account for 12 % of the national NMVOC emission. Table 3.2.4 presents the NMVOC emission inventory for the stationary combustion subcategories.

Residential plants are the largest emission source accounting for 79 % of the emission from stationary combustion plants. For residential plants NMVOC is mainly emitted from wood and straw combustion, see Figure 3.2.11.

Public electricity and heat production is also a considerable emission source, accounting for 7 % of the emission. Lean-burn gas engines have a relatively high NMVOC emission factor and are the most important emission source in this subcategory (see Figure 3.2.11). The gas engines are either natural gas or biogas fuelled.

Agricultural plants accounted for 10 % of the emission in 2014. Combustion of straw was the main emission source in this category.

The time series for NMVOC emission from stationary combustion is shown in Figure 3.2.12. The emission has decreased by 17 % from 1990. The emission increased until 2007 and decreased after 2007. The increased emission is mainly a result of the increasing wood consumption in residential plants and of the increased use of lean-burn gas engines in CHP plants. The decrease in recent years is a result of lower emission from residential wood combustion and the low number of operation hours for the lean burn gas engines.


The emission from residential plants has decreased 17 % since 1990. The emission from straw combustion in farmhouse boilers has decreased (43 %) over this period due to both a decreasing emission factor and decrease in straw consumption in this source category. The emission from most other fuels has also decreased.

However, the NMVOC emission from residential wood combustion was 18 % higher in 2014 than in 1990 due to increased wood consumption. However, the emission factor has decreased since 1990 due to installation of modern stoves and boilers with improved combustion technology.

The use of wood in residential boilers and stoves was relatively low in 1998-99 resulting in a lower emission level.

The consumption of wood in residential plants increased until 2007. The improved technology that has been implemented in residential wood combustion have led to lower emission factors and thus decreasing NMVOC emission since 2007.

Table 3.2.4 NMVOC emission from stationary combustion plants, 2014¹⁾.

1) Only emission from stationary combustion plants in the categories is included.

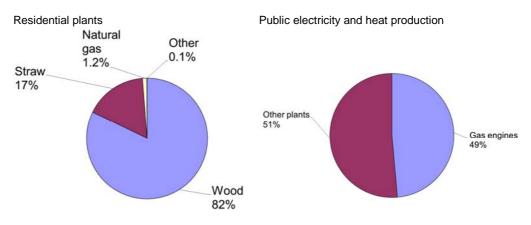


Figure 3.2.11 NMVOC emission from residential plants and from public electricity and heat production, 2014.

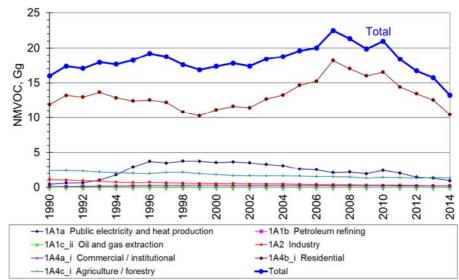


Figure 3.2.12 NMVOC emission time series for stationary combustion.

со

Stationary combustion accounts for 32 % of the national CO emission. Table 3.2.5 presents the CO emission inventory for stationary combustion subcategories.

Residential plants are the largest emission source, accounting for 77 % of the emission. Wood combustion accounts for 84 % of the emission from residential plants, see Figure 3.2.13. This is in spite of the fact that the fuel consumption share is only 52 %. Combustion of straw is also a considerable emission source whereas the emission from other fuels used in residential plants is almost negligible.

The time series for CO emission from stationary combustion is shown in Figure 3.2.14. The emission has decreased by 32 % from 1990. The time series for CO from stationary combustion plants follow the time series for CO emission from residential plants.

The increase of wood consumption in residential plants in 1999-2007 is reflected in the time series for CO emission. The consumption of wood in residential plants in 2014 was 3.4 times the 1990 level. The decreased emission in 2007-2014 is a result of implementation of improved residential wood combustion technologies and the fact that the rapid increase of wood consumption until 2007 have stopped.

Both consumption and CO emission factor for have decreased for residential straw combustion plants since 1990.

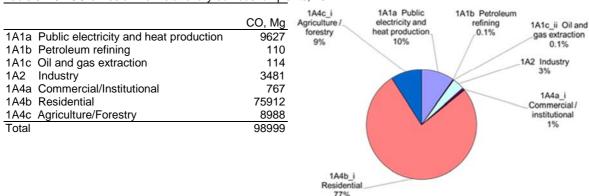


Table 3.2.5 CO emission from stationary combustion plants, 2014¹⁾.

¹⁾ Only emission from stationary combustion plants in the source categories is included.

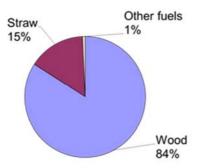
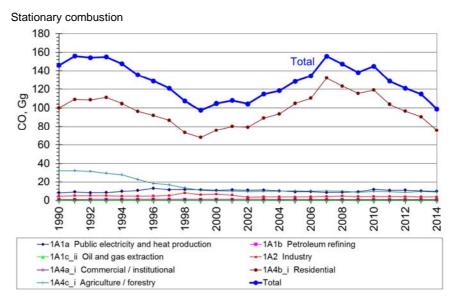
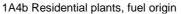
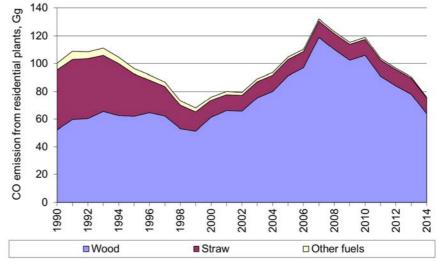
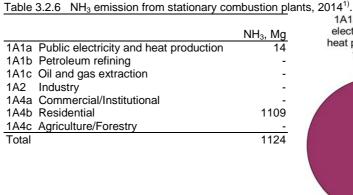




Figure 3.2.13 CO emission sources, residential plants, 2014.




Figure 3.2.14 CO emission time series for stationary combustion.

NH_3

Stationary combustion plants accounted for only 1.5 % of the national $\rm NH_3$ emission in 2014.

Table 3.2.6 shows the NH_3 emission inventory for the stationary combustion subcategories. Residential plants account for 99 % of the emission. Wood combustion accounts for 99 % of the emission from residential plants.

The time series for the NH_3 emission is presented in Figure 3.2.15. The NH_3 emission has increased to 1.8 times the 1990 level.

1A1a Public electricity and heat production 1.3% 1.3% 1.44b_i Residential 98.7%

1) Only the emission from stationary combustion plants in the source categories is included.

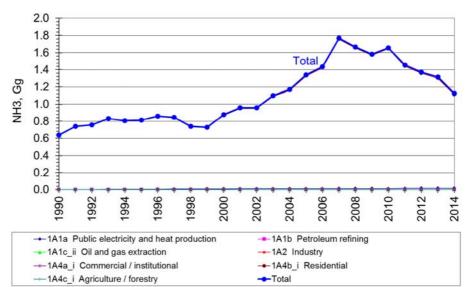


Figure 3.2.15 NH₃ emission time series, stationary combustion plants.

Particulate matter (PM)

TSP from stationary combustion accounts for 15 % of the national emission. The emission shares for PM_{10} and $PM_{2.5}$ are 41 % and 66 %, respectively.

Table 3.2.7 and Figure 3.2.16 show the PM emission inventory for the stationary combustion subcategories. Residential plants are the largest emission source accounting for 89 % of the $PM_{2.5}$ emission from stationary combustion plants.

The primary sources of PM emissions are:

- · Residential boilers, stoves and fireplaces combusting wood
- Farmhouse / residential boilers combusting straw
- Power plants primarily combusting coal
- Wood combusted in non-residential plants

The PM emission from wood combusted in residential plants is the predominant source. Thus, 84 % of the $PM_{2.5}$ emission from stationary combustion is emitted from residential wood combustion. This corresponds to 56 % of the national emission. A literature review (Nielsen et al., 2003) and a Nordic pro-

ject (Sternhufvud et al., 2004) has demonstrated that the emission factor uncertainty for residential combustion of wood in stoves and boilers is notably high.

Figure 3.2.17 shows the fuel consumption and the $PM_{2.5}$ emission of residential plants. Wood combustion accounts for 94 % of the $PM_{2.5}$ emission from residential plants in spite of a wood consumption share of 52 %.

Emission inventories for PM have been reported for the years 2000-2014. The time series for PM emission from stationary combustion is shown in Figure 3.2.18. The emission of TSP, PM_{10} and $PM_{2.5}$ was 10 %, 9 % and 8 % lower in 2014 than in year 2000. The PM emissions increased until 2007 and decreased after 2007. The increase was caused by the increased wood combustion in residential plants. However, the PM emission factors have decreased for this emission source category due to installation of modern stoves and boilers. The stabilisation of wood consumption in residential plants in 2007-2014 has resulted in a decrease of PM emission from stationary combustion in recent years.

The time series for PM emission from stationary combustion plants follows the time series for PM emission from residential plants.

		TSP, Mg	PM ₁₀ , Mg	PM _{2.5} , Mg
1A1a	Public electricity and heat production	715	548	429
1A1b	Petroleum refining	96	92	90
1A1c	Oil and gas extraction	2	1	1
1A2	Industry	262	197	129
1A4a	Commercial/Institutional	176	174	164
1A4b	Residential	11623	11035	10743
1A4c	Agriculture/Forestry	502	471	443
Total		13376	12519	12000

Table 3.2.7 PM emission from stationary combustion plants, 2014¹⁾.

1) Only emission from stationary combustion plants in the source categories is included.

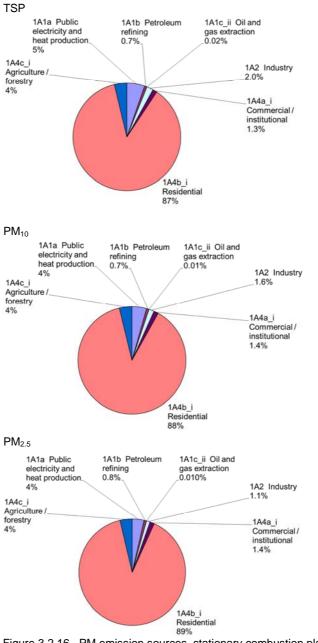


Figure 3.2.16 PM emission sources, stationary combustion plants, 2014.

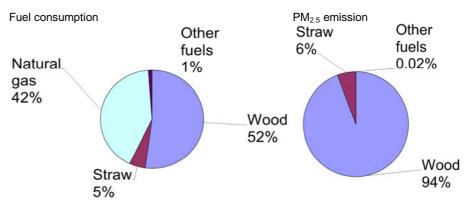


Figure 3.2.17 Fuel consumption and PM_{2.5} emission from residential plants.

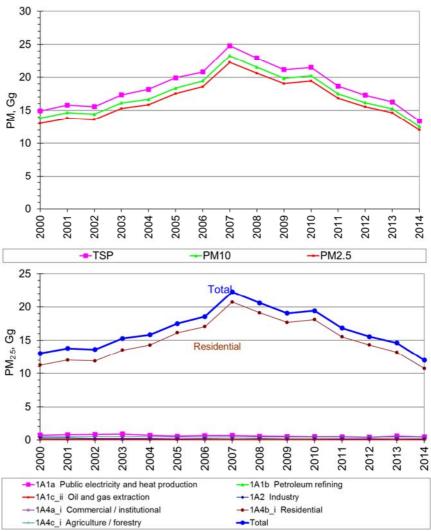
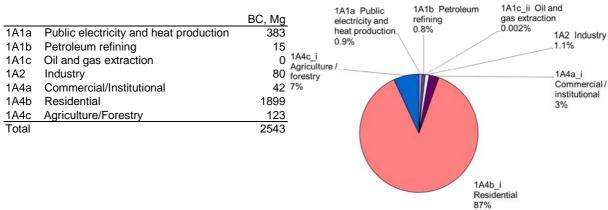


Figure 3.2.18 PM emission time series for stationary combustion.


Black carbon (BC)

BC from stationary combustion accounts for 44 % of the national emission. Residential combustion is the main emission source accounting for 88 % of the emission from stationary combustion. Residential wood combustion is the main emission source accounting for 96 % of the emission from residential plants.

Table 3.2.8 shows the BC emission inventory for the stationary combustion subcategories.

BC emissions are reported for year 2000 onwards. Figure 3.2.19 shows time series for BC emission. The emission has increased until 2007 and decreased since 2007. The time series follows the time series for $PM_{2.5}$.

Table 3.2.8 BC emission from stationary combustion plants, 2014¹⁾.

1) Only emission from stationary combustion plants in the source categories is included.

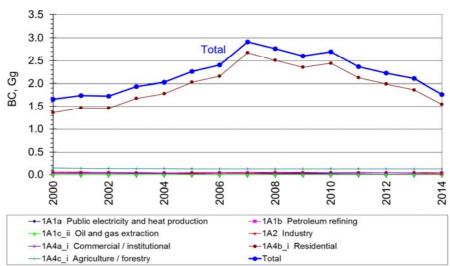


Figure 3.2.19 BC emission time series for stationary combustion.

Heavy metals

Stationary combustion plants are among the most important emission sources for heavy metals. The emission share for stationary combustion compared to national total is shown for each metal in Table 3.2.9.

Table 3.2.9 and Figure 3.2.20 present the heavy metal emission inventory for the stationary combustion subcategories. The source categories *Public electricity and heat production, Residential* and *Industry* are the main emission sources. The emission share for waste incineration plants has decreased considerably since the year 2000 due to installation of new improved flue gas cleaning technology that was initiated based on lower emission limit values in Danish legislation (DEPA, 2011).

Table 3.2.9	Heavy meta	l emission from	stationary	combustion	plants.	2014 ¹⁾ .

Table 5.2.9 Fleavy metal emission nom stationary compusition plants, 2014									
	As, kg	Cd, kg	Cr, kg	Cu, kg	Hg, kg	Ni, kg	Pb, kg	Se, kg	Zn, kg
1A1a Public electricity and heat production	109	27	160	148	172	256	347	625	406
1A1b Petroleum refining	29	22	23	44	22	162	65	105	64
1A1c Oil and gas extraction	3	0	0	0	2	0	0	0	0
1A2 Industry	68	23	79	101	61	1089	480	89	1010
1A4a Commercial/Institutional	3	1	4	4	2	26	6	1	15
1A4b Residential	12	397	703	206	21	73	932	17	15846
1A4c Agriculture/Forestry	7	5	21	36	10	48	219	27	472
Total	230	474	989	539	290	1653	2048	865	17813
Emission share from stationary combustion	70%	84%	69%	1%	87%	45%	18%	56%	32%

1) Only emission from stationary combustion plants in the source categories is included.

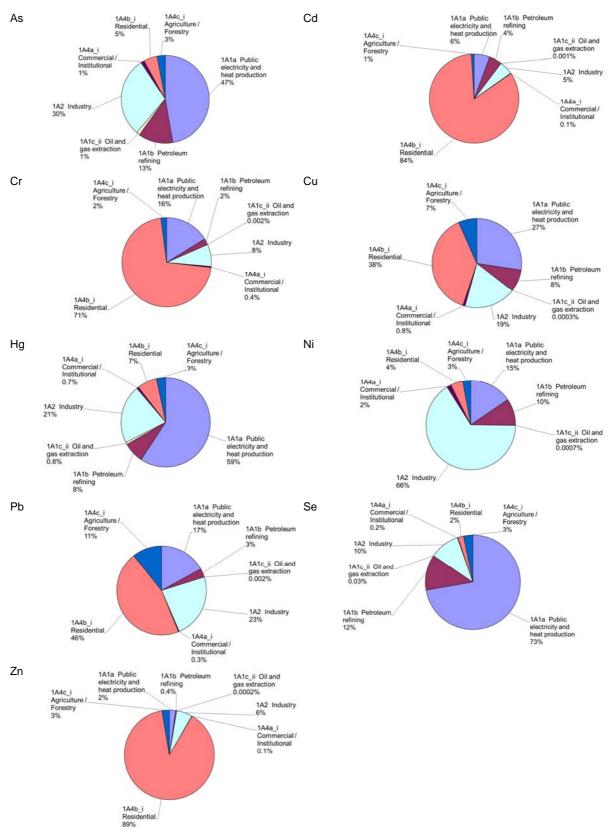


Figure 3.2.20 Heavy metal emission sources, stationary combustion plants, 2014.

The time series for heavy metal emissions are provided in Figure 3.2.21. Emissions of all heavy metals have decreased considerably (36 % - 90 %) since 1990, see Table 3.2.10. Emissions have decreased despite increased incineration of waste. This has been made possible due to installation and improved performance of gas cleaning devices in waste incineration plants and

also in large power plants, the latter being a further important emission source. Table 3.2.10 Decrease in heavy metal emission 1990-2014.

Cr

82

Cu Hg

85

90

As

80

Cd

51

Pb

87

Se

78

Ni

90

Zn

36

Pollutant

Decrease since 1990, %

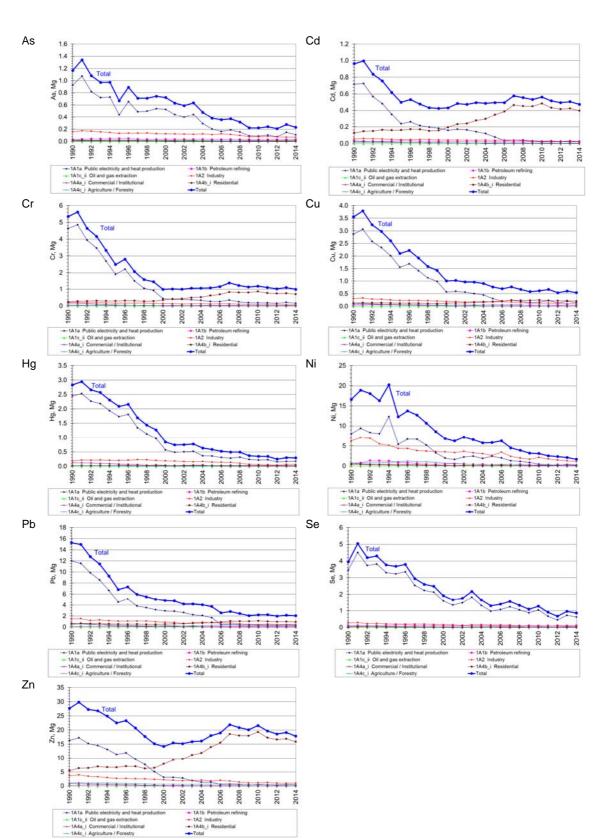


Figure 3.2.21 Heavy metal emission time series, stationary combustion plants.

Polycyclic aromatic hydrocarbons (PAH)

Stationary combustion plants accounted for more than 76 % of the PAH emission in 2014.

Table 3.2.11 and Figure 3.2.22 present the PAH emission inventories for the stationary combustion subcategories. Residential combustion is the largest emission source accounting for more than 71 % of the emission. Combustion of wood is the predominant source, accounting for more than 96 % of the PAH emission from residential plants, see Figure 3.2.23.

The time series for PAH emissions are presented in Figure 3.2.24. The increase of PAHs until 2007 is a result of the increased combustion of wood in residential plants. The time series for wood combustion in residential plants is also provided in Figure 3.2.24. The stabilisation of the consumption of wood in residential plants since 2007 is reflected in the PAH emission time series. The decrease in recent years is related to installation of new residential wood combustion units.

10010 0.2.11	T / IT Officional for Stational	y combastion	piumo, 2014 .	
		Benzo(a)-	Benzo(b)-	Benzo(k)-
		Pvrene.	fluoranthene	fluoranthene

Table 3.2.11 PAH emission from stationary combustion plants 2014^{11}

(-)	()	= = = = = = ()	
Pyrene,	fluoranthene,	fluoranthene,	c,d)pyrene,
kg	kg	kg	kg
9	34	22	6
0	0	0	0
0	0	0	0
21	73	9	4
190	250	83	135
1376	1410	517	758
122	136	30	156
1718	1903	662	1060
86%	86%	76%	83%
	kg 9 0 21 190 1376 122 1718	Pyrene, kg fluoranthene, kg 9 34 0 0 0 0 21 73 190 250 1376 1410 122 136 1718 1903	Pyrene, fluoranthene, kg fluoranthene, kg 9 34 22 0 0 0 0 0 0 21 73 9 190 250 83 1376 1410 517 122 136 30 1718 1903 662

¹⁾ Only emission from stationary combustion plants in the source categories is included.

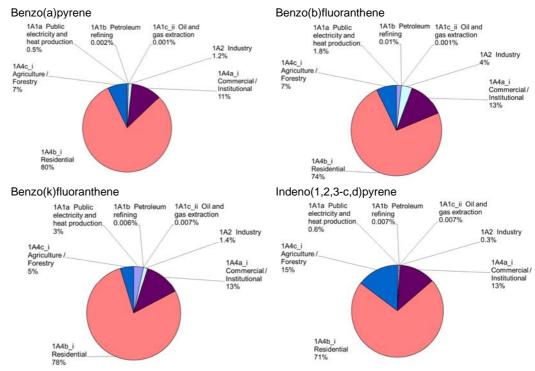


Figure 3.2.22 PAH emission sources, stationary combustion plants, 2014.

Indeno(1,2,3-

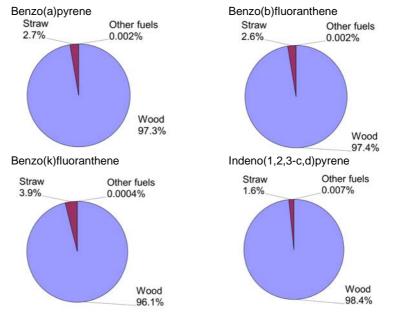
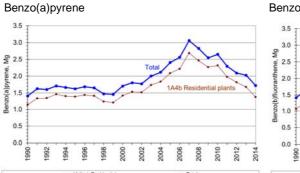
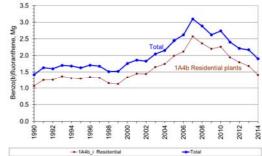
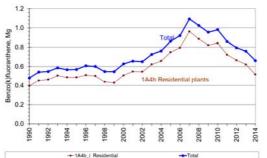
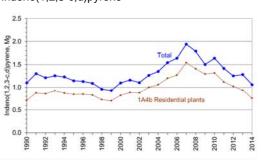




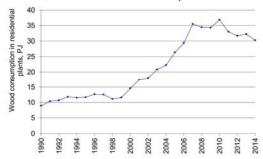
Figure 3.2.23 PAH emission from residential combustion plants (stationary), fuel origin.

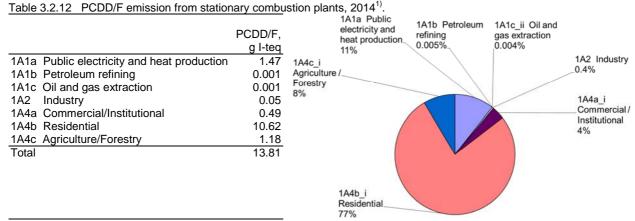




Indeno(1,2,3-c,d)pyrene

Combustion of wood in residential plants




Figure 3.2.24 PAH emission time series, stationary combustion plants. Comparison with wood consumption in residential plants.

Polychlorinated dibenzodioxins and -furans (PCDD/F)

Stationary combustion plants accounted for 62 % of the national emission of polyclorinated dibenzodioxins and –furans (PCDD/F) in 2014.

Table 3.2.12 presents the PCDD/F emission inventories for the stationary combustion subcategories. In 2014, the emission from residential plants accounted for 77 % of the emission. Combustion of wood is the predominant source accounting for 86 % of the emission from residential plants (Figure 3.2.25).

The time series for PCDD/F emission is presented in Figure 3.2.26. The PCDD/F emission has decreased 71 % since 1990 mainly due to installation of dioxin filters in waste incineration plants. The emission from residential plants has increased due to increased wood consumption in this source category. However, the emission factor for residential wood combustion has decreased due to installation of modern stoves and boilers.

1) Only emission from stationary combustion plants in the source categories is included.

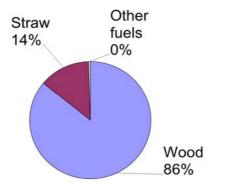


Figure 3.2.25 PCDD/F emission from residential plants, fuel origin.

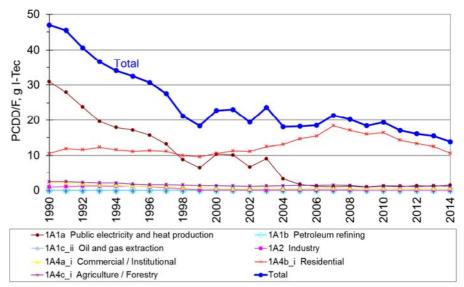


Figure 3.2.26 PCDD/F emission time series, stationary combustion plants.

Hexachlorobenzene (HCB)

Stationary plants accounted for 53 % of the estimated national emission of hexachlorobenzene (HCB) in 2014.

Table 3.2.13 shows the HCB emission inventory for the stationary combustion subcategories. *Public electricity and heat production* account for 80 % of the emission. Residential plants account for 12 % of the emission.

The time series for HCB emission is presented in Figure 3.2.27. The HCB emission has decreased 77 % since 1990 mainly due to improved flue gas cleaning in waste incineration plants. The emission from residential plants has increased due to increased wood consumption in this source category.

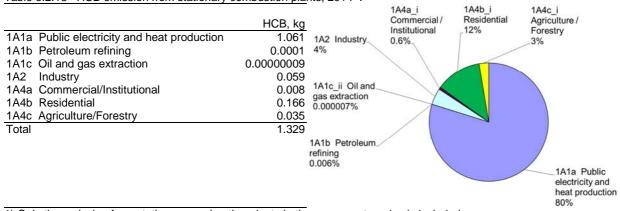


Table 3.2.13 HCB emission from stationary combustion plants, 2014¹⁾.

1) Only the emission from stationary combustion plants in the source categories is included.

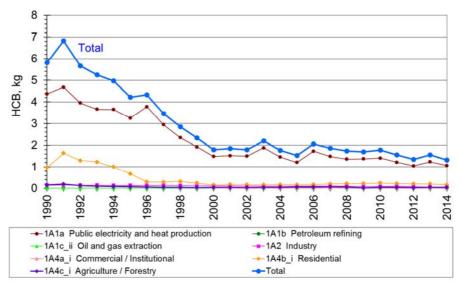


Figure 3.2.27 HCB emission time series, stationary combustion plants.

Polychlorinated biphenyls (PCB)

PCB can be emitted in any chemical process involving chloride and organic carbon or emitted due to incomplete combustion of PCB in fuel (waste incineration). In Denmark, waste with high levels of PCB is only incinerated in plants with permission to incinerate this waste fraction as it requires a high combustion temperature.

Different references for PCB emissions are not directly comparable because some PCB emission data are reported for individual PCB congeners, some as a sum of a specified list of PCB congeners and some PCB emission data are reported as toxic equivalence (teq) based on toxicity equivalence factors (TEF) for 12 dioxin-like PCB congeners. The emission measurements reported by Thistlethwaite (2001a and 2001b) show that the emission of nondioxin-like PCBs is high compared to the emission of dioxin-like PCBs.

Furthermore, teq values based on TEF are reported as WHO_{2005} -teq or WHO_{1998} -teq. This difference is however typically less than $50\%^4$.

For stationary combustion the emission inventory is a sum of dioxin-like PCB (dl-PCB) emission, no teq values applied.

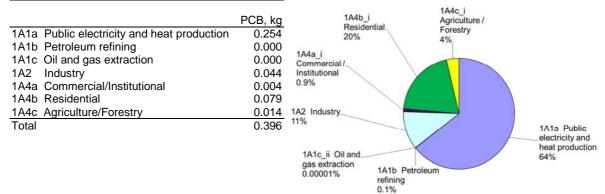

Stationary plants accounted for 0.9 % of the estimated national PCB emission in 2014.

Table 3.2.14 shows the dl-PCB emission inventory for the stationary combustion subcategories. *Public electricity and heat production* accounted for 64 % of the emission in 2014. Residential plants accounted for 20 % of the emission.

The time series for dl-PCB emission is presented in Figure 3.2.28. The dl-PCB emission has decreased 66 % since 1990. The decrease is mainly a result of the flue gas cleaning devices that have been installed in waste incineration plants for dioxin reduction.

⁴ Data have been compared for a few datasets in which each dioxin-like PCB congener was specified.

Table 3.2.14 PCB emission from stationary combustion plants, 2014¹⁾.

1) Only the emission from stationary combustion plants in the source categories is included.

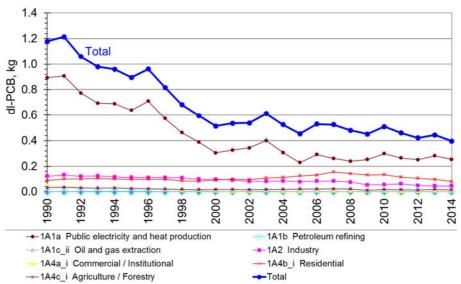
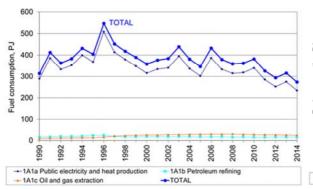
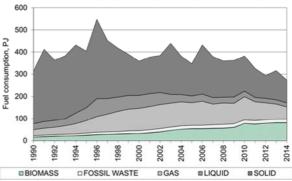
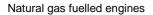


Figure 3.2.28 PCB emission time series, stationary combustion plants.

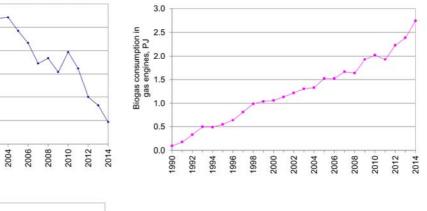
3.2.4 Trend for subsectors


In addition to the data for stationary combustion, this chapter presents and discusses data for each of the subcategories in which stationary combustion is included. Time series are presented for fuel consumption and emissions.


1A1 Energy industries


The emission source category 1A1 Energy Industries consists of the subcategories:

- 1A1a Public electricity and heat production
- 1A1b Petroleum refining
- 1A1c Oil and gas extraction


Figure 3.2.29 – 3.2.33 present time series for the *Energy Industries*. *Public electricity and heat production* is the largest subcategory accounting for the main part of all emissions. Time series are discussed below for each subcategory.

 Biogas fuelled engines

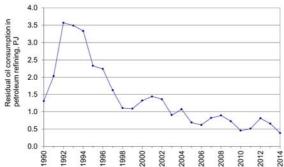


Figure 3.2.29 Time series for fuel consumption, 1A1 Energy industries.

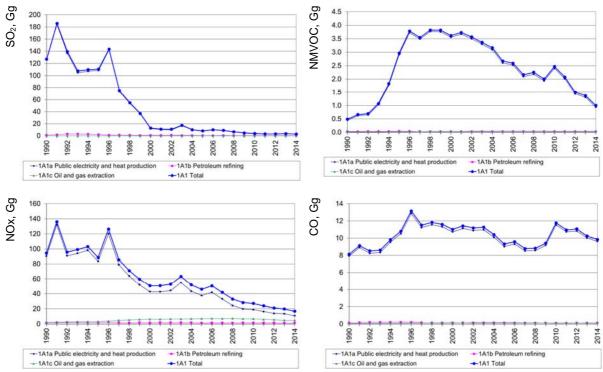


Figure 3.2.30 Time series for SO₂, NO_x, NMVOC and CO emission, 1A1 Energy industries.

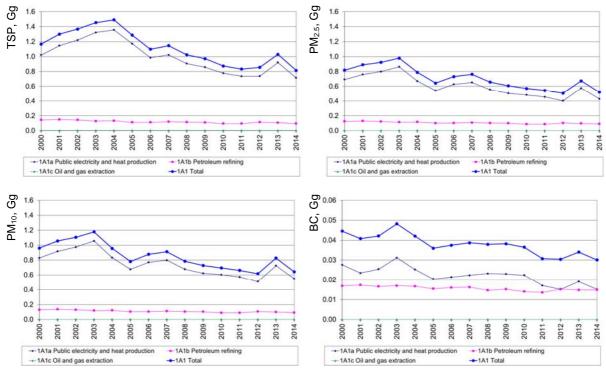


Figure 3.2.31 Time series for PM and BC emission, 1A1 Energy industries.

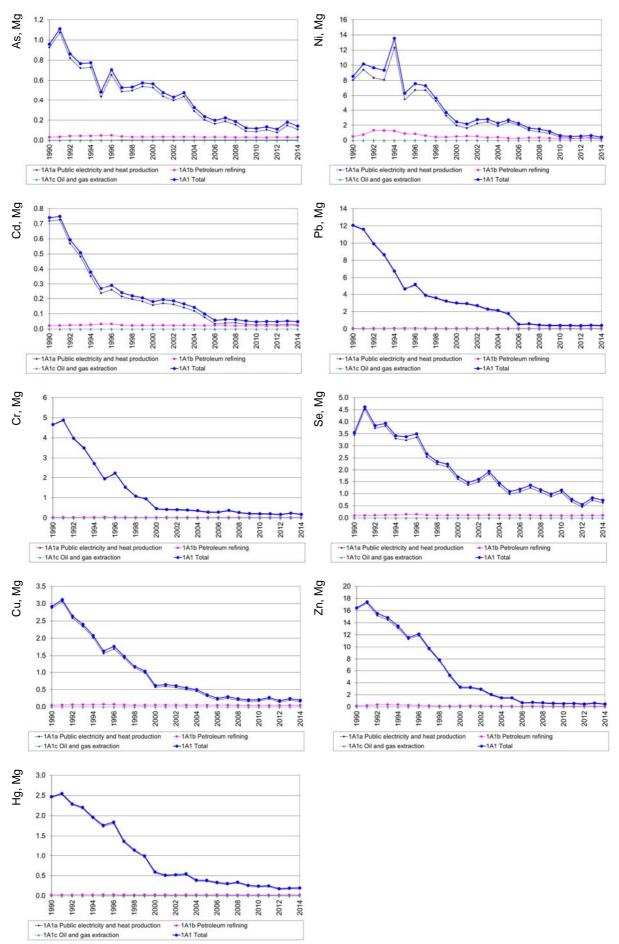


Figure 3.2.32 Time series for HM emission, 1A1 Energy industries.

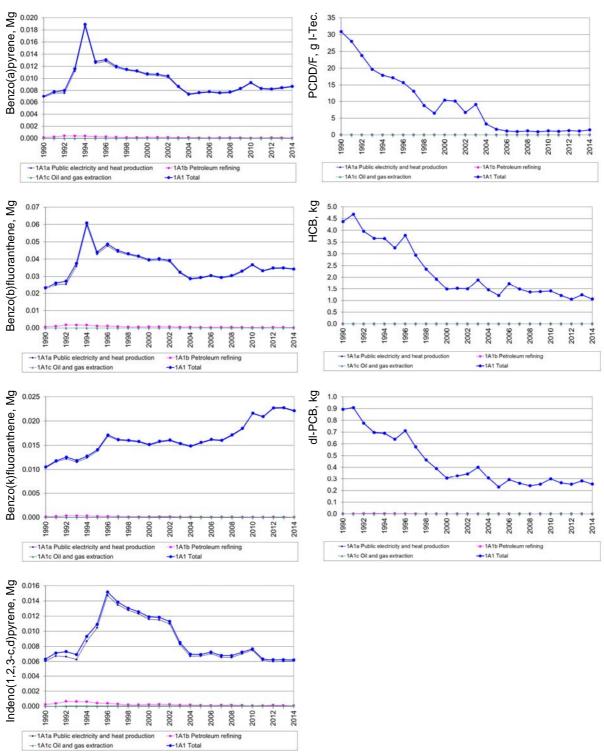


Figure 3.2.33 Time series for PAH, PCDD/F, HCB and dl-PCB emission, 1A1 Energy industries.

1A1a Public electricity and heat production

Public electricity and heat production is the largest source category regarding fuel consumption for stationary combustion. Figure 3.2.34 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

The fuel consumption in Public electricity and heat production was 19 % lower in 2014 than in 1990. As discussed in Chapter 3.2.2 the fuel consumption fluctuates mainly as a consequence of electricity trade. Coal is the fuel that is affected the most by the fluctuating electricity trade. Coal is the main fuel in the source category even in years with electricity import. The coal consumption in 2014 was 57 % lower than in 1990. Natural gas is also an important fuel and the consumption of natural gas increased in 1990-2000 but has decreased since 2010. A considerable part of the natural gas is combusted in gas engines (Figure 3.2.29). The consumption of waste, wood and straw has increased.

The SO₂ emission has decreased 98 % from 1990 to 2014. This decrease is a result of both lower sulphur content in fuels and installation and improved performance of desulphurisation plants. The emission was 20 % lower in 2014 than in 2013.

The NO_x emission has decreased 88 % since 1990 due to installation of low NO_x burners, selective catalytic reduction (SCR) units and selective noncatalytic reduction (SNCR) units. The fluctuations in time series follow the fluctuations in fuel consumption and electricity trade.

The emission of NMVOC in 2014 was 2.1 times the 1990 emission level. This is a result of the large number of gas engines that has been installed in Danish CHP plants. The decreasing emission in 2004-2014 is results of the time series for natural gas consumption in gas engines (Figure 3.2.29). In addition, the emission of NMVOC from engines decreased in 1995-2007 as a result of introduction of an emission limits for unburned hydrocarbon⁵ (DEPA, 2005).

The CO emission was 21 % higher in 2014 than in 1990. The fluctuations follow the fluctuations of the fuel consumption. In addition, the emission from gas engines is considerable.

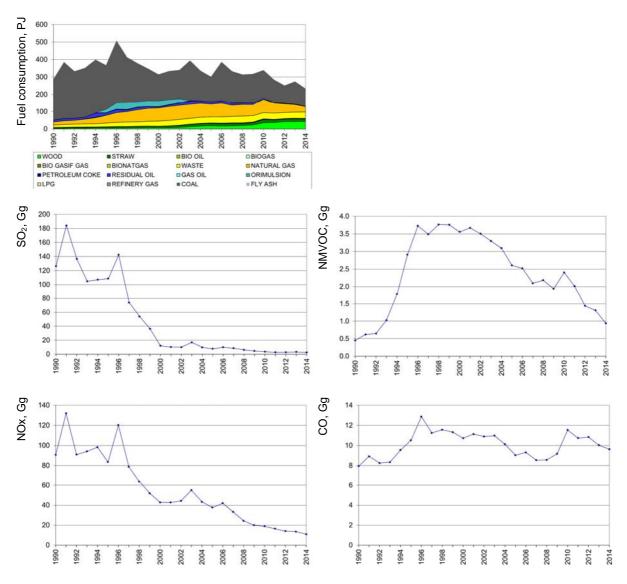
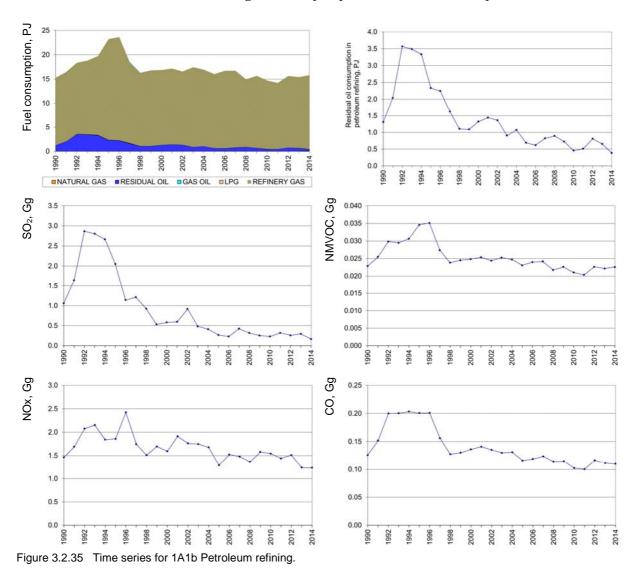


Figure 3.2.34 Time series for 1A1a Public electricity and heat production.

1A1b Petroleum refining

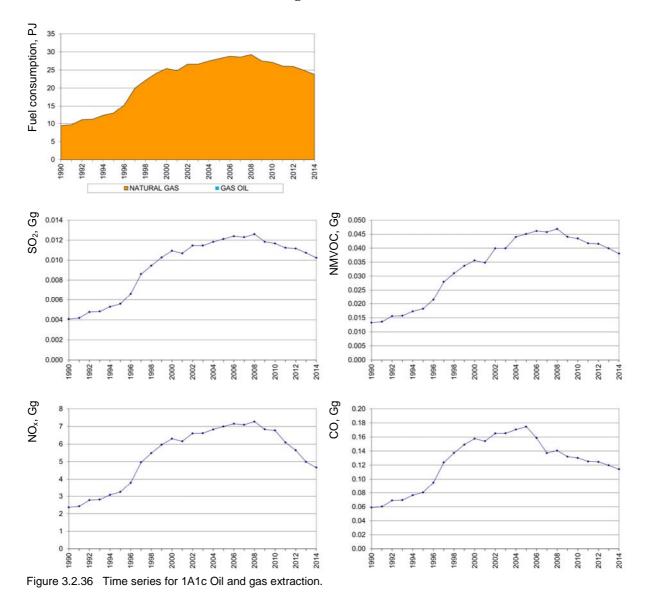

Petroleum refining is a small source category regarding both fuel consumption and emissions for stationary combustion. Presently two refineries are operating in Denmark. Figure 3.2.35 shows the time series for fuel consumption and emissions.

The significant decrease in both fuel consumption and emissions in 1996 is a result of the closure of a third refinery.

The fuel consumption has increased 4 % since 1990.

The emission of SO₂ has shown a pronounced decrease (84 %) since 1990, mainly because decreased consumption of residual oil (70 %) also shown in Figure 3.2.35. The increase in SO₂ emission in 1990-1992 also follows the residual oil consumption. The NO_x emission in 2014 was 16 % lower in 2014 than in 1990. Since 2005, data for both SO₂ and NO_x are plant specific data stated by the refineries.

The NMVOC emission time series follows the time series for fuel consumption. A description of the Danish emission inventory for fugitive emissions from fuels is given in Plejdrup et al. (2011) and in Chapter 3.4.


1A1c Oil and gas extraction

The source category *Oil and gas extraction* comprises natural gas consumption in the off-shore industry and in addition a small consumption in the Danish gas treatment plant⁶. Gas turbines are the main plant type. Figure 3.2.36 shows the time series for fuel consumption and emissions.

The fuel consumption in 2014 was 2.5 times the consumption in 1990. The fuel consumption has decreased since 2008.

The emissions follow the increase of fuel consumption.

The decrease of CO emission in 2005 – 2007 is a result of a lower emission factor. This decrease of emission factor is valid for gas turbines in cogeneration plants, but might not be valid for off shore gas turbines. However, the same emission factors have been assumed for CO emission due to the lack of data from off shore gas turbines.

1A2 Industry

Manufacturing industries and construction (Industry) consists of both stationary and mobile sources. In this chapter, only stationary sources are included.

The emission source category 1A2 Industry consists of the subcategories:

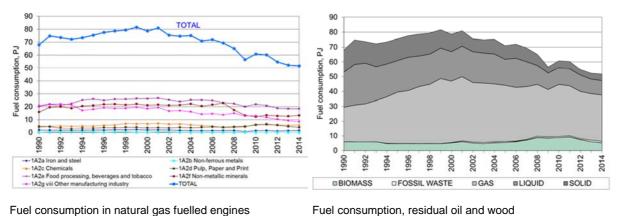
- 1A2a Iron and steel
- 1A2b Non-ferrous metals
- 1A2c Chemicals
- 1A2d Pulp, Paper and Print
- 1A2e Food processing, beverages and tobacco
- 1A2f Non-metallic minerals
- 1A2 g viii Other manufacturing industry

Figure 3.2.37 - 3.2.41 show the time series for fuel consumption and emissions. The subsectors *Non-metallic minerals, Other manufacturing industry* and *Food processing, beverages and tobacco* are the main subsectors for fuel consumption and emissions.

The total fuel consumption in industrial combustion was 24 % lower in 2014 than in 1990. The consumption of natural gas has increased since 1990 whereas the consumption of coal has decreased. The consumption of residual oil has decreased, but the consumption of petroleum coke increased.

The SO₂ emission has decreased 82 % since 1990. This is mainly a result of lower consumption of residual oil in the industrial sector (Figure 3.2.37). Further, the sulphur content of residual oil and several other fuels has decreased since 1990 due to legislation and tax laws.

The NO_x emission has decreased 62 % since 1990 due to the reduced emission from industrial boilers in general. Cement production is the main emission source accounting for more than 50 % of the industrial emission in 1990-2010⁷. After 2010 the NO_x emission from cement production was reduced considerably and in 2014, the NO_x emission from cement industry was 35 % of the total emission from manufacturing industries and construction (stationary combustion). The NO_x emission from cement production was reduced 75 % since 1990. The reduced emission is a result of installation of SCR on all production units at the cement production plant in 2004-2007⁸ and improved performance of the SCR units in recent years. A NO_x tax was introduced in 2010 (DMT, 2008).


The NMVOC emission has decreased 78 % since 1990. The decrease is mainly a result of decreased emission factor for combustion of wood in industrial boilers. The emission from gas engines has however increased considerably after 1995 due to the increased fuel consumption that is a result of the installation of a large number of industrial CHP plants (Figure 3.2.37). The NMVOC emission factor for gas engines is much higher than for boilers regardless of the fuel.

 $^{^7}$ More than 80 % of sector 1A2f i.

⁸ To meet emission limit.

The CO emission in 2014 was 25 % lower than in 1990. The main sources of emission are combustion of wood and cement production. The CO emission from mineral wool production is included in the industry sector (2A6).

The large decrease of Hg emission since 2009 is related to a large decrease of particulate matter emission and to a large decrease of coal consumption since 2009.

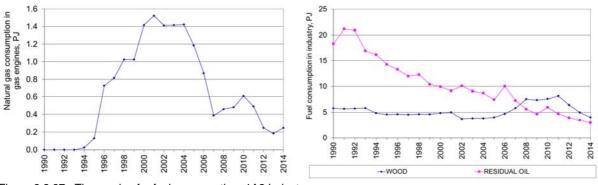


Figure 3.2.37 Time series for fuel consumption, 1A2 Industry.

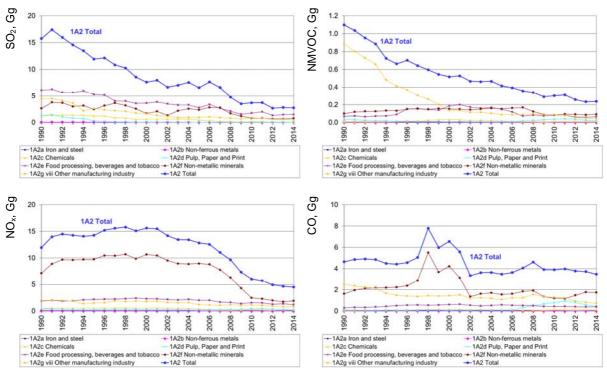


Figure 3.2.38 Time series for SO₂, NO_x, NMVOC and CO emission, 1A2 Industry.

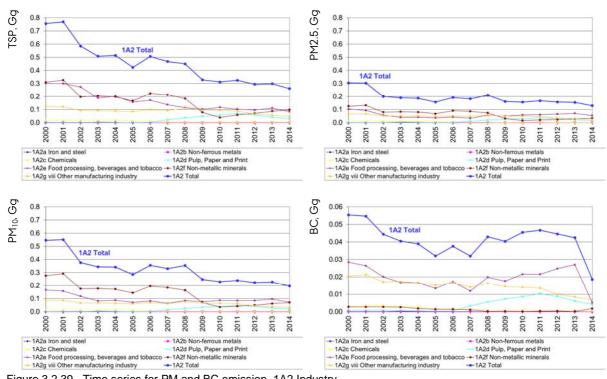


Figure 3.2.39 Time series for PM and BC emission, 1A2 Industry.

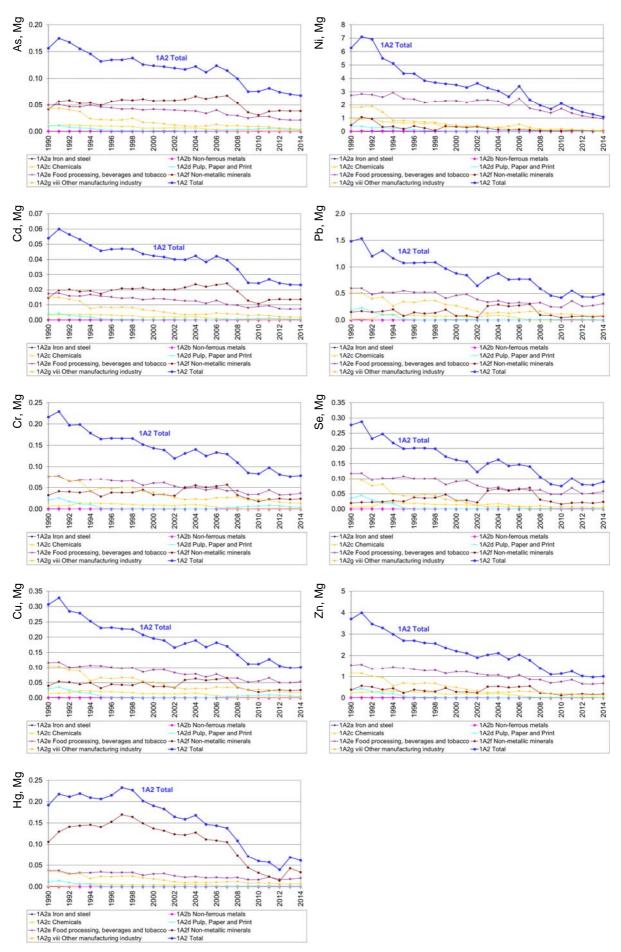


Figure 3.2.40 Time series for HM emission, 1A2 Industry.

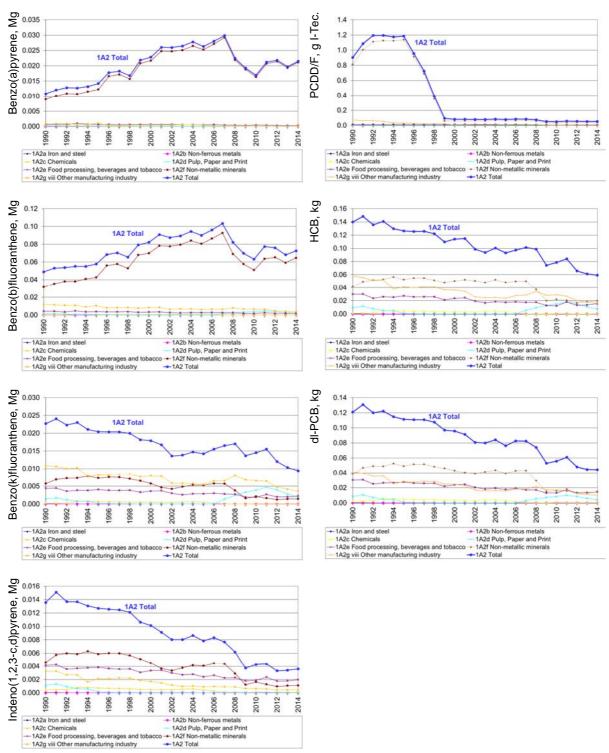


Figure 3.2.41 Time series for PAH, PCDD/F, HCB and dioxin-like PCB emission, 1A2 Industry.

1A2a Iron and steel

Iron and steel is a very small emission source category. Figure 3.2.42 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

Natural gas is the main fuel in the subsector.

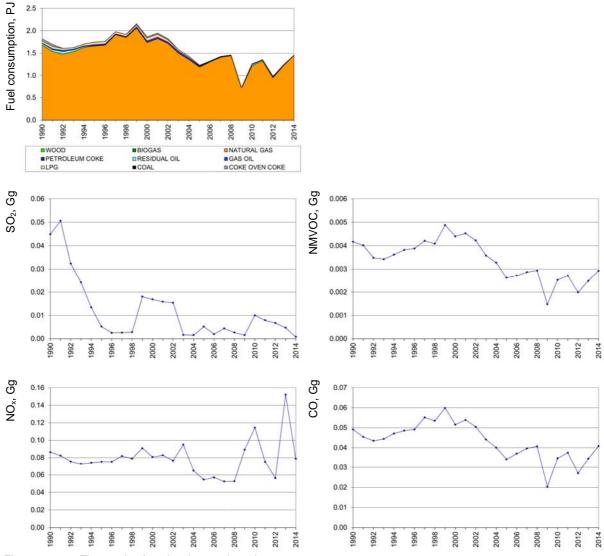


Figure 3.2.42 Time series for 1A2a Iron and steel.

1A2b Non-ferrous metals

Non-ferrous metals is a very small emission source category. Figure 3.2.43 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

Natural gas is the main fuel in the subsector. The consumption of residual oil has decreased and the SO_2 emission follows this decrease. The emissions of NO_x , NMVOC and CO follow the fuel consumption.

The fuel consumption is very low after 2009. This is in agreement with the data reported by DEA to Eurostat (DEA, 2015c).

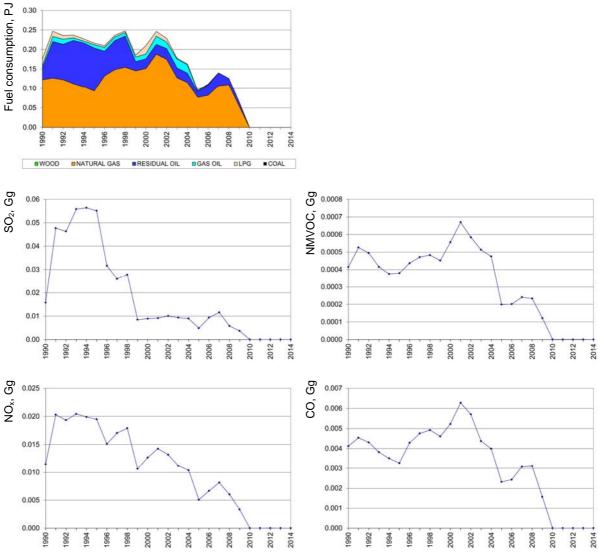


Figure 3.2.43 Time series for 1A2b Non-ferrous metals.

1A2c Chemicals

Chemicals is a minor emission source category. Figure 3.2.44 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

Natural gas is the main fuel in this subsector. The consumption of residual oil has decreased and the SO_2 emission follows this fuel consumption.

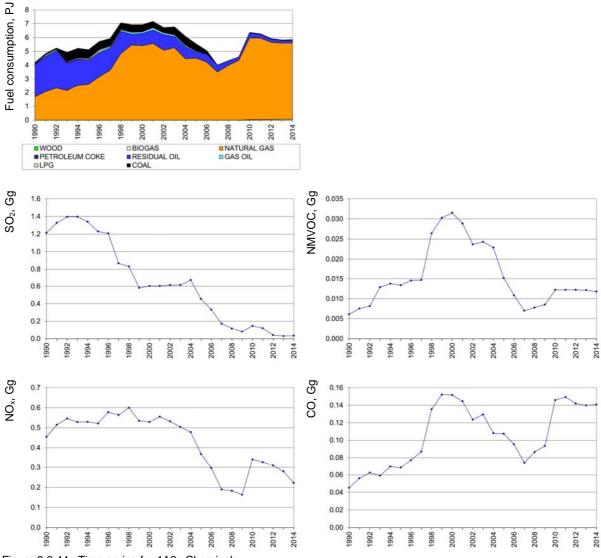
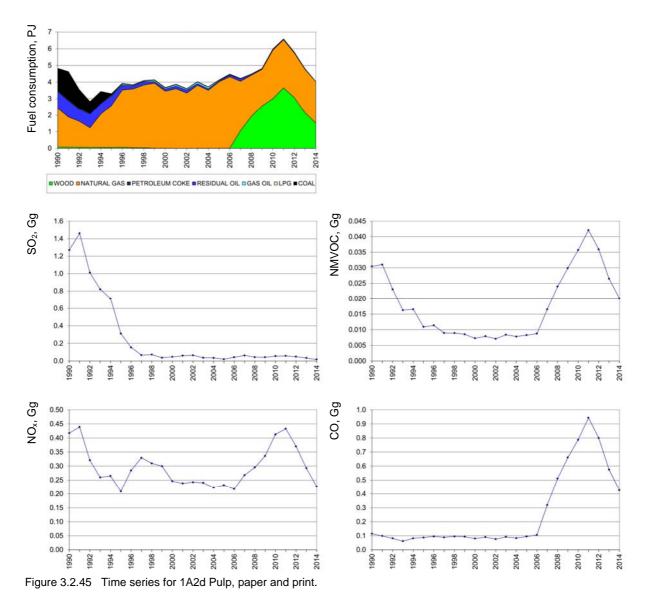



Figure 3.2.44 Time series for 1A2c Chemicals.

1A2d Pulp, paper and print

Pulp, paper and print is a minor emission source category. Figure 3.2.45 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

Natural gas - and since 2007 also wood - are the main fuels in the subsector. The consumption of coal and residual oil has decreased and this is reflected in the SO_2 emission time series. The increased consumption of wood since 2007 has resulted in a considerable increase in NMVOC and CO emission in 2007-2014.

1A2e Food processing, beverages and tobacco

Food processing, beverages and tobacco is a considerable industrial subsector. Figure 3.2.46 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

Natural gas and residual oil are the main fuels in the subsector. The consumption of residual oil has decreased and this is reflected in the SO_2 emission time series. The consumption of natural gas has increased.

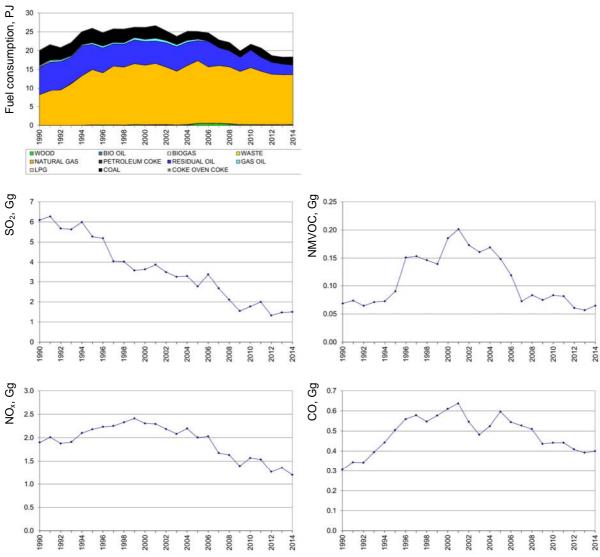


Figure 3.2.46 Time series for 1A2e Food processing, beverages and tobacco.

1A2f Non-metallic minerals

Non-metallic minerals is a considerable industrial subsector. Figure 3.2.47 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO. The subsector includes cement production that is a major industrial emission source in Denmark.

Petroleum coke, natural gas, industrial waste and coal are the main fuels in the subsector in recent years. The consumption of coal and residual oil has decreased.

The NO_x time series is discussed above on page 83.

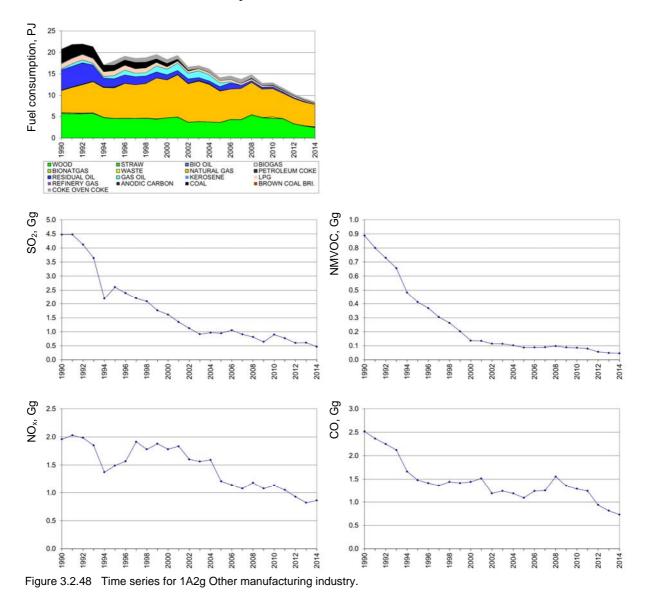
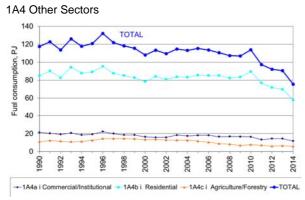


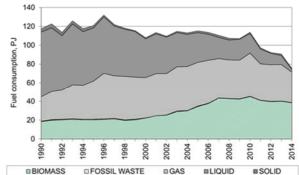
Figure 3.2.47 Time series for 1A2f Non-metallic minerals.

1A2g Other manufacturing industry

Other manufacturing industry is a considerable industrial subsector. Figure 3.2.48 shows the time series for fuel consumption and emissions of SO_2 , NO_x , NMVOC and CO.

Natural gas and wood are the main fuels in the subsector in recent years. The consumption of coal and residual oil has decreased.


1A4 Other Sectors


The emission source category 1A4 Other Sectors consists of the subcategories:

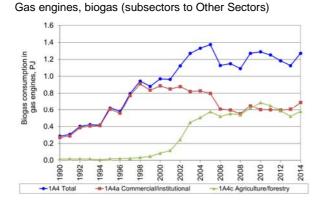

- 1A4a Commercial/Institutional plants.
- 1A4b Residential plants.
- 1A1c Agriculture/Forestry.

Figure 3.2.49 – 3.2.53 present time series for this emission source category. *Residential plants* is the largest subcategory accounting for the largest part of all emissions. Time series are discussed below for each subcategory.

The HCB emission time series follows the fuel consumption of coal in residential plants. The HCB emission factor for coal used in residential plants is high compared to other fuels.



4.0 40 Vood 1A4 Total and 1A4b, PJ 35 3.5 Ъ 1A4c. 30 3.0 and 1 25 2.5 1A4a 20 2.0 Wood 1 15 1.5 10 1.0 5 0.5 0 0.0 2000 2002 2010 2012 2014 992 994 966 2004 2006 2008 066 -Total -1A4b Residential 1A4c Agriculture/Forestry - 1A4a Co

Gas engines, natural gas (subsectors to Other Sectors)

Combustion of straw in Other Sectors

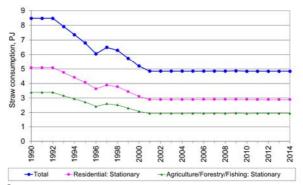


Figure 3.2.49 Time series for fuel consumption, 1A4 Other Sectors.

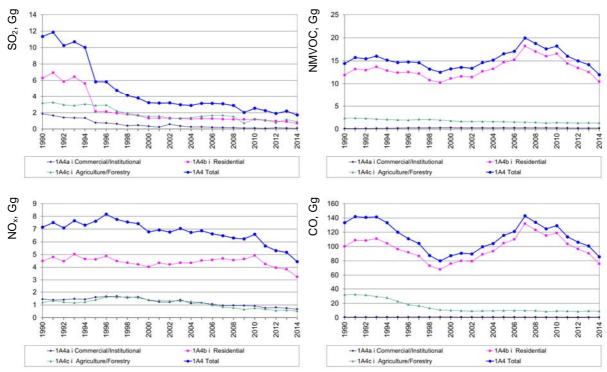


Figure 3.2.50 Time series for SO₂, NO_x, NMVOC and CO emission, 1A4 Other Sectors.

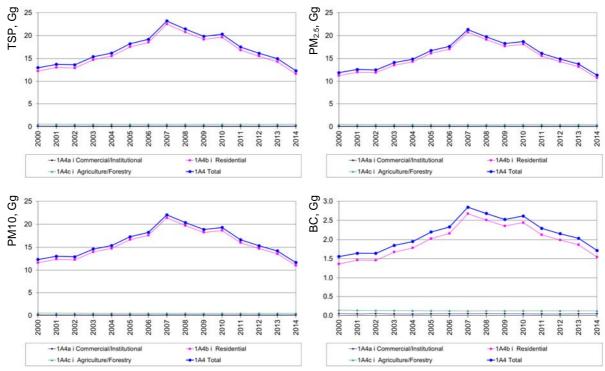


Figure 3.2.51 Time series for PM and BC emission, 1A4 Other Sectors.

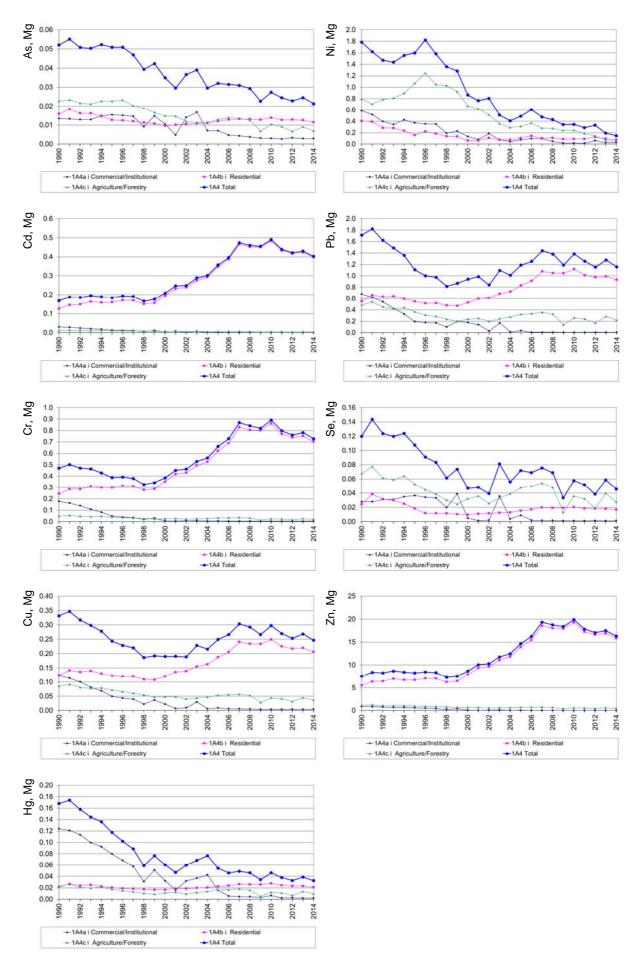


Figure 3.2.52 Time series for HM emission, 1A4 Other Sectors.

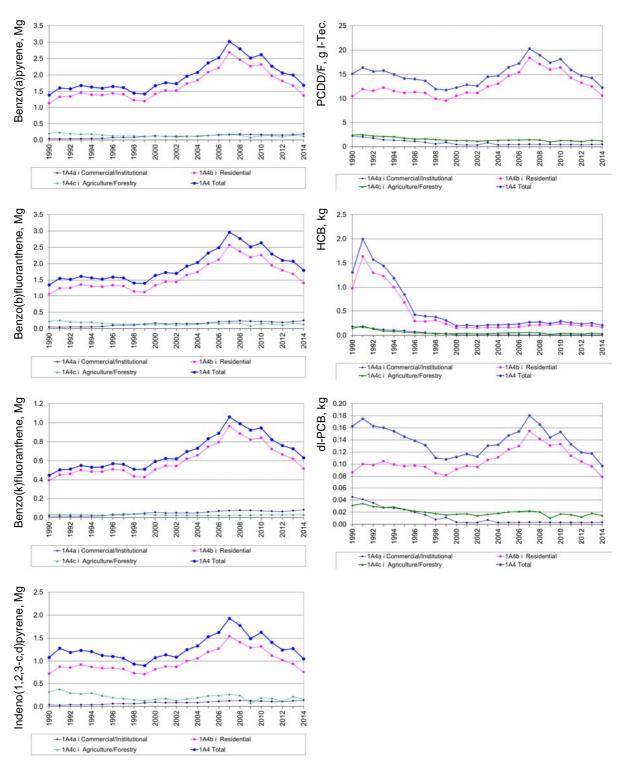


Figure 3.2.53 Time series for PAH, PCDD/F, HCB and dioxin-like PCB emission, 1A4 Other Sectors.

1A4a i Commercial and institutional plants

The emission source category *Commercial and institutional plants* consists of both stationary and mobile sources. In this chapter, only stationary sources are included (1A4a i).

The fuel consumption and the emissions from commercial and institutional plants are low compared to the other stationary combustion emission source categories. Figure 3.2.54 shows the time series for fuel consumption and emissions.

The fuel consumption in commercial/institutional plants has decreased 45 % since 1990 and there has been a change of fuel type. The fuel consumption consists mainly of gas oil and natural gas. The consumption of gas oil has decreased since 1990. The consumption of wood and biogas has increased. The wood consumption in 2014 was 5.5 times the consumption in 1990 (see Figure 3.2.49).

The SO_2 emission has decreased 94 % since 1990. The decrease is a result of both the change of fuel from gas oil to natural gas and of the lower sulphur content in gas oil and in residual oil. The lower sulphur content (0.05 % for gas oil since 1995 and 0.7 % for residual oil since 1997) is a result of Danish tax laws (DEPA, 1998).

The NO_x emission was 54 % lower in 2014 than in 1990. The decrease is mainly a result of the lower fuel consumption but also the change from gas oil to natural gas has contributed to the decrease. The emission from wood combustion has increased.

The NMVOC emission in 2014 was 64 % higher than the 1990 emission level. The large increase is a result of the increased combustion of wood that is the main source of emission. The increase and decrease of natural gas consumption in gas engines (Figure 3.2.49) is also reflected in the time series for NMVOC emission.

The CO emission has decreased 21 % since 1990. The emission from wood has increased whereas the emission from gas oil has decreased. This is a result of the change of fuels used in the sector.

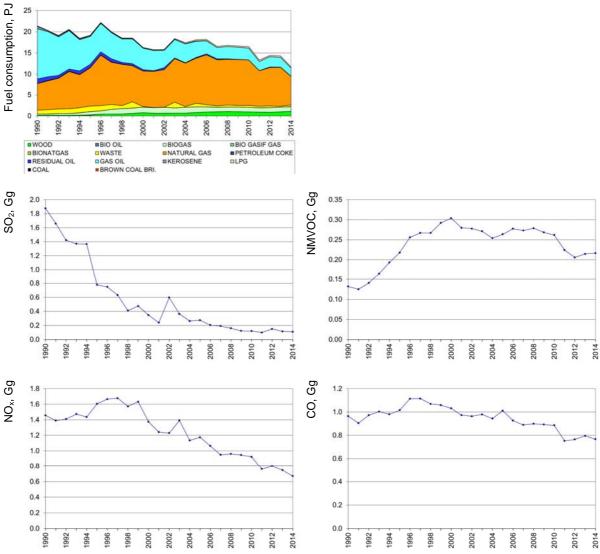


Figure 3.2.54 Time series for 1A4a Commercial /institutional.

1A4b i Residential plants

The emission source category *Residential plants* consists of both stationary and mobile sources. In this chapter, only stationary sources are included (1A4b i). Figure 3.2.55 shows the time series for fuel consumption and emissions.

For residential plants, the total fuel consumption was 32 % lower in 2014 than in 1990. The large decrease from 2010 to 2011 and from 2013 to 2014 was caused by high temperature in the winter season of 2011 and 2014. The consumption of gas oil has decreased since 1990 whereas the consumption of wood has increased considerably (3.4 times the 1990 level). The consumption of natural gas has also increased since 1990.

The large decrease (89 %) of SO_2 emission from residential plants is mainly a result of a change of sulphur content in gas oil since 1995. The lower sulphur content (0.05 %) is a result of Danish tax laws (DEPA, 1998). In addition, the consumption of gas oil has decreased and the consumption of natural gas that results in very low SO_2 emissions has increased.

The NO_x emission has decreased by 28 % since 1990. As mentioned above the fuel consumption has also decreased. The emission factor for wood is higher than for natural gas and gas oil and both consumption and the emission factor for wood have increased. However, the NO_x emission factor for natural gas has decreased.

The emission of NMVOC has decreased 12 % since 1990 as a result of decreasing fuel consumption. However, the consumption of wood has increased but the emission factor for wood has decreased since 1990. The emission factors for wood and straw are higher than for liquid or gaseous fuels.

The CO emission has decreased 24 % since 1990. The use of wood that is the main source of emission has increased whereas the emission factor has decreased. The emission from combustion of straw has decreased since 1990.

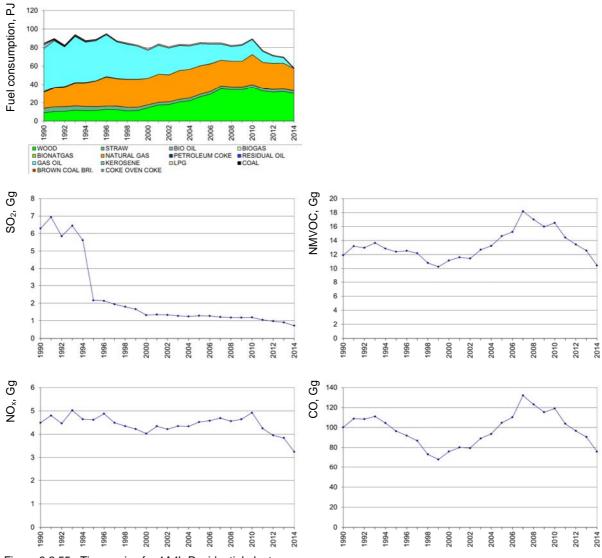


Figure 3.2.55 Time series for 1A4b Residential plants.

1A4c i Agriculture/forestry

The emission source category Agriculture/forestry consists of both stationary and mobile sources. In this chapter, only stationary sources are included (1A4c i). Figure 3.2.56 shows the time series for fuel consumption and emissions.

For plants in agriculture/forestry, the fuel consumption has decreased 47 % since 1990.

The type of fuel that has been applied has changed since 1990. In the years 1994-2006, the consumption of natural gas was high, but in recent years, the consumption decreased again. A large part of the natural gas consumption has been applied in gas engines (Figure 3.2.49). Most CHP plants in agriculture/forestry based on gas engines came in operation in 1995-1999. The decrease in later years is a result of the liberalisation of the electricity market.

The consumption of coal, residual oil and straw has decreased since 1990. The consumption of biogas has increased.

The SO_2 emission was 72 % lower in 2014 than in 1990. The emission decreased mainly in the years 1996-2002.

The emission of NO_x was 56 % lower in 2014 than in 1990.

The emission of NMVOC has decreased 44 % since 1990.

The CO emission has decreased 72 % since 1990. The major emission source is combustion of straw. In addition to the decrease of straw consumption, the emission factor for straw has also decreased since 1990.

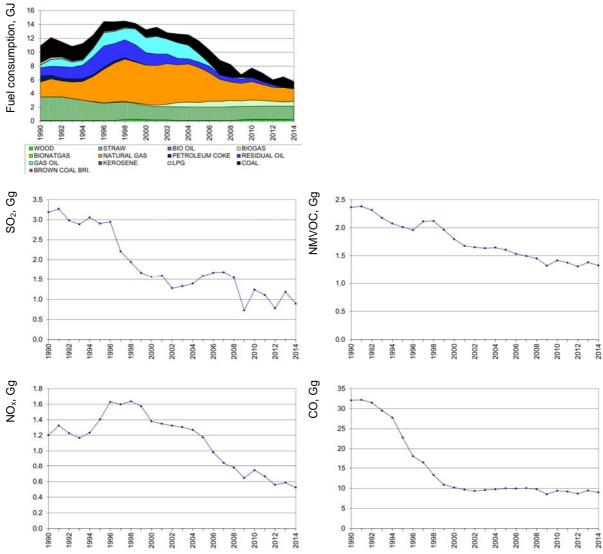


Figure 3.2.56 Time series for 1A4c Agriculture/Forestry.

3.2.5 Methodological issues

The Danish emission inventory is based on the CORINAIR (CORe INventory on AIR emissions) system, which is a European program for air emission inventories. CORINAIR includes methodology structure and software for inventories. The methodology is described in the EMEP/EEA Guidebook (EEA, 2013). Emission data are stored in an Access database, from which data are transferred to the reporting formats.

The emission inventory for stationary combustion is based on activity rates from the Danish energy statistics. General emission factors for various fuels, plants and sectors have been determined. Some large plants, such as power plants, are registered individually as large point sources and plant-specific emission data are used.

Large point sources

Large emission sources such as power plants, industrial plants and refineries are included as large point sources in the Danish emission database. Each point source may consist of more than one part, e.g. a power plant with several units. By registering the plants as point sources in the database, it is possible to use plant-specific emission factors.

In the inventory for the year 2014, 76 stationary combustion plants are specified as large point sources. Plant specific emission data are available from 74 of the plants. The point sources include:

- Power plants and decentralised CHP plants.
- Waste incineration plants.
- Large industrial combustion plants.
- Petroleum refining plants.

The criteria for selection of point sources consist of the following:

- All centralized power plants, including smaller units.
- All units with a capacity of above 25 MW_e.
- All district heating plants with an installed effect of 50 MW_{th} or above and significant fuel consumption.
- All waste incineration plants obligated to report environmental data annually according to Danish law (DEPA, 2010b).
- Industrial plants,
 - With an installed effect of 50 $\ensuremath{\text{MW}_{\text{th}}}$ or above and significant fuel consumption.
 - With a significant process related emission.

The fuel consumption of stationary combustion plants registered as large point sources in the 2014 inventory was 230 PJ. This corresponds to 57 % of the overall fuel consumption for stationary combustion.

A list of the large point sources for 2014 is provided in Annex 3A-6. The number of large point sources registered in the databases increased from 1990 to 2014. Aggregated fuel consumption rates for the large point sources are also shown in Annex 3A-6.

The emissions from a point source are based either on plant specific emission data or, if plant specific data are not available, on fuel consumption data and the general Danish emission factors. Annex 3A-6 shows which of the emission data for large point sources are plant-specific and the corresponding share of the emission from stationary combustion.

The emission shares from point sources with plant specific data are shown in Table 3.2.15.

Table 3.2.15	Emission snare, plant specific dat
Pollutant	Share from plant specific data, %
SO ₂	48
NO _x	44
NMVOC	0.06
CO	3
NH_3	0.5
TSP	3.5
PM10	3.1
PM _{2.5}	2.4
BC	0.5
As	24
Cd	1.7
Cr	6
Cu	10
Hg	61
Ni	5
Pb	5
Se	65
Zn	1.4
PCDD/F	4.2

 Table 3.2.15
 Emission share, plant specific data.

 SO_2 and NO_x emissions from large point sources are often plant-specific based on continuous emission measurements. Emissions of CO, NMVOC, PM, heavy metals and PCDD/F are also plant-specific for some plants. Plant-specific emission data are obtained from:

- Annual environmental reports / environmental reporting available on the Danish EPA home page⁹ (PRTR data), DEPA (2015).
- Annual plant-specific reporting of SO_2 and NO_x from power plants $>25 MW_e$ prepared for the Danish Energy Agency (DEA) and Energinet.dk.
- Emission data reported by DONG Energy and Vattenfall, the two major power plant operators.
- Emission data reported from industrial plants.

Annual environmental reports for the plants include a considerable number of emission data sets. Emission data from annual environmental reports are, in general, based on emission measurements, but some emissions have potentially been calculated from general emission factors.

If plant-specific emission factors are not available, general area source emission factors are used.

Area sources

Fuels not combusted in large point sources are included as source category specific area sources in the emission database. Plants such as residential boilers, small district heating plants, small CHP plants and some industrial boilers are defined as area sources. Emissions from area sources are based on fuel consumption data and emission factors. Further information on emission factors is provided below.

Activity rates, fuel consumption

The fuel consumption rates are based on the official Danish energy statistics prepared by DEA. DCE aggregates fuel consumption rates to SNAP categories. Some fuel types in the official Danish energy statistics are added to obtain a less detailed fuel aggregation level cf. Annex 3A-3. The calorific values on which the energy statistics are based are also enclosed in Annex 3A-3. The calorific values shown in the annex are default values but plant specific reporting to the energy statistics is based on plant specific calorific values if data are available. The correspondence list between the energy statistics and SNAP categories is enclosed in Annex 3A-9.

The fuel consumption of the NFR category *Manufacturing industries and construction* (corresponding to SNAP category 03) is disaggregated into industrial subsectors based on the DEA data set aggregated for the Eurostat reporting (DEA, 2015c).

Both traded and non-traded fuels are included in the Danish energy statistics. Thus, for example, estimation of the annual consumption of non-traded wood is included.

Petroleum coke purchased abroad and combusted in Danish residential plants (border trade of 628 TJ in 2014) is not included in the Danish inventory. This is in agreement with the IPCC Guidelines (1996).

The fuel consumption data for large point sources refer to the EU Emission Trading Scheme (EU ETS) data for plants for which the Danish CO_2 emission inventory also refer to EU ETS.

For all other large point sources, the fuel consumption refers to a DEA database (DEA, 2015b). The DEA compiles a database for the fuel consumption of each district heating and power-producing plant, based on data reported by plant operators.

The fuel consumption of area sources is calculated as total fuel consumption minus fuel consumption of large point sources.

The Danish national energy statistics includes three fuels used for nonenergy purposes, bitumen, white spirit and lubricants. The total consumption for non-energy purposes is relatively low, e.g. 10.5 PJ in 2014. The use of fuels for non-energy purposes is included in the inventory in sector 2D Nonenergy products from fuels and solvent use, see Chapter 4.5.

In Denmark, all waste incineration is utilised for heat and power production. Thus, incineration of waste is included as stationary combustion in the source category *Energy*.

Fuel consumption data are presented in Chapter 3.2.2.

Town gas

Town gas has been included in the fuel category natural gas. The consumption of town gas in Denmark is very low, e.g. 0.7 PJ in 2014. In 1990, the town gas consumption was 1.6 PJ and the consumption has been steadily decreasing throughout the time series.

In Denmark, town gas is produced based on natural gas. The use of coal for town gas production ceased in the early 1980s.

An indicative composition of town gas according to the largest supplier of town gas in Denmark is shown in Table 3.2.16 (KE, 2015).

	empeenten er term gat
Component	Town gas, % (mol.
Methane	43.9
Ethane	2.9
Propane	1.1
Butane	0.5
Carbon dioxide	0.4
Nitrogen	40.5
Oxygen	10.7

Table 3.2.16 Composition of town gas currently used (KE, 2015).

Biogas has been added to the town gas grid since 2014. This biogas distributed in the town gas grid is treated as a separate fuel in the emission inventory and thus not included in the data for town gas in this report and not included in the town gas composition shown above.

In earlier years, the composition of town gas was somewhat different. Table 3.2.17 is constructed with the input from Københavns Energi (KE) (Copenhagen Energy) and Danish Gas Technology Centre (DGC), (Jeppesen, 2007; Kristensen, 2007). The data refer to three measurements performed several years apart; the first in 2000 and the latest in 2005.

Table 3.2.17 Composition of town gas, information from the period 2000-2005.

Component	TOWITYAS, 70
	(mol.)
Methane	22.3-27.8
Ethane	1.2-1.8
Propane	0.5-0.9
Butane	0.13-0.2
Higher hydrocarbons	0-0.6
Carbon dioxide	8-11.6
Nitrogen	15.6-20.9
Oxygen	2.3-3.2
Hydrogen	35.4-40.5
Carbon monoxide	2.6-2.8

Due to the scarce data available and the very low consumption of town gas compared to consumption of natural gas, the methodology will be applied unchanged in future inventories.

Upgraded biogas distributed in the natural gas grid and the town gas grid

Biogas upgraded for distribution in the natural gas grid is included as a separate fuel¹⁰ in the emission inventory. The Danish Energy Agency has reported data for fuel consumption rates to DCE. The upgraded biogas will be implemented as a new fuel category in the next Danish energy statistics.

¹⁰ BIONATGAS in tables and figures in this report.

The Danish Energy Agency has also reported the consumption of biogas distributed in the town gas grid. This fuel consumption has been included in the fuel category biogas in this emission inventory.

Emission factors

For each fuel and SNAP category (sector and e.g. type of plant), a set of general area source emission factors has been determined. The emission factors are either nationally referenced or based on the international guidebooks: EMEP/EEA Guidebook (EEA, 2013)¹¹ and IPCC Guidelines (IPCC, 2006).

A complete list of emission factors including time series and references is provided in Annex 3A-4.

SO₂ and NO_x emission factors

Emission factors for SO_2 and NO_x are listed in Annex 3A-4. The appendix includes references and time series. Further details about the references, additional references, assumptions and discussions are included in Nielsen et al. (2014). An extract from this report have been enclosed in Annex 3A-12.

The emission factors refer to:

- The EMEP/EEA Guidebook: EEA (2013) and former editions.
- The IPCC Guidelines (IPCC, 2006).
- Danish legislation:
- Danish research reports including:
 - Two emission measurement programs for decentralised CHP plants (Nielsen et al. 2010; Nielsen & Illerup, 2003).
 - Research and emission measurements programs for biomass fuels
 - Research and environmental data from the gas sector
- Aggregated emission factors for residential wood combustion based on technology distribution (DEPA, 2013) and technology specific emission factors (EEA, 2013; DEPA, 2010a).
- Calculations based on plant-specific emissions from a considerable number of power plants.
- Calculations based on plant-specific emission data from a considerable number of waste incineration plants. These data refer to annual environmental reports published by plant operators.
- Sulphur content data from oil companies and the Danish gas transmission company, Energinet.dk.
- Additional personal communication.

Emission factor time series have been estimated for a considerable number of the emission factors. These are provided in Annex 3A-4.

NMVOC emission factors

Emission factors for NMVOC are listed in Annex 3A-4. The annex includes references and time series. The emission factors for NMVOC refer to:

- An emission measurement program for decentralised CHP plants (Nielsen et al., 2010a).
- The EMEP/EEA Guidebook (EEA, 2013) and former editions.

¹¹ Including former editions of the EMEP/EEA Guidebook.

- Aggregated emission factor based on the technology distribution for residential wood combustion and guidebook (EEA, 2013) emission factors. Technology distribution based on DEPA (2013).
- DGC Danish Gas Technology Centre 2001, Naturgas Energi og miljø (DGC, 2001).
- Gruijthuijsen & Jensen (2000). Energi- og miljøoversigt, Danish Gas Technology Centre, 2000 (In Danish).

CO emission factors

Emission factors for CO are listed in Annex 3A-4. The annex includes references and time series. The emission factors for CO refer to:

- The EMEP/EEA Guidebook (EEA, 2013) and the former editions.
- IPCC Guidelines (IPCC, 2006)
- An emission measurement program for decentralised CHP plants (Nielsen et al., 2010a).
- Danish legislation (DEPA, 2001)
- Aggregated emission factor based on the technology distribution for residential wood combustion and guidebook (EEA, 2013) emission factors. Technology distribution based on DEPA (2013).
- DCE estimate based on annual environmental reports for Danish waste incineration plants without power production, year 2000.
- Nikolaisen et al. (1998)
- Jensen & Nielsen (1990)
- Bjerrum (2002)
- Sander (2002)
- Gruijthuijsen & Jensen (2000)

NH₃ emission factors

Emission factors have been included for residential wood combustion, residential straw combustion, waste incineration in public power production and residential combustion of coal, BKB and coke oven coke. The emission factor for waste incineration plants refers to a Danish emission measurement programme (Nielsen et al., 2010a) and all other emission factors refer to the EMEP/EEA Guidebook (EEA, 2009). Time series have been estimated for residential wood combustion.

Particulate matter (PM) emission factors

Emission factors for PM and references for the emission factors are listed in Annex 3A-4. The emission factors are based on:

• The TNO/CEPMEIP emission factor database (CEPMEIP, 2001).

In addition, a considerable number of country-specific factors referring to:

- Danish legislation:
 - DEPA (2001), The Danish Environmental Protection Agency, Luftvejledningen (legislation from Danish Environmental Protection Agency).
 - DEPA (1990), The Danish Environmental Protection Agency, Bekendtgørelse 698 (legislation from Danish Environmental Protection Agency).
- Calculations based on plant-specific emission data from a considerable number of waste incineration plants.

- Aggregated emission factors for residential wood combustion based on technology distribution (DEPA, 2013) and technology specific emission factors (EEA, 2013; DEPA, 2010a).
- Two emission measurement programs for decentralised CHP plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003).
- An emission measurement program for large power plants (Livbjerg et al., 2001).
- Research leading to the first Danish PM emission inventory for stationary combustion (Nielsen et al., 2003)
- Additional personal communication concerning straw combustion in residential plants.

Emission factor time series have been estimated for residential wood combustion and waste incineration. All other emission factors have been considered constant in 2000-2014.

Black carbon (BC) emission factors

Emission factors for BC all refer to EEA (2013). All emission factors are expressed as percentage of PM_{2.5}. The applied emission factors and references are shown in Annex 3A-4.

Time series have been estimated for residential wood combustion and for waste incineration. The BC fraction of $PM_{2.5}$ is considered constant for each fuel/technology.

Heavy metals emission factors

Emission factors for 2014 for heavy metals (HM) are shown in Annex 3A-4. The annex includes references and time series. The emission factors refer to:

- Two emission measurement programs carried out on Danish decentralised CHP plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003).
- Implied Emission Factors for power plants based on plant specific data reported by the power plant owners.
- Research concerning heavy metal emission factors representative for Denmark (Illerup et al., 1999).
- A CONCAWE study (Denier van der Gon & Kuenen, 2010)
- Data for Danish natural gas (Gruijthuijsen, 2001; Energinet.dk, 2012)
- Emission factors without national reference all refer to EEA (2009).

Time series have been estimated for coal and for waste incineration. For all other sources, the same emission factors have been applied for 1990-2014.

The heavy metal emission inventory has been documented in detail in Nielsen et al. (2013c).

PAH emission factors

Emission factors for PAH are shown in Annex 3A-4. The appendix includes references. The PAH emission factors refer to:

- Research carried out by TNO (Berdowski et al., 1995).
- Research carried out by Statistics Norway (Finstad et al., 2001).

- An emission measurement program performed on biomass fuelled plants. The project was carried out for the Danish Environmental Protection Agency (Jensen & Nielsen, 1996).
- Two emission measurement programs carried out on Danish decentralised CHP plants (Nielsen et al., 2010a; Nielsen & Illerup, 2003).
- Additional information from the gas sector (Jensen, 2001).

For residential wood combustion, country specific emission factors have been aggregated based on technology distribution in the sector (DEPA, 2013) and technology specific emission factors (EEA, 2013; DEPA 2010a).

Emission factor time series have been estimated for residential wood combustion, natural gas fuelled engines, biogas fuelled engines and waste incineration plants. All other emission factors have been considered constant from 1990 to 2014. In general, emission factors for PAH are uncertain.

PCDD/F emission factors

Emission factors 2014 for PCDD/F are shown in Annex 3A-4.

The emission factor for residential wood combustion refers to technology specific emission factors (EEA 2013; DEPA 2010a) and to updated technology distribution data (DEPA, 2013).

The emission factors for decentralised CHP plants¹² refer to an emission measurement program for these plants (Nielsen et al. 2010a).

All other emission factors refer to research regarding PCDD/F emission carried out by NERI (now DCE) to prepare a new PCDD/F emission inventory (Henriksen et al., 2006).

Time series have been estimated for residential wood combustion and for incineration of waste. For all other sources, the same emission factors have been applied for 1990-2014.

HCB emission factors

The HCB emission inventory has been documented in Nielsen et al. (2014).

Table 3.2.18 shows the emission factors and references for the Danish emission factors.

¹² Natural gas fueled engines, biogas fueled engines, gas oil fueled engines, engines fueled by biomass producer gas, CHP plants combusting straw or wood and waste incineration plants.

Fuel	NFR (SNAP)	Emission factor,	Reference
	. ,	ng/GJ	
Coal	1A1, 1A2	6,700	Grochowalski & Konieczyński (2008); EEA (2013)
Coal	1A4b	1,200,000	Syc et al. (2011)
Coal	1A4a and 1A4c	23,000	Syc et al. (2011)
Other solic fuels	d 1A1, 1A2	6,700	Assumed equal to coal.
Other solic fuels	d 1A4	1,200,000	Assumed equal to coal.
Liquid fuels ¹⁾	1A1, 1A2, 1A4	220	Nielsen et al. (2010)
Gaseous fuels	1A1, 1A2, 1A4	-	Negligible
Waste	1A1, 1A2, 1A4	4300	Nielsen et al. (2010). A time series have been estimated. The emission factor for 1990 (190,000 ng/GJ) refer to Pacyna et al. (2003).
Wood	1A1, 1A2	5,000	EEA (2013)
Wood	1A4	5,000	EEA (2013)
Straw	1A1, 1A2	113	Nielsen et al. (2010)
Straw	1A4		EEA (2013)
Biogas	1A1, 1A2, 1A4	190	Nielsen et al. (2010)
Producer gas	1A1, 1A2, 1A4	800	Nielsen et al. (2010)

1) The emission factor for LPG and refinery gas is negligible.

For coal, the emission factor from Grochowalski & Konieczyński (2008) is applied for energy industries and for industrial plants. This emission factor is also applied in the EEA Guidebook (EEA, 2013).

For residential plants, the emission factor 1,200,000 ng/GJ is applied referring to Syc et al. (2011). For commercial/institutional plants and for plants in agriculture / forestry the lower end of the value in Syc et al. (2011) (23,000 ng/GJ) is applied.

The emission factor for gas oil fuelled CHP engines (220 ng/GJ) referring to Nielsen et al. (2010) is applied for all liquid fuels except for LPG and refinery gas.

For gaseous fuels, LPG and refinery gas no data are available and the emission is negligible.

For waste combustion, emission data from Danish plants are available and these data are applied (Nielsen et al., 2010). The emission factor 4,300 ng/GJ is applied for 2005 onwards. The HCB emission factor for 1990 refers to Pacyna et al. (2003). The emission of HCB is related to emission of PCDD/F and the decline rate between 1990 and 2005 is based on the decline rate for PCDD/F.

Recent emission measurements from Polish industrial waste incineration plants confirms the emission factor level for waste incineration considering that the PCDD/F emission level is 15 times the PCDD/F emission level for Danish plants.

For wood combustion, the emission factors from EEA (2013) are applied for both energy industries, industrial plants and for non-industrial plants. For residential wood combustion, it would be relevant to estimate a time series. However, the currently available data are considered insufficient for this estimate.

The Cl content in straw is higher than in wood (Villeneuve et al., 2013) and thus the emission from straw combustion might potentially be higher. However, the emission factor for CHP plants combusting straw reported in Nielsen et al. (2010) is lower than the emission factor applied for wood.

The emission factor for energy industries and industrial combustion refer to Nielsen et al. (2010). For non-industrial plants, the EEA (2013) emission factor is applied.

The emission factors for biogas and producer gas both refer to Nielsen et al (2010).

PCB emission factors

The PCB emission inventory has been documented in Nielsen et al. (2014).

PCB emission is strongly related to the Cl content of the fuel (Syc et al., 2011) and to the emission level for PCDD/F (Hedman et al., 2006; Syc et al., 2011; Pandelova et al., 2009).

The Cl content of straw, bark and manure is higher than for wood (Villeneuve et al., 2012). Villeneuve et al. (2012) states the Cl contents 50-60 mg/kg wood, 100-370 mg/kg bark, 1000-7000 mg/kg straw.

Different references for PCB emissions are not directly comparable because some PCB emission data are reported for individual PCB congeners, some as a sum of a specified list of PCB congeners and some PCB emission data are reported as toxic equivalence (teq) based on toxicity equivalence factors (TEF) for 12 dioxin-like PCB congeners. The emission measurements reported by Thistlethwaite (2001a and 2001b) show that the emission of nondioxin-like PCBs is high compared to the emission of dioxin-like PCBs.

Furthermore, teq values based on TEF are reported as WHO_{2005} -teq or WHO_{1998} -teq. This difference is however typically less than $50\%^{13}$.

Table 3.2.19 shows the emission factors that have been selected for the Danish PCB emission inventory and reference for each emission factor. All emission factors are dioxin-like PCBs (but not teq values). PCB emission factors have been added for all fuels except LPG, refinery gas and natural gas. The emission from these three fuels is considered negligible.

¹³ Data have been compared for a few datasets in which each dioxin-like PCB congener was specified

Table 3.2.19 Emis	sion factors for	∑dl-PCB, stationa	ry combustion, 2	2014
Fuel	NFR (SNAP)	Emission factor,	Emission factor,	Reference
		∑ dl-PCB,	PCB,	
		ng/GJ	ng WHO ₁₉₉₈ -	
			teq/GJ	
Coal	1A1	839	3.16	Grochowalski & Konieczyński (2008)
Coal	1A2	5,700	53	Thistlethwaite (2001a)
Coal	1A4	7,403		Syc et al. (2011)
Other solid fuels	1A1	839	3.16	Assumed equal to coal.
Other solid fuels	1A2	5,700	53	Assumed equal to coal.
Other solid fuels	1A4	7,403	66	Assumed equal to coal.
Residual oil	1A1, 1A2, 1A4	839	3.2	The teq value refers to Dyke et al. (2003).
				The TEQ value is equal to the emission factor for coal
				combustion in power plants and the sum of dioxin-like PCB
				congeners has been assumed equal to the corresponding
				factor for coal.
Gas oil	1A1, 1A2, 1A4			Nielsen et al. (2010)
Other liquid fuels ¹	⁾ 1A1, 1A2, 1A4	93	0.11	Assumed equal to gas oil.
Gaseous fuels	1A1, 1A2, 1A4	-		Negligible
Waste	1A1, 1A2, 1A4	109		Nielsen et al. (2010). A time series have been estimated.
		(time series)	(time series)	The emission factor for 1990 (46,000 ng/GJ or 117 ng
				WHO1998teq/GJ) have been estimated based on the as-
				sumption that the PCB emission factor time series follow
				the PCDD/F time series.
Wood	1A1, 1A2,	2,800	21	Thistlethwaite (2001a)
	1A4a/c			
Wood	1A4b	2,752	20.6)	Hedman et al. (2006). A time series have been estimated
		(time series)		based on time series for technologies applied in Denmark.
Straw	1A1, 1A2	3,110	31.2	Assumed equal to residential plants.
Straw	1A4	3,110	31.2	Syc et al. (2011)
Biogas	1A1, 1A2, 1A4	90	0.13	Nielsen et al. (2010)
Producer gas	1A1, 1A2, 1A4	144	0.17	Nielsen et al. (2010)

1) Except LPG and refinery gas.

> The emission factor for waste incineration refers to recent Danish field measurements. Historical data are not available, but a time series have been estimated based on the assumption that the dl-PCB emission factor follows the PCDD/-F emission factor. The estimated emission factor for 1990 is 45,671 ng/GJ or 117 ng WHO-teq/GJ. This emission level is confirmed by other references (Kakareka & Kukharchyk, 2005; Andrijewski et al., 2004). The emission factor time series is shown in Table 3.2.20.

> For residential wood combustion, technology specific emission factors in toxicological equivalence are available from Hedman et al. (2006). However, sums of dioxin-like PCBs are not included in the reference. The emission factors for dioxin-like PCBs have been estimated based on the data for toxicological equivalence and the sum of dioxin-like PCBs in Thistlethwaite (2001a). Thus, the teq factors referring to Hedman (2006) have been multiplied by 2800/21. This assumption is highly uncertain, but the resulting emission factors seem to be in agreement with other references for residential wood combustion. A technology distribution time series for residential wood combustion in Denmark is available and have been applied for estimating the time series for the aggregated emission factor shown in Table 3.2.20.

> Emission factor time series for waste incineration and for residential wood combustion are shown in Table 3.2.20.

Year		Residential wood combustion
	∑dl-PCB,	∑dl-PCB,
	ng/GJ	ng/GJ
1990	45671	6648
1991	38063	6622
1992	30433	6588
1993	22825	6559
1994	19773	6510
1995	16721	6445
1996	13690	6327
1997	10638	6231
1998	7586	6101
1999	5515	5708
2000	3423	5390
2001	3423	4834
2002	3423	4609
2003	3423	4548
2004	1766	4477
2005	109	4267
2006	109	4028
2007	109	4050
2008	109	3801
2009	109	3496
2010	109	3309
2011	109	3138
2012	109	2974
2013	109	2678
2014	109	2313

Table 3.2.20 Emission factor time series for waste incineration and for residential wood combustion

Emission factors for residential wood combustion

For the pollutants NO_x , NMVOC, CO, NH_3 , TSP, PM_{10} , $PM_{2.5}$, BC, PCDD/F, PCB and PAH emission factors have been based on fuel consumption data and emission factors for 13 different technologies. Technology categories, emission factors and implied emission factors for 2014 are shown in Table 3.2.21. For other pollutants, time series have not been estimated and the emission factors are shown in Annex 3A-4.

References and assumptions for each of the emission factors shown in Table 3.2.21 are included in Annex 3A-4.

Table 3.2.21 Technology specific emission facto	rs for re	esidential wo	od combu	istion.										
Technology	NO _x ,	NMVOC,	CO,	NH ₃ ,	TSP,	ΡM ₁₀ ,	PM _{2.5} ,	BC,	PCDD/F,	dl-PCB,	Benzo	Benzo	Benzo	Indeno
	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	g/GJ	ng/GJ	ng/GJ	(a)	(b)	(k)	(1.2.3-
											pyrene,	fluoran-	fluoran-	c,d)
											mg/GJ	thene,	thene,	pyrene,
												mg/GJ	mg/GJ	mg/GJ
Old stove	50	1200	8000	70	1000	950	930	93	800	7049	121	111	42	71
New stove	50	600	4000	70	800	760	740	74	800	7049	121	111	42	71
Stove according to resent Danish legislation														
(2008-2015)	80	350	4000	37	556	528	514	82	250	931	61	56	21	36
Modern stove (2015-2017)	80	350	4000	37	278	264	257	41	250	931	61	56	21	36
Modern stove (2017-)	80	350	4000	37	222	211	205	33	250	931	61	56	21	36
Eco labelled stove / new advanced stove (-2015)	95	175	1117	37	222	211	206	58	100	466	10	16	5	4
Eco labelled stove / new advanced stove (-2015)	95	175	1117	37	167	159	155	43	100	466	10	16	5	4
Other stoves	50	600	4000	70	800	760	740	74	800	7049	121	111	42	71
Old boilers with hot water storage	80	350	4000	74	1000	950	900	144	550	7049	121	111	42	71
Old boilers without hot water storage	80	350	4000	74	2000	1900	1800	288	550	7049	121	111	42	71
New boilers with hot water storage	95	175	1117	37	222	211	206	58	100	466	10	16	5	4
New boilers without hot water storage	95	350	2234	37	444	422	413	116	200	931	20	32	10	8
Pellet boilers	80	10	300	12	31	29	29	4	100	466	10	16	5	4
IEF residential wood combustion, 2014	76	284	2113	36	362	344	335	49	302	2313	44308	45436	16452	24688

Implied emission factors

A considerable part of the emission data for waste incineration plants and large power plants are plant-specific. Thus, the area source emission factors do not necessarily represent average values for these plant categories. To attain a set of emission factors that expresses the average emission for power plants combusting coal and for waste incineration plants, implied emission factors have been calculated for these two plant categories. The implied emission factors are presented in Annex 3A-5. The implied emission factors are calculated as total emission divided by total fuel consumption.

3.2.6 Uncertainty

According to the EEA Guidelines (EEA, 2013) uncertainty estimates should be estimated

Uncertainty estimates include uncertainty with regard to the total emission inventory as well as uncertainty with regard to trends.

Methodology

The Danish uncertainty estimates are based on the simple Tier 1 approach.

The uncertainty estimates are based on emission data for the base year and year 2014 as well as on uncertainties for fuel consumption and emission factors for each of the NFR source categories. Residential plants have however been split in two parts: Residential wood combustion and other residential plants.

For particulate matter and BC, year 2000 is considered to be the base year, but for all other pollutants, the base year is 1990.

The uncertainty for fuel consumption in stationary combustion plants is based on EEA (2013). The uncertainties are shown in Table 3.2.22.

The applied uncertainties for activity rates and emission factors are based on EEA (2013). The uncertainty for emission factors that are based on recent Danish emission measurements are however estimated lower than suggested in the Guidebook. The applied uncertainties for emission factors are listed in Table 3.2.23.

Table 3.2.22	Uncertainty	rates for	fuel consum	otion, %.
Castar				0/

Sector	%
1A1a Public electricity and heat production	1
1A1b Petroleum refining	1
1A1c_ii Oil and gas extraction	1
1A2 Manufacturing industries and construction	2
1A4a_i Commercial / institutional	3
1A4b_i Residential (excluding wood)	3
1A4b_i Residential wood	20
1A4c_i Agriculture / forestry / fishing	3

Table 3.2.23 Uncertainty rates for emission factors, %.

Sector	SO_2	NO _x N	MVOC	СО	PM	HM	PAH	HCB	Dioxin	NH_3	PCB	BC
1A1a Public electricity and heat production	10	15	50	20	20	50	100	1000	200	1000	1000	1000
1A1b Petroleum refining	10	20	50	20	50	100	100	1000	1000	1000	1000	1000
1A1c_ii Oil and gas extraction	10	20	50	20	50	100	100	1000	1000	1000	1000	1000
1A2 Manufacturing in- dustries and construction	10	20	50	20	30	100	100	1000	1000	1000	1000	1000
1A4a_i Commercial / institutional	20	50	50	50	50	300	1000	1000	1000	1000	1000	1000
1A4b_i Residential (excluding wood)	20	30	50	50	50	300	1000	1000	1000	1000	1000	1000
1A4b_i Residential wood	20	50	100	100	200	1000	1000	500	600	100	1000	1000
1A4c_i Agriculture / forestry / fishing	20	50	50	50	50	300	1000	1000	1000	1000	1000	1000

Results

The uncertainty estimates for stationary combustion emission inventories are shown in Table 3.2.24. Detailed calculation sheets are provided in Annex 3A-7.

The total emission uncertainty is 6.1 % for SO2 and 10 % for NOx.

Table 3.2.24 Uncertainty	estimates, tier 1	approach, 201	14.
Pollutant	Uncertainty	Trend	Uncertainty
	Total emission,	1990-2014,	Trend, %-age
	%	%	points
SO ₂	±6.1	-95	±0.3
NO _x	±10	-77	±2
NMVOC	±67	-17	±23
CO	±66	-32	±24
NH ₃	±101	+76	±69
TSP ¹⁾	±164	-10	±23
$PM_{10}^{(1)}$	±167	-9	±23
PM _{2.5} ¹⁾	±170	-8	±23
BC ¹⁾	±845	+50	±77
As	±49	-80	±7
Cd	±497	-51	±210
Cr	±282	-82	±50
Cu	±338	-85	±49
Hg	±41	-90	±3
Ni	±72	-90	±4
Pb	±166	-87	±21
Se	±41	-78	±3
Zn	±175	-36	±94
HCB	±802	-77	±38
PCDD/F	±422	-71	±99
Benzo(b)fluoranthene	±737	+34	±213
Benzo(k)fluoranthene	±763	+38	±154
Benzo(a)pyrene	±791	+22	±172
Indeno(1,2,3-c,d)pyrene	±731	-4	±246
PCB	±677	-66	±58

¹⁾ The base year for PM and BC is year 2000.

3.2.7 Source specific QA/QC and verification

An updated quality manual for the Danish emission inventories was published in 2013 (Nielsen et al., 2013). The quality manual describes the concepts of quality work and definitions of sufficient quality, critical control points and a list of Point for Measuring (PM). Details about the source specific QA/QC is included in Annex 3A-11. Documentation concerning verification of the Danish emission inventories was published by Fauser et al. (2013).

A reviewed sector report for stationary combustion was published in 2014 (Nielsen et al., 2014b). Former editions of the sector report for stationary combustion have been reviewed by external experts in 2004, 2006 and 2009.

3.2.8 Source specific improvements and recalculations

For stationary combustion plants, the emission estimates for the years 1990-2013 have been updated according to the latest energy statistics published by the Danish Energy Agency. The update included both end use and transformation sectors as well as a source category update. The changes in the energy statistics are largest for the years 2011, 2012 and 2013.

The decreased fuel consumption and emissions from 1A1b Petroleum refining is a result of a change of methodology applied for refinery gas. Until last year the total consumption of refinery gas was based on the Danish energy statistics. However, the EU ETS data for fuel consumption reported by the two Danish refineries were not always in agreement with the energy statistics¹⁴. Refinery gas is only applied in the two refineries. The total consumption of refinery gas is now based on the EU ETS data.

The increased emission from 1A1c Oil and gas extraction is also a result of a change of methodology. Until last year the total fuel consumption was based on the Danish energy statistics. However, the consumption of natural gas reported in the EU ETS data were not in agreement with the energy statistics. This is due to the fact that the energy statistics is based on the default NCV for natural gas applied in Denmark whereas the EU ETS data are based on fuel analysis of the natural gas applied offshore. The total consumption of natural gas in 1A1c Oil and gas extraction is now based on the EU ETS data.

Recalculations for stationary combustion as a whole are shown in Table 3.2.25.

¹⁴ Due to the use of default values for NCV in the energy statistics. The EU ETS data are based on fuel analysis.

Table 3.2.25 Recalcula	1990	1995	2000	2005	2006	2007	2008	2009	2010	2011	2012	2013
						Perce	nt					
SO ₂	100.0	100.0	99.9	100.0	100.0	99.9	99.9	100.5	100.0	99.9	96.0	99.4
NO _x	100.0	100.0	100.0	99.8	99.9	99.9	100.3	100.2	100.6	98.9	96.8	95.3
NMVOC	100.3	100.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.6	100.0
CO	100.3	100.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.3	99.6
TSP			99.8	99.1	98.9	98.9	98.8	98.8	98.8	98.7	98.4	98.6
PM ₁₀			99.8	99.1	98.9	98.8	98.8	98.8	98.8	98.7	98.5	98.7
PM _{2.5}			99.8	98.9	98.7	98.6	98.5	98.5	98.5	98.4	98.2	98.4
BC			NE									
NH ₃	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.9
As	100.0	100.0	100.0	100.0	100.0	100.0	99.6	99.6	100.1	99.1	97.3	98.0
Cd	100.0	100.0	100.0	100.0	100.0	100.0	99.8	99.9	100.0	99.7	99.5	102.3
Cr	100.0	100.0	100.0	100.0	100.0	100.0	99.9	99.9	100.0	99.8	98.8	101.4
Cu	100.0	100.0	100.0	100.0	100.0	100.0	99.7	99.8	100.1	99.5	97.2	99.3
Hg	100.0	100.0	100.0	100.0	100.0	100.0	99.8	99.8	100.2	99.5	97.8	98.8
Ni	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	99.5	99.6
Pb	100.0	100.0	100.0	100.0	100.0	100.0	99.9	99.9	100.1	99.8	96.2	100.5
Se	100.0	100.0	100.0	100.0	100.0	100.0	99.6	99.7	100.0	99.1	97.2	99.4
Zn	100.0	100.1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.4	102.9
HCB	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.1	100.0	98.5	99.2
PCDD/F	100.0	100.1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.1	100.9
Benzo(a)pyrene	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.7	103.0
Benzo(b)fluoranthene	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.5	101.6
Benzo(k)fluoranthene	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.6	101.0
Indeno(123cd)pyrene	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.6	101.3
PCB	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.6	103.4

Table 3.2.25 Recalculations for stationary combustion, emissions reported in 2016 compared to emissions reported in 2015.

3.2.9 Source specific planned improvements

The reporting of, and references for, the applied emission factors will be further developed in future inventories.

3.2.10 References for Chapter 3.2

Berdowski, J.J.M., Veldt, C., Baas, J., Bloos, J.P.J. & Klein, A.E. 1995: Technical Paper to the OSPARCOM-HELCOM-UNECE Emission Inventory of heavy Metals and Persistent Organic Pollutants, TNO-report, TNO-MEP – R 95/247.

CEPMEIP, 2001: The Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance. Online data available at: <u>http://www.air.sk/tno/cepmeip/</u> (2015-01-28).

Danish Energy Agency (DEA) 2015a: The Danish Energy Statistics, Available at: <u>http://www.ens.dk/info/tal-kort/statistik-nogletal/arlig-energistatistik</u> (2015-01-28).

Danish Energy Agency (DEA) 2015b: The Danish energy statistics, Energiproducenttællingen 2014. Unpublished.

Danish Energy Agency (DEA) 2015c: Energy statistics for industrial subsectors. Unpublished.

Danish Environmental Protection Agency (DEPA) 1990: Bekendtgørelse om begrænsning af emissioner af svovldioxid, kvælstofoxider og støv fra store fyringsanlæg, Bekendtgørelse 689 af 15/10/1990, (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=48656</u> (2015-01-28)

Danish Environmental Protection Agency (DEPA) 1998: Bekendtgørelse om begrænsning af svovlindholdet i visse flydende og faste brændstoffer, Bekendtgørelse 698 af 22/09/1998 (Danish legislation). Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=12076</u> (2015-01-28)

Danish Environmental Protection Agency (DEPA) 2001: Luftvejledningen, Begrænsning af luftforurening fra virksomheder, Vejledning fra Miljøstyrelsen nr. 2 2001 (Danish legislation). Available at:

https://www.retsinformation.dk/Forms/R0710.aspx?id=12728 (2015-01-28)

Danish Environmental Protection Agency (DEPA) 2005: Bekendtgørelse om begrænsning af emission af nitrogenoxider, uforbrændte carbonhydrider og carbonmonooxid mv. fra motorer og turbiner. Bekendtgørelse 621 af 23/06/2005. Danish legislation. Available at:

https://www.retsinformation.dk/Forms/R0710.aspx?id=12836 (2015-01-28).

Danish Environmental Protection Agency (DEPA) 2010a: Emissioner fra træfyrede brændeovne/kedler (Emissions from wood fired stoves/boilers). Danish Environmental Protection Agency, 2010. Available at: http://www2.mst.dk/udgiv/publikationer/2010/978-87-92617-85-9/pdf/978-87-92617-86-6.pdf (2015-01-28).

Danish Environmental Protection Agency (DEPA) 2010b: Bekendtgørelse om visse virksomheders afgivelse af miljøoplysninger. Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=128761</u> (2015-01-28).

Danish Environmental Protection Agency (DEPA) 2011: Bekendtgørelse om anlæg, der forbrænder affald. Bekendtgørelse 1356 af 21/12/2011. Danish legislation. Available at:

https://www.retsinformation.dk/Forms/R0710.aspx?id=139530 (2015-01-28).

Danish Environmental Protection Agency (DEPA), 2013. Forudsætninger for fremskrivning af emissioner fra brændeovne (In Danish). Hessberg & Justesen Miljøteknologi, J.nr. MST-5261-00007, Ref. stjus, den 5. november 2013 (Related to e-mail correspondance 2011-04-28 and 2013-11-05).

Danish Environmental Protection Agency (DEPA) 2015: Annual environmental reports / environmental reporting available on the Danish EPA home page at: <u>http://www3.mst.dk/Miljoeoplysninger/PrtrPublicering/Index</u> (2015-01-28).

Danish Gas Technology Centre (DGC) 2001: Naturgas – Energi og miljø (In Danish).

Danish Ministry of Taxation (DMT) 2008: Lov om afgift af kvælstofoxider. Lov nr 472 af 17/06/2008. Danish legislation. Available at:

https://www.retsinformation.dk/Forms/R0710.aspx?id=120340 (2015-01-28).

Denier van der Gon, H. & Kuenen, J. 2009: Improvements to metal emission estimates, 10th Joint TFEIP/EIONET meeting, 11-12 May 2009, Vienna, Austria.

Energinet.dk, 2012: Energinet.dk homepage. Available at: <u>http://energinet.dk/DA/GAS/Gasdata-og-kvalitet/Gaskvalitet/Sider/Vis-gaskvalitet.aspx?Visning=aarsgennemsnit</u> (2015-01-28).

European Environment Agency (EEA), 2013: EMEP/EEA air pollutant emission inventory guidebook 2013. Available at:

http://www.eea.europa.eu//publications/emep-eea-guidebook-2013 (2015-01-28)

European Environment Agency (EEA) 2009: EMEP/EEA air pollutant emission inventory guidebook – 2009. Available at:

http://www.eea.europa.eu//publications/emep-eea-emission-inventoryguidebook-2009 (2015-01-28). Fauser, P., Nielsen, M., Winther, M., Plejdrup, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Hoffmann, L., Thomsen, M., Hjelgaard, K. & Nielsen, O.-K. 2013. Verification of the Danish 1990, 2000 and 2010 emission inventory data. Aarhus University, DCE – Danish Centre for Environment and Energy, 85 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 79. Available at: <u>http://dce2.au.dk/pub/SR79.pdf</u> (2015-01-28).

Finstad, A., Haakonsen, G., Kvingedal, E. & Rypdal, K. 2001: Utslipp til luft av noen miljøgifter i Norge, Dokumentasjon av metode og resultater, Statistics Norway Report 2001/17 (In Norwegian). Available at: <u>http://www.ssb.no/a/publikasjoner/pdf/rapp_200117/rapp_200117.pdf</u>

Gruijthuijsen, L.v. & Jensen, J.K. 2000: Energi- og miljøoversigt, Danish Gas Technology Centre 2000 (In Danish). Available at:

http://www.dgc.dk/publikation/2000/energi-og-miljoeoversigt (2015-01-28).

Gruijthuijsen, L. v. 2001: Metaller i naturgas, Målerapport April 2001, Dansk Gasteknisk Center (in Danish). Available at:

<u>http://www.dgc.dk/sites/default/files/filer/publikationer/R0104_metalle</u> <u>r_naturgas.pdf</u> (2015-01-28).

Henriksen, T.C., Illerup, J.B. & Nielsen, O.-K. 2006: Dioxin Air Emission Inventory 1990-2004. National Environmental Research Institute, Denmark. 90 pp. – NERI Technical report no 602. Available at: http://www2.dmu.dk/Pub/FR602.pdf (2015-01-28).

Illerup, J.B., Geertinger, A., Hoffmann, L. & Christiansen, K. 1999: Emissionsfaktorer for tungmetaller 1990-1996. Danmarks Miljøundersøgelser. 66 s. – Faglig rapport fra DMU nr. 301. (In Danish) Available at: http://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/rapporter/fr301.pdf (2015-01-28).

IPCC, 1996: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual (Volume 3). Available at: <u>http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html</u> (2015-01-28).

Jensen, J. 2001: Danish Gas Technology Centre, Personal communication email 11-10-2001.

Jensen, L. & Nielsen, P.A., 1990: Emissioner fra halm- og flisfyr, dk-Teknik & Levnedsmiddelstyrelsen 1990 (In Danish).

Jensen, L. & Nielsen, P.B. 1996: Emissioner fra halm- og flisfyr, Arbejdsrapport fra Miljøstyrelsen nr. 5 1996, Bilagsrapport (In Danish).

Jeppesen, J.S. 2007: København energi (Copenhagen Energy), Jørgen Steen Jeppesen, personal communication.

Københavns Energi (KE) 2015: Københavns energi (Copenhagen Energy) fact sheet on town gas. Available at: http://www.ke.dk/portal/pls/portal/docs/346012.PDF (2015-01-27).

Kristensen, P.G. 2007: Danish Gas Technology Centre, Per Gravers Kristensen, personal communication.

Livbjerg, H. Thellefsen, M. Sander, B. Simonsen, P., Lund, C., Poulsen, K. & Fogh, C.L. 2001: Feltstudier af Forbrændingsaerosoler, EFP -98 Projekt, Aerosollaboratoriet DTU, FLS Miljø, Forskningscenter Risø, Elsam, Energi E2 (in Danish).

Nielsen, M. & Illerup, J.B., 2003: Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme. Eltra PSO projekt 3141. Kortlægning af emissioner fra decentrale kraftvarmeværker. Delrapport 6. Danmarks Miljøundersøgelser. 116 s. – Faglig rapport fra DMU nr. 442. (In Danish, with an English summary). Available at:

http://www2.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/ /FR442.pdf (2015-01-28).

Nielsen, M. Winther, M., Illerup, J.B. & Mikkelsen, M.H. 2003: Danish emission inventory for particulate matter (PM). National Environmental Research Institute, Denmark. 126 p. – Research Notes from NERI No. 189. Available at:

http://www2.dmu.dk/1_viden/2_Publikationer/3_arbrapporter/rapporter/ /AR189.pdf (2015-01-28).

Nielsen, M., Nielsen, O.-K., Plejdrup, M. & Hjelgaard, K. 2010: Danish Emission Inventories for Stationary Combustion Plants. Inventories until 2008. National Environmental Research Institute, Aarhus University, Denmark. 236 pp. – NERI Technical Report No. 795. Available at: http://www.dmu.dk/Pub/FR795.pdf (2015-01-28).

Nielsen, M., Nielsen, O.-K. & Plejdrup, M. 2014. Danish emission inventories for stationary combustion plants. Inventories until 2011. Aarhus University, DCE – Danish Centre for Environment and Energy, 188 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 102. Available at: <u>http://www.dce.au.dk/Pub/SR102.pdf</u> (2015-01-28).

Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. Available at: <u>http://www.dmu.dk/Pub/FR786.pdf</u> (2015-01-28).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Gyldenkærne, S., Thomsen, M., Fauser, P., Nielsen, M. Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L. & Bruun, H.G. 2013: Quality manual for the Danish greenhouse gas inventory. Version 2. Aarhus University, DCE – Danish Centre for Environment and Energy, 44 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 47. Available at: <u>http://www.dmu.dk/Pub/SR47.pdf</u> (2015-01-27).

Nielsen, M., Nielsen, O.-K. & Hoffmann, L. 2013. Improved inventory for heavy metal emissions from stationary combustion plants. 1990-2009. Aarhus University, DCE – Danish Centre for Environment and Energy, 111 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 68. Available at: <u>http://dce2.au.dk/pub/SR68.pdf</u> (2015-01-28).

Nikolaisen, L., Nielsen, C., Larsen, M.G., Nielsen, V. Zielke, U., Kristensen, J.K. & Holm-Christensen, B. 1998: Halm til energiformål, Teknik – Miljø – Økonomi, 2. udgave, 1998, Videncenter for halm og flisfyring (In Danish). Available at:

http://www.videncenter.dk/gule20halm20haefte/Gul_Dansk/halm-DK01.pdf

Petterson, E., Boman, C., Westerholm, R., Boström, D., Nordin, A. 2011: Stove Performance and Emission Characteristics in Residential Wood Log and Pellet Combustion, Part 2: Wood Stove. Energy Fuels 2011, 25, 315–323. Available at: <u>http://pubs.acs.org/doi/pdfplus/10.1021/ef1007787</u> (2015-01-28).

Plejdrup, M.S., Nielsen, O.-K. & Nielsen, M. 2009: Emission Inventory for Fugitive Emissions in Denmark. National Environmental Research Institute, Aarhus University, Denmark. 47 pp. – NERI Technical Report no. 739. Available at: <u>http://www.dmu.dk/pub/FR739.pdf</u> (2015-01-28).

Serup, H., Falster, H., Gamborg, C., Gundersen, P., Hansen, L. Heding, N., Jacobsen, H.H., Kofman, P., Nikolaisen, L. & Thomsen, I.M. 1999: Træ til energiformål, Teknik – Miljø – Økonomi, 2. udgave, 1999, Videncenter for halm og flisfyring (In Danish).

Sternhufvud, C., Karvosenoja, N., Illerup, J., Kindbom, K., Lükewille, A., Johansson, M. & Jensen, D. 2004: Particulate matter emissions and abatement options in residential wood burning in the Nordic countries.

Wit, J. d & Andersen, S. D. 2003: Emission fra større gasfyrede kedler, Dansk Gasteknisk Center, 2003. Available at: <u>http://www.dgc.dk/publikation/2003/emission-fra-stoerre-gasfyrede-kedler</u> (2015-01-28).

3.2.11 Additional references for Annex 3A:

Augustesen. J.N. 2003: Personal communication e-mail 11-08-2003 from Jane Nørgaard Augustesen. Statoil refinery to Per G. Kristensen, Danish Gas Technology Centre. The mail was forwarded 30-09-2003.

Christiansen (2003): Personal communication, Jørgen Christiansen, Energigruppen Jylland, 2003 Danish Energy Agency (DEA) 2012: The Danish Energy Statistics, 2012. Updated time series. Available at: <u>http://www.ens.dk/info/tal-kort/statistik-nogletal/arlig-energistatistik</u> (2015-01-28).

Danish Environmental Protection Agency (DEPA), 2001b: Bekendtgørelse om begrænsning af svovlindholdet i visse flydende og faste brændstoffer. Bekendtgørelse 532 af 14/12/2006. Danish legislation. Available at: <u>https://www.retsinformation.dk/Forms/R0710.aspx?id=12458</u> (2015-01-28).

Danish Environmental Protection Agency (DEPA) 2010c: Bekendtgørelse om svovlindholdet i faste og flydende brændstoffer. Bekendtgørelse 1098 af 19/09/2010. Danish legislation. Available at:

https://www.retsinformation.dk/forms/R0710.aspx?id=133318 (2015-01-28).

Energi- og Olieforum (EOF), 2013: Energi- og Olieforum. Available at: <u>http://www.eof.dk/Priser-og-Forbrug/Fuelolie.aspx (2013-08-08).</u>

Energinet.dk, 2013: Energinet.dk homepage. Available at: <u>http://energinet.dk/DA/GAS/Gasdata-og-kvalitet/Gaskvalitet/Sider/Vis-gaskvalitet.aspx?Visning=aarsgennemsnit</u> (2015-01-28).

Folkecenter for Vedvarende Energi. 2000: Notat vedrørende emissioner fra forbrændingsmotorer. planteolie sammenlignet med diesel. 28-03-2000. (In Danish) Available at:

http://www.folkecenter.dk/plant-oil/emission/emission_rapsolie.pdf (2013-08-08).

Hjort-Gregersen. K., 1999: Centralised Biogas Plants. Danish Institute of Agricultural and Fisheries Economics. 1999. Available at: <u>http://www.videncenter.dk/exportcat/biogas.pdf</u> (2015-02-03)

Miljø- og Planlægningsudvalg, 1998: J. nr. M 1034-0044. Grundnotat om forslag til Rådets direktiv om begrænsning af svovlindholdet i visse flydende brændstoffer om ændring af direktiv 93/12/EØF. KOM nr. 97/0105(SYN). Available at:

<u>http://webarkiv.ft.dk/?/Samling/19971/udvbilag/00353840.htm</u> (12-03-2013).

Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010a: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. Available at: http://www.dmu.dk/Pub/FR786.pdf (2013-02-07).

Shell 2013: Shell product sheets available at:

http://www.epc.shell.com/Docs/GPCDOC_X_cbe_26724_key_14000376663 3_201012210739.pdf (2013-03-15)

Tønder, Søren Hvid 2004: Shell refinery. Personal communication telephone, 2004.

3.3 Transport and other mobile sources (NFR sector 1A2, 1A3, 1A4 and 1A5)

The emission inventory basis for mobile sources is fuel consumption information from the Danish energy statistics. In addition, background data for road transport (fleet and mileage), air traffic (aircraft type, flight numbers, origin and destination airports), national sea transport (fuel surveys, ferry technical data, number of return trips, sailing time) and non-road machinery (engine no., engine size, load factor and annual working hours) are used to make the emission estimates sufficiently detailed. Emission data mainly comes from the EMEP/EEA Air Pollutant Emission Inventory Guidebook (EMEP/EEA, 2013). However, for railways, measurements specific to Denmark are used.

In the Danish emission database, all activity rates and emissions are defined in SNAP sector categories (Selected Nomenclature for Air Pollution), according to the CollectER system. The emission inventories are prepared from a complete emission database based on the SNAP sectors. The aggregation to the sector codes used for both the UNFCCC and UNECE Conventions is based on a correspondence list between SNAP and CRF/NFR classification codes shown in Table 3.3.1 below (mobile sources only).

Table 3.3.1	SNAP – CRF/NFR	correspondence table	for transport.
-------------	----------------	----------------------	----------------

SNAP classification	CRF/NFR classification					
07 Road transport	1A3bi Road transport: Passenger cars					
	1A3bii Road transport:Light duty vehicles					
	1A3biii Road transport:Heavy duty vehicles					
	1A3biv Road transport: Mopeds & motorcycles					
0801 Military	1A5b Other, Mobile					
0802 Railways	1A3c Railways					
0803 Inland waterways	1A5b Other, Mobile					
080402 National sea traffic	1A3dii National navigation (Shipping)					
080403 National fishing	1A4ciii Agriculture/Forestry/Fishing: National fish- ing					
080404 International sea traffic	1A3di (i) International navigation (Shipping)					
080501 Dom. airport traffic (LTO < 1000 m) 1A3aii (i) Civil aviation (Domestic,LTO					
080502 Int. airport traffic (LTO < 1000 m)	1A3ai (i) Civil aviation (International, LTO)					
080503 Dom. cruise traffic (> 1000 m)	1A3aii (ii) Civil aviation (Domestic,Cruise)					
080504 Int. cruise traffic (> 1000 m)	1A3ai (ii) Civil aviation (International, Cruise)					
0806 Agriculture	1A4cii Agriculture/Forestry/Fishing: Off-road agricul					
	ture/forestry					
0807 Forestry	1A4cii Agriculture/Forestry/Fishing: Off-road agric					
	ture/forestry					
0808 Industry	1A2gvii Manufacturing industries/Construction					
	(mobile)					
0809 Household and gardening	1A4bii Residential: Household and gardening (mo-					
	bile)					
0811 Commercial and institutional	1A4aii Commercial/Institutional: Mobile					

Military transport activities (land and air) refer to the CRF/NFR sector Other (1A5), the latter sector also including recreational craft (SNAP code 0803).

For aviation, Landing and Take Off ((LTO)¹ refers to the part of flying, which is below 1000 m. This part of the aviation emissions (SNAP codes 080501 and 080502) are included in the national emissions total as prescribed by the UNECE reporting rules. According to UNFCCC the national emissions for aviation comprise the emissions from domestic LTO (0805010) and domestic cruise (080503). The fuel consumption and emission development for aviation explained in the following are based on UNFCCC categorization, in order to be consistent with the Danish NIR report.

Agricultural and forestry non-road machinery (SNAP codes 0806 and 0807) is accounted for in the Agriculture/forestry/fisheries (1A4c) sector together with fishing activities (SNAP code 080403).

For mobile sources, internal database models for road transport, air traffic, sea transport and non-road machinery have been set up at DCE, Aarhus University, in order to produce the emission inventories. The output results from the DCE models are calculated in a SNAP format, as activity rates (fuel consumption) and emission factors, which are then exported directly to the central Danish CollectER database.

Apart from national inventories, the DCE models are used also as a calculation tool in research projects, environmental impact assessment studies, and to produce basic emission information which requires various aggregation levels.

3.3.1 Source category description

The following description of source categories explains the development in fuel consumption and emissions for road transport and other mobile sources.

Fuel consumption

¹ A LTO cycle consists of the flying modes approach/descent, taxiing, take off and climb out. In principle the actual times-in-modes rely on the actual traffic circumstances, the airport configuration, and the aircraft type in question.

Table 3.3.2 Fuel consumption (PJ) for domestic transport in 2014 in NFR sectors.						
NFR ID Fuel consumption (P						
Manufacturing industries/Construction (mobile)	13.9					
Civil aviation (Domestic)	1.9					
Road transport: Passenger cars	91.5					
Road transport:Light duty vehicles	21.4					
Road transport: Heavy duty vehicles	47.6					
Road transport: Mopeds & motorcycles	0.9					
Railways	3.4					
National navigation (Shipping)	4.8					
Commercial/Institutional: Mobile	2.3					
Residential: Household and gardening (mobile)	0.9					
Agriculture/Forestry/Fishing: Off-road agriculture/forestry	16.0					
Agriculture/Forestry/Fishing: National fishing	5.8					
Other, Mobile	3.1					
Road transport total	161.4					
Other mobile total	52.2					
Domestic total	213.6					
Civil aviation (International)	37.2					
Navigation (international)	29.4					

Table 3.3.2 shows the fuel consumption for domestic transport based on DEA statistics for 2014 in NFR sectors. The fuel consumption figures in time series 1985-2014 are given in Annex 2.B.16 (NFR format) and are shown for 2014 in Annex 2.B.15 (CollectER format). Road transport has a major share of the fuel consumption for domestic transport. In 2014 this sector's fuel consumption share is 76 %, while the fuel consumption shares for Off road agriculture/forestry and Manufacturing industries (mobile) are 7 %, in both cases. For the remaining sectors the total fuel consumption share is 10 %.

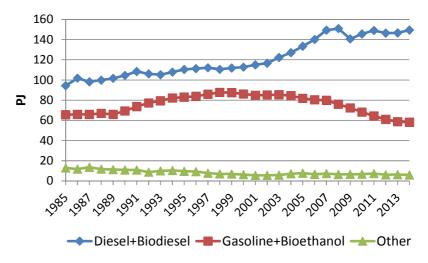


Figure 3.3.1 Fuel consumption per fuel type for domestic transport 1985-2014.

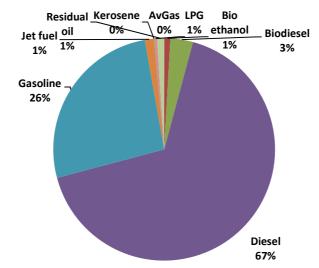


Figure 3.3.2 Fuel consumption share per fuel type for domestic transport in 2014.

From 1985 to 2014, diesel (sum of diesel and biodiesel) and gasoline (sum of gasoline and E5) fuel consumption has changed by 59 % and - 11 %, respectively (Figure 3.3.1), and in 2014 the fuel consumption shares for diesel and gasoline were 70 % and 27 %, respectively (not shown). Other fuels only have a 3 % share of the domestic transport total (Figure 3.3.2). Almost all gasoline is used in road transportation vehicles. Gardening machinery and recreational craft are merely small consumers. Regarding diesel, there is considerable fuel consumption in most of the domestic transport categories, whereas a more limited use of residual oil and jet fuel is being used in the navigation sector and by aviation (civil and military flights), respectively².

Road transport

As shown in Figure 3.3.3, the fuel consumption for road transport³ has generally increased until 2007, except from a small fuel consumption decline noted in 2000. The impact of the global financial crisis on fuel consumption for road transport becomes visible for 2008 and 2009. The fuel consumption development is due to a decreasing trend in the use of gasoline fuels from 1999 onwards combined with a steady growth in the use of diesel until 2007. Within sub-sectors, passenger cars represent the most fuel-consuming vehicle category, followed by heavy-duty vehicles, light duty vehicles and 2wheelers, in decreasing order (Figure 3.3.4).

² Biofuels are sold at gas filling stations and are assumed to be used by road transport vehicles.

 $^{^3}$ The sum share of bioethanol and biodiesel in the gasoline and diesel fuel blends for road transport is 5.5 %, in 2014.

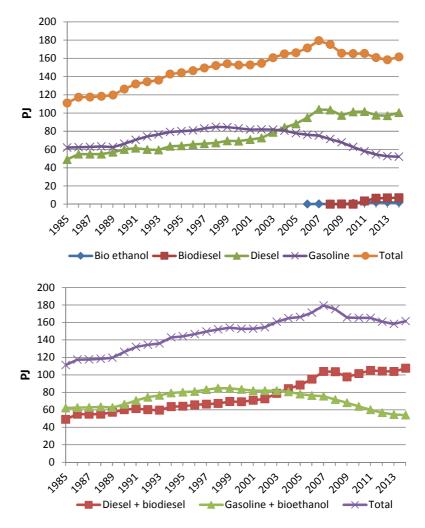


Figure 3.3.3 Fuel consumption per fuel type and as totals for road transport 1985-2014.

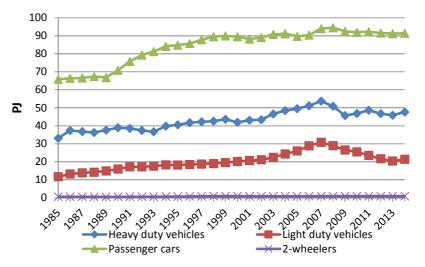


Figure 3.3.4 Total fuel consumption per vehicle type for road transport 1985-2014.

As shown in Figure 3.3.5 fuel consumption for gasoline passenger cars dominates the overall gasoline consumption trend. The development in diesel fuel consumption in recent years (Figure 3.3.6) is characterised by increasing fuel consumption for diesel passenger cars, while declines in the fuel consumption for trucks and buses (heavy-duty vehicles) and light duty vehicles are noted for 2008- 2009, 2012-2013, and 2008-2013, respectively.

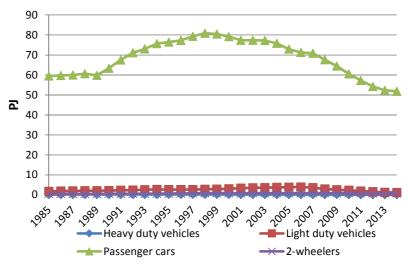


Figure 3.3.5 Gasoline fuel consumption per vehicle type for road transport 1985-2014.

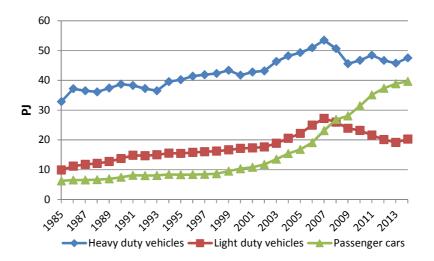


Figure 3.3.6 Diesel fuel consumption per vehicle type for road transport 1985-2014.

In 2014, fuel consumption shares for gasoline passenger cars, heavy-duty vehicles, diesel passenger cars, heavy-duty vehicles and gasoline light duty vehicles were 32, 29, 25, 12 and 1 %, respectively (Figure 3.3.7).

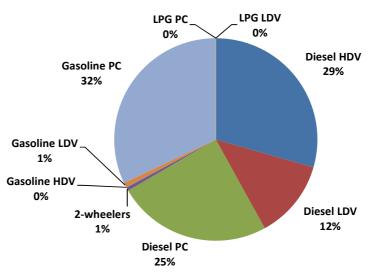


Figure 3.3.7 Fuel consumption share (PJ) per vehicle type for road transport in 2014.

Other mobile sources

It must be noted that the fuel consumption figures behind the Danish inventory for mobile equipment in the agriculture, forestry, industry, household and gardening (residential), and inland waterways (part of navigation) sectors, are less certain than for other mobile sectors. For these types of machinery, the DEA statistical figures do not directly provide fuel consumption information, and fuel consumption totals are subsequently estimated from activity data and fuel consumption factors. For recreational craft the latest historical year is 2004.

As seen in Figure 3.3.8, classified according to CRF the most important sectors are Agriculture/forestry (1A4cii), Industry-other (mobile machinery part of 1A2g) and Navigation (1A3d). Minor fuel consuming sectors are Civil Aviation (1A3a), Railways (1A3c), Other (military mobile and recreational craft: 1A5b), Commercial/institutional (1A4a) and Residential (1A4b).

The 1985-2014 time series are shown per fuel type in Figures 3.3.9-3.3.12 for diesel, gasoline and jet fuel, respectively.

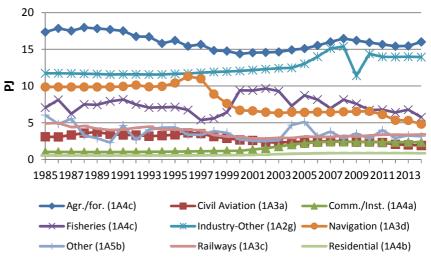
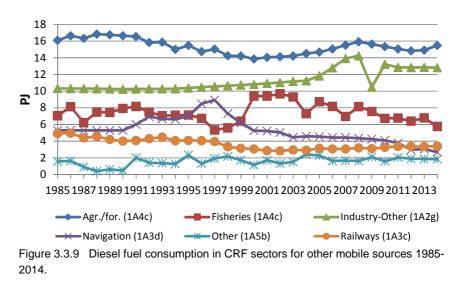



Figure 3.3.8 Total fuel consumption in CRF sectors for other mobile sources 1985-2014.

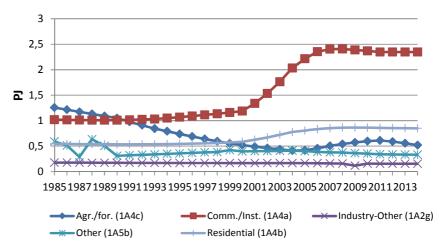


Figure 3.3.10 Gasoline fuel consumption in CRF sectors for other mobile source 1985-2014.

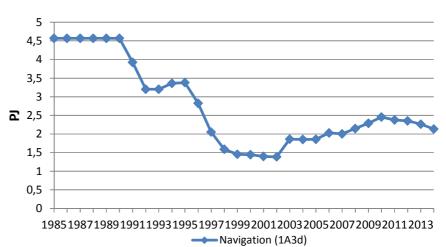


Figure 3.3.11 Residual oil fuel consumption in CRF sectors for other mobile sources 1985-2014.

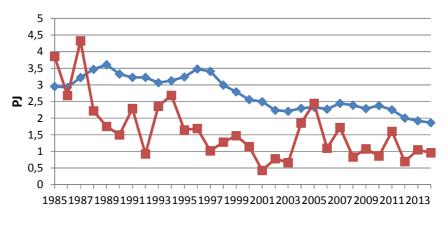


Figure 3.3.12 Jet fuel consumption in CRF sectors for other mobile sources 1985-2014.

In terms of diesel, the fuel consumption decreases for agricultural machines until 2000, due to a decline in the number of tractors and harvesters. After 2000, the increase in the engine sizes of new sold machines makes the total fuel consumption grow until 2008, whereas from 2008 onwards the turnover of old less fuel efficient machinery has more than outbalanced the prevailing trend towards smaller total stock numbers. The fuel consumption for industry has increased from the beginning of the 1990's, due to an increase in the activities for construction machinery. The fuel consumption increase has been very pronounced in 2005-2008, for 2009; however, the global financial crisis has a significant impact on the building and construction activities. For fisheries, the development in fuel consumption reflects the activities in this sector.

The Navigation sector comprises national sea transport (fuel consumption between two Danish ports including sea travel directly between Denmark and Greenland/Faroe Islands). For national sea transport, the diesel fuel consumption curve reflects the combination of traffic and ferries in use for regional ferries. From 1998 to 2000, a significant decline in fuel consumption is apparent. The most important explanation here is the closing of ferry service routes in connection with the opening of the Great Belt Bridge in 1997. The fuel consumption decreases in 2011 and 2012 are due to reductions in the number of round trips made by regional ferries. For railways, the gradual shift towards electrification explains the lowering trend in diesel fuel consumption and the emissions for this transport sector. The fuel consumed (and associated emissions) to produce electricity is accounted for in the stationary combustion part of the Danish inventories.

The largest gasoline fuel consumption is found for household and gardening machinery in the Commercial/Institutional (1A4a) and Residential (1A4b) sectors. Especially from 2001-2006, a significant fuel consumption increase is apparent due to considerable growth in the machinery stock. The decline in gasoline fuel consumption for Agriculture/forestry/fisheries (1A4c) is due to the gradual phasing out of gasoline-fuelled agricultural tractors.

In terms of residual oil there has been a substantial decrease in the fuel consumption for regional ferries. The fuel consumption decline is most significant from 1990-1992 and from 1997-1999.

The considerable variations from one year to another in military jet fuel consumption are due to planning and budgetary reasons, and the passing demand for flying activities. Consequently, for some years, a certain amount of jet fuel stock-building might disturb the real picture of aircraft fuel consumption. Civil aviation has decreased until 2004, since the opening of the Great Belt Bridge in 1997, both in terms of number of flights and total jet fuel consumption. From 2011 to 2012 the total consumption of jet fuel decreased significantly due to a drop in the number of domestic flights.

Bunkers

The residual oil and diesel oil fuel consumption fluctuations reflect the quantity of fuel sold in Denmark to international ferries, international warships, other ships with foreign destinations, transport to Greenland and the Faroe Islands, tank vessels and foreign fishing boats. For jet petrol, the sudden fuel consumption drop in 2002 is explained by the recession in the air traffic sector due to the events of September 11, 2001 and structural changes in the aviation business. In 2009, the impact of the global financial crisis on flying activities becomes very visible.

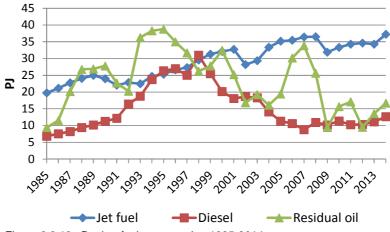
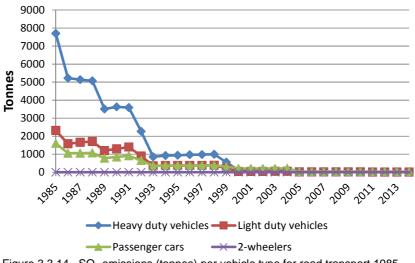


Figure 3.3.13 Bunker fuel consumption 1985-2014.

Emissions of SO₂, NO_X, NMVOC, CO, NH₃, TSP, PM₁₀, PM_{2.5} and BC In Table 3.3.3 the SO₂, NO_X, NMVOC, CO NH₃, TSP, PM₁₀, PM_{2.5} and BC emissions for road transport and other mobile sources are shown for 2014 in NFR sectors. The emission figures in the time series 1985-2014 are given in Annex 2.B.16 (NFR format) and are shown for 2014 in Annex 2.B.15 (CollectER format).

From 1985 to 2014, the road transport emissions of SO_2 , NO_X , NMVOC, CO, PM (exhaust emissions; all size fractions) and BC have decreased by 99, 59, 89, 86, 77 and 60 %, respectively (Figures 3.3.14-3.3.18), whereas the NH_3 emissions have increased by 1748 % during the same time period (Figure 3.3.19).


For other mobile sources, the emission changes for SO_2 , NO_X , NMVOC, CO and PM (all size fractions) are -90, -35, -43, -6, -75 and -71 %, respectively (Figures 3.3.21-3.3.25). The NH_3 emissions have increased by 15 % during the same time period (Figure 3.3.26).

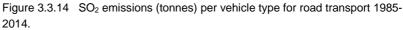

SO_2	NOx	NO _x NMVOC		$\rm NH_3$	TSP	PM_{10}	$PM_{2.5}$	BC
tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes	tonnes
6	7 181	1 035	6 024	2	575	575	575	410
44	692	65	451	0	5	5	5	2
40	16 364	4 755	60 067	1 105	414	414	414	293
9	5 778	436	3 256	26	272	272	272	218
21	16 159	380	6 340	34	259	259	259	179
0	153	1 325	7 960	1	26	26	26	4
0	0	1 451	0	0	0	0	0	0
0	0	0	0	0	511	500	199	13
0	0	0	0	0	915	549	384	140
0	0	0	0	0	1 122	561	303	0
2	2 232	161	334	1	61	61	61	40
1 169	7 441	239	875	0	152	150	149	29
1	219	3 587	72 587	0	67	67	67	3
0	92	1 875	26 732	0	15	15	15	1
7	6 988	1 459	15 564	3	541	541	541	329
270	7 488	335	1 073	0	124	123	122	38
70	1 449	340	3 451	1	93	93	93	37
71	38 455	8 347	77 623	1 165	970	970	970	694
0	0	0	0	0	2 547	1 610	886	153
1 569	33 783	9 095	127 092	8	1 633	1 631	1 629	889
1 639	72 238	17 442	204 715	1 173	5 151	4 211	3 485	1 736
856	13 912	200	2 218	0	198	198	198	103
8 765	55 487	1 815	5 912	0	1 008	997	992	173
	tonnes 6 44 40 9 21 0 0 0 0 0 0 0 0 0 0 2 1 169 1 0 70 70 70 70 1569 1639 856	tonnes 6 7 181 44 692 40 16 364 9 5 778 21 16 159 0 153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1169 7 441 1 219 0 92 7 6 988 270 7 488 70 1 449 71 38 455 0 0 1569 33 783 1639 72 238	tonnes tonnes 6 7 181 1 035 44 692 65 40 16 364 4 755 9 5 778 436 21 16 159 380 0 153 1 325 0 0 1451 0 0 1451 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1169 7 441 239 1169 7 441 239 1169 7 448 335 70 988 1459 270 7 488 335 70 1449 340 71 38 455 8 347 0 0 0 0 1569 33 783 9095 1639 72 238 17 442	tonnestonnestonnes67 1811 0356 02444692654514016 3644 75560 06795 7784 363 2562116 1593806 34001531 3257 96001531 3257 9600014510001451000000000000011697 44123987511697 488335107376 988145915 5642707 4883351073701 4493403 4517138 4558 34777 623000001 56933 7839 095127 0921 63972 23817 442204 71585613 9122002 218	tonnestonnestonnestonnes67 1811 0356 0242446926545104016 3644 75560 0671 10595 7784363 256262116 1593806 3403401531 3257 9601001451000000000000000000000011697 441239875011697 441239875012193 58772 58700921 87526 732076 9881 45915 56432707 4883351 0730738 4558 34777 6231 165000000156933 7839 095127 0928163972 23817 442204 7151 173	tonnestonnestonnestonnestonnes67 1811 0356 02425754469265451054016 3644 75560 0671 10541495 7784363 256262722116 1593806 3403425901531 3257 960126001 451000001 4510000000112210000011222223216133416111697 4412398750015212193 58772 587015212193 587156435412707 48833510730124701 4493403 4511<	tonnestonnestonnestonnestonnestonnestonnes67 1811 0356 024257557544692654510554016 3644 75560 0671 10541441495 7784363 256262722722116 1593806 3403425925901531 3257 96012626001 451000001 4510000000145100000000011225611631613341616111697 441239875015215012193 58772 587015215012193 58772 587015215576 9881 45915 56435415412707 4883351 0730124123701 4493403 451193937138 4558 34777 6231 1659709701 56933 7839 095127 09281 6331 6311 63972 23817 442204 7151 1735 1514 21185613 9122002 218<	tonnestonnestonnestonnestonnestonnestonnestonnestonnes67 1811 0356 024257557557544692654510554016 3644 75560 0671 10541441495 7784363 256262722722116 1593806 3403425925925901531 3257 9601262626001 45100000199001451000199384000001122561303100000112256130311697 441239875015215014911697 441239875015215115111697 441239875015215014911697 4412391564354154154111697 44333510730152151122701449340345119393937138 4558 34777 6231165970970970163972 23817 42204 715117351514 2113 485156913 912 <t< td=""></t<>

Table 3.3.3 Emissions of SO₂, NO_X, NMVOC, CO NH₃, TSP, PM₁₀, PM_{2.5} and BC in 2014 for road transport and other mobile sources.

Road transport

The step-wise lowering of the sulphur content in diesel fuel has given rise to a substantial decrease in the road transport emissions of SO_2 (Figure 3.3.14). In 1999, the sulphur content was reduced from 500 ppm to 50 ppm (reaching gasoline levels), and for both gasoline and diesel the sulphur content was reduced to 10 ppm in 2005. Since Danish diesel and gasoline fuels have the same sulphur percentages, at present, the 2014 shares for SO_2 emissions and fuel consumption for passenger cars, heavy-duty vehicles, light-duty vehicles and 2-wheelers are the same in each case: 57, 29, 13 and 1 %, respectively (Figure 3.3.20).

Historically, the emission totals of NMVOC and CO have been very dominated by the contributions coming from private cars, as shown in Figures 3.3.16- 3.3.17. However, the NMVOC and CO (and NO_x) emissions from this vehicle type have shown a steady decreasing tendency since the introduction of private catalyst cars in 1990 (EURO I) and the introduction of even more emission-efficient EURO II, III, IV and V private cars (introduced in 1997, 2001, 2006 and 2011, respectively).

For NO_x the emission decrease for passenger cars is composed of a significant drop in emissions from gasoline cars driven by technology improvements, and an increase in emissions from diesel cars due to the dieselization of the Danish vehicle fleet, and almost unchanged emission factors for diesel passenger cars throughout the period regardless of EU emission legislation demands. For light duty vehicles the NO_x emission trend is also the result of a technology driven emission reduction for gasoline vehicles, and a traffic induced emission increase for diesel vehicles; the emission factors for the latter vehicle category have been relatively constant over the years just as for diesel cars.

For heavy duty vehicles the real traffic emissions are not reduced in the order as intended by the EU emission legislation. Most markedly for Euro II engines the emission factors are even higher than for Euro I due to the socalled engine cycle-beating effect. Outside the legislative test cycle stationary measurement points, the electronic engine control for heavy duty Euro II engines switches to a fuel efficient engine running mode, thus leading to increasing NO_x emissions (Figure 3.3.15). However, the reduction in transport activities due to the global financial crisis causes the NO_x emissions for heavy duty vehicles to decrease significantly in 2008 and 2009.

Exhaust particulate emissions from road transportation vehicles are well below $PM_{2.5}$. The emissions from light- and heavy-duty vehicles have significantly decreased since the mid-1990s due to gradually stricter EURO emission standards. In recent years until 2008 the environmental benefit of introducing gradually cleaner diesel private cars has been somewhat outbalanced by an increase in sales of new vehicles. After 2008 the PM emissions gradually become lower due to the increasing number of Euro V cars equipped with particulate filter sold in Denmark from 2006 onwards (Figure 3.3.18).

An undesirable environmental side effect of the introduction of catalyst cars is the increase in the emissions of NH_3 from the first two generations of catalyst cars (Euro I and II) compared to conventional cars. The emission factors for later catalytic converter technologies are considerably lower than the ones for Euro I and II, thus causing the emissions to decrease from 2001 onwards (Figure 3.3.19).

The 2014 emission shares for passenger cars, heavy-duty vehicles, light-duty vehicles and 2-wheelers for NO_x (43, 42, 15 and 0 %), NMVOC (57, 5, 5 and 16 %), CO (78, 8, 4 and 10 %), PM (42, 27, 28 and 3 %) and NH₃ (95, 3, 2 and 0 %), are also shown in Figure 3.3.20.

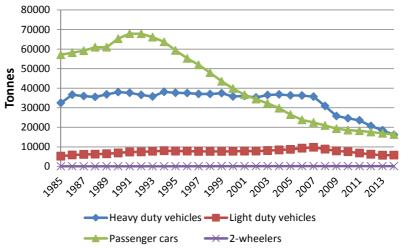


Figure 3.3.15 NO_X emissions (tonnes) per vehicle type for road transport 1985-2014.

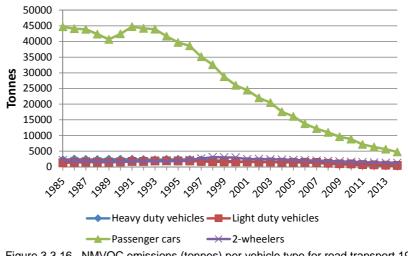


Figure 3.3.16 NMVOC emissions (tonnes) per vehicle type for road transport 1985-2014.



Figure 3.3.17 CO emissions (tonnes) per vehicle type for road transport 1985-2014.

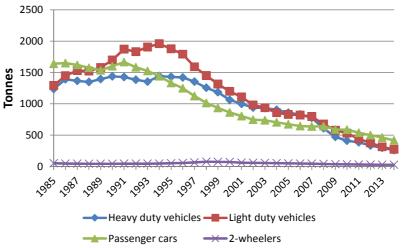


Figure 3.3.18 PM emissions (tonnes) per vehicle type for road transport 1985-2014.

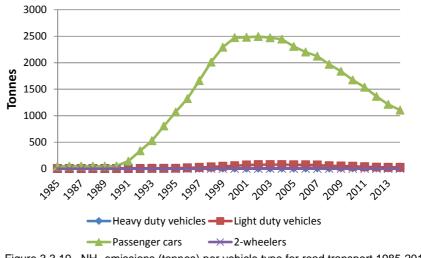


Figure 3.3.19 NH₃ emissions (tonnes) per vehicle type for road transport 1985-2014.

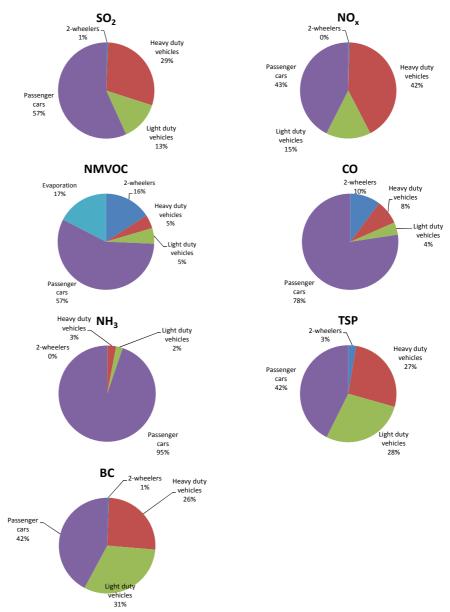


Figure 3.3.20 SO₂, NO_X, NMVOC, CO, NH₃, PM and BC emission shares pr vehicle type for road transport in 2014.

Non-exhaust emissions of TSP, PM₁₀, PM_{2.5} and BC

Apart from the exhaust emission estimates of particulate matter (PM), the Danish emission inventories also comprise the non-exhaust PM emissions coming from road transport brake and tyre wear, and road abrasion.

In Table 3.3.3, the non-exhaust TSP, PM_{10} , $PM_{2.5}$ and BC emissions for road transport are shown for 2014 in NFR sectors. The activity data and emission factors are also shown in Annex 2.B.15.

The respective source category distributions for TSP, PM_{10} and $PM_{2.5}$ emissions are identical for each of the non-exhaust emission type's brake wear, tyre wear and road abrasion, and, hence, only the PM_{10} distributions are shown in Figure 3.3.28. Passenger cars caused the highest emissions in 2014, followed by trucks, light-duty vehicles, buses and 2-wheelers.

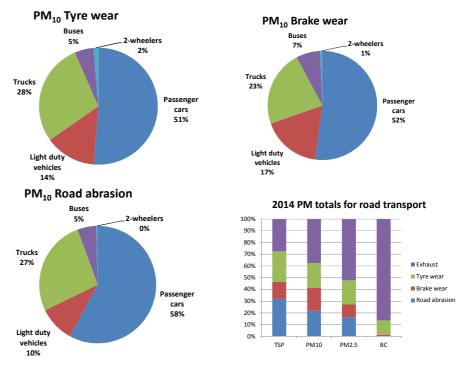


Figure 3.3.21 Brake and tyre wear and road abrasion PM_{10} emission shares and PM and BC exhaust/non-exhaust distributions for road traffic in 2014.

Figure 3.3.21 also shows the exhaust/non-exhaust distribution of the total particulate emissions from road transport, for each of the size classes TSP, PM_{10} and $PM_{2.5}$ and for BC. The exhaust emission shares of total road transport TSP, PM_{10} , $PM_{2.5}$ and BC are 28, 38, 52 and 86 %, respectively, in 2014. For brake and tyre wear and road abrasion the TSP shares are 15, 26 and 32 %, respectively. The same three sources have PM_{10} shares of 19, 21 and 22 %, respectively, $PM_{2.5}$ shares of 11, 21 and 16 %, and BC shares of 1, 12 and 0 %, respectively. In general, the non-exhaust shares of total particulate emissions are expected to increase in the future as total exhaust emissions decline. The latter emission trend is due to the stepwise strengthening of exhaust emission standards for all vehicle types.

Other mobile sources

For SO_2 the trends in the Navigation (1A3d) emissions shown in Figure 3.3.22 mainly follow the development of the heavy fuel oil consumption (Figure 3.3.11). Though, from 1993 to 1995 relatively higher contents of sulphur in the fuel (estimated from sales) cause a significant increase in the emissions of SO_2 . The SO_2 emissions for Fisheries (1A4c) correspond with the development in the consumption of marine gas oil. The main explanation for the development of the SO_2 emission curves for Railways (1A3c) and non-road machinery in Agriculture/forestry (1A4c) and Industry (1A2f), are the stepwise sulphur content reductions for diesel used by machinery in these sectors.

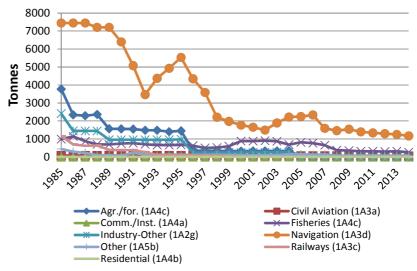


Figure 3.3.22 SO_2 emissions (ktonnes) in NFR sectors for other mobile sources 1985-2014.

In general, the emissions of NO_x, NMVOC and CO from diesel-fuelled working equipment and machinery in agriculture, forestry and industry have decreased slightly since the end of the 1990s due to gradually strengthened emission standards given by the EU emission legislation directives. For industry, the emission impact from the global financial crisis becomes very visible for 2009.

NO_x emissions mainly come from diesel machinery, and the most important sources are Agriculture/forestry/fisheries (1A4c), Navigation (1A3d), Industry (1A2f) and Railways (1A3c), as shown in Figure 3.3.23. The 2014 emission shares are 43, 22, 21 and 7 %, respectively (Figure 3.3.28). Minor emissions come from the sectors, Civil Aviation (1A3a), Other (1A5) and Residential (1A4b).

The NO_x emission trend for Navigation, Fisheries and Agriculture is determined by fuel consumption fluctuations for these sectors, and the development of emission factors. For ship engines the emission factors tend to increase for new engines until mid-1990s. After that, the emission factors gradually reduce until 2000, bringing them to a level comparable with the emission limits for new engines in this year. For agricultural machines, there have been somewhat higher NO_x emission factors for 1991-stage I machinery, and an improved emission performance for stage I and II machinery since the late 1990s.

The emission development from 1985 to 2008 for industry NO_x is the product of a fuel consumption increase, most pronounced from 2005-2008, and a development in emission factors as explained for agricultural machinery. For railways, the gradual shift towards electrification explains the declining trend in diesel fuel consumption and NO_x emissions for this transport sector until 2001.

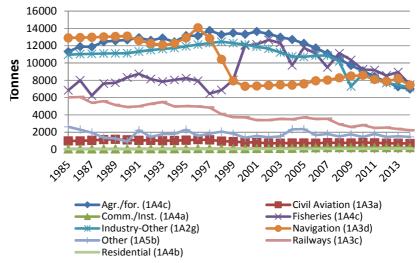


Figure 3.3.23 NO_X emissions (tonnes) in NFR sectors for other mobile sources 1985-2014.

The 1985-2014 time series of NMVOC and CO emissions are shown in Figures 3.3.24 and 3.3.25 for other mobile sources. The 2014 sector emission shares are shown in Figure 3.3.28. For NMVOC, the most important sectors are Commercial/Institutional (1A4a), Agriculture/forestry/-fisheries (1A4c), Residential (1A4b) and Industry (1A2g) with 2014 emission shares of 39, 20, 20 and 11 %, respectively. The same five sectors also contribute with most of the CO emissions. For Commercial/Institutional (1A4a), Residential (1A4b), Agriculture/forestry/fisheries (1A4c) and Industry (1A2g) with 2014 emission shares of 39, 20, 20 and 11 %, respectively. The same five sectors also contribute with most of the CO emissions. For Commercial/Institutional (1A4a), Residential (1A4b), Agriculture/forestry/fisheries (1A4c) and Industry (1A2g) the emission shares are 57, 21, 13 and 5 %, respectively. Minor NMVOC and CO emissions come from Navigation (1A3d), Railways (1A3c), Civil Aviation (1A3a) and Other (1A5).

For NMVOC and CO, the significant emission increases for the commercial/institutional and residential sectors after 2000 are due to the increased number of gasoline working machines. Improved NMVOC emission factors for diesel machinery in agriculture and gasoline equipment in forestry (chain saws) are the most important explanations for the NMVOC emission decline in the Agriculture/forestry/fisheries sector. This explanation also applies for the industrial sector, which is dominated by diesel-fuelled machinery. From 1997 onwards, the NMVOC emissions from Navigation decrease due to the gradually phase-out of the 2-stroke engine technology for recreational craft. The main reason for the significant 1985-2006 CO emission decrease for Agriculture/forestry-/fisheries is the phasing out of gasoline tractors.

As shown in Figure 3.3.28, for other mobile sources the largest TSP contributors in 2014 are Agriculture/forestry/fisheries (1A4c), Industry (1A2f) and Navigation (1A3d), with emission shares of 41, 35 and 9 %, respectively. The remaining sectors: Railways (1A3c), Civil aviation (1A3a), Other (1A5) and Residential (1A4b) represent only minor emission sources.

The 1985-2014 TSP emissions for navigation and fisheries are determined by the fuel consumption fluctuations in these years, and the development of the emission factors, which to a major extent is a function of the fuel sulphur content. The emission development for Agriculture/forestry is determined by the generally decreasing total diesel fuel consumption and gradually reducing emission factors over the time period.

The TSP emission development for industrial non-road machinery is the product of a fuel consumption increase from 1985 to 2008 and a development in emission factors, as explained for agricultural machinery. The TSP emission explanations for railways are the same as for NO_x (Figure 3.3.23).

The amounts of NH_3 emissions calculated for other mobile sources are very small. The largest emission sources are Agriculture-/forestry/fisheries (1A4c), Industry (1A2f), Other (1A5b) and Railways (1A3c), with emission shares of 44, 32, 10 and 9 %, respectively.

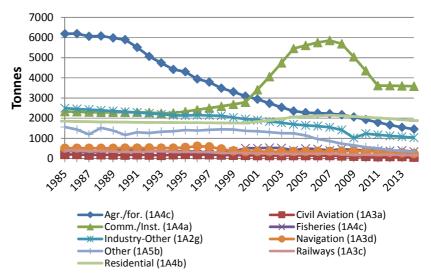


Figure 3.3.24 NMVOC emissions (tonnes) in NFR sectors for other mobile sources 1985-2014.

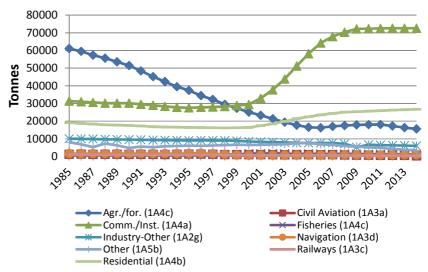


Figure 3.3.25 CO emissions (tonnes) in NFR sectors for other mobile sources 1985-2014.

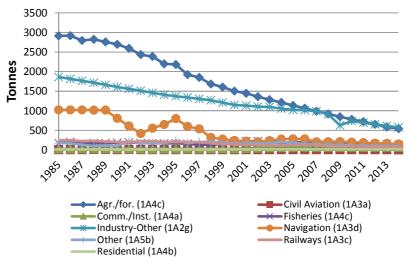


Figure 3.3.26 TSP emissions (tonnes) in NFR sectors for other mobile sources 1985-2014.

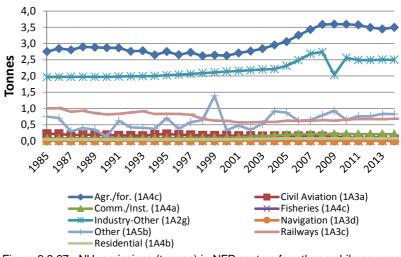


Figure 3.3.27 $\,$ NH_{3} emissions (tonnes) in NFR sectors for other mobile sources 1985-2014.

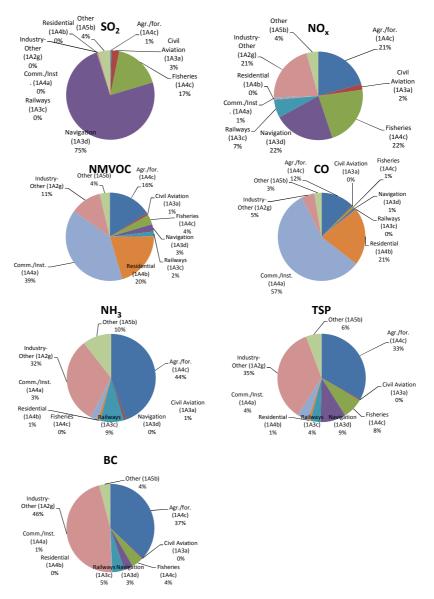


Figure 3.3.28 SO₂, NO_X, NMVOC, CO, NH₃, PM and BC emission shares pr vehicle type for other mobile sources in 2014.

Heavy metals

In Table 3.3.4, the heavy metal emissions for road transport and other mobile sources are shown for 2014 in NFR sectors. The emission figures in the time series 1990-2014 are given in Annex 2.B.16 (NFR format) and are shown for 1990 and 2014 in Annex 2.B.15 (CollectER format).

	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Selenium	Zinc
	kg	kg	kg	kg	kg	kg	kg	kg	kg
Manufacturing industri- es/Construction (mobile)	0	3	9	7	2	3	15	0	511
Civil aviation (Domestic)	0	0	0	0	0	0	525	0	2
Road transport: Passenger cars	0	27	58	85	15	30	118	0	5 487
Road transport:Light duty vehicles Road transport:Heavy duty vehi-	0	5	15	11	3	5	27	0	922
cles	0	7	26	18	6	7	41	0	1 356
Road transport: Mopeds & motor- cycles Road transport: Gasoline evapo-	0	0	0	0	0	0	0	0	21
ration	0	0	0	0	0	0	0	0	0
Road transport: Brake wear	5	4	59	39 068	0	57	5 044	10	8 441
Road transport: Tyre wear	1	2	3	14	0	23	74	18	10 005
Road transport: Road abrasion	0	0	22	11	0	18	53	0	85
Railways	0	1	2	2	0	1	4	0	127
National navigation (Shipping)	29	2	13	29	4	1 569	17	33	78
Commercial/Institutional: Mobile Residential: Household and gar-	0	1	1	2	0	1	2	0	118
dening (mobile) Agriculture/Forestry/Fishing: Off-	0	0	0	1	0	0	1	0	43
road agriculture/forestry Agriculture/Forestry/Fishing:	0	3	10	8	2	3	18	0	604
National fishing	7	1	5	7	7	9	13	27	67
Other, Mobile	0	0	1	1	0	0	78	0	90
Road transport exhaust total	1	39	98	115	23	42	186	0	7 786
Road transport non exhaust total	6	6	85	39 093	0	98	5 171	29	18 532
Other mobile sources total	36	11	42	56	16	1 586	672	60	1 641
Domestic total	42	56	225	39 264	39	1 725	6 029	89	27 959
Civil aviation (International)	0	0	0	0	0	0	40	0	0
Navigation (International)	219	15	94	219	23	12 280	111	223	516

Table 3.3.4	Heavy r	netal emissions	in 2014 for road	transport and oth	er mobile sources.
10010 0.0.4	1100091		11 2014 101 10000	tranoport and oth	

The heavy metal emission estimates for road transport are based on a national research study made by Winther and Slentø (2010). The latter study calculate the exhaust related emissions from fuel and engine oil as well as the wear related emissions from tyre, brake and road wear. Apart from Pb, the emission factors only deviate to a less extent due to changes in fleet and mileage composition over the years, which bring relative changes in fuel consumption per fuel type, engine oil use and aggregated emission factors for brake, tyre and road wear.

The most important exhaust related emissions for road transport are Cd, Cr, Hg and Zn. the most important wear related emissions are Cu and Pb almost solely coming from tyre wear, and Zn from brake and tyre wear. For other mobile sources, the most important emission contributions are calculated for Ni, Se and As, coming from the use of marine diesel oil in fisheries and navigation and residual oil in navigation.

The Figures 3.3.29 and 3.3.30 show the heavy metal emission distributions for all road transport sources split into vehicle categories, and for other mobile sectors, respectively.

For non-road mobile machinery in agriculture, forestry, industry, commercial/institutional and recreational, as well as military and railways, fuel related emission factors from road transport are used derived for the year 2009. For civil aviation jet fuel no emissions are estimated due to lack of emission data, whereas for aviation gasoline fuel related emission factors for road transport gasoline is used derived for the year 2009, except for Pb where national data exist.

For navigation and fisheries, the heavy metal emission factors are fuel related, and are taken from the EMEP/EEA guidebook.

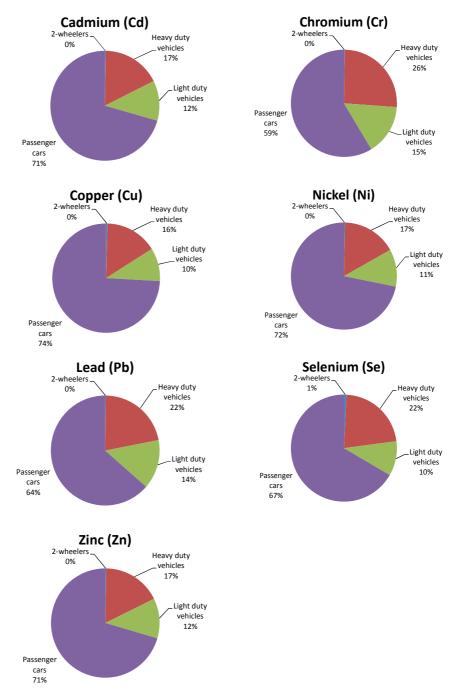


Figure 3.3.29 Heavy metal emission shares for road transport in 2014.

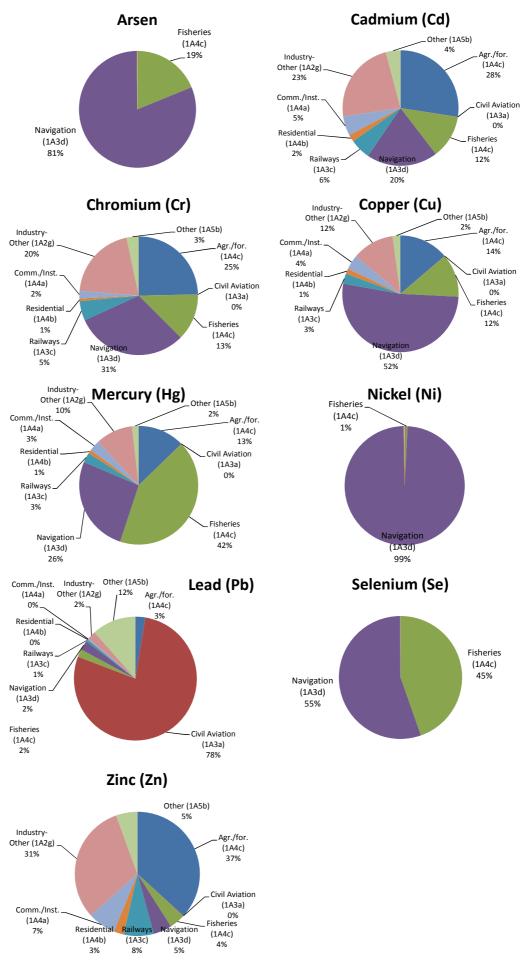


Figure 3.3.30 Heavy metal emission shares for other mobile sources in 2014.

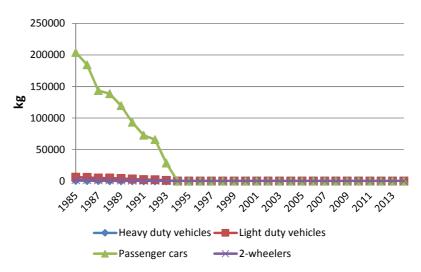


Figure 3.3.31 Pb emissions (kg) pr vehicle type for road transport 1985-2014.

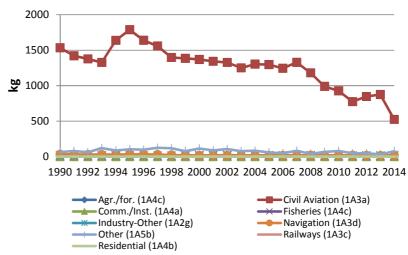


Figure 3.3.32 Pb emissions (kg) in NFR sectors for other mobile sources 1990-2014.

Dioxin and PAH

In Table 3.3.5, the dioxin, PAH, HCB and PCB emissions for road transport and other mobile sources are shown for 2014 in NFR sectors. The emission figures in the time series 1990-2014 are given in Annex 2.B.16 (NFR format) and are shown for 1990 and 2014 in Annex 2.B.15 (CollectER format).

Table 3.3.5	Dioxin, PAH	, HCB and PCB em	issions in 2014 fo	r road transport and	d other mobile sources.
-------------	-------------	------------------	--------------------	----------------------	-------------------------

	HCB	Dioxins/Furans	Flouranthene	Benzo(b) flouranthene	Benzo(k) flouranthene	Benzo(a) pyrene	Benzo- (g,h,i) perylene	Indeno (1,2,3-c,d) pyrene	PCB
	g	g	kg	kg	kg	kg	kg	kg	g
Manufacturing industries/Construction (mobile)	0.079	0.010	56	7	6	3	6	3	7
Civil aviation (Domestic)	0.000	0.000	0	0	0	0	0	0	0
Road transport: Passenger cars	0.245	0.044	631	47	36	42	83	42	1
Road transport:Light duty vehicles	0.125	0.011	201	14	11	12	25	12	0
Road transport: Heavy duty vehicles	0.292	0.051	100	26	29	4	4	7	25
Road transport: Mopeds & motorcycles	0.000	0.015	9	0	0	0	1	0	0
Road transport: Gasoline evaporation	0.000	0.000	0	0	0	0	0	0	0
Road transport: Brake wear	0.000	0.000	0	0	0	0	0	0	0
Road transport: Tyre wear	0.000	0.000	0	0	0	0	0	0	0
Road transport: Road abrasion	0.000	0.000	0	0	0	0	0	0	0
Railways	0.021	0.002	5	1	1	0	0	0	2
National navigation (Shipping)	0.013	0.061	31	2	1	0	4	3	0
Commercial/Institutional: Mobile	0.000	0.012	10	0	0	0	2	1	0
Residential: Household and gardening (mobile)	0.000	0.004	4	0	0	0	1	0	0
Agriculture/Forestry/Fishing: Off-road agriculture/forestry	0.095	0.014	70	8	8	4	8	4	8
Agriculture/Forestry/Fishing: National fishing	0.011	0.069	43	4	2	1	8	7	0
Other, Mobile	0.011	0.003	9	1	1	1	1	1	1
Road transport exhaust total	0.661	0.121	940	87	76	59	113	60	26
Road transport non exhaust total	0.000	0.000	0	0	0	0	0	0	0
Other mobile sources total	0.230	0.176	228	23	19	10	29	19	18
Domestic total	0.892	0.296	1168	111	95	69	142	80	44
Civil aviation (International)	0.000	0.000	0	0	0	0	0	0	0
Navigation (International)	0.083	0.376	163	11	5	3	22	18	0

For mobile sources, road transport displays the largest emission of dioxins and PAH. The dioxin emission share for road transport is 41 % of all mobile emissions in 2014, whereas Agriculture/forestry-/fisheries and Navigation have smaller shares of 28 and 21 %. For the different PAH components, road transport shares are around 80 % of total emissions for mobile sources. The remaining emissions almost solely come from Agriculture/forestry-/fisheries as the largest source.

Figures 3.3.33 and 3.3.34 show the dioxin and PAH emission distributions into vehicle categories and other mobile sectors, respectively.

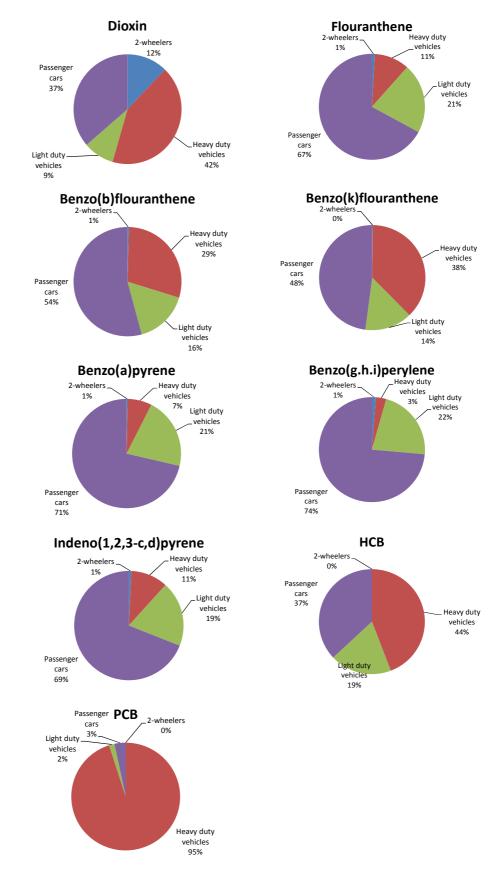


Figure 3.3.33 Dioxin, PAH, HCB and PCB emission shares for road transport in 2014.

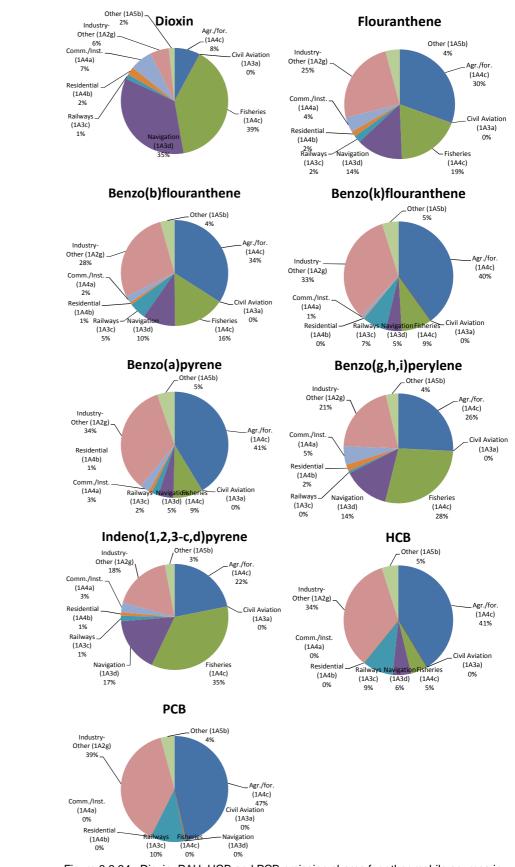


Figure 3.3.34 Dioxin, PAH, HCB and PCB emission shares for other mobile sources in 2014.

Bunkers

The most important emissions from bunker fuel consumption (fuel consumption for international transport) are SO_2 and NO_x . The bunker emission totals are shown in Table 3.3.3 for 2014, split into sea transport and civil aviation. All emission figures in the 1985-2014 time series are given in Annex 2.B.16 (NFR format). In Annex 2.B.15, the emissions are also given in CollectER format for 2014.

The differences in emissions between navigation and civil aviation are much larger than the differences in fuel consumption and display a poor emission performance for international sea transport. In broad terms, the emission trends shown in Figure 3.3.35 are similar to the fuel consumption development.

However, for navigation minor differences occur for the emissions of SO_2 and NO_X due to varying amounts of marine gas oil and residual oil, and for SO_2 and NO_X the development in the emission factors also have an impact on the emission trends. For civil aviation, apart from the annual consumption of jet fuel, the development of the NO_X emissions is also due to yearly variations in LTO/aircraft type (earlier than 2001) and city-pair statistics (2001 onwards).

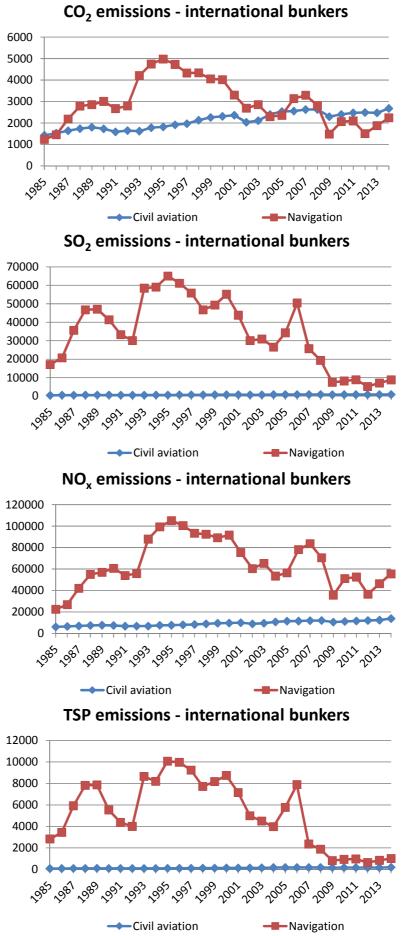


Figure 3.3.35 CO₂, SO₂, NO_X and TSP emissions for international transport 1985-2014.

3.3.2 Methodological issues

The description of methodologies and references for the transport part of the Danish inventory is given in two sections: one for road transport and one for the other mobile sources.

Methodology and references for Road Transport

For road transport, the detailed methodology is used to make annual estimates of the Danish emissions, as described in the EMEP/EEA Air Pollutant Emission Inventory Guidebook (EMEP/EEA, 2013). The actual calculations are made with a model developed by ENVS, using the European COPERT IV model methodology explained by EMEP/EEA (2013). In COPERT, fuel consumption and emission simulations can be made for operationally hot engines, taking into account gradually stricter emission standards and emission degradation due to catalyst wear. Furthermore, the emission effects of cold-start and evaporation are simulated.

Vehicle fleet and mileage data

Corresponding to the COPERT IV fleet classification, all present and future vehicles in the Danish fleet are grouped into vehicle classes, sub-classes and layers. The layer classification is a further division of vehicle sub-classes into groups of vehicles with the same average fuel consumption and emission behaviour, according to EU emission legislation levels. Table 3.3.6 gives an overview of the different model classes and sub-classes, and the layer level with implementation years are shown in Annex 2.B.1.

Fleet and annual mileage data are provided by DTU Transport for the vehicle categories present in COPERT IV (Jensen, 2015). DTU Transport use data from the Danish vehicle register kept by Statistics Denmark. The vehicle register data consist of vehicle type (passenger cars, vans, trucks, buses, mopeds, motorcycles), fuel type, vehicle weight, gross vehicle weight, engine size (passenger cars registered from 2005+), Euro class (trucks and buses registered from 1997+), NEDC type approval fuel efficiency value (passenger cars registered from 1997+) and vehicle first registration year.

In order to establish engine size data for passenger cars registered before 2005, a weight class-engine size transformation key is used examined by Cowi (2008) for new Danish cars from 1998. For the years before 1998, data for 1998 is used, and for the years 1999-2004 a linear interpolation between 1998 and 2005 weight class-engine size relations is used. For trucks, truck driver registration notes gathered by Statistics Denmark are used to split the fleet figures of ordinary trucks into number of solo trucks and truck-trailer combinations. Further the registration notes make it possible to assume the average total vehicle weight of the truck trailer combination. For articulated trucks also, the registration notes make it possible to assume the average total vehicle weight of the full articulated truck.

Danish mileage data comes from the Danish Road Directorate based on the Danish vehicle inspection program. Total mileage per year and vehicle category are derived for the years 1985-2014, together with a more detailed mileage matrix examined for the year 2008 (based on detailed vehicle inspection data analysis). The detailed mileage matrix contains annual mileage per vehicle subcategory for new vehicles and for every vintage back in time, which determines the yearly mileage reduction percentages as a function of vehicle age. In a first step, the detailed mileage matrix is combined with corresponding fleet numbers in order to estimate intermediate total mileages for each

year on a detailed fleet level. Next, each year's detailed (intermediate) mileage figures are scaled according to the difference between true and intermediate total mileage per vehicle subcategory.

DTU Transport (Jensen, 2015) also provides information of the mileage split between urban, rural and highway driving based on traffic monitoring data. The respective average speeds come from The Danish Road Directorate (e.g. Winther & Ekman, 1998). Additional data for the moped fleet and motorcycle fleet disaggregation is given by The National Motorcycle Association (Markamp, 2013).

Table 3.3.6 Mc	Table 3.3.6 Model vehicle classes and sub-classes, trip speeds and mileage split.							
			-	speed [km				
Vehicle classes		Engine size/weight	Urban	Rural	Highway			
PC	Gasoline	< 0.8 l.	40	70	100			
PC	Gasoline	0.8 - 1.4 l.	40	70	100			
PC	Gasoline	1.4 – 2 I.	40	70	100			
PC	Gasoline	> 2 I.	40	70	100			
PC	Diesel	< 1.4 l.	40	70	100			
PC	Diesel	1.4 2 l.	40	70	100			
PC	Diesel	> 2 I.	40	70	100			
PC	LPG		40	70	100			
PC	2-stroke		40	70	100			
LDV	Gasoline		40	65	80			
LDV	Diesel		40	65	80			
LDV	LPG		40	65	80			
Trucks	Gasoline		35	60	80			
Trucks	Diesel	Rigid 3,5 - 7,5t	35	60	80			
Trucks	Diesel	Rigid 7,5 - 12t	35	60	80			
Trucks	Diesel	Rigid 12 - 14 t	35	60	80			
Trucks	Diesel	Rigid 14 - 20t	35	60	80			
Trucks	Diesel	Rigid 20 - 26t	35	60	80			
Trucks	Diesel	Rigid 26 - 28t	35	60	80			
Trucks	Diesel	Rigid 28 - 32t	35	60	80			
Trucks	Diesel	Rigid >32t	35	60	80			
Trucks	Diesel	TT/AT 14 - 20t	35	60	80			
Trucks	Diesel	TT/AT 20 - 28t	35	60	80			
Trucks	Diesel	TT/AT 28 - 34t	35	60	80			
Trucks	Diesel	TT/AT 34 - 40t	35	60	80			
Trucks	Diesel	TT/AT 40 - 50t	35	60	80			
Trucks	Diesel	TT/AT 50 - 60t	35	60	80			
Trucks	Diesel	TT/AT >60t	35	60	80			
Urban buses	Gasoline		30	50	70			
Urban buses	Diesel	< 15 tonnes	30	50	70			
Urban buses	Diesel	15-18 tonnes	30	50	70			
Urban buses	Diesel	> 18 tonnes	30	50	70			
Coaches	Gasoline		35	60	80			
Coaches	Diesel	< 15 tonnes	35	60	80			
Coaches	Diesel	15-18 tonnes	35	60	80			
Coaches	Diesel	> 18 tonnes	35	60	80			
Mopeds	Gasoline	2 stroke	30	30	-			
Mopeds	Gasoline	4 stroke	30	30	-			
Motorcycles	Gasoline	2 stroke	40	70	100			
Motorcycles	Gasoline	< 250 cc.	40	70	100			
Motorcycles	Gasoline	250 – 750 сс.	40	70	100			
Motorcycles	Gasoline	> 750 cc.	40	70	100			
-								

 Table 3.3.6
 Model vehicle classes and sub-classes, trip speeds and mileage split.

In addition data from a survey made by the Danish Road Directorate (Hansen, 2010) has given information of the total mileage driven by foreign trucks on Danish roads in 2009. This mileage contribution has been added to the total mileage for Danish trucks on Danish roads, for trucks > 16 tonnes of gross vehicle weight. The data has been further processed by DTU Transport; by using appropriate assumptions the mileage have been backcasted to 1985 and forecasted to 2014.

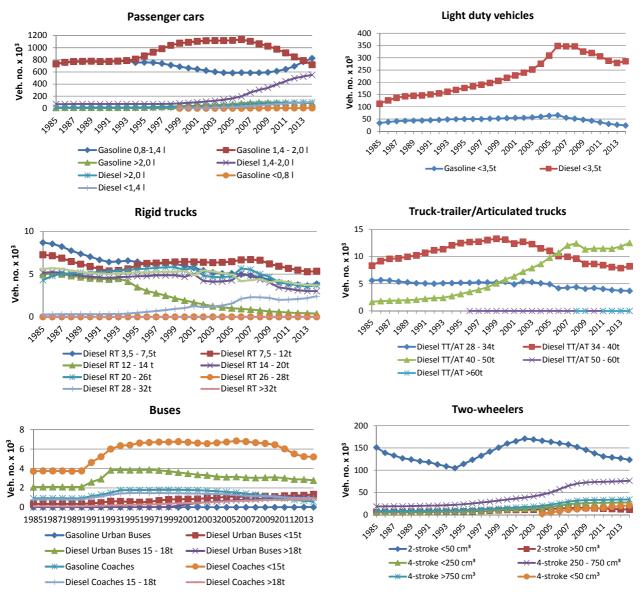


Figure 3.3.36 Number of vehicles in sub-classes in 1985-2014.

For passenger cars, the engine size differentiation is less certain for the years before 2005. The increase in the total number of passenger cars is mostly due to a growth in the number of diesel cars between 1.4 and 2 litres (from the 2000's up to now). Until 2005, there has been a decrease in the number of gasoline cars with an engine size between 0.8 and 1.4 litres. These cars, however, have also increased in numbers during the later years, while the number of 1.4-2 litres gasoline cars has decreased. Since the late 1990's small cars (< 0.8 l gasoline and <1.4 l. diesel) has slowly begun to penetrate the fleet.

There has been a considerable growth in the number of diesel light-duty vehicles from 1985 to 2006; the number of vehicles has however decreased somewhat after 2006.

For the truck-trailer and articulated truck combinations there is a tendency towards the use of increasingly larger trucks throughout the time period. The decline in fleet numbers for many of the truck categories in 2007/2008 and until 2009 is caused by the impact of the global financial crisis and the reflagging of Danish commercial trucks to companies based in the neighbouring countries.

The number of urban buses has been almost constant between 1985 and 2014. The sudden change in the level of coach numbers from 1994 to 1995 is due to uncertain fleet data.

The reason for the significant growth in the number of mopeds from 1994 to 2002 is the introduction of the so-called Moped 45 vehicle type. From 2004 onwards there is a gradual switch from 2-stroke to 4-stroke in new sales for this vehicle category. For motorcycles, the number of vehicles has grown in general throughout the entire 1985-2014 period. The increase is, however, most visible from the mid-1990s and onwards.

The vehicle numbers are summed up in layers for each year (Figure 3.3.37) by using the correspondence between layers and first year of registration:

$$N_{j,y} = \sum_{i=FYear(j)}^{LYear(j)} N_{i,y}$$
(1)

Where N = number of vehicles, j = layer, y = year, i = first year of registration.

Weighted annual mileages pr layer are calculated as the sum of all mileage driven pr first registration year divided by the total number of vehicles in the specific layer.

$$M_{j,y} = \frac{\sum_{i=FYear(j)}^{LYear(j)} N_{i,y} \cdot M_{i,y}}{\sum_{i=FYear(j)}^{LYear(j)} N_{i,y}}$$
(2)

Since 2006 economical incitements have been given to private vehicle owners to buy Euro 5 diesel passenger cars and vans in order to bring down the particulate emissions from diesel vehicles. The estimated sales between 2006 and 2010 have been examined by the Danish EPA and are included in the fleet data behind the Danish inventory (Winther, 2011).

For heavy duty trucks, there is a slight deviation from the strict correspondence between EU emission layers and first registration year.

In this case, specific Euro class information for most of the vehicles from 2001 onwards is incorporated into the fleet and mileage data model developed by Jensen (2015). For inventory years before 2001, and for vehicles with no Euro information the normal correspondence between layers and first year of registration is used.

Vehicle numbers and weighted annual mileages pr layer are shown in Annex 2.B.1 and 2.B.2 for 1985-2014. The trends in vehicle numbers pr layer are also shown in Figure 3.3.37. The latter figure shows how vehicles complying

with the gradually stricter EU emission levels (EURO 1-5, Euro I-VI etc.) have been introduced into the Danish motor fleet.

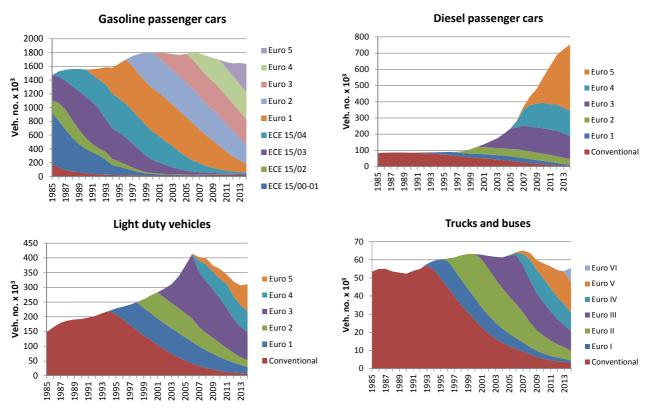


Figure 3.3.37 Layer distribution of vehicle numbers pr vehicle type in 1985-2014.

Emission legislation

For Euro 1-6 passenger cars and vans, the chassis dynamometer test cycle used in the EU for emission approval is the NEDC (New European Driving Cycle), see e.g. <u>www.dieselnet.com</u>. The test cycle is also used for fuel consumption measurements. The NEDC cycle consists of two parts, the first part being a 4-time repetition (driving length: 4 km) of the ECE test cycle. The latter test cycle is the so-called urban driving cycle⁴ (average speed: 19 km per h). The second part of the test is the run-through of the EUDC (Extra Urban Driving Cycle) test driving segment, simulating the fuel consumption under rural and highway driving conditions. The driving length of EUDC is 7 km at an average speed of 63 km pr h. More information regarding the fuel measurement procedure can be found in the EU-directive <u>80/1268/EØF</u>.

The NEDC test cycle is not adequately describing real world driving behavior, and as an effect, for diesel cars and vans, there is an increasing mismatch between the step wise lowered EU emission limits the vehicles comply with during the NEDC test cycle, and the more or less constant emissions from the same vehicles experienced during real world driving. In order to bridge this emission inconsistency gap a new test procedure for future Euro 6 vehicles, the so-called Euro 6c vehicles, the "World-Harmonized Light-Duty Vehicles Test Procedure" (WLTP), has been developed which simulates much more closely real world driving behavior. The new test procedure still awaits it's final adoption by the EU and the announcement of new legislative emission limits. This is expected to happen in September 2017.

⁴ For Euro 3 and on, the emission approval test procedure was slightly changed. The 40 s engine warm up phase before start of the urban driving cycle was removed.

For the new Euro 6c vehicles it has been decided that emission measurements must also be made with portable emission measurement systems (PEMS) during real traffic driving conditions with random acceleration and deceleration patterns. During the new Real Driving Emission (RDE) test procedure the emissions of NO_x are not allowed to exceed the existing (NEDC based) emission limits by more than 110 % by January 2017 for all new car models and by January 2019 for all new cars⁵. From January 2020 the NO_x emission not-to-exceed levels are adjusted downwards to 50 % for all new car models and by January 2021 for all new cars⁶. Implementation dates for vans are one year later.

In the road transport emission model, the dates for implementation of the Euro 6c technology is set to 1/9 2018 and 1/9 2019, for diesel cars and vans, respectively.

For NOx, VOC (NMVOC + CH4), CO and PM, the emissions from road transport vehicles have to comply with the different EU directives listed in Table 3.3.7. The emission directives distinguish between three vehicle classes according to vehicle reference mass⁷: Passenger cars and light duty trucks (<1305 kg), light duty trucks (1305-1760 kg) and light duty trucks (>1760 kg). The specific emission limits are shown in Annex 2.B.3.

For heavy-duty vehicles (trucks and buses), the emission limits are given in g pr kWh and the measurements are carried out for engines in a test bench, using the ECE R-49, EU ESC (European Stationary Cycle) and ETC (European Transient Cycle) test cycles, depending on the Euro norm and exhaust gas after-treatment system installed. For Euro VI engines the WHSC (World Harmonized Stationary Cycle) and WHTC (World Harmonized Transient Cycle) test cycles are used. For a description of the test cycles see e.g. www.dieselnet.com.

In terms of the sulphur content in the fuels used by road transportation vehicles, the EU directive 2003/17/EF describes the fuel quality standards agreed by the EU. In Denmark, the sulphur content in gasoline and diesel was reduced to 10 ppm in 2005, by means of a fuel tax reduction for fuels with 10 ppm sulphur contents.

⁵ For ambient test temperatures below 3 degrees Celcius, not-to-exceed emission limits are 60 % higher. For ambient test temperatures below minus 2 degrees Celcius the emission limits no longer apply.

⁶ For ambient test temperatures below 0 degrees Celcius, not-to-exceed emission limits are 60 % higher. For ambient test temperatures below minus 7 degrees Celcius the emission limits no longer apply.

⁷ Reference mass: net vehicle weight + mass of fuel and other liquids + 100 kg.

Vehicle category Emission layer EU directive First re						
Passenger cars (gasoline)	PRE ECE					
(g)	ECE 15/00-01	70/220 - 74/290	1972			
	ECE 15/02	77/102	1981			
	ECE 15/03	78/665	1982			
	ECE 15/04	83/351	1987			
	Euro I		1.10.19			
	Euro II		1.1.199			
	Euro III		1.1.200			
	Euro IV		1.1.200			
	Euro V	715/2007(692/2008)				
	Euro VI	715/2007(692/2008)				
	Euro VIc	459/2012				
Passenger cars (diesel and LPG)	Conventional	433/2012	1.9.201			
rassenger cars (dieser and LFG)	ECE 15/04	- 83/351	1987			
	ECE 15/04 Euro I		1.10.19			
	Euro I Euro II		1.1.19			
	Euro II					
			1.1.200			
	Euro IV		1.1.200			
	Euro V	715/2007(692/2008)				
	Euro VI	715/2007(692/2008)				
	Euro VIc	459/2012	1.9.201			
ight duty trucks (gasoline and diesel)	Conventional	-	107			
	ECE 15/00-01	70/220 - 74/290	1972			
	ECE 15/02	77/102	1981			
	ECE 15/03	78/665	1982			
	ECE 15/04	83/351	1987			
	Euro I		1.10.19			
	Euro II		1.10.19			
	Euro III		1.1.200			
	Euro IV		1.1.200			
	Euro V	715/2007(692/2008)	1.1.201			
	Euro VI	715/2007(692/2008)	1.9.201			
	Euro VIc	459/2012	1.9.201			
Heavy duty vehicles	Euro 0	88/77	1.10.19			
	Euro I	91/542	1.10.19			
	Euro II	91/542	1.10.19			
	Euro III	1999/96	1.10.20			
	Euro IV	1999/96	1.10.20			
	Euro V	1999/96	1.10.20			
	Euro VI	595/2009	1.10.20			
Mopeds	Conventional	-				
	Euro I	97/24	200			
	Euro II	2002/51	200			
	Euro III	2002/51	201			
	Euro IV	168/2013	201			
	Euro V	168/2013	202			
Motor cycles	Conventional		202			
	Euro I	97/24	200			
	Euro II	2002/51	200			
		2002/31	200			

Table 3.3.7 Overview of the existing LO emission directives for road transport vehicles	Table 3.3.7	Overview of the existing EL	J emission directives for road transport vehicles.
---	-------------	-----------------------------	--

Continued			
	Euro III	2002/51	2007
	Euro IV	168/2013	2017
	Euro V	168/2013	2021

a,b,c,d: Expert judgement suggest that Danish vehicles enter into the traffic before EU directive first registration dates. The effective inventory starting years are a: 1970; b: 1979; c: 1981; d: 1986.

e: The directive came into force in Denmark in 1991 (EU starting year: 1993).

Fuel consumption and emission factors

Continued

In practice, the emissions from vehicles in traffic are different from the legislation limit values and, therefore, the latter figures are not suited for total emission calculations. Besides difference in test versus real world driving behaviour, as discussed in the previous section, the emission limit values do not reflect the emission impact of cumulated mileage driven, and engine and exhaust after treatment maintenance levels for the vehicle fleet as a whole.

Therefore, in order to represent the Danish fleet and to support average national emission estimates, the selected emission factors must be derived from numerous emission measurements, using a broad range of real world driving patterns and a sufficient number of test vehicles. It is similarly important to have separate fuel consumption and emission data for cold-start emission calculations and gasoline evaporation (hydrocarbons).

The fuel consumption and emission factors used in the Danish inventory come from the COPERT IV (version 11) model. The source for these data is various European measurement programmes. In general the COPERT data are transformed into trip-speed dependent fuel consumption and emission factors for all vehicle categories and layers by using trip speeds as shown in Table 3.3.8. The factors are listed in Annex 2.B.4.

Adjustment for fuel efficient vehicles

In order to account for the trend towards more fuel efficient vehicles being sold in Denmark in the later years, fuel consumption factors for Euro 5 and Euro 6 passenger cars are estimated in the following way.

In the Danish fleet and mileage database kept by DTU Transport, the type approval fuel efficiency value based on the NEDC driving cycle (TA_{NEDC}) is registered for each single car. Further, a modified fuel efficiency value (TA_{i-nuse}) is calculated using TA_{NEDC} , vehicle weight and engine size as input parameters. The TA_{inuse} value better reflects the fuel consumption associated with the NEDC driving cycle under real ("inuse") traffic conditions (Emisia, 2012).

From 2006 up to last historical year represented by fleet data, the average CO_2 emission factor (by fleet number) is calculated for each year's new sold cars, based on the registered TA_{NEDC} values. Using the average CO_2 emission factor for the last historical year as starting point, the average emission factor for each year's new sold cars are linearly reduced, until the emission factor reaches 95 g CO_2 /km in 2020.

From 2006 up to last historical year, the average CO_2 emission factor (by fleet number) is also calculated for each year's new sold cars, and for each fuel type/engine size combination, based on TA_{NEDC} and TA_{inuse}.

The linear reduction of the average emission factor for each year's new sold cars is then used to reduce the CO_2 emission factors for new sold cars based on TA_{inuse} , between last historical year and 2020, for each of the fuel type/engine size fleet segments.

Subsequently for each layer and inventory year, CO_2 emission factors are calculated based on TA_{inuse} and weighted by total mileage. On the same time corresponding layer specific CO_2 factors from COPERT IV are set up valid for Euro 4+ vehicles in the COPERT model. The COPERT IV CO_2 factors are derived from fuel consumption factors included in the COPERT IV model (EMEP/EEA, 2013) that represent the COPERT test vehicles under the NEDC driving cycle in real world traffic (TA_{COPERT IV,inuse}).

In a final step the ratio between the layer specific CO_2 emission factors for the Danish fleet and the COPERT Euro IV vehicles under TA_{inuse} are used to scale the trip speed dependent fuel consumption factors provided by COPERT IV for Euro 4 layers onwards.

Adjustment for EGR, SCR and filter retrofits

In COPERT IV emission factors are available for Euro V heavy duty vehicles using EGR and SCR exhaust emission aftertreatment systems, respectively. The estimated new sales of Euro V diesel trucks equipped with EGR and SCR during the 2006-2010 time periods has been examined by Hjelgaard and Winther (2011). These inventory fleet data are used in the Danish inventory to calculate weighted emission factors for Euro V trucks in different size categories.

During the 2000's urban environmental zones have been established in Danish cities in order to bring down the particulate emissions from diesel fuelled heavy duty vehicles. Driving in these environmental zones prescribe the use of diesel particulate filters. The Danish EPA has provided the estimated number of Euro I-III urban buses and Euro II-III trucks and tourist buses which have been retrofitted with filters during the 2000's. These retrofit data are included in the Danish inventory by assuming that particulate emissions are lowered by 80 % compared with the emissions from the same Euro technology with no filter installed (Winther, 2011).

For all vehicle categories/technology levels not represented by measurements, the emission factors are produced by using reduction factors. The latter factors are determined by assessing the EU emission limits and the relevant emission approval test conditions, for each vehicle type and Euro class.

Adjustment for biofuel usage

A literature review carried out in the Danish research project REBECA revealed no significant changes in emission factors between neat gasoline and E5 gasoline-ethanol blends for the combustion related emission components; NO_x, CO and VOC (Winther et al., 2012). Hence, due to the current low ethanol content in today's road transport gasoline, no modifications of the neat gasoline based COPERT emission factors are made in the inventories in order to account for ethanol usage.

REBECa results published by Winther (2009) have shown that the emission impact of using diesel-biodiesel blends is very small at low biodiesel blend ratios. Consequently no bio fuel emission factor adjustments are needed for diesel vehicles as well. However, adjustment of the emission factors for diesel vehicles will be made if the biodiesel content of road transport diesel fuel increases to a more significant level in the future.

Deterioration factors

For three-way catalyst cars the emissions of NO_X, NMVOC and CO gradually increase due to catalyst wear and are, therefore, modified as a function of total mileage by the so-called deterioration factors. Even though the emission curves may be serrated for the individual vehicles, on average, the emissions from catalyst cars stabilise after a given cut-off mileage is reached due to OBD (On Board Diagnostics) and the Danish inspection and maintenance programme.

For each year, the deterioration factors are calculated pr first registration year by using deterioration coefficients and cut-off mileages, as given in EMEP/EEA (2013), for the corresponding layer. The deterioration coefficients are given for the two driving cycles: "Urban Driving Cycle" (UDF) and "Extra Urban Driving Cycle" (EUDF: urban and rural), with trip speeds of 19 and 63 km pr hour, respectively.

Firstly, the deterioration factors are calculated for the corresponding trip speeds of 19 and 63 km pr h in each case determined by the total cumulated mileage less than or exceeding the cut-off mileage. The Formulas 3 and 4 show the calculations for the "Urban Driving Cycle":

$$UDF = U_A \cdot MTC + U_B, \text{ MTC} < U_{\text{MAX}}$$
(3)

$$UDF = U_A \cdot U_{MAX} + U_B \text{, MTC} \ge U_{MAX}$$
(4)

where UDF is the urban deterioration factor, U_A and U_B the urban deterioration coefficients, MTC = total cumulated mileage and U_{MAX} urban cut-off mileage.

In the case of trip speeds below 19 km per hour the deterioration factor, DF, equals UDF, whereas for trip speeds exceeding 63 km per hour, DF=EUDF (Danish rural and highway trip speed; c.f. Table 3.3.6). For trip speeds between 19 and 63 km per hour (Danish urban trip speed; c.f. Table 3.3.6) the deterioration factor, DF, is found as an interpolation between UDF and EUDF. Secondly, the deterioration factors, one for each of the three road types, are aggregated into layers by taking into account vehicle numbers and annual mileage levels per first registration year:

$$DF_{j,y} = \frac{\sum_{i=FYear(j)}^{LYear(j)} DF_{i,y} \cdot N_{i,y} \cdot M_{i,y}}{\sum_{i=FYear(j)}^{LYear(j)} DF_{i,y} \cdot N_{i,y}}$$
(5)

where DF is the deterioration factor.

For N_2O and NH_3 , COPERT IV takes into account deterioration as a linear function of mileage for gasoline fuelled EURO 1-4 passenger cars and light duty vehicles. The level of emission deterioration also relies on the content

of sulphur in the fuel. The deterioration coefficients are given in EMEP/EEA (2013), for the corresponding layer. A cut-off mileage of 250.000 km is behind the calculation of the modified emission factors, and for the Danish situation the low sulphur level interval is assumed to be most representative.

Emissions and fuel consumption for hot engines

Emissions and fuel-use results for operationally hot engines are calculated for each year and for layer and road type. The procedure is to combine fuel consumption and emission factors (and deterioration factors for catalyst vehicles), number of vehicles, annual mileage levels and the relevant road-type shares given in Table 3.3.8. For non-catalyst vehicles this yields:

$$E_{j,k,y} = EF_{j,k,y} \cdot S_k \cdot N_{j,y} \cdot M_{j,y}$$
(6)

Here E = fuel consumption/emission, EF = fuel consumption/emission factor, S = road type share and k = road type.

For catalyst vehicles the calculation becomes:

$$E_{j,k,y} = DF_{j,k,y} \cdot EF_{j,k,y} \cdot S_k \cdot N_{j,y} \cdot M_{j,y}$$
(7)

Extra emissions and fuel consumption for cold engines

Extra emissions of NO_x , VOC, CH_4 , CO, PM, N_2O , NH_3 and fuel consumption from cold start are simulated separately. For SO_2 and CO_2 , the extra emissions are derived from the cold start fuel consumption results.

Each trip is associated with a certain cold-start emission level and is assumed to take place under urban driving conditions. The number of trips is distributed evenly across the months. First, cold emission factors are calculated as the hot emission factor times the cold:hot emission ratio. Secondly, the extra emission factor during cold start is found by subtracting the hot emission factor from the cold emission factor. Finally, this extra factor is applied on the fraction of the total mileage driven with a cold engine (the β -factor) for all vehicles in the specific layer.

The cold:hot ratios depend on the average trip length and the monthly ambient temperature distribution. The Danish temperatures for 2014 are given in Cappelen et al. (2015). For previous years, temperature data are taken from similar reports available from The Danish Meteorological Institute (www.dmi.dk). The cold:hot ratios are equivalent for gasoline fuelled conventional passenger cars and vans and for diesel passenger cars and vans, respectively, see EMEP/EEA (2013). For conventional gasoline and all diesel vehicles the extra emissions become:

$$CE_{j,y} = \beta \cdot N_{j,y} \cdot M_{j,y} \cdot EF_{U,j,y} \cdot (CEr - 1)$$
(8)

Where CE is the cold extra emissions, $\beta = \text{cold}$ driven fraction, CEr = Cold:Hot ratio.

For catalyst cars, the cold:hot ratio is also trip speed dependent. The ratio is, however, unaffected by catalyst wear. The Euro I cold:hot ratio is used for all future catalyst technologies. However, in order to comply with gradually stricter emission standards, the catalyst light-off temperature must be reached in even shorter periods of time for future EURO standards. Corre-

spondingly, the β -factor for gasoline vehicles is reduced step-wise for Euro II vehicles and their successors.

For catalyst vehicles the cold extra emissions are found from:

$$CE_{j,y} = \beta_{red} \cdot \beta_{EUROI} \cdot N_{j,y} \cdot M_{j,y} \cdot EF_{U,j,y} \cdot (CEr_{EUROI} - 1)$$
(9)

where β_{red} = the β reduction factor.

For CH₄, specific emission factors for cold driven vehicles are included in COPERT IV. The β and β_{red} factors for VOC are used to calculate the cold driven fraction for each relevant vehicle layer. The NMVOC emissions during cold start are found as the difference between the calculated results for VOC and CH₄.

For N_2O and NH_3 , specific cold start emission factors are also proposed by COPERT IV. For catalyst vehicles, however, just like in the case of hot emission factors, the emission factors for cold start are functions of cumulated mileage (emission deterioration). The level of emission deterioration also relies on the content of sulphur in the fuel. The deterioration coefficients are given in EMEP/EEA (2013), for the corresponding layer. For cold start, the cut-off mileage and sulphur level interval for hot engines are used, as described in the deterioration factors paragraph.

Evaporative emissions from gasoline vehicles

For each year, evaporative emissions of hydrocarbons are simulated in the forecast model as hot and warm running losses, hot and warm soak loss and diurnal emissions. The calculation approach is the same as in COPERT III. All emission types depend on RVP (Reid Vapour Pressure) and ambient temperature. The emission factors are shown in EMEP/EEA (2013).

Running loss emissions originate from vapour generated in the fuel tank while the vehicle is running. The distinction between hot and warm running loss emissions depends on engine temperature. In the model, hot and warm running losses occur for hot and cold engines, respectively. The emissions are calculated as annual mileage (broken down into cold and hot mileage totals using the β -factor) times the respective emission factors. For vehicles equipped with evaporation control (catalyst cars), the emission factors are only one tenth of the uncontrolled factors used for conventional gasoline vehicles.

$$R_{iv} = N_{iv} \cdot M_{iv} \cdot ((1 - \beta) \cdot HR + \beta \cdot WR)$$
(10)

Where R is running loss emissions and HR and WR are the hot and warm running loss emission factors, respectively.

In the model, hot and warm soak emissions for carburettor vehicles also occur for hot and cold engines, respectively. These emissions are calculated as number of trips (broken down into cold and hot trip numbers using the β -factor) times respective emission factors:

$$S_{j,y}^{\ C} = N_{j,y} \cdot \frac{M_{j,y}}{l_{trip}} \cdot ((1 - \beta) \cdot HS + \beta \cdot WS)$$
(11)

Where S^{C} is the soak emission, l_{trip} = the average trip length, and HS and WS are the hot and warm soak emission factors, respectively. Since all catalyst

vehicles are assumed to be carbon canister controlled, no soak emissions are estimated for this vehicle type. Average maximum and minimum temperatures pr month are used in combination with diurnal emission factors to estimate the diurnal emissions from uncontrolled vehicles $E^{d}(U)$:

$$E_{i,v}^{d}(U) = 365 \cdot N_{i,v} \cdot e^{d}(U)$$
(12)

Each year's total is the sum of each layer's running loss, soak loss and diurnal emissions.

Fuel consumption balance

The calculated fuel consumption in COPERT IV must equal the statistical fuel sale totals according to the UNFCCC and UNECE emissions reporting format. The statistical fuel sales for road transport are derived from the Danish Energy Authority data (see DEA, 2015).

For gasoline the DEA data for road transport are adjusted at first, in order to account for e.g. non-road and recreational craft fuel consumption, which are not directly stated in the statistics. Please refer to paragraph 1.1.4 for further information regarding the transformation of DEA fuel data. Next, the fuel and emission results for all gasoline vehicles are scaled with the percentage difference between the adjusted bottom-up gasoline fuel consumption obtained after step one and total gasoline fuel sold.

The DEA data for diesel consist of fuel sold in Denmark and used on Danish roads and fuel sold in Denmark and used abroad. The latter diesel fuel contribution is estimated by the Danish Ministry of Taxation (2015) based on studies on fuel price differences across borders, fuel discount for haulage contractors and fuel tanking behavior of truck and bus operators as well as private cars.

The amount of diesel fuel sold in Denmark and used abroad is allocated to trucks and coaches in a first step and emissions are scaled accordingly (Figure 3.3.38). Next, the percentage difference between the adjusted bottom-up diesel fuel consumption obtained after step one and total diesel fuel sold is used to scale fuel and emission results for all diesel vehicles regardless of vehicle category (Figure 3.3.39). The data behind the Figures 3.3.38 and 3.3.39 are also listed in Annex 2.B.8.

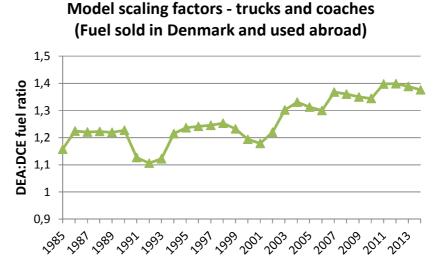


Figure 3.3.38 Fuel ratios (fuel and emission adjustment factors) for trucks and coaches: Bottom-up fuel consumption plus diesel used abroad vs bottom-up fuel consumption.

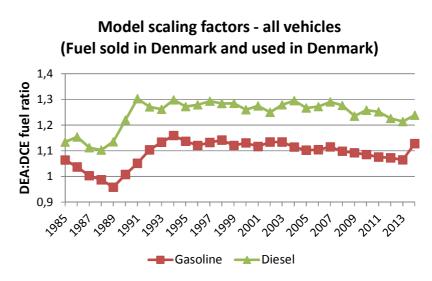


Figure 3.3.39 Gasoline and diesel fuel ratios (fuel and emission adjustment factors) regardless of vehicle category: Fuel sold and used in Denmark vs adjusted bottom-up fuel consumption

The reasons for the differences between DEA sales figures and bottom-up fuel estimates shown in Figure 3.3.39 are mostly due to a combination of the uncertainties related to COPERT IV fuel consumption factors, allocation of vehicle numbers in sub-categories, annual mileage, trip speeds and mileage splits for urban, rural and highway driving conditions.

The final fuel consumption and emission factors are shown in Annex 2.B.7 for 1985-2014. The total fuel consumption and emissions are shown in Annex 2.B.8, pr vehicle category and as grand totals, for 1985-2014 (and NFR format in Annex 2.B.16. In Annex 2.B.15, fuel consumption and emission factors as well as total emissions are given in CollectER format for 2014.

In Table 3.3.8, the aggregated emission factors for SO_2 , NO_X , NMVOC, CO, NH_3 , TSP and BC are shown in CollectER format for Danish road transport.

mark (20	· ·		F 14				c . 1r	0.11		
SNAP ID	Category	Mod	eFuel type	\$0	NO		factors ¹ [g p		TOD	
070404	D	Lieburgu	Die etherel	SO ₂	NOx	NMVOC	CO	NH ₃	TSP	BC
070101	Passenger cars	Highway	Bio ethanol	0.00	96.24 306.11	23.64 3.34	591.40	27.97	0.96	0.14 7.09
070101	Passenger cars	Highway	Biodiesel	0.00			8.22	0.79 0.79	8.91	
070101	Passenger cars	Highway Highway	Diesel	0.47	306.11	3.34	8.22	27.97	8.91 0.96	7.09 0.14
070101	Passenger cars		Gasoline	0.46	96.24	23.64	591.40			
070101	Passenger cars	Highway	LPG Big otheral	0.00	166.06	25.88	1124.38	8.84	10.04	1.69
070102	Passenger cars	Rural	Bio ethanol	0.00	83.54	27.32	464.81	25.94	0.94	0.14
070102 070102	Passenger cars	Rural Rural	Biodiesel Diesel	0.00 0.47	280.31 280.31	4.68 4.68	19.78 19.78	0.84 0.84	7.51 7.51	5.86 5.86
070102	Passenger cars		Gasoline	0.47	83.54	27.32	464.81	25.94	0.94	0.14
070102	Passenger cars	Rural Rural	LPG	0.48	181.62	38.36	458.87	25.94 3.95	14.45	2.43
070102	Passenger cars Passenger cars	Urban	Bio ethanol	0.00	115.01	234.59	2659.43	6.34	0.82	0.12
070103	_	Urban	Biodiesel	0.00	277.14	12.77	2037.43 52.07	0.54	12.60	9.67
070103	Passenger cars Passenger cars	Urban	Diesel	0.00	277.14	12.77	52.07	0.58	12.60	9.67 9.67
070103	Passenger cars	Urban	Gasoline	0.47	115.01	234.59	2659.43	6.34	0.82	9.07 0.12
070103	Passenger cars	Urban	LPG	0.40	94.66	91.08	737.14	2.86	12.03	2.02
070103	Light duty vehicles	Highway	Bio ethanol	0.00	141.12	16.75	495.63	22.59	12.00	0.13
070201	Light duty vehicles	Highway	Biodiesel	0.00	283.42	12.54	81.09	0.37	13.57	10.99
070201	Light duty vehicles	Highway	Diesel	0.00	283.42	12.54	81.09	0.37	13.57	10.99
070201	Light duty vehicles	Highway	Gasoline	0.46	141.12	16.75	495.63	22.59	1.19	0.13
070201	Light duty vehicles	Highway		0.00	186.17	28.88	1179.68	0.00	10.04	1.45
070201	Light duty vehicles	Rural	Bio ethanol	0.00	123.68	20.00	375.43	20.67	1.05	0.11
070202	Light duty vehicles	Rural	Biodiesel	0.00	285.89	13.95	68.18	0.39	10.85	8.72
070202	Light duty vehicles	Rural	Diesel	0.47	285.89	13.95	68.18	0.39	10.85	8.72
070202	Light duty vehicles	Rural	Gasoline	0.46	123.68	24.57	375.43	20.67	1.05	0.11
070202	Light duty vehicles	Rural	LPG	0.00	202.86	44.90	466.14	0.00	14.45	2.08
070203	Light duty vehicles	Urban	Bio ethanol	0.00	117.92	169.72	3285.36	4.23	0.66	0.08
070203	Light duty vehicles	Urban	Biodiesel	0.00	259.67	27.40	91.83	0.27	17.32	13.98
070203	Light duty vehicles	Urban	Diesel	0.47	259.67	27.40	91.83	0.27	17.32	13.98
070203	Light duty vehicles	Urban	Gasoline	0.46	117.92	169.72	3285.36	4.23	0.66	0.08
070203	Light duty vehicles	Urban	LPG	0.00	105.34	90.72	582.73	0.00	12.15	1.75
070301	Heavy duty vehicles	Highway	Bio ethanol	0.00	1037.78	474.61	7610.35	0.28	55.35	2.77
		• •								
070301	Heavy duty vehicles	Highway	Biodiesel	0.00	274.74	4.91	115.70	0.82	4.87	3.45
070301	Heavy duty vehicles	Highway	Diesel	0.47	274.74	4.91	115.70	0.82	4.87	3.45
070301	Heavy duty vehicles	Highway	Gasoline	0.46	1037.78	474.61	7610.35	0.28	55.35	2.77
070302	Heavy duty vehicles	Rural	Bio ethanol	0.00	1141.55	820.40	8371.39	0.30	60.88	3.04
070302	Heavy duty vehicles	Rural	Biodiesel	0.00	350.47	6.91	116.49	0.69	5.36	3.76
070302	Heavy duty vehicles	Rural	Diesel	0.47	350.47	6.91	116.49	0.69	5.36	3.76
070302	Heavy duty vehicles	Rural	Gasoline	0.46	1141.55	820.40	8371.39	0.30	60.88	3.04
070303	Heavy duty vehicles	Urban	Bio ethanol	0.00	456.62	696.09	7102.99	0.20	40.59	2.03
070303	Heavy duty vehicles	Urban	Biodiesel	0.00	487.88	10.96	133.86	0.43	6.68	4.61
070303	Heavy duty vehicles	Urban	Diesel	0.47	487.88	10.96	133.86	0.43	6.68	4.61
070303	Heavy duty vehicles	Urban	Gasoline	0.46	456.62	696.09	7102.99	0.20	40.59	2.03
070400	Mopeds	Urban	Bio ethanol	0.00	157.09	3968.03	6459.78	1.08	64.57	8.59
070400	Mopeds	Urban	Gasoline	0.46	157.09	3968.03	6459.78	1.08	64.57	8.59
070501	Motorcycles	Highway	Bio ethanol	0.00	272.30	603.96	10312.95	1.27	14.95	2.55
070501	Motorcycles	Highway	Gasoline	0.46	272.30	603.96	10312.95	1.27	14.95	2.55
070502	Motorcycles	Rural	Bio ethanol	0.00	192.73	608.18	9550.05	1.55	18.19	3.10
070502	Motorcycles	Rural	Gasoline	0.46	192.73	608.18	9550.05	1.55	18.19	3.10
070503	Motorcycles	Urban	Bio ethanol	0.00	118.68	751.34	9217.15	1.51	17.72	3.02
070503	Motorcycles	Urban	Gasoline	0.46	118.68	751.34	9217.15	1.51	17.72	3.02
1	Motorcycles	Ulball	Jasonie	0.40	110.00	701.04	7217.10	1.01	17.72	0.02

Table 3.3.8 Fuel-based emission factors for SO_2 , NO_X , NMVOC, CO, NH_3 , TSP and BC for road transport in Denmark (2014).

¹ References. SO₂: Country specific; NO_X, NMVOC, CO, NH₃, PM and BC: COPERT IV.

Non-exhaust particulate emissions from road transport

The TSP, PM_{10} and $PM_{2.5}$ emissions arising from tyre and brake wear (SNAP 0707) and road abrasion (SNAP 0708) are estimated for the years 2000-2014 as prescribed by the UNECE convention reporting format. The emissions are calculated by multiplying the total annual mileage pr vehicle category with the correspondent average emission factors for each source type. The calculation procedure is consistent with the COPERT IV model approach used to estimate the Danish national emissions coming from exhaust. A more thorough explanation of the calculations is given by Winther and Slentø (2010). Emission factors are taken from EMEP/EEA (2013) and specific Danish tyre wear data are gathered by Winther and Slentø (2010). The emission factors and total emissions for 2014 are shown in Annex 2.B.15.

Methodologies and references for other mobile sources

Other mobile sources are divided into several sub-sectors: sea transport, fishery, air traffic, railways, military, and working machinery and equipment in the sectors agriculture, forestry, industry and residential. The emission calculations are made in internal DCE models using the detailed method as described in the EMEP/EEA air pollutant emission inventory guidebook (EMEP/EEA, 2013) for air traffic, off-road working machinery and equipment, and ferries, while for the remaining sectors the simple method is used.

3.3.3 Activity data

Air traffic

The activity data used in the DCE emission model for aviation consists of air traffic statistics provided by the Danish Transport and Construction Agency and Copenhagen Airport. Fuel statistics for jet fuel consumption and aviation gasoline is obtained from the Danish energy statistics (DEA, 2015).

For 2001 onwards, the Danish Transport and Construction Agency provides data records per flight (city-pairs). Each flight record consists of e.g. ICAO codes for aircraft type, origin and destination airport, maximum takeoff mass (MTOM), flight call sign and aircraft registration number.

In the DCE model each aircraft type is paired with a representative aircraft type, for which fuel consumption and emission data exist in the EMEP/EEA databank. As a basis the type relation table is taken from the Eurocontrol AEM model which is the primary source for the present EMEP/EEA fuel consumption and emission data. Supplementary aircraft types are assigned to representative aircraft types based on the type relation table already established in the previous version of the DCE model (e.g. Winther, 2012).

Additional aircraft types not present in the type relation table are identified by using different aircraft dictionaries and internet look-ups. In order to select the most appropriate aircraft representative type, the main selection criterias are the identified aircraft type, aircraft maximum takeoff mass, engine types, and number of engines. During this sequence, small aircraft with piston engines using aviation gasoline are excluded from the calculations.

Annex 2.B.10 shows the correspondence table between the actual aircraft type codes and representative aircraft types behind the Danish inventory. Annex 2.B.10 also show the number of LTO's per representative aircraft type for domestic and international flights starting from Copenhagen Airport and

other airports, respectively⁸, in a time series from 2001-2014. The airport split is necessary to make due to the differences in LTO emission factors (cf. section 3.3.4).

The same type of LTO activity data for the flights for Greenland and the Faroe Islands are shown in Annex 2.B.10 also, further detailed into an origindestination airport matrix and having flight distances attached. This level of detail satisfies the demand from UNFCCC to provide precise documentation for the part of the inventory for the Kingdom of Denmark being outside the Danish mainland.

The ideal flying distance (great circle distance) between the city-pairs is calculated by DCE in a separate database. The calculation algorithm uses a global latitude/altitude coordinate table for airports. In cases when airport coordinates are not present in the DCE database, these are looked up on the internet and entered into the database accordingly.

For inventory years prior to 2001, detailed LTO/aircraft type statistics are obtained from Copenhagen Airport (for this airport only), while information of total takeoff numbers for other Danish airports is provided by the Danish Transport and Construction Agency. The assignment of representative aircraft types for Copenhagen Airport is done as described above. For the remaining Danish airports representative aircraft types are not directly assigned. Instead appropriate average assumptions are made relating to the fuel consumption and emission data part.

Figure 3.3.40 Most frequent domestic flying routes for large aircraft in Denmark.

Copenhagen Airport is the starting or end point for most of the domestic aviation made by large aircraft in Denmark (Figure 3.3.40; routes to Greenland/Faroe Islands are not shown). Even though many domestic flights not touching Copenhagen Airport are also reported in the flight statistics kept

⁸ Excluding flights for Greenland and the Faroe Islands. These flights are separately listed in Annex 2.B.10.

by the Danish Transport and Construction Agency, these flights, however, are predominantly made with small piston engine aircraft using aviation gasoline. Hence, the consumption of jet fuel by flights not using Copenhagen is merely marginal.

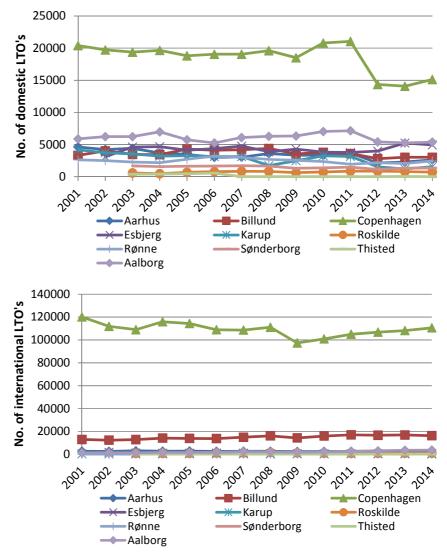


Figure 3.3.41 No. of LTO's for the most important airports in Denmark 2001-2014.

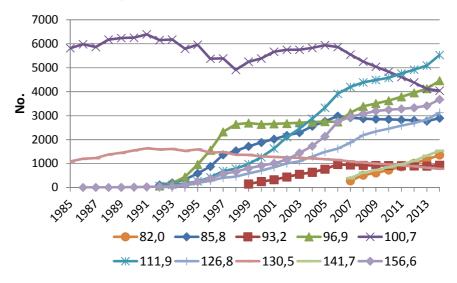
Figure 3.3.41 shows the number of domestic and international LTO's for Danish airports⁹, in a time series from 2001-2014.

Non-road working machinery and equipment

Non-road working machinery and equipment are used in agriculture, forestry and industry, for household/gardening purposes and for sailing purposes (recreational craft). Information on the number of different types of machines, their respective load factors, engine sizes and annual working hours has been provided by Winther et al. (2006) for the years until 2004. For later inventory years, supplementary stock data are annually provided by the Association of Danish Agricultural Machinery Dealers and the Association of Producers and Distributors of Fork Lifts in Denmark. The stock development from 1985-2014 for the most important types of machinery are shown in Figures 3.3.42-3.3.49 below. The stock data are also listed in Annex 2.B.11,

⁹ Flights for Greenland and the Faroe Islands are included under domestic in the figure.

together with figures for load factors, engine sizes and annual working hours. As regards stock data for the remaining machinery types, please refer to (Winther et al., 2006).


It is important to note that key experts in the field of industrial non-road activities assumes a significant decrease in the activities for 2009 due to the global financial crisis. This reduction is in the order of 25 % for 2009 for industrial non-road in general (pers. comm. Per Stjernqvist, Volvo Construction Equipment 2010). For fork lifts 5 % and 20 % reductions are assumed for 2008 and 2009, respectively (pers. comm. Peter H. Møller, Rocla A/S).

For agriculture, the total number of agricultural tractors and harvesters per year are shown in the Figures 3.3.42-3.3.43, respectively. The figures clearly show a decrease in the number of small machines, these being replaced by machines in the large engine-size ranges.

80000 70000 60000 50000 **9** 40000 30000 20000 10000 0 ~9⁶⁵ 1995 ~99¹ ~9⁹⁹ 2002 2003 2003 2001 2009 2012 2013 ્ઝે , 9°¹, 9°⁹ S) 63,4 67,1 70,8 78,3 59.7 -

Agricultural tractors (diesel) < 80 kW

Agricultural tractors (diesel) 80-170 kW

Agricultural tractors (diesel) >170 kW

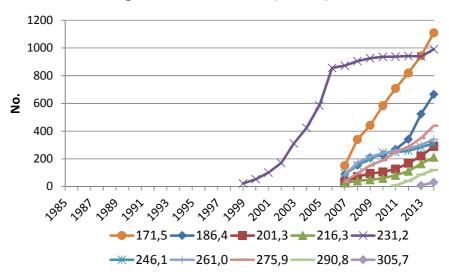
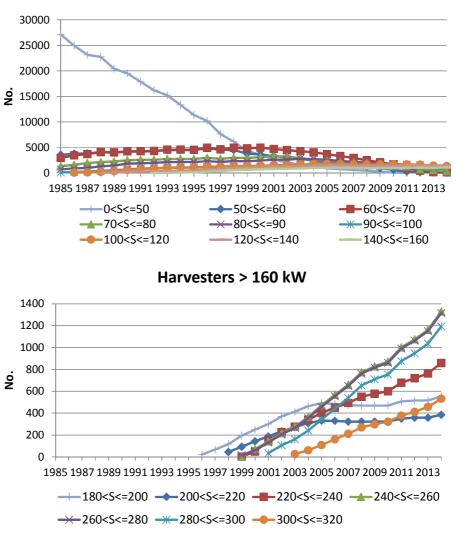



Figure 3.3.42 Total numbers in kW classes for tractors from 1985 to 2014.

Harvesters <= 160 kW

Figure 3.3.43 Total numbers in kW classes for harvesters from 1985 to 2014.

The tractor and harvester developments towards fewer vehicles and larger engines, shown in Figure 3.3.44, are very clear. From 1985 to 2014, tractor and harvester numbers decrease by around 39 % and 66 %, respectively, whereas the average increase in engine size for tractors is 49 %, and 262 % for harvesters, in the same time period.

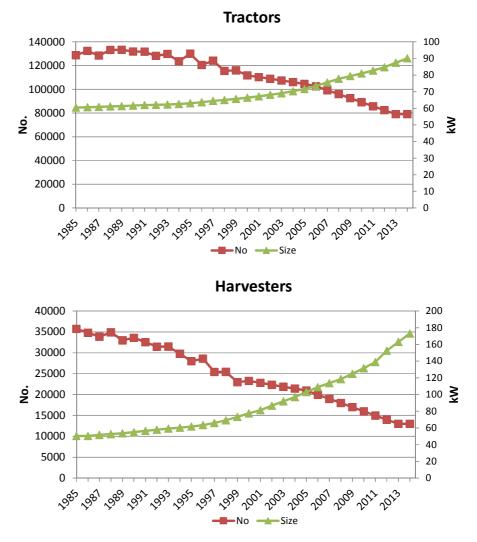


Figure 3.3.44 Total numbers and average engine size for tractors and harvesters from 1985 to 2014.

The most important machinery types for industrial use are different types of construction machinery and fork lifts. The Figures 3.3.45 and 3.3.46 show the 1985-2014 stock development for specific types of construction machinery and diesel fork lifts. Due to lack of data, the construction machinery stock for 1990 is used also for 1985-1989. For most of the machinery types there is an increase in machinery numbers from 1990 onwards, due to increased construction activities. It is assumed that track type excavators/wheel type loaders (0-5 tonnes), and telescopic loaders first enter into use in 1991 and 1995, respectively.

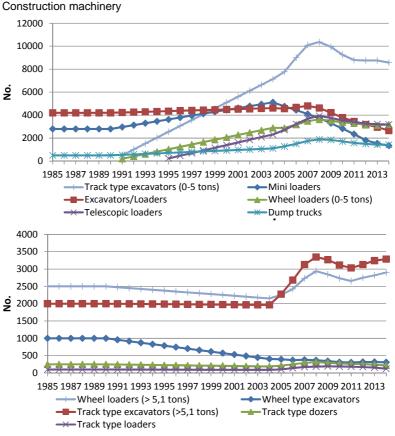


Figure 3.3.45 1985-2014 stock development for specific types of construction machinery.

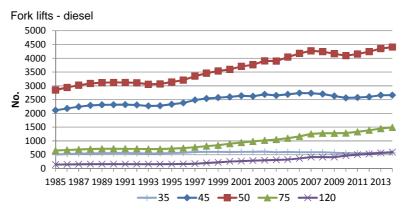
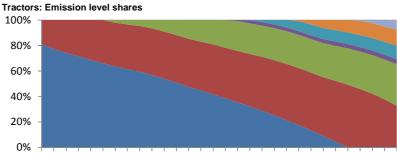
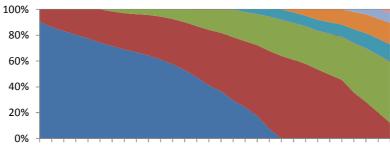
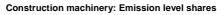



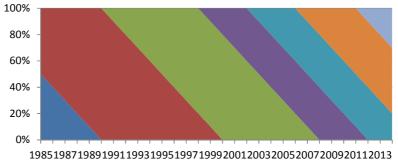
Figure 3.3.46 Total numbers of diesel fork lifts in kW classes from 1985 to 2014.

The emission level shares for tractors, harvesters, construction machinery and diesel fork lifts are shown in Figure 3.3.47, and present an overview of the penetration of the different pre-Euro engine classes, and engine stages complying with the gradually stricter EU stage I and II emission limits. The average lifetimes of 30, 25, 20 and 10 years for tractors, harvesters, fork lifts and construction machinery, respectively, influence the individual engine technology turn-over speeds.

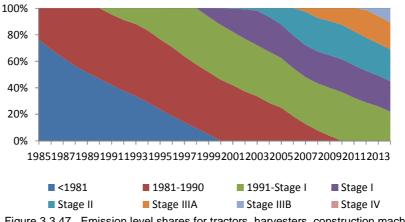

The EU emission directive Stage I and II implementation years relate to engine size, and for all four machinery groups the emission level shares for the specific size segments will differ slightly from the picture shown in Figure 3.3.47. Due to scarce data for construction machinery, the emission level penetration rates are assumed to be linear and the general technology turnover pattern is as shown in Figure 3.3.47.

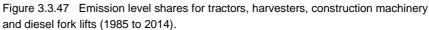
198519871989199119931995199719992001200320052007200920112013




Harvesters: Emission level shares

198519871989199119931995199719992001200320052007200920112013


■<1981	1981-1990	1991-Stage I	Stage I
Stage II	Stage IIIA	Stage IIIB	Stage IV



Diesel fork lifts: Emission level shares

The 1985-2014 stock development for the most important household and gardening machinery types is shown in Figure 3.3.48.

For lawn movers and cultivators, the machinery stock remains approximately the same for all years, whereas the stock figures for riders, chain saws, shrub clearers, trimmers and hedge cutters increase from 1990 onwards. The yearly stock increases, in most cases, become larger after 2000. The lifetimes for gasoline machinery are short and, therefore, there new emission levels (not shown) penetrate rapidly.

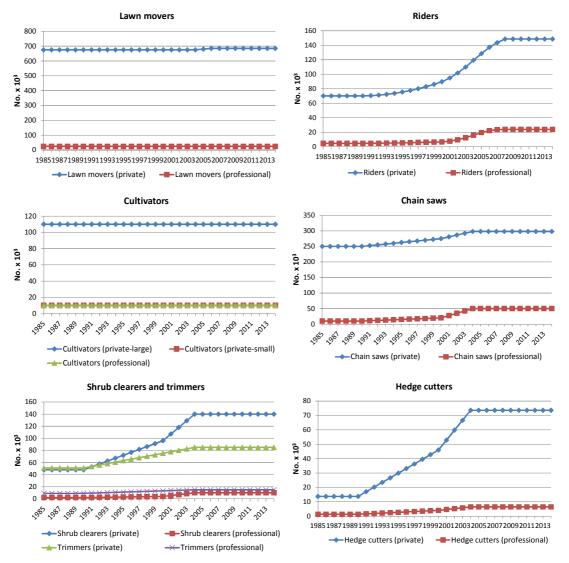


Figure 3.3.48 Stock developments 1985-2014 for the most important household and gardening machinery types.

Figure 3.3.49 shows the development in numbers of different recreational craft from 1985-2014. The 2004 stock data for recreational craft are repeated for 2005+, due to lack of data from the Danish Sailing Association.

For diesel boats, increases in stock and engine size are expected during the whole period, except for the number of motor boats (< 27 ft.) and the engine sizes for sailing boats (<26 ft.), where the figures remain unchanged. A decrease in the total stock of sailing boats (<26 ft.) by 21 % and increases in the total stock of yawls/cabin boats and other boats (<20 ft.) by around 25 % are expected. Due to a lack of information specific to Denmark, the shifting rate

from 2-stroke to 4-stroke gasoline engines is based on a German non-road study (IFEU, 2004).

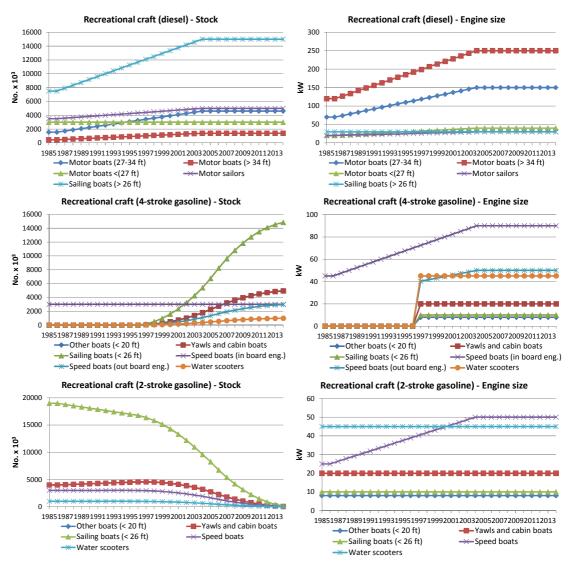


Figure 3.3.49 1985-2014 Stock and engine size development for recreational craft.

National sea transport

The methodology used to estimate the fuel consumption figures for national sea transport, based on fleet activity estimates for regional ferries, local ferries and other national sea transport is described by Winther (2008).

Table 3.3.9 lists the most important domestic ferry routes in Denmark in the period 1990-2014. For these ferry routes and the years 1990-2005, the following detailed traffic and technical data have been gathered by Winther (2008): Ferry name, year of service, engine size (MCR), engine type, fuel type, average load factor, auxiliary engine size and sailing time (single trip).

For 2006-2014, the above mentioned traffic and technical data for specific ferries have been provided by Kristensen (2015) in the case of Mols-Linien (Sjællands Odde-Ebeltoft, Sjællands Odde-Århus, Kalundborg-Århus), by Jørgensen (2015) for Færgen A/S (Køge-Rønne, Tårs-Spodsbjerg), by Jørgensen (2015) and Kruse (2015) for Samsø Rederi (Hou-Sælvig), by Mortensen (2015) for Færgeselskabet Læsø (Frederikshavn-Læsø) and by Møller for Ærøfærgerne (Svendborg-Ærøskøbing). For Esbjerg/Hanstholm/HirtshalsTorshavn traffic and technical data have been provided by Dávastovu (2010).

Table 5.5.9 Terry Toules comprised i	In the Damon Wenterly
Ferry service	Service period
Esbjerg-Torshavn	1990-1995, 2009+
Halsskov-Knudshoved	1990-1999
Hanstholm-Torshavn	1991-1992, 1999+
Hirtshals-Torshavn	2010
Hou-Sælvig	1990+
Hundested-Grenaa	1990-1996
Frederikshavn-Læsø	1990+
Kalundborg-Juelsminde	1990-1996
Kalundborg-Samsø	1990+
Kalundborg-Århus	1990+
Korsør-Nyborg, DSB	1990-1997
Korsør-Nyborg, Vognmandsruten	1990-1999
København-Rønne	1990-2004
Køge-Rønne	2004+
Sjællands Odde-Ebeltoft	1990+
Sjællands Odde-Århus	1999+
Svendborg-Ærøskøbing	1990+
Tårs-Spodsbjerg	1990+

Table 3.3.9 Ferry routes comprised in the Danish inventory.

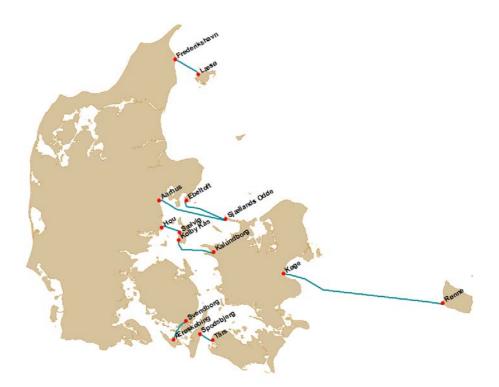


Figure 3.3.50 Domestic regional ferry routes in Denmark (2014).

The number of round trips per ferry route from 1990 to 2014 is provided by Statistics Denmark (2014), see Figure 3.3.51 (Esbjerg/Hanstholm/Hirtshals-Torshavn not shown). The traffic data are also listed in Annex 2.B.12, together with different ferry specific technical and operational data.

For each ferry, Annex 2.B.12 lists the relevant information as regards ferry route, name, year of service, engine size (MCR), engine type, fuel type, aver-

age load factor, auxiliary engine size and sailing time (single trip). There is a lack of historical traffic data for 1985-1989, and hence, data for 1990 is used for these years, to support the fuel consumption and emission calculations.

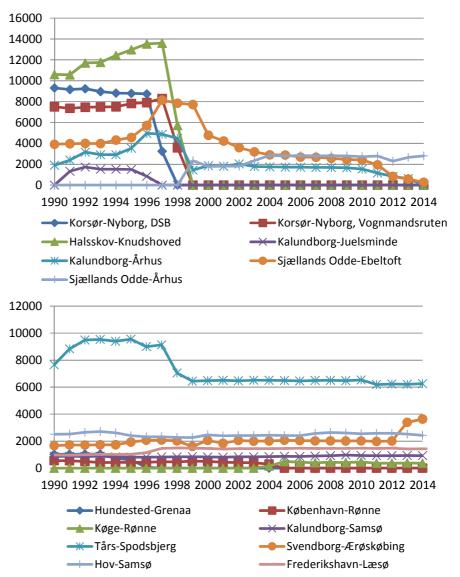


Figure 3.3.51 No. of round trips for the most important ferry routes in Denmark 1990-2014.

It is seen from Table 3.3.11 (and Figure 3.3.51) that several ferry routes were closed in the time period from 1996-1998, mainly due to the opening of the Great Belt Bridge (connecting Zealand and Funen) in 1997. Hundested-Grenaa and Kalundborg-Juelsminde was closed in 1996, Korsør-Nyborg (DSB) closed in 1997, and Halsskov-Knudshoved and Korsør-Nyborg (Vognmandsruten) was closed in 1998. The ferry line København-Rønne was replaced by Køge-Rønne in 2004 and from 1999 a new ferry connection was opened between Sjællands Odde and Århus.

For the local ferries, a bottom-up estimate of fuel consumption for 1996 has been taken from the Danish work in Wismann (2001). The latter project calculated fuel consumption and emissions for all sea transport in Danish waters in 1995/1996 and 1999/2000. In order to cover the entire 1990-2014 inventory period, the fuel figure for 1996 has been adjusted according to the developments in local ferry route traffic shown in Annex 2.B.12. Fuel sold for freight transport by Royal Arctic Line between Aalborg (Denmark) and Greenland and by Eim Skip - East route between Aarhus (Denmark) and Torshavn (Faroe Islands) are included under other national sea transport in the Danish inventories. In both cases all fuel is being bought in Denmark (Rasmussen, 2015 and Thorarensen, 2015).

For the remaining part of the traffic between two Danish ports, other national sea transport, bottom-up estimates for fuel consumption have been calculated for the years 1995 and 1999 by Wismann (2007). These fuel consumption estimates are used as activity data for the inventory years until 1995 and 1999 onwards. Interpolated figures are used for the inventory years 1996-1998.

The calculations use the database set up for Denmark in the Wismann (2001) study, with actual traffic data from the Lloyd's LMIS database (not including ferries). The database was split into three vessel types: bulk carriers, container ships, and general cargo ships; and five size classes: 0-1000, 1000-3000, 3000-10000, 10000-20000 and >20000 DTW. The calculations assume that bulk carriers and container ships use heavy fuel oil, and that general cargo ships use gas oil. For further information regarding activity data for local ferries and other national sea transport, please refer to Winther (2008).

The fleet activity data for regional ferries and the fleet activity based fuel consumption estimates for local ferries and other national sea transport replace the fuel based activity data, which originated directly from the DEA statistics.

Other sectors

The activity data for military, railways, international sea transport and fishery consists of fuel consumption information from DEA (2015). For international sea transport, the basis is in principle fuel sold in Danish ports for vessels with a foreign destination, as prescribed by the IPCC guidelines.

However, it must be noted that fuel sold for sailing activities between Denmark and Greenland/Faroe Islands are reported as international in the DEA energy statistics. Hence, for inventory purposes in order to follow the IPCC guidelines the bottom-up fuel estimates for the ferry routes Esbjerg/Hanstholm/Hirtshals-Torshavn, and fuel reports from Royal Arctic Line and Eim Skip is being subtracted from the fuel sales figures for international sea transport prior to inventory fuel input.

For fisheries, the calculation methodology described by Winther (2008) remains fuel based. However, the input fuel data differ from the fuel sales figures previously used. The changes are the result of further data processing of the DEA reported gas oil sales for national sea transport and fisheries, prior to inventory input. For years when the fleet activity estimates of fuel consumption for national sea transport (not including trips to Greenland/Faroe Islands) are smaller than DEA reported fuel sold for national sea transport, fuel is added to fisheries in the inventory. In the opposite case, fuel is being subtracted from the original DEA fisheries fuel sales figure in order to make up the final fuel consumption input for fisheries in the inventories. The updated fuel consumption time series for national sea transport lead, in turn, to changes in the energy statistics for fisheries (gas oil) and industry (heavy fuel oil), so the national energy balance can remain unchanged.

For all sectors, fuel consumption time series are given in Annex 2.B.14 for 2014 in CollectER format.

Emission legislation

For other modes of transport and non-road machinery, the engines have to comply with the emission legislation limits agreed by the EU and different UN organisations in terms of NO_x , CO, VOC and TSP emissions and fuel sulphur content. In terms of greenhouse gases, the emission legislation requirements for VOC influence the emissions of CH₄, the latter emission component forming a part of total VOC. Only for ships legislative limits for specific fuel consumption have been internationally agreed in order to reduce the emissions of CO₂.

For non-road working machinery and equipment, and recreational craft and railway locomotives/motor cars, the emission directives list specific emission limit values (g pr kWh) for CO, VOC, NO_x (or VOC + NO_x) and TSP, depending on engine size (kW for diesel, ccm for gasoline) and date of implementation (referring to engine market date).

For diesel, the directives 97/68 and 2004/26 (Table 3.3.10) relate to non-road machinery other than agricultural and forestry tractors and the directives have different implementation dates for machinery operating under transient and constant loads. The latter directive also comprises emission limits for railway machinery (Table 3.3.14). For tractors the relevant directives are 2000/25 and 2005/13 (Table 3.3.10).

For emission approval of the EU Stage I, II and IIIA engine technologies, emissions (and fuel consumption) measurements are made using the steady state test cycle ISO 8178 C1, referred to as the Non-Road Steady Cycle (NRSC), see e.g. <u>www.dieselnet.com</u>. In addition to the NRSC test, the newer Stage IIIB and IV (and optionally Stage IIIA) engine technologies are tested under more realistic operational conditions using the new Non-Road Transient Cycle (NRTC).

For gasoline, the directive 2002/88 distinguishes between hand-held (SH) and not hand-held (NS) types of machinery (Table 3.3.11). Emissions are tested using one of the specific constant load ISO 8178 test cycles (D2, G1, G2, G3) depending on the type of machinery.

In September 2014 the European Commission proposed a further tightening of the emission standards (Stage V) relevant for all types of non-road machinery (Commission proposal COM (2014) 581 final). The Stage V emission limits are listed in Annex 2.B.10.

Engine	Engine size	CO	VOC	$NO_{x}V$	OC+NO _x	PM	Diese	I machiner	у	Trac	ctors
category								Impleme	nt. date	EUI	mplement
	[kW]		[g pr kW	h]		EU Directive	Transient	Constant	Directive	Date
Stage I											
А	130<=P<560	5	1.3	9.2	-	0.54	97/68	1/1 1999	-	2000/25	1/7 2001
В	75<=P<130	5	1.3	9.2	-	0.7		1/1 1999	-		1/7 2001
С	37<=P<75	6.5	1.3	9.2	-	0.85		1/4 1999	-		1/7 2001
Stage II											
E	130<=P<560	3.5	1	6	-	0.2	97/68	1/1 2002	1/1 2007	2000/25	1/7 2002
F	75<=P<130	5	1	6	-	0.3		1/1 2003	1/1 2007		1/7 2003
G	37<=P<75	5	1.3	7	-	0.4		1/1 2004	1/1 2007		1/1 2004
D	18<=P<37	5.5	1.5	8	-	0.8		1/1 2001	1/1 2007		1/1 2002
Stage IIIA											
Н	130<=P<560	3.5	-	-	4	0.2	2004/26	1/1 2006	1/1 2011	2005/13	1/1 2006
I	75<=P<130	5	-	-	4	0.3		1/1 2007	1/1 2011		1/1 2007
J	37<=P<75	5	-	-	4.7	0.4		1/1 2008	1/1 2012		1/1 2008
К	19<=P<37	5.5	-	-	7.5	0.6		1/1 2007	1/1 2011		1/1 2007
Stage IIIB											
L	130<=P<560	3.5	0.19	2	-	0.025	2004/26	1/1 2011	-	2005/13	1/1 2011
М	75<=P<130	5	0.19	3.3	-	0.025		1/1 2012	-		1/1 2012
Ν	56<=P<75	5	0.19	3.3	-	0.025		1/1 2012	-		1/1 2012
Р	37<=P<56	5	-	-	4.7	0.025		1/1 2013	-		1/1 2013
Stage IV											
Q	130<=P<560	3.5	0.19	0.4	-	0.025	2004/26	1/1 2014		2005/13	1/1 2014
R	56<=P<130	5	0.19	0.4	-	0.025		1/10 2014			1/10 2014

Table 3.3.10 Overview of EU emission directives relevant for diesel fuelled non-road machinery.

Table 3.3.11 Overview of the EU Emission Directive 2002/88 for gasoline fueled non-road machinery

machinery.							
	Category	Engine size	CO	HC	NO _x	HC+NO _x	Implement.
		[ccm]	[g pr kWh]	[g pr kWh]	[g pr kWh]	[g pr kWh]	date
	Stage I						
Hand held	SH1	S<20	805	295	5.36	-	1/2 2005
	SH2	20= <s<50< td=""><td>805</td><td>241</td><td>5.36</td><td>-</td><td>1/2 2005</td></s<50<>	805	241	5.36	-	1/2 2005
	SH3	50= <s< td=""><td>603</td><td>161</td><td>5.36</td><td>-</td><td>1/2 2005</td></s<>	603	161	5.36	-	1/2 2005
Not hand held	SN3	100= <s<225< td=""><td>519</td><td>-</td><td>-</td><td>16.1</td><td>1/2 2005</td></s<225<>	519	-	-	16.1	1/2 2005
	SN4	225= <s< td=""><td>519</td><td>-</td><td>-</td><td>13.4</td><td>1/2 2005</td></s<>	519	-	-	13.4	1/2 2005
	Stage II						
Hand held	SH1	S<20	805	-	-	50	1/2 2008
	SH2	20= <s<50< td=""><td>805</td><td>-</td><td>-</td><td>50</td><td>1/2 2008</td></s<50<>	805	-	-	50	1/2 2008
	SH3	50= <s< td=""><td>603</td><td>-</td><td>-</td><td>72</td><td>1/2 2009</td></s<>	603	-	-	72	1/2 2009
Not hand held	SN1	S<66	610	-	-	50	1/2 2005
	SN2	66= <s<100< td=""><td>610</td><td>-</td><td>-</td><td>40</td><td>1/2 2005</td></s<100<>	610	-	-	40	1/2 2005
	SN3	100= <s<225< td=""><td>610</td><td>-</td><td>-</td><td>16.1</td><td>1/2 2008</td></s<225<>	610	-	-	16.1	1/2 2008
	SN4	225= <s< td=""><td>610</td><td>-</td><td>-</td><td>12.1</td><td>1/2 2007</td></s<>	610	-	-	12.1	1/2 2007

For recreational craft, Directive 2003/44 comprises the Stage I emission legislation limits for diesel engines, and for 2-stroke and 4-stroke gasoline engines, respectively. The CO and VOC emission limits depend on engine size (kW) and the inserted parameters presented in the calculation formulas in Table 3.3.12. For NO_x, a constant limit value is given for each of the three engine types. For TSP, the constant emission limit regards diesel engines only. In Table 3.3.13 the Stage II emission limits are shown for recreational craft. CO and HC+NOx limits are provided for gasoline engines depending on the rated engine power and the engine type (stern-drive vs. outboard) while CO, HC+NOx, and particulate emission limits are defined for Compression Ignition (CI) engines depending on the rated engine power and the swept volume.

Table 3.3.12 Ove	rview of the	EU Emi	ssion Dire	ective 2	2003/44	for recre	eational	craft.	
Engine type	Impl. date	CO=A+B/P ⁿ			HC=A+B/P ⁿ			NOx	TSP
		А	В	n	А	В	n		
2-stroke gasoline	1/1 2007	150.0	600.0	1.0	30.0	100.0	0.75	10.0	-
4-stroke gasoline	1/1 2006	150.0	600.0	1.0	6.0	50.0	0.75	15.0	-
Diesel	1/1 2006	5.0	0.0	0	1.5	2.0	0.5	9.8	1.0

Table 3.3.13	Overview of the EU Emission Directive 2013/53 for recreational craft.
Diesel engine	8

Swept Volume, SV	Rated Engine Power, P_N	Implement date	CO	HC + NO _x	PM
l/cyl.	kW		g/kWh	g/kWh	g/kWh
SV < 0.9	P _N < 37				
	37 <= P _N < 75 (*)	18/1 2017	5	4.7	0.30
	75 <= P _N < 3 700	18/1 2017	5	5.8	0.15
0.9 <= SV < 1.2	P _N < 3 700	18/1 2017	5	5.8	0.14
1.2 <= SV < 2.5		18/1 2017	5	5.8	0.12
2.5 <= SV < 3.5		18/1 2017	5	5.8	0.12
3.5 <= SV < 7.0		18/1 2017	5	5.8	0.11
Gasoline engines					
Engine type	Rated Engine Power, P_N		СО	HC + NO _x	PM
	kW		g/kWh	g/kWh	g/kWh
Stern-drive and inboard	P _N <= 373	18/1 2017	75	5	-
engines	373 <= P _N <= 485	18/1 2017	350	16	-
	P _N > 485	18/1 2017	350	22	-
Outboard engines and	P _N <= 4.3	18/1 2017	500 – (5.0 x P _N)	15.7 + (50/PN ^{0.9})	-
PWC engines (**)	4.3 <= P _N <= 40	18/1 2017	500 – (5.0 x P _N)	15.7 + (50/PN ^{0.9})	-
	P _N > 40	18/1 2017	300		-

(*) Alternatively, this engine segment shall not exceed a PM limit of 0.2 g/kWh and a combined HC + NO_x limit of 5.8 g/kWh.

(**) Small and medium size manufacturers making outboard engines <= 15 kW have until 18/1 2020 to comply.

Table 3.3.14	Overview of the EU	Emission Directive 2004/26 for railway locomotives and motorcars.
10010 0.0.11		Enilosion Birocaro 200 il 20 for raintay recomenter of and meteroaro.

	Engine size [kW]		CO	HC	NO _x	HC+NO _x	PM	Implement.
			[g pr kWh] [g	pr kWh] [g pr kWh]	[g pr kWh]	[g pr kWh]	date
Locomotives	Stage IIIA							
	130<=P<560	RL A	3.5	-	-	4	0.2	1/1 2007
	560 <p< td=""><td>RH A</td><td>3.5</td><td>0.5</td><td>6</td><td>-</td><td>0.2</td><td>1/1 2009</td></p<>	RH A	3.5	0.5	6	-	0.2	1/1 2009
	2000<=P and piston	RH A	3.5	0.4	7.4	-	0.2	1/1 2009
	displacement >= 5 l/cy	4.						
	Stage IIIB	RB	3.5	-	-	4	0.025	1/1 2012
Motor cars	Stage IIIA							
	130 <p< td=""><td>RC A</td><td>3.5</td><td>-</td><td>-</td><td>4</td><td>0.2</td><td>1/1 2006</td></p<>	RC A	3.5	-	-	4	0.2	1/1 2006
	Stage IIIB							
	130 <p< td=""><td>RC B</td><td>3.5</td><td>0.19</td><td>2</td><td>-</td><td>0.025</td><td>1/1 2012</td></p<>	RC B	3.5	0.19	2	-	0.025	1/1 2012

Aircraft engine emissions of NO_x, CO, VOC and smoke are regulated by ICAO (International Civil Aviation Organization). The engine emission certification standards are contained in Annex 16 — Environmental Protection, Volume II — Aircraft Engine Emissions to the Convention on International Civil Aviation (ICAO Annex 16, 2008, plus amendments). The emission standards relate to the total emissions (in grams) from the so-called LTO (Landing and Take Off) cycle divided by the rated engine thrust (kN). The ICAO LTO cycle contains the idealised aircraft movements below 3000 ft (915 m) during approach, landing, airport taxiing, take off and climb out.

For smoke all aircraft engines manufactured from 1 January 1983 have to meet the emission limits agreed by ICAO. For NO_x , CO, VOC The emission legislation is relevant for aircraft engines with a rated engine thrust larger than 26.7 kN. In the case of CO and VOC, the ICAO regulations apply for engines manufactured from 1 January 1983.

For NO_x, the emission regulations fall in five categories

- 1) For engines of a type or model for which the date of manufacture of the first individual production model was before 1 January 1996, and for which the production date of the individual engine was before 1 January 2000.
- 2) For engines of a type or model for which the date of manufacture of the first individual production model is on or after 1 January 1996, or for individual engines with a production date on or after 1 January 2000.
- 3) For engines of a type or model for which the date of manufacture of the first individual production model is on or after 1 January 2004.
- 4) For engines of a type or model for which the date of manufacture of the first individual production model is on or after 1 January 2008, or for individual engines with a production date on or after 1 January 2013.
- 5) For engines of a type or model for which the date of manufacture of the first individual production model is on or after 1 January 2014.

The regulations published by ICAO are given in the form of the total quantity of pollutants (D_p) emitted in the LTO cycle divided by the maximum sea level thrust (F_{oo}) and plotted against engine pressure ratio at maximum sea level thrust.

The limit values for NO_x are given by the formulae in Table 3.3.15.

	Engines first pro-	Engines first pro-	Engines for which th	e Engines first produce	d Engines for which the
	duced before	duced on or after	date of manufacture	of on or after 1.1.2008	& date of manufacture o
	1.1.1996 & for en-	1.1.1996 & for en-	the first individual pro	 for engines manufac 	- the first individua
	gines manufactured	gines manufactured	duction model was on o	or tured on or afte	r production model was
	before 1.1.2000	on or after 1.1.2000	after 1 January 200	4 1.1.201	3 on or after 1.1.2014
Applies to en-	$Dp/F_{oo} = 40 + 2\pi_{oo}$	$Dp/F_{oo} = 32 + 1.6\pi_{oo}$			
gines >26.7 kN					
Engines of pressu	re ratio less than 30				
Thrust more than			Dp/F₀₀ = 19 + 1.6π	Dp/F _{oo} = 16.72 ·	+ 7.88 + 1.4080π _o
89 kN				1.4080π.	0
Thrust between			Dp/F _{oo} = 37.572 + 1.6π	$Dp/F_{oo} = 38.54862$	+ Dp/F ₀₀ = 40.052 +
26.7 kN and not			- 0.208F	οο (1.6823ποο) ·	–1.5681π _{oo} - 0.3615F _{oo} ·
more than 89 kN				(0.2453F ₀₀) ·	– 0.0018 π ₀₀ x F ₀
				(0.00308π _{oo} F _{oo})
Engines of pressu	re ratio more than 30 a	and less than 62.5 (10)4.7)		
Thrust more than			$Dp/F_{oo} = 7+2.0\pi_{oo}$	$Dp/F_{oo} = -1.04+$	
89 kN				(2.0*π _{oo})	
Thrust between			$Dp/F_{oo} = 42.71$	$Dp/F_{oo} = 46.1600 +$	
26.7 kN and not			+1.4286π₀₀ -	(1.4286π _{oo}) –	
more than 89 kN			$0.4013F_{oo}$	(0.5303F ₀₀) –	
			$+0.00642\pi_{00}F_{00}$	(0.00642π _{oo} F _{oo})	
Engines with press	sure ratio 62.5 or more	•			
Engines with			$Dp/F_{oo} = 32+1.6\pi_{oo}$	$Dp/F_{oo} = 32+1.6\pi_{o}$	0
pressure ratio					
82.6 or more					
Engines of pressu	re ratio more than 30 a	and less than (104.7)			
Thrust more than					$Dp/F_{oo} = -9.88 + 2.0\pi_{o}$
89 kN					
Thrust between					Dp/F _{oo} = 41.9435 +
26.7 kN and not					1.505π₀₀ - 0.5823F₀₀ +
more than 89 kN					0.005562π _∞ x F _∞
Engines with press	sure ratio 104.7 or moi	e			$Dp/F_{oo} = 32 + 1.6\pi_{o}$
Source: Internation	nal Standards and Rec	commended Practices	s, Environmental Protec	ction, ICAO Annex 16 Vo	olume II, 3rd edition

Table 3.3.13 Current certification infinits for NO_X for turbo jet and turbo fair engines	Table 3.3.15	Current certification limits for NO _x for turbo jet and turbo fan engines.
---	--------------	---

Source: International Standards and Recommended Practices, Environmental Protection, ICAO Annex 16 Volume II, 3rd edition July 2008, plus amendments: Amendment 7 (17 November 2011), Amendment 8 (July 2014) where:

 D_p = the sum of emissions in the LTO cycle in g.

 F_{oo} = thrust at sea level take-off (100 %).

 π_{oo} = pressure ratio at sea level take-off thrust point (100 %).

The equivalent limits for HC and CO are $D_p/F_{oo} = 19.6$ for HC and $D_p/F_{oo} = 118$ for CO (ICAO Annex 16 Vol. II paragraph 2.2.2). Smoke is limited to a regulatory smoke number = 83 (F_{oo})^{-0.274} or a value of 50, whichever is the lower.

A further description of the technical definitions in relation to engine certification as well as actual engine exhaust emission measurement data can be found in the ICAO Engine Exhaust Emission Database. The latter database is accessible from "http://www.easa.europa.eu" hosted by the European Aviation Safety Agency (EASA).

Marpol 73/78 Annex VI agreed by IMO (International Maritime Organisation) concerns the control of NO_x emissions (Regulation 13 plus amendments) and SO_x and particulate emissions (Regulation 14 plus amendments) from ships (DNV, 2009). Recently the so called Energy Efficiency Design In-

dex (EEDI) fuel efficiency regulations for new built ships was included in Chapter 4 of Annex VI in the Marpol convention for the purpose of controlling the CO_2 emissions from ships (Lloyd's Register, 2012).

The baseline NO_x emission regulation of Annex VI apply for diesel engines with a power output higher than 130 kW, which are installed on a ship constructed on or after 1 January 2000 and diesel engines with a power output higher than 130 kW which undergo major conversion on or after 1 January 2000.

The baseline NO_x emission limits for ship engines in relation to their rated engine speed (n) given in RPM (Revolutions Per Minute) are the following:

- 17 g pr kWh, n < 130 RPM
- 45 x n-0.2 g pr kWh, $130 \le n < 2000 \text{ RPM}$
- 9.8 g pr kWh, $n \ge 2000 \text{ RPM}$

The further amendment of Annex VI Regulation 13 contains a three tiered approach in order to strengthen the emission standards for NO_x . The three tier approach comprises the following:

- Tier I: Diesel engines (> 130 kW) installed on a ship constructed on or after 1 January 2000 and prior to 1 January 2011 (initial regulation).
- Tier II: Diesel engines (> 130 kW) installed on a ship constructed on or after 1 January 2011.
- Tier III¹⁰: Diesel engines (> 130 kW) installed on a ship constructed on or after 1 January 2016.

The three tier NOx emission limit functions are shown in Table 3.3.16.

	NO _x limit	RPM (n)
Tier I	17 g pr kWh	n < 130
	45 [·] n-0.2 g pr kWh	130 ≤ n < 2000
	9,8 g pr kWh	n ≥ 2000
Tier II	14.4 g pr kWh	n < 130
	44 [·] n-0.23 g pr kWh	130 ≤ n < 2000
	7.7 g pr kWh	n ≥ 2000
Tier III	3.4 g pr kWh	n < 130
	9 [.] n-0.2 g pr kWh	130 ≤ n < 2000
	2 g pr kWh	n ≥ 2000

Table 3.3.16 Tier I-III NOx emission limits for ship engines in MARPOL Annex VI.

Further, the NO_x Tier I limits are to be applied for existing engines with a power output higher than 5000 kW and a displacement per cylinder at or above 90 litres, installed on a ship constructed on or after 1 January 1990 but prior to 1 January 2000.

In relation to the sulphur content in heavy fuel and marine gas oil used by ship engines, Table 3.3.17 shows the EU and IMO (Regulation 14 plus amendments) legislation in force for SECA (Sulfur Emission Control Area) areas and outside SECA's.

¹⁰ For ships operating in a designated Emission Control Area. Outside a designated Emission Control Area, Tier II limits apply.

Legislation			leavy fuel oil	Gas oil		
		S- %	Implement. date	S- %	Implement. date	
			(day/month/year)		(day/month/year)	
EU-directive 93/12		None		0.2 ¹	01.10.1994	
EU-directive 1999/32		None		0.2	01.01.2000	
EU-directive 2005/33 ²	SECA - Baltic sea	1.5	11.08.2006	0.1	01.01.2008	
	SECA - North sea	1.5	11.08.2007	0.1	01.01.2008	
	Outside SECA's	None		0.1	01.01.2008	
MARPOL Annex VI	SECA – Baltic sea	1.5	19.05.2006			
	SECA - North sea	1.5	21.11.2007			
	Outside SECA	4.5	19.05.2006			
MARPOL Annex VI	SECA's	1	01.03.2010			
amendments						
	SECA's	0.1	01.01.2015			
	Outside SECA's	3.5	01.01.2012			
	Outside SECA's	0.5	01.01.2020 ³			

T-61-0047	Opposite the state of the second seco	
Table 3.3.17	Current legislation in relation to marine fuel qu	ianty.

¹ Sulphur content limit for fuel sold inside EU.

² From 1.1.2010 fuel with a sulphur content higher than 0.1 % must not be used in EU ports for ships at berth exceeding two hours.

³ Subject to a feasibility review to be completed no later than 2018. If the conclusion of such a review becomes negative the effective date would default 1 January 2025.

For non-road machinery, the EU directive 2003/17/EC gives a limit value of 10 ppm sulphur in diesel (from 2011).

Emission factors

The SO_2 emission factors are fuel related, and rely on the sulphur contents given in the relevant EU fuel directives or in the Danish legal announcements. However, for jet fuel the default factor from IPCC (1996) is used. Road transport diesel is assumed to be used by engines in military and railways, and road transport gasoline is assumed to be used by non-road working machinery and recreational craft. Hence, these types of machinery have the same SO_2 emission factors, as for road transport.

For all mobile sources, the emission factor source for BC, NH_3 , heavy metals and PAH is the EMEP/EEA guidebook (EMEP/EEA, 2013). The heavy metal emission factors for road transport and other mobile sources except national sea transport and fisheries originate from Winther and Slentø (2010). For civil aviation jet fuel, no heavy metal emission factors are proposed due to lack of data.

In the case of military ground equipment, aggregated emission factors for gasoline and diesel are derived from road traffic emission simulations. For piston engine aircraft using aviation gasoline, aggregated emission factors for conventional cars are used.

For railways, specific Danish measurements from the Danish State Railways (DSB) (Delvig, 2015) are used to calculate the emission factors of NO_x , VOC, CO and TSP, and a NMVOC/CH₄ split is made based on expert judgment.

For agriculture, forestry, industry, household gardening and recreational craft, the NO_x, VOC, CO and TSP emission factors are derived from various European measurement programmes; see IFEU (2004, 1999) and Winther et al. (2006). The NMVOC/CH₄ split is taken from IFEU (1999).

For national sea transport and fisheries, the NO_x emission factors predominantly come from the engine manufacturer MAN Diesel & Turbo, as a function of engine production year. The CO, VOC and TSP emission factors come from the Danish TEMA2010 emission model (Trafikministeriet, 2010), whereas the PM_{10} and $PM_{2.5}$ size fractions are obtained from MAN Diesel & Turbo.

Specifically for the ferries used by Mols Linjen new NO_x , VOC and CO emission factors are provided by Kristensen (2008), originating from measurement results by Hansen et al. (2004), Wismann (1999) and PHP (1996). Kristensen (2013) has provided complimentary emission factor data for new ferries.

For ship engines VOC/CH₄ splits are taken from EMEP/EEA (2013), and all emission factors are shown in Annex 2.B.13.

The source for aviation (jet fuel) emission factors is the EMEP/EEA guidebook (EMEP/EEA, 2013). For a number of different representative aircraft types, the EMEP/EEA guidebook comprises fuel flow and NO_x, CO and VOC emission indices for the four LTO modes and distance based emission factors for cruise. For Auxiliary power units (APU), ICAO (2011) is the data source for APU load specific NO_x, CO and VOC emission factors for different APU aircraft groups to be linked with the different representative aircraft types. VOC/CH₄ splits for aviation are taken from EMEP/EEA (2013).

For all sectors, emission factors are given in CollectER format in Annex 2.B.15 for 2014. Table 3.3.19 shows the emission factors for SO_2 , NO_X , NMVOC, CO, NH₃, TSP and BC in CollectER format used to calculate the emissions from other mobile sources in Denmark.

Factors for deterioration, transient loads and gasoline evaporation for nonroad machinery

The emission effects of engine wear are taken into account for diesel and gasoline engines by using the so-called deterioration factors. For diesel engines alone, transient factors are used in the calculations, to account for the emission changes caused by varying engine loads. The evaporative emissions of NMVOC are estimated for gasoline fuelling and tank evaporation. The factors for deterioration, transient loads and gasoline evaporation are taken from IFEU (2004, 1999, 2014), and are shown in Annex 2.B.10. For more details regarding the use of these factors, please refer to paragraph 3.1.4 or Winther et al. (2006).

	Emission factors ¹ [g pr GJ]								
SNAP ID	Category	Fuel type	SO ₂	NO _X	NMVOC	CO	NH ₃	TSP	BC
080100	Military	AvGas	22.99	859.00	1242.60	6972.00	1.60	10.00	1.50
080100	Military	Diesel	0.44	307.93	8.56	76.37	0.66	8.29	6.35
080100	Military	Gasoline	0.44	99.40	137.65	1286.43	20.28	1.46	0.21
080100	Military	Jet fuel	22.99	250.57	24.94	229.89	0.00	1.16	0.56
080200	Railways	Diesel	0.47	655.00	47.19	98.00	0.20	18.00	11.70
080300	Recreational craft	Diesel	46.84	749.85	134.63	384.63	0.17	82.68	30.59
080300	Recreational craft	Gasoline	0.46	585.12	504.91	8311.47	0.11	6.52	0.33
080402	National sea traffic	Diesel	46.84	1247.65	38.31	160.25	0.00	21.55	6.68
080402	National sea traffic	Residual oil	489.00	1915.54	63.68	208.36	0.00	43.98	5.28
080403	Fishing	Diesel	46.84	1300.29	58.09	186.29	0.00	21.55	6.68
080404	International sea traffic	Diesel	46.84	1588.62	58.47	190.49	0.00	21.55	6.68
080404	International sea traffic	Residual oil	489.00	2118.11	64.35	209.65	0.00	43.98	5.28
080501	Air traffic, Dom. < 3000 ft.	AvGas	22.83	859.00	1242.60	6972.00	1.60	10.00	1.50
080501	Air traffic, Dom. < 3000 ft.	Jet fuel	22.99	301.08	16.82	164.02	0.00	2.03	1.02
080502	Air traffic, Int. < 3000 ft.	AvGas	22.83	859.00	1242.60	6972.00	1.60	10.00	1.50
080502	Air traffic, Int. < 3000 ft.	Jet fuel	22.99	308.16	19.03	188.36	0.00	2.39	1.04
080503	Air traffic, Dom. > 3000 ft.	Jet fuel	22.99	368.50	6.79	99.67	0.00	2.03	1.01
080504	Air traffic, Int. > 3000 ft.	Jet fuel	22.99	314.32	6.29	75.15	0.00	4.14	1.49
080600	Agriculture	Diesel	0.47	449.71	43.75	280.91	0.18	33.86	21.24
080600	Agriculture	Gasoline	0.46	108.75	1155.09	22096.03	1.46	29.96	1.50
080700	Forestry	Diesel	0.47	290.98	24.22	200.60	0.18	20.06	15.17
080700	Forestry	Gasoline	0.46	54.79	3754.36	17915.98	0.09	82.19	4.11
080800	Industry	Diesel	0.47	456.69	50.57	287.45	0.18	44.21	31.96
080800	Industry	Gasoline	0.46	215.25	1566.91	14359.20	0.10	23.93	1.20
080800	Industry	LPG	0.00	1328.11	146.09	104.85	0.21	4.89	0.24
080900	Household and gardening	Gasoline	0.46	108.67	2205.43	31436.56	0.09	17.53	0.88
081100	Commercial and institutional	Gasoline	0.46	93.28	1527.62	30913.57	0.09	28.53	1.43
080501	Air traffic, Dom. < 3000 ft.	AvGas	22.83	859.00	1242.60	6972.00	1.60	10.00	0.00
080501	Air traffic, Dom. < 3000 ft.	Jet fuel	22.99	300.19	19.91	181.17	0.00	2.04	0.96
080502	Air traffic, Int. < 3000 ft.	AvGas	22.83	859.00	1242.60	6972.00	1.60	10.00	0.00
080502	Air traffic, Int. < 3000 ft.	Jet fuel	22.99	335.77	16.13	167.26	0.00	2.89	1.53
080503	Air traffic, Dom. > 3000 ft.	Jet fuel	22.99	376.35	4.67	48.43	0.00	3.01	1.23
080504	Air traffic, Int. > 3000 ft.	Jet fuel	22.99	386.82	3.58	41.53	0.00	5.81	3.10

Table 3.3.18 Fuel based emission factors for SO₂, NO_x, NMVOC, CO, NH₃, TSP and BC for other mobile sources in Denmark (2014).

¹ References. SO₂: Country-specific; Military: Aggregated emission factors for road transport; Railways (NO_x, CO, NMVOC and TSP): Danish State Railways; Agriculture, forestry, industry, household gardening and inland waterways (NO_x, CO, VOC and TSP): IFEU (2004, 1999, 2014); National sea transport and fishing: MAN B&W (NO_x) and TE-MA2000 (CO, NMVOC, TSP); Aviation - jet fuel (NO_x, CO, NMVOC): EMEP/EEA; Aviation - av.gasoline: Aggregated emission factors for conventional gasoline cars.

3.3.1 Calculation method

Air traffic

For aviation, the domestic and international estimates are made separately for landing and takeoff (LTOs < 3000 ft), and cruising (> 3000 ft).

By using the LTO mode specific fuel flow and emission indices from EMEP/EEA (2013), the fuel consumption and emission factors for the full LTO cycle are estimated for each of the representative aircraft types used in the Danish inventory.

The fuel consumption for one LTO cycle is calculated according to the following sum formula:

$$FC_{LTO}^{a} = \sum_{m=1}^{5} t_{m} \cdot ff_{a,m}$$
(13)

Where FC = fuel consumption (kg), m = LTO mode (approach/landing, taxi in, taxi out, take off, climb out), t = times in mode (s), ff = fuel flow (kg per s), a = representative aircraft type.

The emissions for one LTO cycle are estimated as follows:

$$E_{LTO}^{a} = \sum_{m=1}^{5} FC_{a,m} \cdot EI_{a,m}$$
(14)

Where EI = emission index (g per kg fuel). Due to lack of specific airport data for approach/descent, take off and climb out, standardised times-inmodes of 4, 0.7 and 2.2 minutes are used as defined by ICAO (ICAO, 1995). For taxi in and taxi out, specific times-in-modes data are provided by Eurocontrol for the airports present in the Danish inventory. The taxi times-inmodes data are shown in Annex 2.B.10 for the years 2001-2014.

The fuel consumption and emissions for aircraft auxiliary power units (APU's) are calculated with the same method used to estimate LTO fuel consumption and emissions for aircraft main engines (formulas 13 and 14). ICAO (2011) is the data source for APU load specific fuel flows (kg per s) and emission rates (g per kg fuel) for different APU aircraft groups (characterised by seating capacity and age). APU times-in-modes for arrival, startup, boarding and main engine start are also provided by ICAO (2011), whereas push back time intervals are taken from an emission study made in Copenhagen Airport (Ellermann et al., 2011; Winther et al., 2015).

For each representative aircraft type, the calculated fuel consumption and emission factors per LTO are shown in Annex 2.B.10 for Copenhagen Airport and other airports (aggregated) for 2014. APU data for fuel flows, emission rates and times-in-modes are also shown in Annex 2.B.10, together with the correspondence table for APU group-representative aircraft type.

The calculations for cruise use the distance specific fuel consumption and emissions given by EMEP/EEA (2013) per representative aircraft type. Data interpolations or extrapolations are made – in each case determined by the great circle distance between the origin and the destination airports.

If the great circle distance, y, is smaller than the maximum distance for which fuel consumption and emission data are given in the EMEP/EEA data bank the fuel consumption or emission E(y) becomes:

$$E(y) = E_{x_i} + \frac{(y - x_i)}{x_{i+1} - x_i} \cdot (E_{x_{i+1}} - E_{x_i}) \quad y < x_{\max}, i = 0, 1, 2..., \max - 1$$
(15)

In (15) x_i and x_{max} denominate the separate distances and the maximum distance, respectively, with known fuel consumption and emissions. If the

flight distance y exceeds x_{max} the maximum figures for fuel consumption and emissions must be extrapolated and the equation then becomes:

$$E(y) = E_{x_{\max}} + \frac{(y - x_{\max})}{x_{\max} - x_{\max-1}} \cdot (E_{x_{\max}} - E_{x_{\max-1}}) \quad y > x_{\max}$$
(16)

Total results are summed up and categorised according to each flight's destination airport code in order to distinguish between domestic and international flights.

Annex 2.B.10 shows the average fuel consumption and emission factors per representative aircraft type for cruise flying, as well as total distance flown, for 2014¹¹. The factors are split between Copenhagen Airport and other airports and distinguish between domestic and international flights.

Specifically for flights between Denmark and Greenland or the Faroe Islands, for each representative aircraft type, the flight distances are directly shown in Annex 2.B.10, which go into the cruise calculation expressions 15 and 16.

The overall fuel precision (fuel balance) in the model is 0.89 in 2014, derived as the fuel ratio between model estimates and statistical sales. The fuel difference is accounted for by adjusting cruising fuel consumption and emissions in the model according to domestic and international cruising fuel shares.

For inventory years before 2001, the calculation procedure is to estimate each year's fuel consumption and emissions for LTO based on LTO/aircraft type statistics from Copenhagen Airport, and total take off numbers for other airports provided by the Danish Transport and Construction Agency. Due to lack of aircraft type specific LTO data, fuel consumption and emission factors derived for domestic LTO's in Copenhagen Airport is used for all LTO's in other airports. In a next step, the total fuel consumption for cruise (true cruise fuel consumption) is found year by year as the statistical fuel consumption total minus the calculated fuel consumption for LTO.

For each inventory year, intermediate cruise fuel consumption figures split into four parts (Copenhagen/Other airports; domestic/international) are found as proportional values between part specific LTO fuel consumption values estimated as described previously, and part specific cruise:LTO fuel consumption ratios for 2001 derived from the detailed city-pair emission inventory.

Each inventory year's true cruise fuel consumption is finally split into four parts by using the intermediate cruise fuel consumption values as a distribution key. As emission factor input data for cruise, aggregated fuel related emission factors for 2001 are derived from the detailed city-pair emission inventory.

Non-road working machinery and recreational craft

Prior to adjustments for deterioration effects and transient engine operations, the fuel consumption and emissions in year X, for a given machinery type, engine size and engine age, are calculated as:

¹¹ Excluding flights for Greenland and the Faroe Islands.

$$E_{Basis} (X)_{i,j,k} = N_{i,j,k} \cdot HRS_{i,j,k} \cdot P \cdot LF_i \cdot EF_{y,z}$$
(17)

where E_{Basis} = fuel consumption/emissions in the basic situation, N = number of engines, HRS = annual working hours, P = average rated engine size in kW, LF = load factor, EF = fuel consumption/emission factor in g pr kWh, i = machinery type, j = engine size, k = engine age, y = engine-size class and z = emission level. The basic fuel consumption and emission factors are shown in Annex 2.B.11.

The deterioration factor for a given machinery type, engine size and engine age in year X depends on the engine-size class (only for gasoline), y, and the emission level, z. The deterioration factors for diesel and gasoline 2-stroke engines are found from:

$$DF_{i,j,k}(X) = \frac{K_{i,j,k}}{LT_i} \cdot DF_{y,z}$$
(18)

where DF = deterioration factor, K = engine age, LT = lifetime, i = machinery type, j = engine size, k = engine age, y = engine-size class and z = emission level.

For gasoline 4-stroke engines the deterioration factors are calculated as:

$$DF_{i,j,k}(X) = \sqrt{\frac{K_{i,j,k}}{LT_i}} \cdot DF_{y,z}$$
(19)

The deterioration factors inserted in (18) and (19) are shown in Annex 2.B.11. No deterioration is assumed for fuel consumption (all fuel types) or for LPG engine emissions and, hence, DF = 1 in these situations.

The transient factor for any given machinery type, engine size and engine age in year X, relies only on emission level and load factor, and is denominated as:

$$TF_{i,i,k}(X) = TF_{z}$$
(20)

Where i = machinery type, j = engine size, k = engine age and z = emission level.

The transient factors inserted in (20) are shown in Annex 2.B.11. No transient corrections are made for gasoline and LPG engines and, hence, $TF_z = 1$ for these fuel types.

The final calculation of fuel consumption and emissions in year X for a given machinery type, engine size and engine age, is the product of the expressions 17-20:

$$E(X)_{i,j,k} = E_{Basis}(X)_{i,j,k} \cdot TF(X)_{i,j,k} \cdot (1 + DF(X)_{i,j,k})$$
(21)

The evaporative hydrocarbon emissions from fuelling are calculated as:

$$E_{Evap, fueling, i} = FC_{i} \cdot EF_{Evap, fueling}$$
(22)

Where $E_{Evap,fueling}$, = hydrocarbon emissions from fuelling, i = machinery type, FC = fuel consumption in kg, $EF_{Evap,fueling}$ = emission factor in g NMVOC pr kg fuel.

For tank evaporation, the hydrocarbon emissions are found from:

$$E_{Evap, \tan k, i} = N_i \cdot EF_{Evap, \tan k, i}$$
(23)

Where $E_{Evap,tank,i}$ = hydrocarbon emissions from tank evaporation, N = number of engines, i = machinery type and $EF_{Evap,fueling}$ = emission factor in g NMVOC pr year.

Ferries, other national sea transport and fisheries

The fuel consumption and emissions in year X, for regional ferries are calculated as:

$$E(X) = \sum_{i} N_{i} \cdot T_{i} \cdot S_{i,j} \cdot P_{i} \cdot LF_{j} \cdot EF_{k,l,y}$$
(24)

Where E = fuel consumption/emissions, N = number of round trips, T = sailing time pr round trip in hours, S = ferry share of ferry service round trips, P = engine size in kW, LF = engine load factor, EF = fuel consumption/emission factor in g pr kWh, i = ferry service, j = ferry, k = fuel type, l = engine type, y = engine year.

For the remaining navigation categories, the emissions are calculated using a simplified approach:

$$E(X) = \sum_{i} EC_{i,k} EF_{k,l,y}$$
(25)

Where E = fuel consumption/emissions, EC = energy consumption, EF = fuel consumption/emission factor in g pr kg fuel, i = category (local ferries, other national sea, fishery, international sea), k = fuel type, l = engine type, y = average engine year.

The emission factor inserted in (25) is found as an average of the emission factors representing the engine ages which are comprised by the average lifetime in a given calculation year, X:

$$EF_{k,l,y} = \frac{\sum_{year=X}^{year=X-LT} EF_{k,l}}{LT_{k,l}}$$
(26)

Other sectors

For military and railways, the emissions are estimated with the simple method using fuel-related emission factors and fuel consumption from the DEA:

$$E = FC \cdot EF \tag{27}$$

where E = emission, FC = fuel consumption and EF = emission factor. The calculated emissions for other mobile sources are shown in CollectER format in Annex 2.B.15 for the years 2014 and as time series 1985-2014 in Annex 2.B.16 (NFR format).

Energy balance between DEA statistics and inventory estimates

Following convention rules, the DEA statistical fuel sales figures are the basis for the full Danish inventory. However, in some cases for mobile sources the DEA statistical sectors do not fully match the inventory sectors. This is the case for non-road machinery, where relevant DEA statistical sectors also include fuel consumed by stationary sources.

In other situations, fuel consumption figures estimated by DCE from specific bottom-up calculations are regarded as more reliable than DEA reported sales. This is the case for national sea transport.

In the following the transferral of fuel consumption data from DEA statistics into inventory relevant categories is explained for national sea transport and fisheries, non-road machinery and recreational craft, and road transport. A full list of all fuel consumption data, DEA figures as well as intermediate fuel consumption data, and final inventory input figures is shown in Annex 2.B.14.

National sea transport and fisheries

For national sea transport in Denmark, the fuel consumption estimates obtained by DCE (see 3.3.3 Activity data – national sea transport) are regarded as much more accurate than the DEA fuel sales data, since the large fluctuations in reported fuel sales cannot be explained by the actual development in the traffic between different national ports. As a consequence, the DCE bottom-up estimates are used in the Danish inventory for national sea transport.

There are different potential reasons for the differences between estimated fuel consumption and reported sales for national sea transport in Denmark. According to the DEA, the latter fuel differences are most likely explained by inaccurate costumer specifications made by the oil suppliers. This inaccuracy can be caused by a sector misallocation in the sales statistics between national sea transport and fisheries for gas oil, and between national sea transport and industry for heavy fuel oil (Peter Dal, DEA, personal communication, 2007). Further, fuel sold for vessels sailing between Denmark and Greenland/Faroe Islands are reported as international in the DEA statistics, and this fuel categorisation is different from the IPCC guideline definitions (see following paragraph "Bunkers").

Following this, for fisheries and industry the updated fuel consumption time series for national sea transport lead, in turn, to changes in the fuel activity data for fisheries (gas oil), industry (heavy fuel oil) and international sea transport, so the national energy balance can remain unchanged.

For fisheries, fuel investigations made prior to the initiation of the work made by Winther (2008) have actually pointed out a certain area of inaccuracy in the DEA statistics. No engines installed in fishing vessels use heavy fuel oil, even though a certain amount of heavy fuel oil is listed in the DEA numbers for some statistical years (H. Amdissen, Danish Fishermen's Association, personal communication, 2006). Hence, for fisheries small amounts of fuel oil are transferred to national sea transport, and in addition small amounts of gasoline and diesel are transferred to recreational craft.

Non-road machinery and recreational craft

For diesel and LPG, the non-road fuel consumption estimated by DCE is partly covered by the fuel consumption amounts in the following DEA sectors: agriculture and forestry, market gardening, and building and construction. The remaining quantity of non-road diesel and LPG is taken from the DEA industry sector.

For gasoline, the DEA residential sector, together with the DEA sectors mentioned for diesel and LPG, contribute to the non-road fuel consumption total. In addition, a certain amount of fuel from road transport is needed to reach the fuel consumption goal.

The amount of diesel and LPG in DEA industry not being used by non-road machinery is included in the sectors, "Combustion in manufacturing industry" (0301) and "Non-industrial combustion plants" (0203) in the Danish emission inventory.

For recreational craft, the calculated fuel consumption totals for diesel and gasoline are subsequently subtracted from the DEA fishery sector. For gasoline, the DEA reported fuel consumption for fisheries is far too small to fill the fuel gap, and hence the missing fuel amount is taken from the DEA road transport sector.

Bunkers

The distinction between domestic and international emissions from aviation and navigation should be in accordance with the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. For the national emission inventory, this, in principle, means that fuel sold (and associated emissions) for flights/sea transportation starting from a seaport/airport in the Kingdom of Denmark, with destinations inside or outside the Kingdom of Denmark, are regarded as domestic or international, respectively.

Aviation

As prescribed by the IPCC guidelines, for aviation, the fuel consumption and emissions associated with flights inside the Kingdom of Denmark are counted as domestic.

This report includes flights from airports in Denmark and associated jet fuel sales. Hence, the flights between airports in Denmark and flights from Denmark to Greenland and the Faroe Islands are classified as domestic and flights from Danish airports with destinations outside the Kingdom of Denmark are classified as international flights.

In Greenland and in the Faroe Islands, the jet fuel sold is treated as domestic. This decision becomes reasonable when considering that almost no fuel is bunkered in Greenland/the Faroe Islands by flights other than those going to Denmark.

Navigation

In DEA statistics, the domestic fuel total consists of fuel sold to Danish ferries and other ships sailing between two Danish ports. The DEA international fuel total consists of the fuel sold in Denmark to international ferries, international warships, other ships with foreign destinations, transport to Greenland and the Faroe Islands, tank vessels and foreign fishing boats. In order to follow the IPCC guidelines the bottom-up fuel estimates for the ferry routes between Denmark and the Faroe Islands, and freight transport between Denmark and Greenland/Faroe Islands are being subtracted from the fuel sales figures for international sea transport prior to inventory fuel input.

In Greenland, all marine fuel sales are treated as domestic. In the Faroe Islands, fuel sold in Faroese ports for Faroese fishing vessels and other Faroese ships is treated as domestic. The fuel sold to Faroese ships bunkering outside Faroese waters and the fuel sold to foreign ships in Faroese ports or outside Faroese waters is classified as international (Lastein and Winther, 2003).

Conclusively, the domestic/international fuel split (and associated emissions) for navigation is not determined with the same precision as for aviation. It is considered, however, that the potential of incorrectly allocated fuel quantities is only a small part of the total fuel sold for navigational purposes in the Kingdom of Denmark.

3.3.2 Uncertainties and time series consistency

Emission uncertainty estimates are made for road transport and other mobile sources using the guidelines for estimating uncertainties in the EMP/EEA guidebook (EMEP/EEA, 2013). However, for TSP the latter source indicates no uncertainty factor and, instead, this factor is based on expert judgement.

The activity data uncertainty factor is assumed to be 2 and 10 % for road transport and other mobile sources, respectively, based on expert judgement.

The uncertainty estimates should be regarded as preliminary only and may be subject to changes in future inventory documentation. The calculations are shown in Annex 2.B.17 for all emission components.

	Emission fa	actor	Emission		
	uncertainties [%]		uncertainties	[%]	
Pollutant	Road	Other C	Overall 2014	Trend	
SO ₂	50	50	49	3	
NO _x	50	100	54	8	
NMVOC	50	100	58	8	
CO	50	100	65	17	
NH ₃	1000	1000	993	1532	
TSP	50	100	47	5	
PM ₁₀	50	100	50	4	
PM _{2.5}	50	100	54	3	
BC	50	100	57	4	
Arsenic	1000	1000	862	68	
Cadmium	1000	1000	829	176	
Chromium	1000	1000	834	220	
Copper	1000	1000	999	5	
Mercury	1000	1000	718	137	
Nickel	1000	1000	923	37	
Lead	1000	1000	890	8	
Selenium	1000	1000	750	160	
Zinc	1000	1000	943	43	
Dioxins	1000	1000	719	134	
Flouranthene	1000	1000	828	91	
Benzo(b) flouranthene	1000	1000	816	196	
Benzo(k) flouranthene	1000	1000	823	287	
Benzo(a) pyrene	1000	1000	870	298	
Benzo(g,h,i) perylene	1000	1000	820	72	
indeno(1,2,3-c,d) pyrene	1000	1000	795	183	
HCB	1000	1000	785	254	
PCB	1000	1000	721	123	

Table 3.3.19 Uncertainties for activity data, emission factors and total emissions in 2014 and as a trend.

As regards time series consistency, background flight data cannot be made available on a city-pair level from 2000 or earlier. However, aided by LTO/aircraft statistics for these years and the use of proper assumptions, a good level of consistency is still obtained in this part of the transport inventory.

The time series of emissions for mobile machinery in the agriculture, forestry, industry, household and gardening (residential), and inland waterways (part of navigation) sectors are less certain than time series for other sectors, since DEA statistical figures do not explicitly provide fuel consumption information for working equipment and machinery.

3.3.3 Quality assurance/quality control (QA/QC)

It is the intention to publish every second year a sector report for road transport and other mobile sources. The last sector report concerned the 2010 inventory (Winther, 2012).

The QA/QC descriptions of the Danish emission inventories for transport are given in Nielsen et al. (2014).

3.3.4 Recalculations

The following recalculations and improvements of the emission inventories have been made since the emission reporting in 2014.

Road transport

Based on discussions with the Danish Ministry of Taxation the model principle for adjusting the calculated bottom up diesel fuel consumption to equal fuel sales has been modified. The amount of diesel fuel sold in Denmark and used abroad is allocated to trucks and coaches in a first step, based on studies on fuel price differences across borders, fuel discount for haulage contractors and fuel tanking behavior of truck and bus operators as well as private cars made by the Danish Ministry of Taxation (2015). Next, the percentage difference between the bottom-up diesel fuel consumption obtained after step one and total diesel fuel sold is used to scale fuel and emission results for all diesel vehicles regardless of vehicle category. The principle for adjusting gasoline bottom-up results according to fuel sales remains unchanged.

The amount of gasoline and diesel sold for road transport reported by the Danish Energy Agency has been slightly changed for the years 2011-2013.

Very small changes in mileage data have been made for the years 1985-2013 based on new information from DTU Transport.

The percentage emission change interval and year of largest percentage differences (low %; high %, year) for the different emission components are: SO₂ (-0.2 %; 0 %, 2012), NO_x (0.6 %; 3 %, 2007), NMVOC (-0.4 %; 0 %, 2012), NH₃ (-0.2 %; 0 %, 2012), TSP (-3.6 %; -1.5 %, 2011) and BC (-4.6 %; -2.0 %, 1988).

Navigation

Three new ferry routes have been included in the model as a part of national sea transport.

A few other changes have been made in relation to engine load factors for two specific ferries in 2013 and sailing time for one ferry in 2013 and error correction for two ferries that were not included in the model calculations for 2012 due to an error.

An error for the N_2O emission factor for diesel has been revealed during a model revision round. The emission factor reference is now EMEP/EEA (2013).

The following largest percentage differences (in brackets) for domestic navigation are noted for: SO₂ (0.3 %), NO_x (-1.3 %), NMVOC (1.1 %), TSP (1.0 %) and BC (1.6 %).

Agriculture/forestry

No changes have been made.

Fisheries

An error for the N_2O emission factor for diesel has been revealed during a model revision round. The emission factor reference is now EMEP/EEA (2013).

Fuel transferal made between fisheries and national sea transport has resulted in minor changes in fuel consumption for fisheries, due to changes in national sea transport as described above.

The following largest percentage differences (in brackets) for fisheries are noted for: SO₂ (-1.2 %), NO_x (-1.4 %), NMVOC (-1.2 %), TSP (-1.2 %) and BC (-1.2 %).

Industry

No changes have been made.

Railways

The N_2O emission factor for diesel has been updated during a model revision round. The emission factor is calculated as an aggregated emission factor for the largest road transport trucks in the Danish inventory using COPERT IV as the source of emission data.

No changes have been made for the CLRTAP reported emission species.

Civil aviation

The model used for calculating civil aviation emissions has been updated by including auxiliary power units (APU) as an emission source and by using airport specific aircraft taxi times provided by Eurocontrol. New emission factors for TSP, PM_{10} , $PM_{2.5}$ and BC have also been included in the model based on Eurocontrol data (EMEP/EEA, 2013) for aircraft main engines, and APU emission data gathered from own research (Winther et al. 2015).

The following largest percentage differences (in brackets) for civil aviation are noted for: SO_2 (-5.0 %), NO_x (-8.8 %), NMVOC (5.4 %), TSP (-89 %) and BC (-88 %).

Other (Military and recreational craft)

Emission factors derived from the new road transport have caused a few emission changes from 1985-2013. The following largest percentage differences (in brackets) for military are noted for: SO_2 (0.0 %), NO_x (1.7 %), NMVOC (-0.1 %), NH3 (-0.7 %), TSP (-2.3 %) and BC (-3.8 %).

3.3.5 Improvements

Fuel consumption and emission factors for road transport vehicles will be updated by the time when new data becomes available from COPERT model updates. Emission factors for TSP and BC will be updated for the representative aircraft types used in the aviation emission calculation model, based on aircraft engine specific smoke numbers and VOC emission indices, and jet fuel sulphur content.

3.3.6 References for transport and other mobile sources

Cappelen, J. 2015: The Climate of Denmark 2014 - with English summary, Technical report No 15-01, pp. 96, Danish Meteorological Institute.

Cowi, 2008: Model til beregning af vej og banetransportens CO2-ævivalent emissioner, Technical note, pp. 42, Ministry of Transport (in Danish).

Dávastovu, J. 2010: Unpublished data material from Smyril Line.

Danish Energy Agency, 2015: The Danish energy statistics, Available at: http://www.ens.dk/sites/ens.dk/files/info/tal-kort/statistik-noegletal/aarlig-energistatistik/energistatistik_2014.pdf (12-01-2016).

Danish Ministry of Taxation, 2015: Status over grænsehandel 2014, pp. 112.

Delvig, P. 2015: Unpublished data material from the Danish State Railways.

DNV (2009): Marpol 73/78 Annex VI Regulations for the Prevention of Air Pollution from Ships - Technical and Operational implications, 32 pp.

Ellermann, T., Massling, A., Løfstrøm, P., Winther, M., Nøjgaard, J.K., Ketzel, M., 2011, Investigation of Air Pollution at the Apron at Copenhagen Airport in Relation to Working Environment (Danish with English summary). DCE e Danish Centre for Environment and Energy, Aarhus University, p. 148. DCE report no. 5. Available at: http://www.dmu.dk/Pub/TR5.pdf.

EMEP/EEA, 2013: Air Pollutant Emission Inventory Guidebook, prepared by the UNECE/EMEP Task Force on Emissions Inventories and Projections (TFEIP). Available at: <u>http://www.eea.europa.eu//publications/emep-eea-guidebook-2013</u> (12-01-2016).

Hansen, C.O. 2010: Estimation af udenlandske bilers trafikarbejde i Danmark i 2009, Notatnr. 12032-005, 12 pp. Danish Road Directorate, 2010.

Hansen, K.F. & Jensen, M.G. 2004: MÅLING AF EMISSIONER FRA FREM-DRIVNINGSANLÆG PÅ MADS MOLS. Ruston 20RK270, Sagsnr.: 1076868, Documentation note, 5 pages (in Danish).

Hjelgaard, K. & Winther, M. 2011: The estimated new sales of Euro V diesel trucks equipped with EGR and SCR during the 2006-2010 time periods. Internal DCE note (unpublished). 2 p. (in Danish).

ICAO Annex 16 "International standards and recommended practices, Environmental protection", Volume II "Aircraft engine emissions", 3rd ed. (2008) plus amendments, 108 pp., ISBN 978-92-9231-123-0.

ICAO, 2011. Airport Air Quality Manual (doc. 9889), first ed. International Civil Aviation Organization. ISBN 978-92-9231-862-8.

IFEU, 2004: Entwicklung eines Modells zur Berechnung der Luftschadstoffemissionen und des Kraftstoffverbrauchs von Verbrennungs-motoren in mobilen Geräten und Maschinen - Endbericht, UFOPLAN Nr. 299 45 113, pp. 122, Heidelberg.

IFEU 2009: Aktualisierung des Modells TREMOD - Mobile Machinery (TREMOD-MM), Endbericht; Institut für Energie- und Umweltforschung, pp. 48, Heidelberg.

IFEU 2014: Erarbeitung eines Konzepts zur Minderung der Umweltbelastung aus NRMM (non road mobile machinery) unter Berücksichtigung aktueller Emissionsfaktoren und Emissionsverminderungsoptionen für den Bestand, ISSN 1862-4804, Texte 24/2014, pp. 99, Heidelberg. IPCC, 2000: Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, IPCC, May 2000. Available at: <u>http://-www.ipcc-nggip.iges.or.jp/public/gp/english/</u> (06-07-2004).

Jensen, T.C., O. 2015: Dokumentation af konvertering af trafiktal til emissionsopgørelser, arbejdsnotat 35187, 29 pp. DTU Transport, 2015.

Jørgensen, H. 2015: Unpublished data material from Færgen A/S.

Kristensen, F. 2008: Unpublished data material from Mols-Linjen.

Kristensen, F. 2013: Unpublished data material from Mols-Linjen.

Kristensen, F. 2015: Unpublished data material from Mols-Linjen.

Kruse, C. 2015: Unpublished data material from Samsø Rederi.

Lastein, L. & Winther, M. 2003: Emission of greenhouse gases and longrange transboundary air pollutants in the Faroe Islands 1990-2001. National Environmental Research Institute. - NERI Technical Report 477. 62 pp. Available at:

http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/FR477.PD F.

Lloyd's Register, 2012: Implementing the Energy Efficiency Design Index Version 3.0, December 2012, pp. 22.

Markamp, H. 2013: Personal communication, Henrik Markamp, The National Motorcycle Association.

Ministry of Transport, 2010: TEMA2010 - et værktøj til at beregne transporters energiforbrug og emissioner i Danmark (TEMA2010 - a calculation tool for transport related fuel use and emissions in Denmark). Technical report. 135 pp.

Mortensen, L. 2015: Unpublished data material from Færgeselskabet Læsø.

Møller, K. 2015: Unpublished data material from Ærøfærgerne A/S.

Nielsen, O-K, Plejdrup, MS, Winther, M, Nielsen, M, Gyldenkærne, S, Mikkelsen, MH, Albrektsen, R, Thomsen, M, Hjelgaard, K, Hoffmann, L, Fauser, P, Bruun, HG, Johannsen, VK, Nord-Larsen, T, Vesterdal, L, Møller, IS, Caspersen, OH, Rasmussen, E, Petersen, SB, Baunbæk, L & Hansen, MG 2014, Denmark's National Inventory Report 2014: Emission Inventories 1990-2012 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE - Danish Centre for Environment and Energy. Scientific Report from DCE - Danish Centre for Environment and Energy, nr. 101.

PHP, 1996: Research Report – Emission tests at Alpha, Mols 2 and Mols 4, 9L25MC mk6 engines #35031 and #35033, 22-23/10 1995 and 16/1 1996, DOK, PHP Basic Research, October 1996, 20 pages.

Rasmussen, H. 2015: Unpublished data material from Royal Arctic Line.

Statistics Denmark, 2015: Data from Statbank Denmark. Available at: <u>http://www.statistikbanken.dk/statbank5a/default.asp?w=1364</u>

Thorarensen, B. 2015: Unpublished data material from Eim Skip.

Winther, M.; Ekman, B. (1998): Emissioner fra vejtrafikken i Danmark 1980-2010. Danmarks Miljøundersøgelser, Aarhus Universitet, 1998. 73 s. (Faglig rapport fra DMU, Vol. 256).

Winther, M. & Nielsen, O.K. 2006: Fuel use and emissions from non-road machinery in Denmark from 1985–2004 – and projections from 2005-2030. The Danish Environmental Protection Agency. - Environmental Project 1092: 238 pp. Available at: http://www.dmu.dk/Udgivelser/Ar-bejdsrapporter/Nr.+200-249/

Winther, M. 2008: Fuel consumption and emissions from navigation in Denmark from 1990-2005 - and projections from 2006-2030. Technical Report from NERI no. 650. 109 pp. Available at: http://www2.dmu.dk/Pub/FR650.pdf

Winther, M. 2009: Emission Differences between Petroleum based Diesel and different Biodiesel Blend Ratios for Road Transport Vehicles. Transport and Air Pollution Symposium - 3rd Environment and Transport Symposium, nr. 17, Toulouse, France, 2.- 4. June 2009.

Winther, M. & Slentø, E. 2010: Heavy Metal Emissions for Danish Road Transport. National Environmental Research Institute, Aarhus University, Denmark. 99 pp. – NERI Technical Report no. 780. Available at: <u>http://www.dmu.dk/Pub/FR780.pdf</u>

Winther, M. 2011: Ændring i partikelemission som følge af fremskyndet salg af Euro 5 biler og retrofit af filtre på tunge køretøjer. Internal DCE note (unpublished). 2 p. (in Danish).

Winther, M. 2012: Danish emission inventories for road transport and other mobile sources. Inventories until the year 2010. National Environmental Research Institute, University of Aarhus. 283 pp. – DCE Scientific Report No. 24. Available at: <u>http://www.dmu.dk/Pub/SR24.pdf.</u>

Winther, M., Møller, F., Jensen, T.C. 2012: Emission consequences of introducing bio ethanol as a fuel for gasoline cars, Atmospheric Environment 55 (2012) 144-153.

Winther, M., Kousgaard, U., Ellermann, T., Massling, A., Nøjgaard, J. K., Ketzel, M. 2015: Emissions of NO_x, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport, Atmospheric Environment 100 (2015) 218-229.

Wismann, T. 1999: MOLS-LINIEN, Mai Mols - Maling af emissioner fra fra hovedturbiner, dk-RAPPORT 14.901, 9 pages (in Danish).

Wismann, T. 2001: Energiforbrug og emissioner fra skibe i farvandene omkring Danmark 1995/1996 og 1999/2000 (Fuel consumption and emissions from ships in Danish coastal waters 1995/1996 and 1999/2000). The Danish Environmental Protection Agency. - Environmental Project 597: 88 pp. Available at:

http://www2.mst.dk/common/Udgivramme/Frame.asp?pg=http://www 2.mst.dk/Udgiv/publikationer/2001/87-7944-505-5/html/default.htm.

Wismann, T. 2007: Energiforbrug for skibe i fart mellem danske havne (Fuel consumption by ships sailing between Danish ports), Internal note, September 2007, 3 pp

3.4 Fugitive emissions

This chapter covers fugitive emissions from fuels in the NFR sector 1B. Fugitive emissions from fuels include emissions from production, storage, refining, transport, venting and flaring of oil and natural gas. Denmark has no production of solid fuels, and accordingly only emissions from storage in coal piles are included in the emission inventory. The fugitive sector consists of the following NFR categories:

- 1B1 Solid fuels
- 1B2a Oil
- 1B2b Natural gas
- 1B2c Venting and flaring
- 1B2d Other*

* not occurring in the Danish emission inventory

Most fugitive emission sources are of minor importance compared to the total Danish emissions. Fugitive and national total emissions for selected pollutants are given in Table 3.4.1.

	National	Fugitive	Fugitive/national
	emission,	emission,	emission,
	ktonnes	ktonnes	%
SO ₂	11	0.80	7.0
NOx	113	0.14	0.1
CO	312	0.23	0.1
NMVOC	106	9.40	8.9
PM _{2.5}	18	0.03	0.2
BC	4	0.45	11.4

Table 3.4.1 National and fugitive emissions of SO_2 , NO_x , CO, NMVOC, $PM_{2.5}$ and BC in 2014, and the fugitive emissions share of national total emissions.

3.4.1 Source category description

According to the IPCC sector definitions the category *fugitive emissions from fuels* is a sub-category under the main-category Energy (Sector 1). The category *fugitive emissions from fuels* (Sector 1B) is segmented into sub-categories covering emissions from solid fuels (*coal mining and handling (1B1a), solid fuel transformation (1B1b) and other (1B1c)*), oil (*1B2a*), natural gas (*1B2b*), venting and flaring (*1B2c*) and other (*1B2d*). The sub-categories relevant for the Danish emission inventory are shortly described below according to Danish conditions:

- 1B1a: Fugitive emission from solid fuels: Coal mining is not occurring in Denmark. Accordingly only emissions from storage in coal piles are included in the emission inventory.
- 1B2a: Fugitive emissions from oil include emissions from exploration, production, storage, and transmission of crude oil, distribution of oil products and fugitive emissions from refining.
- 1B2b: Fugitive emissions from natural gas include emissions from exploration, production, transmission of natural gas and distribution of natural gas and town gas.

• 1B2c: Venting and flaring include activities onshore and offshore. Flaring occur both offshore in upstream oil and gas production, and onshore in gas treatment and storage facilities, in refineries and in natural gas transmission and distribution. Venting occurs in gas storage facilities. Venting of gas is assumed to be negligible in oil and gas production and in refineries as controlled venting enters the gas flare system.

Table 3.4.2 summarizes the Danish fugitive emissions in 2014 for selected pollutants.

Table 3.4.2 Summary of the Danish fugitive emissions in 2014.

Table 3.4.2 Sur	mmary of the Danish fugitive emissions in 2014. snap category	Pollutant	Emission Unit	Share of total fugitive
1B1a	Storage of solid fuel	TSP	680Mg	99.4%
1B1a	Storage of solid fuel	PM ₁₀	272Mg	98.6%
1B1a	Storage of solid fuel	PM _{2.5}	27Mg	87.3%
1B1a	Storage of solid fuel	BC	453Mg	99.8%
1B2ai	Land-based activities, oil	NMVOC	2248Mg	23.9%
1B2ai	Off-shore activities, oil	NMVOC	2532Mg	26.9%
1B2aiv	Petroleum products processing	NMVOC	5620Mg	59.8%
1B2aiv	Sulphur recovery plants	SO ₂	397Mg	49.9%
1B2av	Service stations (including refuelling of cars)	NMVOC	716Mg	7.6%
1B2b	Off-shore activities, gas	NMVOC	410Mg	4.4%
1B2b	Pipelines	NMVOC	33Mg	0.3%
1B2b	Distribution networks	NMVOC	111Mg	1.2%
1B2c	Venting in gas storage	NMVOC	19Mg	0.2%
1B2c	Flaring in oil refinery	SO ₂	398Mg	50.0%
1B2c	Flaring in oil refinery	NOx	25Mg	18.4%
1B2c	Flaring in oil refinery	NMVOC	33Mg	0.4%
1B2c	Flaring in oil refinery	со	77Mg	32.8%
1B2c	Flaring in oil refinery	TSP	0.385Mg	0.1%
1B2c	Flaring in oil refinery	PM ₁₀	0.385Mg	0.1%
1B2c	Flaring in oil refinery	PM _{2.5}	0.385Mg	1.2%
1B2c	Flaring in oil refinery	BC	0.097Mg	0.0%
1B2c	Flaring in gas and oil extraction	SO ₂	1Mg	0.1%
1B2c	Flaring in gas and oil extraction	NOx	104Mg	75.8%
1B2c	Flaring in gas and oil extraction	NMVOC	125Mg	1.3%
1B2c	Flaring in gas and oil extraction	со	156Mg	66.9%
1B2c	Flaring in gas and oil extraction	TSP	4Mg	0.5%
1B2c	Flaring in gas and oil extraction	PM ₁₀	4Mg	1.3%
1B2c	Flaring in gas and oil extraction	PM _{2.5}	4Mg	11.4%
1B2c	Flaring in gas and oil extraction	BC	0.652Mg	0.1%
1B2c	Flaring in gas storage	SO ₂	0.003Mg	0.0%
1B2c	Flaring in gas storage	NO _x	8Mg	5.7%
1B2c	Flaring in gas storage	NMVOC	0.25Mg	0.0%
1B2c	Flaring in gas storage	со	0.438Mg	0.2%
1B2c	Flaring in gas storage	TSP	0.01Mg	0.0%
1B2c	Flaring in gas storage	PM ₁₀	0.01Mg	0.0%
1B2c	Flaring in gas storage	PM _{2.5}	0.01Mg	0.0%
1B2c	Flaring in gas storage	BC	0.002Mg	0.0%
1B2c	Flaring in gas transmission and distribution	SO ₂	0.001Mg	0.0%
1B2c	Flaring in gas transmission and distribution	NO _x	0.144Mg	0.1%
1B2c	Flaring in gas transmission and distribution	NMVOC	0.174Mg	0.0%
1B2c	Flaring in gas transmission and distribution	CO	0.183Mg	0.1%
1B2c	Flaring in gas transmission and distribution	TSP	0.004Mg	0.0%
1B2c	Flaring in gas transmission and distribution	PM ₁₀	0.004Mg	0.0%
1B2c	Flaring in gas transmission and distribution	PM _{2.5}	0.004Mg	0.0%
1B2c	Flaring in gas transmission and distribution	BC	0.001Mg	0.0%

3.4.2 Activity data, emission factors and emissions for fugitive sources

The following paragraphs describe the methodology for emission calculation for fugitive sources, including activity data, emission factors and annual emissions. The order follow the IPCC structure (1B1 Solid fuels, 1B2a Oil, 1B2b Natural gas, 1B2c Venting and flaring), with the exception that exploration and production of gas are include in the paragraphs for exploration and production of oil, due to similar methodologies and data providers.

Fugitive emissions from solid fuels (1B1)

Coal mining is not occurring in Denmark, and emissions from solid fuels only include particulate matter and black carbon from storage of coal in piles.

Activity data

As coal production is not occurring in Denmark, the total amount of coal used is included in the import statistics provided by DEA (DEA 2015b). Coal is primarily used in power plants, and the annual fluctuations in the import rates mainly owe to variations in electricity import/export and temperature variations. The time series show a decreasing trend due to a shift of fuels in power and heat production from coal and oil to natural gas, waste and biomass.

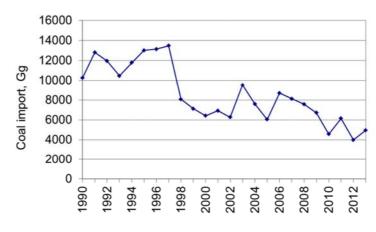


Figure 3.4.1 Import of coal.

Emission factors

The emission factors are listed in Table 3.4.3. Emissions of particulate matter (PM) from coal storage are estimated using emission factors from the Coordinated European Particulate Matter Emission Inventory Program, CEP-MEIP (Visschedijk et al., 2004). The BC emission factor is estimated as a fraction of the TSP emission factor, based on characteristics for other bituminous coal included in the 2006 IPCC Guidelines (Equation 3.4.1).

$$EF_{BC} = EF_{TSP} \cdot C \cdot H \cdot 0.001$$
 (Equation 3.4.1)

where EF_{BC} is the emission factor for BC [g/Mg], EF_{TSP} is the emission factor for TSP [g/Mg], C is the carbon content [kg C/GJ], and H is the heating value [GJ/Mg]. The EF_{BC} estimation is based on C = 25.8 kg C/GJ and H = 25.8 GJ/Mg, as given for other bituminous coal in IPCC (2006).

Table 3.4.3 Emission factors used to estimate particulate emissions from coal storage.

	TSP	PM ₁₀	PM _{2.5}	BC
Emission factor, g per Mg	150	60	6	100

Emissions

Emissions from coal storage are proportional to the import rates, and the causes of the variations are described above. Note that PM emissions are only reported for the years 2000 and forward.

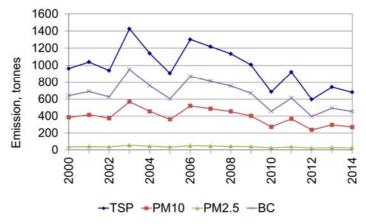


Figure 3.4.2 Emissions from coal storage.

Fugitive emissions from oil (1B2a)

The emissions from oil derive from exploration, production, onshore and offshore loading of ships, onshore oil tanks, service stations and refineries. Exploration and production of both oil and gas are described in this paragraph.

Exploration (1B2a1, 1B2b1)

Activity data

Activity data for oil and gas exploration are provided annually by the Danish Energy Agency (Andersen 2014). Exploration of oil and gas is given separately for each exploration drilling, and fluctuate significantly over the time series. The largest oil rates are seen for 1990, 2002 and 2005, while relatively large gas rates are seen for more years of the time series. Explored rates are shown in Figure 3.5.1

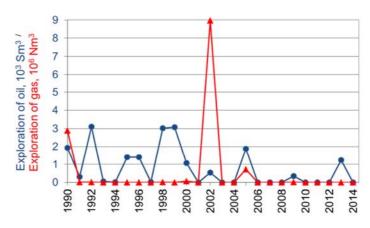


Figure 3.4.3 Exploration of oil and gas.

Emission factors

Emissions from exploration are calculated from the same emissions that are used for flaring in upstream oil and gas production. Further description on the emission factors, which are based on DEPA 2008 and EMEP/EEA 2013, is included in the Section *Fugitive emissions from venting and flaring (1B2c)* below and the emission factors are listed in Table 3.4.13.

Emissions

Calculated NMVOC emissions from exploration of oil and gas are shown in Figure 3.5.2. There is no correlation between emissions from oil and gas, as the individual exploration drillings have different ratios between oil and gas rates.

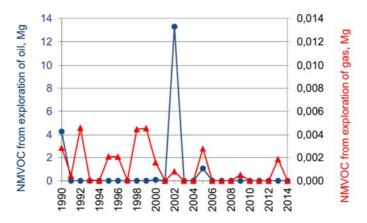


Figure 3.4.4 NMVOC emissions from exploration of oil and gas.

Production (1B2a2, 1B2b2)

Activity data

Activity data used for oil and gas production are provided by the Danish Energy Agency (DEA 2015a). As seen in Figure 3.4.5 the production of oil and gas in the North Sea has generally increased in the years 1990-2004, and since 2004 the production has decreased. Five major platforms were completed in 1997-1999, which is the main reason for the great increase in the oil production in the years 1998-2000.

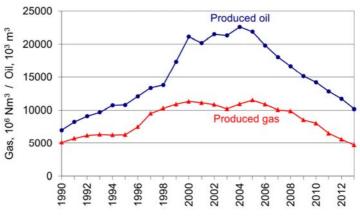


Figure 3.4.5 Production of oil and gas.

Emission factors

Standard emission factors from the 2006 IPCC Guidelines (IPCC, 2006) are used to calculate emissions from production of oil and gas (see Table 3.4.4).

 Table 3.4.4
 Emission factors for exploration of oil and gas

	NMVOC	Reference
Production of oil, Gg/1000m ³	7.40E-07	IPCC 2006
Production of gas, Gg/Mm3	9.10E-05	IPCC 2006

Emissions

Calculated NMVOC emissions from oil and gas production are shown in Figure 3.4.6 for selected years. The annual variations follow the production rates.

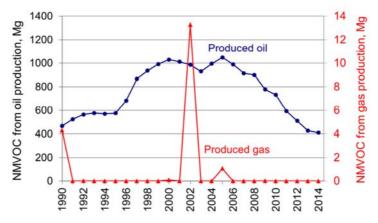


Figure 3.4.6 NMVOC emissions from production of oil and gas.

Transport (1B2a3)

Activity data

Fugitive emissions of oil transport include loading of ships from storage tanks or directly from the wells, and storage and handling at the oil terminal. Activity data for loading offshore and onshore are provided by the Danish Energy Agency (DEA 2015a) and from the annual self-regulating reports from DONG Oil Pipe A/S (DONG Oil Pipe A/S 2015), respectively. The latter also provide annual emissions from storage and handling at the oil terminal.

The rates of oil loaded on ships roughly follow the trend of the oil production (see Figure 3.4.7). Offshore loading of ships was introduced in 1999. In earlier years the produced oil was transported to land via pipeline.

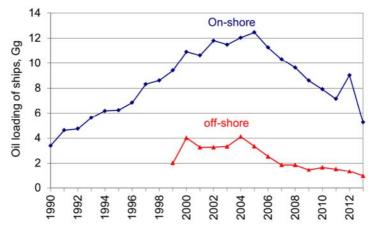


Figure 3.4.7 Onshore and offshore loading of ships.

Emission factors

The EMEP/EEA Guidebook provide standard emission factors for loading of ships onshore and offshore for different countries (EMEP/EEA, 2013). In the Danish inventory the Norwegian emission factors are used for estimation of fugitive emissions from loading of ships onshore and offshore for the years 1990-2009. During 2009 new emission reducing technologies (degassing unit) were installed at the crude oil terminal. Measurements were carried out at the terminal before and after installation show a decrease of 25 % of the NMVOC emission from loading of ships (Miljøcenter Odense, 2010). The reduced emission factors used for 2010 onwards are included in Table 3.4.5.

Table 3.4.5 NMVOC emission factors for loading of ships onshore and offshore.					
	NMVOC,				
	fraction of	Reference			
	loaded				
Ships off-shore	0.001	EMEP/EEA, 2013			
Ships on-shore, 1990-2009	0.0002	EMEP/EEA, 2013			
Ships on-shore, 2010 onwards	0.00015	EMEP/EEA, 2013; Miljøcenter Odense, 2012			

Emissions

NMVOC emissions from transport of oil for selected years are shown in Figure 3.4.8.

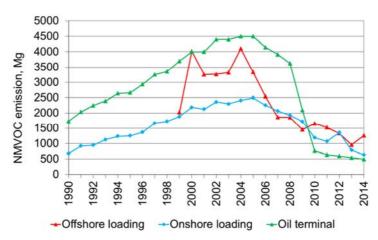


Figure 3.4.8 NMVOC emissions from the oil terminal and from onshore and offshore loading of ships.

Refining (1B2a4)

Activity data

Emissions from oil refinery processes include non-combustion emissions from handling and storage of feedstock (raw oil), from the petroleum product processing and from handling and storage of products. Emissions from flaring in refineries are included in the Section *Fugitive emissions from venting and flaring (1B2c)*. Emissions related to process furnaces in refineries are included in stationary combustion.

Rates of crude oil processed in the two Danish refineries are given in their annual environmental report (A/S Dansk Shell, 2015 and Statoil A/S, 2015). Until 1996 a third refinery was in operation, leading to a decrease in the crude oil rate from 1996 to 1997. Activity date is shown in Figure 3.4.9.

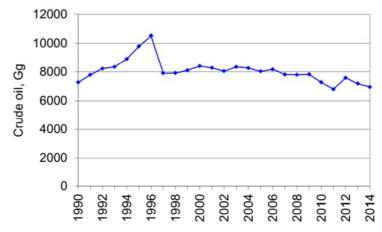


Figure 3.4.9 Crude oil processed in Danish refineries.

Emission factors

Emissions of SO_2 and VOC are given by the refineries. Only one of the two refineries has made a split between NMVOC and CH₄. For the other refinery it is assumed that 10 % of the VOC emission is CH₄ and the remaining 90 % is NMVOC (Hjerrild & Rasmussen, 2014).

Emissions

Refineries are a significant source to fugitive emissions of SO_2 , the most important activity being flaring. In 1990-1993 emissions from petroleum product processing were included in emissions from flaring in refineries (NFR category 1B2c). From 1994 the data delivery format was changed, which made it possible to split the emissions into contributions from flaring and processing, respectively. Emissions from processing are from 1994 included in NFR category 1B2a iv.

SO₂ and NMVOC emissions are shown in Figure 3.4.10. One refinery was shut down in 1996 leading to larger emissions in 1990-1996. Technical improvements of the sulphur recovery system at one of the two Danish refineries lead to a decrease of SO₂ emissions from 1996-1998. The large emissions from 2005 and onwards owe to shut-downs due to maintenance and accidents. Further, construction and initialisation of new facilities and problems related to the ammonium thiosulphate (ATS) plant at the one refinery has led to increased emissions. In 2007 the capacity of the ATS plant was increased followed by commissioning difficulties.

The increase of NMVOC emissions from 2005 to 2006 owes a new measurement campaign at one refinery, which showed larger emissions than the previous. According to the environmental department at the refinery, fugitive emissions from oil processing in refineries does not correlate to any measured parameters, but are expected to follow a more random pattern. The refinery has chosen to report the latest measured emission for the years between measurement campaigns, and as no better methodology are available, the same approach is used in the national emission inventories.

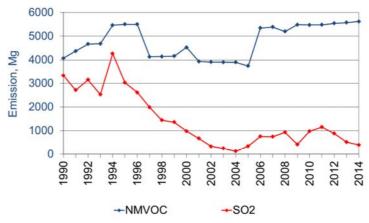


Figure 3.4.10 SO₂ and NMVOC emissions from crude oil processing including sulphur recovery in Danish refineries.

Service stations (1B2a5)

Activity data

Calculations of emissions from service stations are based on gasoline sales figures from the Danish Energy statistics (DEA, 2015b). The gasoline sales show an increase from 1990-1998 and a decreasing trend since 1999 as shown in Figure 3.4.11.

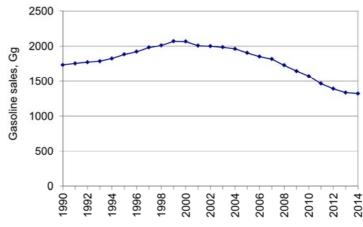


Figure 3.4.11 Gasoline sales in Denmark.

Emission factors

The NMVOC emission from service stations is calculated by use of different emission factors for the time series as shown in Table 3.4.6.

In 1994 the emission factors for NMVOC from service stations were investigated by Fenhann and Kilde (1994) for 1990 and 1991, individually. The emission factors reported for reloading for 1990 are used for the years 1985-1990, while the emission factor for 1991 is used for 1991 only. In 1995 Stage I was made obligatory, and the emission factor from the 2013 EMEP/EEA Guidebook (EMEP/EEA, 2013) is applied from 1995 and onwards. Linear interpolation is applied for the years 1992-1994.

Fenhann and Kilde (1994) also include NMVOC emission factors for refuelling for the years 1990, 1991, 1992, and 1993. The same value is given for the three years, and this emission factor is applied for the years 1994-1995, when the first legal acts on emission reduction from service stations turned into force. From 2005 the refuelling emission factor is based on the 2013 EMEP/EEA Guidebook (EMEP/EEA, 2013). An abatement rate of 85 % is given in the 2013 EMEP/EEA Guidebook, while 60 % were given in the 2006 EMEP/EEA Guidebook (EMEP/EEA, 2006). The Danish requirement is 85 % abatement under optimal conditions, but 70 % in practice occurrence (Danish Ministry of the Environment, 2011). Based on this, 70 % abatement is applied in the emission calculations. Linear interpolation is used from 1996-2004.

Table 3.4.6	Emission factors us	sed for estimating	NMVOC from service	vice stations.
Year	0 1	Refuelling of vehicles, kg NMVOC per tonnes gasoline	Sum of reloading and refuelling, kg NMVOC per tonnes gasoline	Source
1985-1990	1,28	1,52	2,80	Fenhann & Kilde,1994
1991	0,64	1,52	2,16	Fenhann & Kilde,1994
1992	0,49	1,52	2,01	Interpolation / Fenhann & Kilde, 1994
1993	0,35	1,52	1,87	Interpolation / Fenhann & Kilde, 1994
1994	0,20	1,52	1,72	Interpolation / Fenhann & Kilde, 1994
1995	0,05	1,52	1,57	EMEP/EEA 2013 / Fenhann & Kilde, 1994
1996	0,05	1,42	1,47	EMEP/EEA 2013 / interpolation
1997	0,05	1,31	1,37	EMEP/EEA 2013 / interpolation
1998	0,05	1,21	1,26	EMEP/EEA 2013 / interpolation
1999	0,05	1,11	1,16	EMEP/EEA 2013 / interpolation
2000	0,05	1,00	1,06	EMEP/EEA 2013 / interpolation
2001	0,05	0,90	0,95	EMEP/EEA 2013 / interpolation
2002	0,05	0,80	0,85	EMEP/EEA 2013 / interpolation
2003	0,05	0,69	0,75	EMEP/EEA 2013 / interpolation
2004	0,05	0,59	0,64	EMEP/EEA 2013 / interpolation
2005 onwar	ds 0,05	0,49	0,54	EMEP/EEA 2013

Emissions

Emissions from service stations are shown in Figure 3.4.12. The decrease from 1990 to 1999 owes to decreasing emission factors due to technological improvements. From 1999 to 2005 the decrease owe to a combination of decreasing gasoline sales and decreasing emission factors. Since 2005 the decreasing trend is less pronounced and only variates with the gasoline sales, which show a decreasing trend.

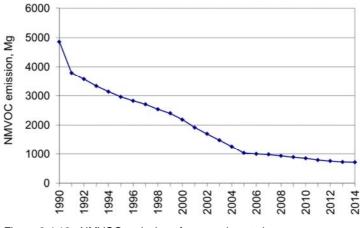


Figure 3.4.12 NMVOC emissions from service stations.

Fugitive emissions from natural gas (1B2b)

The emissions from natural gas derive from exploration, transmission, storage and distribution. Descriptions of exploration and production of natural gas are included in the sections covering exploration and production of oil *Exploration (1B2a1, 1B2b1)* and *Production (1B2a2, 1B2b2)*.

Exploration (1B2b1)

See Section Exploration (1B2a1, 1B2b1).

Production (1B2b2)

See Section Production (1B2a2, 1B2b2).

Transmission and storage (1B2b4)

Activity data

The fugitive emissions from transmission and storage of natural gas are based on information from the gas transmission companies, which provide data on transmission rates, pipeline losses, and length and material of the pipeline systems. The length of the transmission pipelines is approximately 900 km.

The activity data used in the calculation of the emissions from transmission of natural gas are shown in Figure 3.4.13. Transmission rates for 1990-1998 refer to annual environmental reports of DONG Energy. In 1999-2006 transmission rates refer to the Danish Gas Technology Centre (Karll 2002, Karll 2003, Karll 2004, Karll 2005, Oertenblad 2006, Oertenblad 2007). From 2008 onwards transmission rates refer to Energinet.dk (2015b). Transmission losses for 1991-1999 are based on annual environmental report of DONG Energy. The average for 1991-1995 is applied for 1990. From 2005 onwards transmission losses are given by Energinet.dk. The average for 2005-2010 is applied for the years 2000-2004.

The variation over the time series owes mainly to variations in the winter temperature and to the variation of import/export of electricity from Norway and Sweden. The transmission rate is less than the production rate, as part of the produced natural gas is exported through the NOGAT pipeline system.

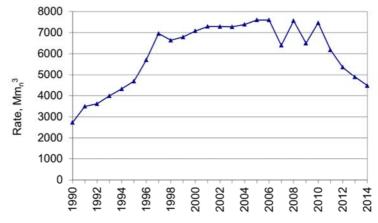


Figure 3.4.13 Rates for transmission of natural gas.

Emission factors

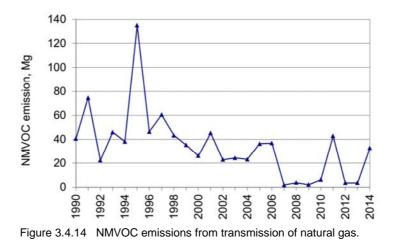

The fugitive emissions from transmission and storage of natural gas are based on data on gas losses from the companies and on the average annual natural gas composition given by Energinet.dk (2015c) (Table 3.4.7).

Table 3.4.7 Annual gas composition, lower heating value and density for Danish natural gas.							
		Unit	1990	2000	2005	2010	2014
Methane	CH ₄	molar-%	90.92	86.97	88.97	89.95	89,19
Ethane	C_2H_6	molar-%	5.08	6.88	6.14	5.71	5,95
Propane	C_3H_8	molar-%	1.89	3.17	2.50	2.19	2,40
i-Butane	$i\text{-}C_4H_{10}$	molar-%	0.36	0.43	0.40	0.37	0,37
n-Butane	$n-C_4H_{10}$	molar-%	0.50	0.61	0.55	0.54	0,56
i-Petane	$i\text{-}C_5H_{12}$	molar-%	0.14	0.11	0.11	0.13	0,12
n-Petane	$n\text{-}C_5H_{12}$	molar-%	0.10	0.08	0.08	0.08	0,09
n-Hexane and heavier hydrocarbons	C ₆₊	molar-%	0.09	0.06	0.05	0.06	0,04
Nitrogen	N ₂	molar-%	0.31	0.34	0.29	0.31	0,31
Carbon dioxide	CO ₂	molar-%	0.60	1.35	0.90	0.66	0,96
Lower heating value	Hn	MJ/m ³ n	39.176	40.154	39.671	39.461	39.532
Density	ρ	kg/m³ _n	0.808	0.846	0.825	0.816	0.824

Table 3.4.7 Annual gas composition, lower heating value and density for Danish natural gas.

Emissions

Emissions of NMVOC from transmission of natural gas are shown in Figure 3.4.14. As the pipelines in Denmark are relatively new and made of plastic, most emissions are due to leaks during construction and maintenance. This leads to large annual fluctuations in emissions which are not correlated to the transmission rates. E.g. the large emission in 1995 owe to a large construction work covering four different locations. The increase in 2011 owe to venting for drainage of the pipes in preparation for construction work on a new compressor station, and the increase in 2014 owe to the construction of a new major railway line.

Distribution (1B2b5)

Activity data

Distribution rates for 1990-1998 are estimated from the Danish energy statistics. Distribution rates are assumed to equal total Danish consumption rate minus the consumption rates of sectors that receive the gas at high pressure. The following consumers are assumed to receive high pressure gas: town gas production companies, production platforms and power plants. Distribution rates for 1999-2006 refer to DONG Energy/Danish Gas Technology Centre/Danish gas distribution companies (Karll 2002, Karll 2003, Karll 2004, Karll 2005, Oertenblad 2006, Oertenblad 2007). Since 2007 the distribution rates are given by the companies. The fugitive losses from distribution of natural gas are only given for some companies. The average of the available "loss/distribution"-ratios is used for the remaining companies. Activity data for distribution of town gas is rather scarce, and calculations are based on the available data from the town gas distribution companies on losses from the pipelines. At present, there are two areas with town gas distribution and correspondingly two distribution companies. Two other companies in other areas were closed in 2004 and 2006, and it has not been possible to collect data for all years in the time series. The emissions have been calculated for the years with available data and the distribution loss for the first year with data has been applied for the previous years in the time series. Data is missing for the later years (1996-2003) for one of the distribution companies. The distribution rate is assumed to decrease linearly to cero over these years, and the share ("distribution loss/distribution rate") is assumed equal to the value for 1995.

Data on the distribution network are given by Energinet.dk, DGC and the distribution companies concerning length and material. In 2014 the length of the distribution network was around 20.000 km. Because the distribution network in Denmark is relatively new most of the pipelines are made of plastic (approximately 90 %). For this reason the fugitive emission is negligible under normal operating conditions as the distribution system is basically tight with no fugitive losses. However, the plastic pipes are vulnerable and therefore most of the fugitive emissions from the pipes are caused by losses due to excavation damages, and construction and maintenance activities performed by the gas companies. These losses are either measured or estimated by calculation in each case by the gas companies. About 5 % of the distribution network is used for town gas. This part of the network is older and the fugitive losses are larger. The fugitive losses from this network are associated with more uncertainty as it is estimated as a percentage (15 %) of the meter differential. This assumption is based on expert judgement from one of the town gas companies (Jensen, 2008). Distribution rates are shown in Figure 3.5.11.



Figure 3.4.15 Distribution rates of natural gas and town gas.

Emission factors

Emissions from natural gas distribution are calculated from the fugitive losses from pipelines and the gas quality measured by Energinet.dk (see Table 3.4.7). The same approach is used for town gas, which is natural gas admixed ~ 50 % ambient air. From 2014 one town gas distribution company has started to admix biogas. In 2014 the share of biogas is 10.1 % which is expected to increase in the coming years. The admixed biogas has not been upgraded as tests of different appliances have shown that up to 40 % unugraded biogas can be added to the town gas without causing problems

with the appliances' combustion. The gas composition of biogas is given in Table 3.4.8.

	Unit	2014
Methane	molar-%	60.98
Nitrogen	molar-%	0.001
Carbon dioxide	molar-%	39.02
Lower heating value	MJ/m ³ n	21.53
Density	kg/m³ _n	0.808

Table 3.4.8 Composition of biogas admixed to town gas (Jeppesen, 2014; Ea Energianalyse, 2014).

The distribution companies provide emissions of CH_4 for the years 1997 and onwards. For the years 1995-1996 CH_4 emissions are calculated from the registered loss from distribution and the annual composition of Danish natural gas given by Energinet.dk. As distribution losses are not available for the years 1990-1994, the percentage loss for 1995 is used.

Emissions

Emissions of NMVOC from distribution of natural gas and town gas are shown in Figure 3.5.12. The decreasing trend for town gas owe to phase-out of town gas distribution in two areas. Further relining of old pipelines has reduced the gas loss from town gas distribution.

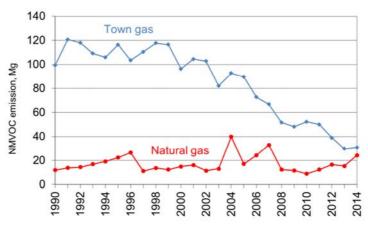


Figure 3.4.16 NMVOC emissions from transmission of natural gas.

Fugitive emissions from venting and flaring (1B2c)

Venting occur in the two Danish natural gas storage facilities. Flaring occurs in refineries, in oil and gas production, in gas treatment and storage facilities, and in gas transmission and distribution.

Venting

Activity data

The natural gas storage facilities are obligated to make environmental reports on annual basis, including data on venting. Venting of gas is assumed to be not occurring in extraction and in refineries, as controlled venting enters the gas flare system. Venting rates in gas storage facilities are shown in Figure 3.4.13. Data are not available for the years 1990-1994 for the one gas storage facility that was in operation over the entire time series, and the average for 1995-1998 is applied. The second gas storage facility was opened in 1994, leading to increasing venting rates.

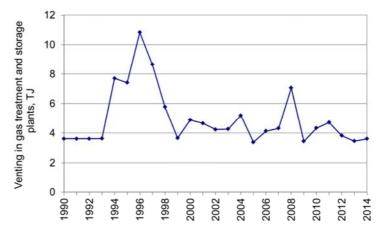


Figure 3.4.17 Venting rates in gas storage facilities.

Emission factors

Emissions of NMVOC from venting are given in the environmental reports for the gas storage facilities (DONG Energy, 2014; Energinet.dk, 2015a).

Emissions

Venting is limited to the gas storage facilities and the emissions are of minor importance to the total fugitive emissions. Venting emissions are included in Figure 3.4.21.

Flaring

Flaring in refineries

Activity data

Flaring rates for the two Danish refineries are given in their environmental reports and in additional data provided by the refineries directly to DCE. From 2006 flaring rates are given in the EU ETS reporting. Data are not available for the years 1990-1993, why the flaring rate for 1994 has been adopted for the previous years. Flaring rates are shown in Figure 3.4.18.

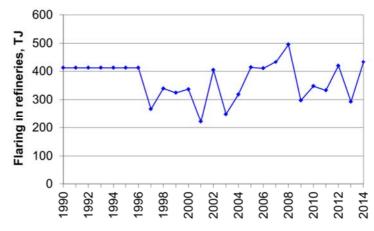


Figure 3.4.18 Flaring rates in refineries.

Emission factors

 SO_2 emissions are provided annually by the refineries, while NOx emissions are provided annually by only one refinery. The composition of refinery gas is given for 2008 by one of the two refineries. As the composition for refinery gas is very different from than the composition of natural gas, the 2008 refinery gas composition is used in calculations for both Danish. The NMVOC emission factors based on the 2008 refinery gas composition are applied for both refineries for the entire time series. Emissions of the remaining are

based on standard emission factors from the 2013 EMEP/EEA Guidebook. Emission factors for selected pollutants are listed in Table 3.4.9.

Pollutant	Emission factor, g/GJ
NO _x	32.2
NMVOC	76.448
CO	177
TSP	0.89
PM ₁₀	0.89
PM _{2.5}	0.89
BC	0.223

Table 3.4.9 Emission factors for flaring in refineries.

Emissions

Emissions of NMVOC and SO_2 are shown in figure 3.4.19. The variation over the time series mainly reflects the annual variation in the activity rate for flaring. SO_2 in the early years of the time series are very uncertain as one refinery is closed and as only very scarce amounts of information are available. It has not been possible to get further verification the data for 1990-1994.

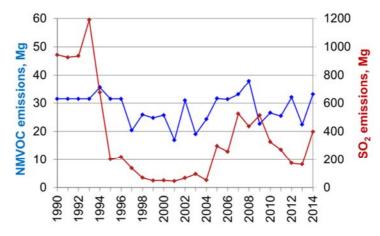


Figure 3.4.19 NMVOC and SO₂ emissions from flaring in refineries.

Flaring in upstream oil and gas production

Activity data

From 2006 data on flaring in upstream oil and gas production is given in the reports for the EU ETS and thereby emission calculation can be made for the individual production units. Before 2006 only the total flared amount is available in the annual report Denmark's oil and gas production (Danish Energy Agency, 2015a). Flaring rates are shown in Figure 3.4.20. Flaring rates in upstream oil and gas production have been decreasing over the last 10 years period in accordance with the decrease in production as seen in Figure 3.4.5. Further, there is focus on reduction of the amount being flared for environmental reasons.

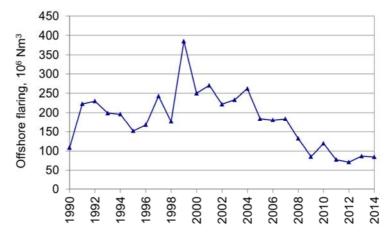


Figure 3.4.20 Flaring rates in upstream oil and gas production.

Emission factors

The emission factors for flaring in upstream oil and gas production are shown in Table 3.4.10. The NO_x emission factor is based on the conclusion in a Danish study of NO_x emissions from offshore flaring carried out by the Danish Environmental Protection Agency (DEPA, 2008). The recommended NO_x emission factor (31 008 g per GJ or 0.0015 tonnes NO_x per tonnes gas) corresponds well with the emission factors used to estimate NO_x emission in other countries with oil production in the North Sea (Netherlands: approximately 0.0014 tonnes NO_x per tonnes gas). Emission factors for all other pollutants are based on standard Tier 1 emission factors for stationary combustion of gaseous fuels in energy industries from the 2013 EMEP/EEA Guidebook.

Pollutant	Emission factor,
Pollularil	g/GJ
SO ₂	0.013
NO _x	1.227
NMVOC	1.482
CO	1.854
TSP	0.042
PM ₁₀	0.042
PM _{2.5}	0.042
BC	0.008

Table 3.4.10 Emission factors for flaring in upstream oil and gas production.

Emissions

Emissions from flaring in upstream oil and gas production are estimated from the same emission factors for all years in the time series, and the variations reflect only the variations in the flared amounts. As shown in Figure 3.4.21, there was a marked increase in the rate of flaring in upstream oil and gas production in 1997 and especially in 1999. The increase in 1997 was due to the new Dan field and the completion of the Harald field. The increase in 1999 was due to the opening of the three new fields Halfdan, Siri and Syd Arne.

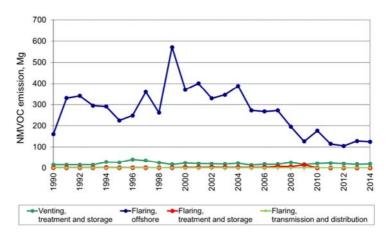


Figure 3.4.21 NMVOC emissions from flaring in upstream oil and gas production.

Flaring in gas treatment and storage facilities

Activity data

Activity data for flaring in gas treatment and storage facilities are given in DONG Energy's environmental reports (Dong Energy, 2014; Dong Energy, 2015; Energinet.dk, 2015a). Flaring rates in gas treatment and gas storage facilities are not available before 1994. The mean value for 1994-1998 has been adopted as basis for the emission calculation for the years 1990-1993. Note that one of the two gas storage facilities was not opened before 1994. The large amount of gas flared in 2007 owe to a larger maintenance work at the gas treatment plant.

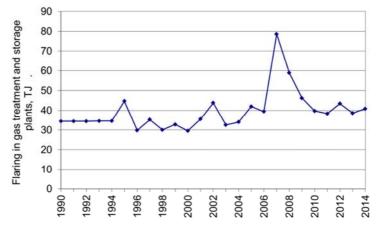


Figure 3.5.10 Flaring in gas treatment and storage facilities.

Emission factors

Emissions from flaring in gas treatment and storage facilities are calculated from the same emission factors which are used for flaring in upstream oil and gas production.

Emissions

Emissions from flaring in gas treatment and storage facilities are of minor importance to the total fugitive emissions. NMVOC emissions are included in Figure 3.4.21.

3.4.3 Uncertainties and time series consistency

The applied methodology for uncertainty estimates refers to Pulles & Aardenne (2004). The Danish uncertainty estimates are based on the simple Tier 1 approach described in IPCC Good Practice Guidance (IPCC, 2000).

Input data

The uncertainty estimates are based on the calculated emissions for the base year and for the latest inventory year, and on the uncertainty rates for both activity data and emission factors. Data is aggregated for the NFR category 1B - Fugitive Emissions from Fuels. Base year refers to 2000 for particulate matter and to 1990 for the remaining pollutants. Emission data, activity data and emission factors are described in Section *3.4.2 Activity data, emission factors and emissions for fugitive sources.*

For each pollutant the primary emission source/sources is the determinant for the overall uncertainty level. Uncertainty levels are based on IPCC Good Practice Guidance, EMEP/EEA Guidebook, reports under the EU ETS and DCE assumptions. Uncertainty levels for activity data and emission factors are listed in Table 3.4.11.

Pollutant	Activity data	Emission factor
	uncertainty level,	uncertainty level,
	%	%
SO ₂	10	25
NO _x	7.5	125
NMVOC	2	125
CO	7.5	125
TSP	2	50
PM ₁₀	2	50
PM _{2.5}	2	50
BC	2	100
As	7.5	500
Cd	7.5	500
Cr	7.5	500
Cu	7.5	500
Hg	7.5	500
Ni	7.5	500
Pb	7.5	500
Se	7.5	500
Zn	7.5	500
PCDD/F	7.5	500
Benzo(b) fluoranthene	7.5	500
Benzo(k) fluoranthene	7.5	500
Benzo(a)pyrene	7.5	500
Indeno (1,2,3-cd) pyrene	7.5	500

Table 3.4.11 Uncertainty levels for activity rates and emission factors for NFR category 1B - Fugitive Emissions from Fuels.

Results

The uncertainty model estimates uncertainties for both the emission level and the trend. The uncertainty on the emission level for SO_2 , NO_x , NMVOC and CO is 27 %, 125 %, 125 % and 125 %, respectively.

For PM the uncertainty is 50 %, for BC the uncertainty is 100 % and for HM and PAHs the uncertainty is 500 %. The individual uncertainty estimates for the fugitive emission inventory are shown in Table 3.4.12. The trend refers to the years 1990-2014 for all pollutants except PM where the trend refers to 2000-2014. Uncertainties for PCDD/F are not included in the table, as the estimates are very large due to the methodology and as the base year emission is very close to zero.

Pollutant	Emission uncertainty	Trend uncertainty		
	%	%		
SO ₂	27	2		
NO _x	125	9		
NMVOC	125	2		
СО	125	8		
TSP	50	2		
PM ₁₀	50	2		
PM _{2.5}	50	2		
BC	100	2		
As	500	8		
Cd	500	8		
Cr	500	8		
Cu	500	8		
Hg	500	8		
Ni	500	8		
Pb	500	8		
Se	500	8		
Zn	500	8		
PCDD/F				
Benzo(b) fluoranthene	500	8		
Benzo(k) fluoranthene	500	8		
Benzo(a)pyrene	500	8		
Indeno (1,2,3-cd) pyrene	500	8		

Table 3.4.12 Estimated uncertainty levels for emissions and trends for fugitive emissions.

3.4.4 Source specific QA/QC and verification

A list of QA/QC tasks are performed directly in relation to the fugitive emission part of the Danish emission inventories. The following procedures are carried out to ensure the data quality:

- The emission from the large point sources (refineries, gas treatment and gas storage plants) is compared with the emission reported the previous year.
- Annual environmental reports are kept for subsequent control of plantspecific emission data.
- Checks of data transfer are incorporated in the fugitive emission models, e.g. sum checks.
- Verification of activity data from external data when data are available through more data sources (offshore fuel and flaring rates).
- Data sources are incorporated in the fugitive emission models
- A manual log table in the emission databases is applied to collect information about recalculations.
- Comparison with the inventory of the previous year. Any major changes are verified.
- Total emission, when aggregated to reporting tables, is compared with totals based on SNAP source categories (control of data transfer).
- Checking of time series in the NFR and SNAP source categories. Significant dips and jumps are controlled and explained.

Data deliveries

Table 3.4.13 lists the external data deliveries used for the inventory of fugitive emissions. Further the table holds information on the contacts at the data delivery companies.

Table 3 4 13	List of externa	al data sources.
1 abie 3.4.13		ai uata sources.

Category	Data description	Activity data, emission factors or emissions	Reference	Contact(s)	Data agreement /comment
Exploration of oil and gas	Dataset for exploration of or and gas, including rates and composition.		The Danish Energy Agency	Jan H. Andersen	Data agreement
Production of oil and gas	Gas and oil production. Dataset, including rates of offshore loading of ships.	Activity data	The Danish Energy Agency	Jan H. Andersen	Not necessary due to obligation by law
Offshore flaring	Flaring in upstream oil and gas production (EU ETS data)	Activity data	The Danish Energy Agency	Dorte Maimann	Data agreement
Service stations	Data on gasoline sales from the Danish energy statistics	-	The Danish Energy Agency	Jane Rusbjerg	Data agreement
Gas transmission	Natural gas transmission rates from the transmission company, sales and losses		Energinet.dk	Christian Friberg B. Nielsen	Not necessary due to obligation by law
Onshore activities	Rates of oil transport in pipeline and onshore load- ing to ships. Emissions from storage of raw oil in the terminal.		DONG Olierør A/S	Stine B. Bergmann	No formal data agreement.
Gas distribution	Natural gas and town gas distribution rates from the distribution company, sales and losses (meter differ- ences)	Activity data	Naturgas Fyn, HMN Dong Energy Aalborg Forsy- ning	Hanne Mochau, Søren K. Andersen Grethe Andersen Andreas Bech Jensen	No formal data agreement.
Emissions from refinery	Fuel consumption and emission data.	Activity data and emission data	Statoil A/S,	Anette Holst, IILis Rønnow Rasmusser	No formal data nagreement.
Treatment and storage of gas	Environmental reports from plants defined as large point sources (Lille Torup, Stenlille, Nybro)	Activity data	Various plants		Not necessary due to obligation by law
CO ₂ emission factors for differen sources	Reports according to the tCO ₂ emission trading scheme (EU ETS)	Activity data	Various plants		Not necessary due to obligation by law
Emission factors	Emission factors origin from a large number of sources		See Section 3.5.4 Activity data, emission factors and emissions for fugitive sources regarding emis- sion factors		

National external review

In 2015 a documentation report for the sector "Fugitive emissions from fuels" was published, including detailed information on the methodology used in the emission inventories for greenhouse gases and air pollution (Plejdrup et al., 2015). The report was reviewed by Glen Thistlethwaite from Ricardo Energy & Environment, Oxfordshire, UK.

3.4.5 Recalculations

The following recalculations regarding fugitive emissions from fuels have been applied for the time series.

Service stations (1B2a5)

The activity data has been updated for 2011-2013 according to the latest energy statistics published by the Danish Energy Agency. The recalculation has changed the NMVOC emission by 1.518 tonnes (2012) to 2.279 tonnes (2011), which correspond to ~ 0.02 % of the total fugitive NMVOC emission.

Distribution of gas (1B2b5)

Activity data have been updated for one natural gas distribution company for 2012-2013. Further, the admixing rate of atmospheric air in town gas distribution has been changed from 49 % to 50 % as detailed rates are not available for all companies and a calculation error has been corrected for one town gas company for the years 1990-2005. The recalculations have changed the NMVOC emissions by -0.8 tonnes (2013) to 701 tonnes (2002), corresponding -0.04 % and 0.08 % of the total fugitive NMVOC emission.

Flaring in gas treatment and storage facilities (1B2c)

NMVOC IEFs have been updated for the years 1990-1994 for flaring in gas treatment and storage facilities. The recalculation has increased the IEFs for NMVOC by 154 %. Compared to the total fugitive emissions the recalculation corresponds 0.02 %.

3.4.6 Source specific planned improvements

The following future improvements are suggested.

• Emissions from storage of fuels in tank facilities: The current edition of the Danish emission inventory holds emissions from storage and refining of crude oil and from service stations. To make the inventory complete emissions from storage of fuels outside the refineries in tank facilities will be included in the future if data are available. Work is on-going to locate large tank facilities in Denmark and collect the available data. In cases where no emission estimates or measurements are available a set of emission factors have to be set up.

3.4.7 References

A/S Dansk Shell, 2015: Annual environmental report.

Andersen, 2014: Personal communication, -mail correspondence, Danish Energy Agency.

Danish Energy Agency, 2015a: Oil and Gas Production in Denmark 2014. Available at:

http://www.ens.dk/en/publication-annual-report-2014 (11-01-2016).

Danish Energy Agency, 2015b: The Danish energy statistics (Energistatistik) (in Danish). Available at: <u>http://www.ens.dk/en/info/facts-figures/energy-statistics-indicators-</u> <u>energy-efficiency/annual-energy-statistics</u> (11-01-2016).

DEPA, 2008: Emissionsfaktorer for NO_x -emissioner fra flaring fra platforme i Nordsøen (in Danish). Not published.

DONG Energy, 2014: Annual environmental reports from DONG Energy for Stenlille gas storage facility (in Danish). Available at:

https://assets.dongenergy.com/DONGEnergyDocuments/com/Business% 20Activities/Thermal%20Power/Environmental_Reports/2013/Stenlille_mi ljoeregnskab_2013l.pdf (11-01-2016).

DONG Energy, 2015: Annual environmental reports from DONG Energy for Nybro gas treatment plant (in Danish). Available at:

https://assets.dongenergy.com/DONGEnergyDocuments/com/Business% 20Activities/Thermal%20Power/Environmental_Reports/2014/Nybro%20g asbehandlingsanl%C3%A6g%20milj%C3%B8regnskab%202014.pdf (11-01-2016).

DONG Oil Pipe A/S, 2015: Dong Energy Raw Oil Terminal, Fredericia – Self-regulation Report (in Danish).

Ea Energianalyse, 2014: Anvendelse af biogas i naturgas i København (in Danish).

EMEP/EEA, 2013: Air emission inventory guidebook, prepared by the UNECE/EMEP Task Force on Emission Inventories and Projections, 2013 update. Available at:

http://www.eea.europa.eu//publications/emep-eea-guidebook-2013 (11-01-2016).

Energinet.dk, 2015a: Annual report from Energinet.dk for Lille Torup gas storage facility (in Danish). Available at: <u>http://docplayer.dk/2280189-Groent-regnskab-2014-for-energinet-dk-gaslager-a-s-ll-torup-naturgaslager.html</u> (11-01-2016).

Energinet.dk, 2015b: Environmental Impact from transmission of gas. Available at:

http://www.energinet.dk/DA/KLIMA-OG-MILJOE/Energinetdksmiljoepaavirkninger/Miljoepaavirkninger-ved-transport-afgas/Sider/Miljoepaavirkninger-ved-transport-af-gas.aspx (11-01-2016).

Energinet.dk, 2015c: Annual gas quality. Available at:

<u>http://energinet.dk/DA/GAS/Gasdata-og-kvalitet/Gaskvalitet/Sider/Vis-gaskvalitet.aspx?Visning=aarsgennemsnit</u> (Gas quality for earlier years available in the background reports of the annual environmental reports - available at:

http://energinet.dk/DA/KLIMA-OG-

MILJOE/Miljoerapportering/Tidligere-aars-

miljoerapporter/Sider/default.aspx (in Danish) (11-01-2016).

EU Commission, 2007: COMMISSION DECISION of 18 July 2007 establishing guidelines for the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council. Available at:

http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:229:0001:0085:EN: PDF (11-01-2016).

Fenhann, J. & Kilde, N.A. 1994: Inventory of Emissions to the Air from Danish Sources 1972-1992. Risø National Laboratory, Roskilde, Denmark.

Hjerrild and Rasmussen, 2014: Fugitive VOC from refineries.

IPCC, 2000: Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Available at: <u>http://www.ipcc-nggip.iges.or.jp/public/gp/english/</u> (11-01-2016).

IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl7 (11-01-2016).

Jensen, 2008: Town gas distribution loss.

Jeppesen, 2014: Biogas i bygas – biogasrense- og bygasproduktionsanlæg. Presentation at Gastekniske data 14/05/2014 (in Danish).

Karll, B. 2002: Personal communication, e-mail 2002, Danish Gas Technology Centre.

Karll, B. 2003: Personal communication, e-mail 2003, Danish Gas Technology Centre.

Karll, B. 2004: Personal communication, e-mail 2004, Danish Gas Technology Centre.

Karll, B. 2005: Personal communication, e-mail 2005, Danish Gas Technology Centre.

Oertenblad, M. 2006: Personal communication, e-mail 2006, Danish Gas Technology Centre.

Oertenblad, M. 2007: Personal communication, e-mail 2007, Danish Gas Technology Centre.

Plejdrup, M.S., Nielsen, O.-K., Nielsen, M. 2015. Emission inventory for fugitive emissions from fuel in Denmark. Aarhus University, DCE – Danish Centre for Environment and Energy, 52 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 173. Available at: <u>http://dce2.au.dk/pub/SR173.pdf</u> (11-01-2016)

Statoil A/S, 2015: Annual environmental report (in Danish). Available at: <u>http://www.statoil.com/en/About/Worldwide/Denmark/Downloads/Gr</u>eenaccount_2014.pdf (11-01-2016).

4 Industrial processes (NFR sector 2)

4.1 Overview of the sector

The chapter on Industrial processes (NFR sector 2) is outlined as follows:

- Mineral industry (NFR 2A)
- Chemical industry (NFR 2B)
- Metal production (NFR 2C)
- Non-energy products from fuels and solvent use (NFR 2D)
- Other product use (NFR 2G)
- Other production (NFR 2H)
- Other production, consumption, storage, transportation or handling of bulk products (NFR 2L)

The industrial processes included in the Danish inventory are those in large companies, e.g. cement factories, as well as a number of smaller companies e.g. iron foundries.

Table 4.1.1 presents an overview of sources and groups of pollutants included in the present reporting. Explanations to the abbreviations are given below the table. In addition to the indicated groups of pollutants some groups do not include all relevant pollutants or the time series are not complete. For some processes, it is not possible to separate emissions from the fuels and the emissions stemming from the raw materials. This is especially the case for processes with contact, e.g. cement and lime production. Detailed information on this subject can be found in the following table.

Table 4.1.1	Survey of IPPU sector with SNAP-co	de and NFR-code included in the Danish inventory.

Industrial sector	SNAP	NFR	SO ₂ /NO _X / NH ₃	NMVOC/ CO	PMs	HMs	POPs
Cement production	030311	2A1	IE	IE	IE	IE	IE
Lime production	030312	2A2	IE	IE	Х	-	х
Container glass production	030315	2A3	-	-	Х	Х	-
Glass wool production	030316	2A3	х	х	Х	-	-
Quarrying and mining of minerals other than coal	040616	2A5a	-	-	Х	-	-
Construction and demolition	040624	2A5b	-	-	Х	-	-
Storage, handling and transport of mineral products	040690	2A5c	-	-	Х	-	-
Production of bricks and tiles	040691	2A6	Х	-	-	-	х
Production of expanded clay products	040692	2A6	Х	-	-	-	х
Stone wool production	030318	2A6	Х	х	Х	-	х
Sulphuric acid production	040401	2B10a	х	-	-	-	-
Nitric acid production	040402	2B2	х	-	х	-	-
Catalyst production	040416	2B10a	х	-	х	-	-
Production of chemical ingredients	040500	2B10a	-	х	-	-	-
Pesticide production	040525	2B10a	х	х	-	-	-
Production of tar products	040527	2B10a	х	х	-	х	-
Electric arc furnace steel production	040207	2C1	IE	х	х	х	х
Rolling mills steel production	040208	2C1	IE	х	х	х	-
Grey iron foundries	030303	2C1	IE	IE	х	х	х
Secondary aluminium production	030310	2C3	IE	IE	х	х	х
Secondary lead production	030307	2C5	IE	IE	х	х	х
Allied metal manufacturing	040306	2C7c	IE	IE	-	х	-
Domestic solvent use incl. fungicides	060408/ 060411	2D3a	-	x	-	-	-
Road paving with asphalt	040611	2D3b	-	х	-	-	-
Asphalt roofing	040610	2D3c	-	х	-	-	-
Coating applications	060100	2D3d	-	х	-	-	-
Degreasing	060200	2D3e	-	х	-	-	-
Dry cleaning	060202	2D3f	-	х	-	-	-
Chemical products	060300	2D3g	-	х	-	-	-
Printing	060403	2D3h	-	х	-	-	-
Other solvent use	060400	2D3i	-	х	-	-	-
Paraffin wax use	060606	2D3h ¹	-	х	х	-	х
Use of fireworks	060601	2G4	х	х	х	х	-
Use of tobacco	060602	2G4	х	х	х	х	х
Use of charcoal for barbeques	060605	2G4	x	x	x	x	X
Bread production	040605	2H2	-	x	-	-	-
Wine production	040606	2H2	-	x	-	-	-
Beer production	040607	2H2	-	x	-	-	-
Spirits production	040608	2H2	-	x	-	-	-
Sugar production	040625	2H2	-	x	-	-	-
Meat curing	040627	2H2	-	x	-	-	-
Use of margarine and solid cooking fats	040698	2H2	-	x	-	-	-
Coffee roasting	040699	2H2	-	x	-	-	-
Wood processing	040620	21 12	-	-	х	-	
Slaughterhouse waste	040617	21 2L	v	-	^	_	_
อเล่นนาและเกอนระ พลรเล	040017	۲۲	Х	-	-	-	-

x Included in the present inventory.

- Not included/not relevant.

IE Included elsewhere.

¹ No NFR category – placed in NFR 2D3h in this year's reporting.

Table 4.1.2 presents an overview of the most significant source categories for 2014. Many changes have occurred over the time series; some factories have closed and others have opened, Table 4.1.2 is therefore only representable for 2014.

Table 4.1.2 Overview of 2014 emissions from Industrial processes and product use (IPPU).

	Total emis- sion from	Fraction of national		Emis from lar		Fraction of IPPU,
	IPPU	total, %	Largest contributor in IPPU	contrib	%	
SO ₂	0.73 Gg	6.4	2A6 Other mineral products	0.55	Gg	74.6
NO _x	0.07 Gg	0.1	2G Other product use	0.05	Gg	67.1
NMVOC	27.47 Gg	26.0	2D3i Other solvent use	17.83	Gg	64.9
CO	3.40 Gg	1.1	2G Other product use	2.83	Gg	83.2
NH_3	0.40 Gg	0.5	2A6 Other mineral products	0.16	Gg	40.4
TSP	5.02 Gg	5.8	2A5a Quarrying and mining of minerals other than coal	2.81	Gg	56.1
HMs	6.40 Mg	5.5	Cu from 2G Other product use	1.61	Mg	25.1
POPs	0.08 Mg	1.3	PAHs from 2G Other product use	0.08	Mg	99.4

4.2 Mineral industry

4.2.1 Source category description

The sub-sector *Mineral industry* (NFR 2A) covers the following processes relevant for the Danish inventories:

- 2A1 Cement production (SNAP 030311)
- 2A2 Lime production (SNAP 030312)
- 2A3 Glass production (SNAP 030315, 030316)
- Quarrying and mining of minerals other than coal (SNAP 040616)
- Construction and demolition (SNAP 040624)
- Storage, handling and transport of mineral products (SNAP 040690)
- 2A6 Other mineral products (SNAP 030318, 040691, 040692)

The time series for emission of acidifying substances, NMVOC, particulate matter, heavy metals, and POPs from *Mineral industry* (NFR 2A) is available in the NFR tables. Table 4.2.1 presents an overview of emissions from 2014.

Table 4.2.1 Overview of 2014 emissions from Mineral industry.

	Total emission from mineral	of IPPU,		Emission from largest	Fraction of Mineral
	industries	%	Largest contributor in Mineral industries	contributor	industries, %
SO ₂	0.55 Gg	74.6	2A6 Other mineral products	0.55 Gg	100.0
NMVOC	0.04 Gg	0.1	2A3 Glass production	0.04 Gg	100.0
CO	0.01 Gg	0.3	2A6 Other mineral products	0.01 Gg	84.4
NH₃	0.29 Gg	72.0	2A6 Other mineral products	0.16 Gg	56.0
TSP	4.06 Gg	81.0	2A5a Quarrying and mining of minerals other than coal	2.81 Gg	69.2
HMs	0.06 Mg	1.0	Se from 2A3 Glass production	0.03 Mg	50.8
POPs	0.01 kg	0.01	PCBs from 2A2 Lime production	0.01 kg	94.6

4.2.2 Cement production

It has not been possible to separate emissions from fuel consumption and emissions from process activities. Process emissions from the production of cement are therefore included in the energy section.

4.2.3 Lime production

The production of limestone and lime/burned lime/quicklime is located at a few localities: Faxe Kalk (Lhoist group) situated in Faxe, Scandinavian Calcium Oxide ApS situated in Støvring, dankalk A/S situated in Løgstør with limestone quarries/limeworks in Aggersund, Mjels, Poulstrup and Batum. The following SNAP-code is covered:

• 03 03 12 Lime production

The following pollutants are relevant for the lime production process:

- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC
- Persistent organic pollutants: HCB, PCDD/F, PCB

Emissions associated with the fuel use are estimated and reported in the energy sector.

Methodology

Data on the amount of lime produced is available from Statistics Denmark on a national level and emission factors are available from EMEP/EEA and national literature.

Activity data

The activity data regarding production of lime is obtained from Statistics Denmark (2014). The data are presented in Table 4.2.2.

	1990	1991	1992	1993	1994	1995	1996	1997	1998			
Burnt lime	127978	86222	104526	106587	112480	100789	95028	102587	88922			
	1999	2000	2001	2002	2003	2004	2005	2006	2007			
Burnt lime	95177	92002	96486	122641	87549	77844	71239	78652	75504			
	2008	2009	2010	2011	2012	2013	2014					
Burnt lime	74981	46202	50397	59430	69136	66805	72994					

Table 4.2.2 Production of burnt lime, Mg (Statistics Denmark, 2015).

Slaking of lime does not emit any pollutants. All burnt lime that is later slaked, is included in statistics shown in the table above. Adding the production of slaked lime to the activity data, would therefore result in a double counting.

Emission factors

The emission factors used to calculate the emissions from lime production are shown in Table 4.2.3 along with their respective sources. Emission factors from EMEP/EEA (2013) are valid for a controlled process (Tier 2).

Table 4.2.3 Emission factors for production of lime

Pollutant	Unit	Value	Source
TSP	kg/Mg	0.40	EMEP/EEA (2013)
PM_{10}	kg/Mg	0.20	EMEP/EEA (2013)
PM _{2.5}	kg/Mg	0.03	EMEP/EEA (2013)
BC	g/Mg	0.14	EMEP/EEA (2013)
HCB	mg/Mg	0.01	Nielsen et al. (2013)
PCDD/F	µg/Mg	0.02	Henriksen et al. (2006)
PCB	mg/Mg	0.15	Nielsen et al. (2013)

Emission trends

The emission trends for particles and POPs for lime production are shown in Table 4.2.4 and in Figure 4.2.1. Emission data for the different particle size distributions and individual POPs are available in the NFR tables.

Table 4.2.4	Emission	of particles	and POPs.
-------------	----------	--------------	-----------

	Unit	1990	1991	1992	1993	1994	1995	1996	1997	1998
POPs	kg	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01
		1999	2000	2001	2002	2003	2004	2005	2006	2007
TSP	Gg	-	0.04	0.04	0.05	0.04	0.03	0.03	0.03	0.03
POPs	kg	0.02	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01
		2008	2009	2010	2011	2012	2013	2014		
TSP	Gg	0.03	0.02	0.02	0.02	0.03	0.03	0.03		
POPs	kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01		

Particles are only reported for 2000-2014.

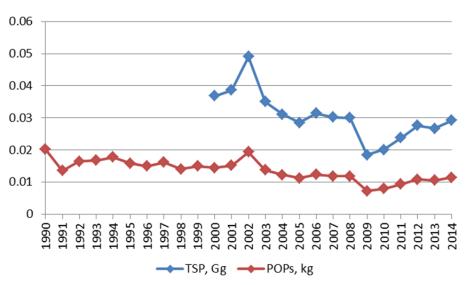


Figure 4.2.1 Emission trends for particles and POPs from lime production.

There is a peak in emissions in 2002 due to a corresponding peak for the activity data. The activity data are based on the official statistics from Statistics Denmark and there is no immediate explanation for this peak. There are very few producers in Denmark and therefore it will not be possible to obtain more detailed data from Statistics Denmark.

4.2.4 Glass production

Glass production covers production of:

- Flat glass
- Container glass
- Glass wool

The production of flat glass (SNAP 03 03 14 Flat glass) is concentrated at few European producers and none of these have plants in Denmark. The processes in Denmark are limited to mounting of sealed glazing units. The mounting process is not considered to contribute to emission of pollutants to air in Denmark.

The production of container glass for packaging is concentrated at one company: Ardagh Glass Holmegaard A/S (previously Rexam Glass Holmegaard A/S) and for art industrial glass products: Holmegaard A/S both situated in Fensmark, Næstved. Saint-Gobain Isover situated in Vamdrup produces glass wool. The following SNAP-codes are covered:

• 03 03 15 Container glass

• 03 03 16 Glass wool

The following pollutants are relevant for the glass production process:

- NMVOC
- CO
- NH₃
- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC
- Heavy metals: As, Cd, Cr, Ni, Pb, Se, Zn

Emissions associated with the fuel use are estimated and reported in the energy sector.

Methodology

The annual produced amount of container glass is estimated based on the consumption of raw materials. Data on raw materials are gathered from environmental reports (1990-2005) and EU-ETS data (2006-2014).

The produced amount of glass wool is available in the company's environmental reports (1997-2014). Production data back to 1990 are estimated as the constant average of 1997-1999.

Emission factors for container glass are available from EMEP/EEA (2013) and for glass wool from company measurements.

Activity data

Activity data for the production of container glass and glass wool are presented in Table 4.2.5 and Figure 4.2.2.

Table 4.2.5 Production of container glass and glass wool, Gg.										
	1985	1986	1987	1988	1989	1990	1991	1992		
Container glass	-	-	-	-	-	164.0	159.0	145.0		
Glass wool	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6		
	1993	1994	1995	1996	1997	1998	1999	2000		
Container glass	140.5	150.2	140.0	140.0	140.0	193.2	200.7	183.3		
Glass wool	35.6	35.6	35.6	35.6	34.6	33.6	38.7	39.7		
	2001	2002	2003	2004	2005	2006	2007	2008		
Container glass	191.9	184.3	172.4	173.3	168.2	176.1	207.2	234.8		
Glass wool	37.0	34.8	37.5	41.4	37.3	42.7	41.0	41.3		
	2009	2010	2011	2012	2013	2014				
Container glass	152.1	172.9	186.5	209.6	159.9	162.9				
Glass wool	33.1	24.9	29.8	26.8	27.9	28.8				

Table 4.2.5 Production of container glass and glass wool, Gg

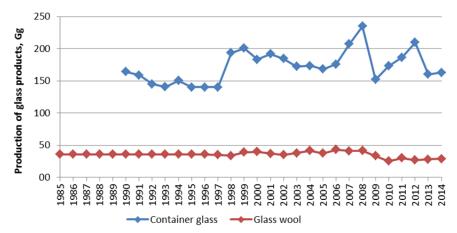


Figure 4.2.2 Activity data for container glass and glass wool production.

Both the container glass and glass wool production displays a significant decrease from 2008 to 2010 that can be explained by the financial crises.

Emission factors

Yearly measurements of the emissions from production of container glass provide emissions of TSP (2000-2014), Pb (1997-2014), Se (1997-2013) and Zn (1997-2001) (Ardagh Glass Holmegaard, 2015). Emissions of As, Cd, Cr and Ni are estimated from standard emission factors, where direct emissions are not available for Pb, Se and Zn; these are calculated using implied emission factors (IEF) from years with measurements. PM_{10} and $PM_{2.5}$ are estimated from the distribution between TSP, PM_{10} and $PM_{2.5}$ (1/0.9/0.8) and BC is estimated as 0.062 % of $PM_{2.5}$, all available from EMEP/EEA (2013), Tier 2 container glass. All used emission factors are shown in Table 4.2.6. From 2006, measured particle emissions from the singular Danish container glass producer decrease 90 % due to installation of abatement equipment; all calculated heavy metal emissions are therefore also lowered with 90 % from 2006.

The emission of NH_3 and TSP from the production of glass wool has been measured yearly for 1996-2012 and are available in the company's environmental reports (Saint-Gobain Isover, 2013). NMVOC and CO have also been measured for 2007-2012 and 1996-1997 respectively. For the years where no measured emission data are available, emissions are calculated using implied emission factors based on the available measurements. PM_{10} and $PM_{2.5}$ are estimated from the distribution between TSP, PM_{10} and $PM_{2.5}$ (1/0.9/0.8) from EMEP/EEA (2013). All used emission factors are shown in Table 4.2.6. Since it has not been possible to separate process emissions from the emissions from fuel combustion, the measured/calculated emissions from glass wool production presented here account for the entire production.

1 4016 4.2			for production of gia	ss products.					
	Conta	ainer gla	ass production	Glass wool production					
Pollutant	Unit	Value	Source	Unit	Value	Source			
NMVOC		-		kg/Mg	1.4	IEF (2007-2012)			
CO		-		kg/Mg	0.1	IEF (1997)			
NH_3		_		kg/Mg	7.6	IEF(1996-1998)			
1113		-		Kg/ Wig	4.4	IEF (2010-2012			
TSP	kg/Mg	0.28	EMEP/EEA (2013)	kg/Mg	1.4	IEF (2010-2012)			
PM_{10}	kg/Mg	0.25	EMEP/EEA (2013)	kg/Mg	1.8	TSP IEF & EMEP/EEA (2013)			
PM _{2.5}	kg/Mg	0.22	EMEP/EEA (2013)	kg/Mg	1.6	TSP IEF & EMEP/EEA (2013)			
BC	% of PM _{2.5}	0.06	EMEP/EEA (2013)	% of PM _{2.5}	2.0	EMEP/EEA (2013)			
As	g/Mg	0.29	EMEP/EEA (2013)		-				
Cd	g/Mg	0.12	EMEP/EEA (2013)		-				
Cr	g/Mg	0.37	EMEP/EEA (2013)		-				
Ni	g/Mg	0.24	EMEP/EEA (2013)		-				
Pb	g/Mg	2.9	EMEP/EEA (2013)		-				
Se	g/Mg	1.5	EMEP/EEA (2013)		_				
36	g/wg	0.19	IEF(2008-9;12-13)		-				
Zn	g/Mg	0.23	IEF(1997-2001)		-				

Table 4.2.6 Emission factors for production of glass products.

Emission trends

The only pollutants to which both container glass and glass wool productions contribute are particles. Therefore, only particle emissions are presented in the table below. Table 4.2.7 shows the individual emissions from the two sources.

	Pollutant	2000	2001	2002	2003	2004	2005	2006	2007
Container glass	TSP	26.0	25.0	21.0	26.0	23.0	7.0	0.9	1.0
	PM ₁₀	23.0	22.0	19.0	23.0	20.5	6.3	0.8	0.9
	PM _{2.5}	20.0	20.0	17.0	20.0	18.1	5.5	0.7	0.8
	BC	0.0130	0.0120	0.0100	0.0130	0.0110	0.0034	0.0004	0.0005
Glass wool	TSP	111.0	119.0	114.0	102.0	99.0	85.0	82.0	52.0
	PM_{10}	100.0	107.0	103.0	92.0	89.0	77.0	74.0	47.0
	PM _{2.5}	89.0	95.0	91.0	82.0	79.0	68.0	66.0	42.0
	BC	1.8	1.9	1.8	1.6	1.6	1.4	1.3	0.8
		2008	2009	2010	2011	2012	2013	2014	
Container glass	TSP	1.2	1.2	1.7	1.8	4.5	1.6	0.9	-
	PM_{10}	1.1	1.1	1.5	1.6	4.0	1.4	0.8	
	PM _{2.5}	0.9	0.9	1.3	1.4	3.5	1.3	0.7	
	BC	0.0006	0.0006	0.0008	0.0009	0.0022	0.0008	0.0004	_
Glass wool	TSP	54.0	33.0	26.0	42.0	47.0	39.1	40.3	
	PM_{10}	49.0	30.0	23.0	38.0	43.0	36.3	37.4	
	PM _{2.5}	43.0	26.0	21.0	33.6	38.0	30.7	31.7	
	BC	0.9	0.5	0.4	0.7	0.8	0.6	0.6	

Table 4.2.7 Emission of particles from glass production, Mg

Emissions of the remaining pollutants can be found in the NFR tables, where NMVOC, CO and $\rm NH_3$ emissions stem only from glass wool production and heavy metal emissions only from container glass production.

4.2.5 Quarrying and mining of minerals other than coal

Quarrying and mining of minerals other than coal covers several different types of minerals and occurs all over Denmark. The following SNAP-code is covered:

• 04 06 16 Quarrying and mining of minerals other than coal

The following pollutants are relevant for quarrying and mining:

• Particulate matter: TSP, PM₁₀, PM_{2.5}

Methodology

The annual amount of extracted minerals is available from national statistics. These resource extraction data cover "sand and gravel", "chalk and dolomite", "clay and kaolin", "salt", "marble, granite, sandstone, porphyry, basalt and building stone, etc." and "other".

Emission factors are available from EMEP/EEA (2013).

Activity data

Activity data for quarrying and mining of minerals other than coal are presented in Table 4.2.8.

Table 4.2.8	Extracted m	ninerals oth	ner than	coal, Go	g.
-------------	-------------	--------------	----------	----------	----

	2000	2001	2002	2003	2004	2005	2006	2007
Quarrying and mining	67122	62902	60716	57886	64838	77523	81182	78376
	2008	2009	2010	2011	2012	2013	2014	
Quarrying and mining	67206	48833	49085	59864	60474	57440	55139	

Emission factors

The applied emission factors are shown in Table 4.2.9. Emission factors are chosen for Tier 2 low emission level for plants having well maintained abatement/BAT.

Pollutant	Value	Unit	Source
TSP	51	g/Mg mineral	EMEP/EEA (2013)
PM ₁₀	25	g/Mg mineral	EMEP/EEA (2013)
PM _{2.5}	3.8	g/Mg mineral	EMEP/EEA (2013)

Emission trends

Emissions of TSP are presented in Figure 4.2.3. Emissions of PM_{10} and $PM_{2.5}$ are only available in the NFR tables.

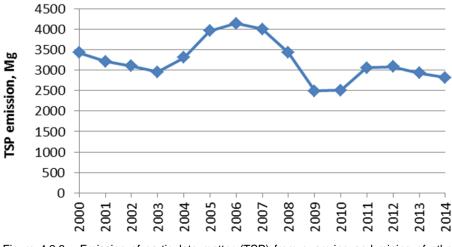


Figure 4.2.3 Emission of particulate matter (TSP) from quarrying and mining of other minerals than coal.

4.2.6 Construction and demolition

Construction and demolition covers the following SNAP-code:

• 04 06 24 Construction and demolition

The following pollutants are relevant for construction and demolition:

• Particulate matter: TSP, PM₁₀, PM_{2.5}

Methodology

The activity data for construction and demolition are calculated based on national statistics on completed constructions (m^2) and demolished floor area (m^2). Prior to 2007, demolition data are not available and these are therefore estimated based on statistics on total floor area in the building stock (m^2).

Emission factors are available from EMEP/EEA (2013).

Activity data

Activity data for construction and demolition are presented in Table 4.2.10.

Table 4.2.10 Activity of construction and demolition, mill. m².

	2000	2001	2002	2003	2004	2005	2006	2007
Construction and demolition	12.1	12.8	11.0	11.1	11.7	10.8	14.1	13.7
	2008	2009	2010	2011	2012	2013	2014	
Construction and demolition	14.0	12.3	11.9	6.5	8.9	7.1	7.0	

Emission factors

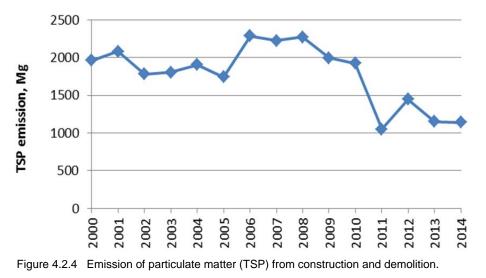

The applied emission factors are shown in Table 4.2.11.

Table 4.2.1	1 Emissi	on factors	for construction and demolition
Pollutant	Value	Unit	Source
		-	

ronatant	Value	onne	Course
TSP	0.162	kg/m²/year	EMEP/EEA (2013)
PM_{10}	0.0812	kg/m²/year	EMEP/EEA (2013)
PM _{2.5}	0.00812	kg/m²/year	EMEP/EEA (2013)

Emission trends

Emissions of TSP are presented in Figure 4.2.4. Emissions of PM_{10} and $PM_{2.5}$ are only available in the NFR tables.

4.2.7 Storage, handling and transport of mineral products

Storage, handling and transport of mineral products cover the following SNAP-code:

• 04 06 90 Storage, handling and transport of mineral products

The following pollutants are relevant for storage, handling and transport of mineral products:

• Particulate matter: TSP, PM₁₀, PM_{2.5}

Methodology

The activity data for storage, handling and transport of mineral products cover minerals used in cement production, ceramics production, other uses of soda ash, flue gas desulphurisation and stone wool. The particle emissions from storage, handling and transport of mineral products in lime production, glass production quarrying/mining and construction/demolition are already included in the respective categories.

The activity data for storage, handling and transport of mineral products is gathered from the five included sources (mass mineral).

The emission factor for TSP is assumed to be 0.1 % of activity data, PM_{10} and $PM_{2.5}$ are estimated from the distribution between TSP, PM_{10} and $PM_{2.5}$ (1/0.5/0.05).

Activity data

Activity data for storage, handling and transport of mineral products are presented in Table 4.2.12.

Table 4.2.12 Activity of storage, handling and transport of mineral products, Gg mineral.								
	2000	2001	2002	2003	2004	2005	2006	2007
Storage, handling and transport of mineral product	3808	3636	3630	3435	3776	3807	4159	4043
	2008	2009	2010	2011	2012	2013	2014	
Storage, handling and transport of mineral product	3327	2189	2015	2286	2215	2187	2108	

Emission factors

The applied emission factors are shown in Table 4.2.13.

Table 4.2.13 Emission factors for storage, handling and transport of mineral products.

Pollutant	Value	Unit	Source
TSP	0.1	Mg/Gg	Expert judgement
PM ₁₀	0.05	Mg/Gg	Expert judgement
PM _{2.5}	0.005	Mg/Gg	Expert judgement

Emission trends

Emissions are presented in Figure 4.2.5.

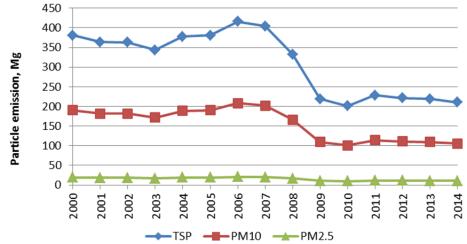


Figure 4.2.5 Emission of particulate matter (TSP) from storage, handling and transport of mineral products.

By mistake emissions from storage, handling and transport of mineral products are not included in the NFR tables.

4.2.8 Other mineral products

The sub-sector "Other" in the mineral industry section covers production of bricks and tiles (aggregates or bricks/blocks for construction), expanded clay products for different purposes (aggregates as absorbent for chemicals, cat litter, and for other miscellaneous purposes) and stone wool from the company Rockwool situated at three localities in Denmark: Hedehusene¹, Vamdrup and Øster Doense produces stone wool. The following SNAP-codes are covered:

- 04 06 91 Production of bricks and tiles
- 04 06 92 Expanded clay products
- 03 03 18 Stone wool

The following pollutants are covered:

- SO₂
- CO
- NH₃
- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC
- POPs: PCDD/F

Methodology

The production of bricks and tiles is found all over the country, where clay is available. Producers of expanded clay products are located in the northern part of Jutland. The SO_2 emission from the production of bricks/tiles and expanded clay products is related to sulphur content in the raw material. The PCDD/F emission factor is known from national literature.

Stone wool is produced from mineral fibres and a binder. The raw materials are melted in a cupola fired by coke and natural gas. The consumption of raw material as well as amount of produced stone wool is confidential. Information on emissions from some years has in combination with yearly raw material consumption been used to extrapolate the emissions to other years.

¹ The melting of minerals (cupola) has been closed down in 2002.

The data have been extracted from the environmental reports (Rockwool, 2015). Measured emissions of CO and NH_3 are available for the years 2001, 2004 and 2007-2014 and emissions of particulate matter are available for 2000-2014. For PCDD/F, the inventory is based on measured emissions for 2004.

Activity data

National statistics on bricks, tiles and expanded clay (together called ceramics) contain a broad range of different products, most of them in units of numbers (no.). The consumption of limestone is therefore used as alternative activity data for these source categories; available for 2006-2014. The national statistics are used as surrogate data; available for 1985-2014. Previous to 1995 activity data are estimated as the 1995-1999 average.

Data on the produced amount of stone wool is confidential for 1985-2013; however the consumption of carbonates at the three Danish factories is available for 2006-2013 where the different raw materials such as lime, waste, bottom ash etc. are added up to the activity data of CaCO₃ equivalents. For 1995-2013 the amount of raw material used is used as surrogate data, previous to 1995 activity data are estimated as the 1995-1999 average.

The chosen activity data for "Other mineral products" are shown in Table 4.2.14 and Figure 4.2.6.

				-		-				
	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Brickworks	76.0	76.0	76.0	76.0	76.0	82.4	87.9	72.5	69.2	68.1
Expanded clay	41.3	41.3	41.3	41.3	41.3	40.6	43.8	41.0	39.5	41.7
Stone wool	-	-	-	-	-	17.9	17.9	17.9	17.9	17.9
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Brickworks	58.8	58.5	60.4	55.3	77.3	71.9	75.2	83.6	84.0	80.2
Expanded clay	37.1	30.0	31.6	32.2	42.9	38.1	41.1	45.4	36.2	36.8
Stone wool	17.9	17.9	17.9	17.9	17.9	18.0	17.2	16.5	18.6	18.9
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Brickworks	81.4	69.1	67.2	66.9	71.4	79.5	79.0	86.4	61.8	35.8
Expanded clay	35.3	25.9	26.8	23.7	31.5	34.7	47.5	61.1	36.6	14.7
Stone wool	17.3	15.6	15.9	15.0	18.1	18.0	15.5	19.3	22.6	16.5
	2010	2011	2012	2013	2014					
Brickworks	35.1	46.0	39.7	36.7	38.7					
Expanded clay	13.7	15.1	13.4	23.8	22.5					
Stone wool	17.1	16.8	15.0	13.8	11.6					

Table 4.2.14 Production of "Other mineral products", Gg CaCO₃ equivalents.

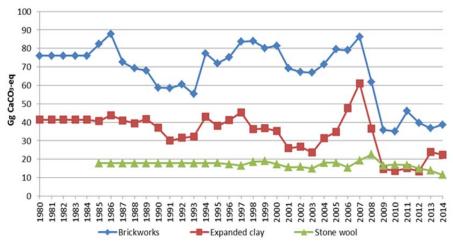


Figure 4.2.6 Consumption of CaCO₃ equivalents in the production of ceramics and stone wool.

Both the brickworks and expanded clay production displays a significant decrease from 2007 to 2009 that can be explained by the financial crises

Emission factors

For production of ceramics the emission factors for SO_2 are determined from the individual companies reporting of SO_2 emission (environmental reports) for the years 2007-2014 and actual activity for the corresponding years. The SO_2 emissions have been adjusted for fuel related emissions to derive the process emissions. The PCDD/F emission factors shown in Table 4.2.15 are calculated from 0.018 µg per Mg product (Henriksen et al., 2006), using the total carbonate consumption (environmental reports), national production statistics (Statistics Denmark) and assumption of 2.5 kg per brick.

Stone wool emission factors for CO, NH₃ and TSP are average values measured and reported in the annual environmental reports for each Rockwool factory for the years 2001, 2004 and 2007-2014 (TSP for 2000-2014). PM₁₀ and PM_{2.5} are estimated from the distribution between TSP, PM₁₀ and PM_{2.5} (1/0.9/0.7). The applied emission factor for BC is actually that of glass wool from EMEP/EEA (2013). PCDD/F is known from Henriksen et al. (2006).

equivalent.							
	Br	ickworks	Expand	led clay	Sto	ne wool	
Pollutant	Value	e Unit	Value	Unit	Value	Unit	Source
SO ₂	7.8	kg	60.3	kg			Environmental reports*
CO					640.6	kg	Environmental reports**
NH_3					16.0	kg	Environmental reports**
TSP					5.51	kg	Environmental reports**
PM ₁₀					4.96	kg	Environmental reports**
PM _{2.5}					3.86	kg	Environmental reports**
BC					0.08		EMEP/EEA (2013)
PCDD/F	0.25	μg	0.17	μg	3.16	kg	Henriksen et al. (2006)*

Table 4.2.15 Emission factors for "Other mineral products", units are per Mg \mbox{CaCO}_3 equivalent.

* Some calculations were necessary to derive the desired units.

** Calculated average from all measurements until 2013 at all plants. For CO, only years before installation of abatement equipment are chosen.

Since 2007, emissions of CO, NH₃ and TSP have been measured yearly for stone wool production, and the emission factors from Table 4.2.15 are therefore not used for these years.

Emission trends

The only pollutants to which more than one source category contributes are SO_2 and PCDD/F. Therefore, only these two emissions are presented in the figures below. Figure 4.2.7 and Figure 4.2.8 show the emissions of SO_2 and PCDD/F respectively, emissions are presented individual for the three sources in "Other mineral products".

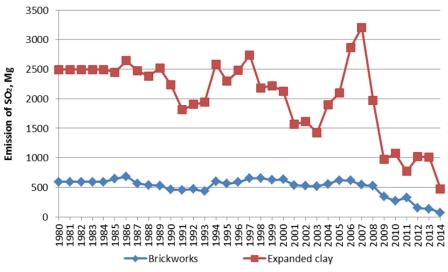


Figure 4.2.7 Emissions of SO₂ from ceramics.

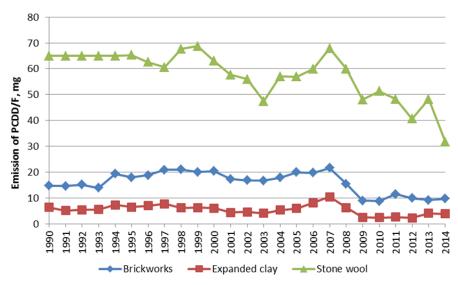


Figure 4.2.8 Emissions of PCDD/F from ceramics and stone wool.

Emissions of the remaining pollutants can be found in the NFR tables, where CO, NH_3 and particle emissions stem only from stone wool production.

The measurements of CO emissions show a strong decrease from the two stone wool factories in 2009 and 2010 respectively due to installation of abatement equipment.

4.2.9 Source specific recalculations and improvements

Lime production

The source of particle emission factors was changes from CEPMEIP to EMEP/EEA (2013). This resulted in recalculations for TSP and $PM_{2.5}$ (and therefore also changes for BC).

The recalculations result in decreases for TSP, $PM_{2.5}$ and BC of 20 %, 25 % and 23 % respectively for all years 2000-2013.

Glass production

Black carbon is a new pollutant from both container glass production and glass wool production this year.

The activity data for container glass production has been altered for 1998-2013. Emissions were previously calculated based total production (mass product) but this has now been changes to actual activity (known for 1997 and 2013) together with surrogate data (carbonate consumption). Where direct measured emissions are not available, increases occur due to the increased activity data, i.e. As, Cd, Cr, Ni, Se (2010-2011) and Zn (2002-2013).

The recalculations for Zn (2002-2012) are larger than for the other metals and result in both increases and decreases, this is caused by the correction of an error in the data import to the database from last year's submission.

Activity data has also increased slightly for glass wool production, resulting in minor increases where direct measured emissions are not available, i.e. NMVOC (1990-2006, 2013), CO (1985-2013), NH₃ (1985-1995, 2012-2013), TSP (2013), PM₁₀ (2013) and PM_{2.5} (2013).

NMVOC emissions from glass wool have been extrapolated back to 1985.

Quarrying and mining of minerals other than coal

This is a new category for this year's submission.

Construction and demolition

This is a new category for this year's submission.

Storage, handling and transport of mineral products

This is a new category for this year's submission.

Other mineral products

Black carbon is a new pollutant from stone wool production this year.

Minor errors were corrected for CO and NH_3 from stone wool production in 2003-2005 and 2009.

The SO_2 emission from ceramics was extrapolated back to year 1980 and PCDD/F back to year 1985.

Emissions of SO_2 from ceramics was reassessed for this year's submission and data from all available years was included in the calculation of an implied emission factor, this results in a decreased factor for brickwork (7.8 to 6.5 kg/Mg CaCO₃) and an increase for expanded clay products (30.3 to 63.3 kg/Mg CaCO₃). These emission factors are now only used for 1980-2006, after 2006 the emissions are based on actual measured SO₂ emissions.

An error in the reported unit of PCDD/F from ceramics was corrected for 1991-1999 and 2001-2003. In addition, a change in the assumption of the weight of a brick/tile from 2 kg to 2.5 kg results in an increased PCDD/F emission factor from bricks/tiles from 0.19 μ g/Mg CaCO₃ to 0.25 μ g/Mg

CaCO₃. However, these recalculations only result in minor increases since rock wool production is the largest source of PCDD/F.

4.2.10 Source specific planned improvements

Emissions from storage, handling and transport of mineral products has by mistake not been reported in the NFR tables in this year's submission, this will be corrected for the next submission.

4.3 Chemical industry

4.3.1 Source category description

The sub-sector *Chemical industry* (NFR 2B) covers the following processes:

- 2B2 Nitric acid/fertiliser production (SNAP 040402/040407)
- 2B10a Other chemical industry
 - o Sulphuric acid production (SNAP 040401)
 - Catalyst/fertiliser production (SNAP 040416/040407)
 - Production of chemical ingredients (SNAP 040500)
 - Pesticide production (SNAP 040525)
 - Production of tar products (SNAP 040527)

The time series for emission of acidifying substances, NMVOC, particulate matter, heavy metals, and POPs from *Chemical industry* (NFR 2B) is available in the NFR tables. Table 4.3.1 presents an overview of emissions from 2014.

Table 4.3.1 Overview of 2014 emissions from Chemical industry.

	Total emission	Fraction		Emis	sion	Fraction of
	from Chemical	of IPPU,	Largest contributor in	from lar	gest	Chemical
	industries	%	Chemical industries	contrib	outor	industries, %
SO ₂	0.14 Gg	19.2	2B10a Other chemical industry	0.14	Gg	100.0
NOx	0.02 Gg	32.9	2B10a Other chemical industry	0.02	Gg	100.0
NMVOC	0.03 Gg	0.1	2B10a Other chemical industry	0.03	Gg	100.0
NH₃	0.02 Gg	4.5	2B10a Other chemical industry	0.02	Gg	100.0
TSP	0.01 Gg	0.3	2B10a Other chemical industry	0.01	Gg	100.0

4.3.1 Nitric and sulphuric acid production

The production of sulphuric acid, nitric acid as well as NPK fertilisers has been concentrated at one company; Kemira GrowHow A/S (Kemira GrowHow, 2004). The production of sulphuric acid and nitric acid/fertiliser ceased in 1996/7 and in the middle of 2004, respectively. The following SNAP codes are covered:

- 04 04 01 Sulphuric acid
- 04 04 02 Nitric acid

The following pollutants are relevant for the nitric and sulphuric acid production process:

- SO₂
- NO_x
- NH₃
- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC

Methodology

In the NFR tables, SO_2 emissions from sulphuric acid production are reported under 2B10a Other chemical industry. In this report however, these emissions are reported alongside with emissions from nitric acid production since they are produced by the same company.

Information on emissions is obtained from environmental reports, contact to the company as well as information from the county. Information on emissions of SO_2 , NO_x and NH_3 is available for 1990; 1994-2004, 1990; 1994-1997 and 1990-2004 respectively, TSP is available for 2000-2004. Implied emission factors (IEF) are calculated for the years where measurements are available; these implied emission factors are then used to calculate emissions for the remaining years.

Activity data

The activity data regarding production of nitric and sulphuric acids are obtained through personal communication with Kemira (Kemira GrowHow, 2004 and 2005). The data are presented in Table 4.3.2.

	1980	1981	1982	1983	1984	1985	1986	1987	1988
Nitric acid	350	350	350	350	350	350	315	357	383
Sulphuric acid	188	188	188	188	188	188	97	126	184
	1989	1990	1991	1992	1993	1994	1995	1996	1997
Nitric acid	402	450	412	364	343	348	390	360	366
Sulphuric acid	215	148	65	58	63	80	102	55	2
	1998	1999	2000	2001	2002	2003	2004		
Nitric acid	348	410	433	382	334	386	229		
Sulphuric acid	NO								

Table 4.3.2 Production of nitric and sulphuric acid, Mg.

Emission factors

The calculated implied emission factors for SO_2 , NO_x and NH_3 are presented in Table 4.3.3.

	s for production of	Think and sulphi	une aciu.
Process	Pollutant	IEF	Unit
Nitric acid	NO _x	0.95-1.79	kg/Mg
Nitric acid	NH_3	0.03-0.26	kg/Mg
Sulphuric acid	SO ₂	1.40-2.69	kg/Mg

 Table 4.3.3
 IEFs for production of nitric and sulphuric acid.

Due to the lack of information on the particle distributions PM_{10} and $PM_{2.5}$, these are put equal to TSP for nitric acid production. BC is estimated as 1.8 % of $PM_{2.5}$ according to EMEP/EEA (2013) (chemical industry, average).

Emission trends

The time series for SO_2 follows the amount of sulphuric acid produced, i.e. the fluctuation follows the activity until the activity ceased in 1997. The same is the case for NO_X from production of nitric acid; see Figure 4.3.1.

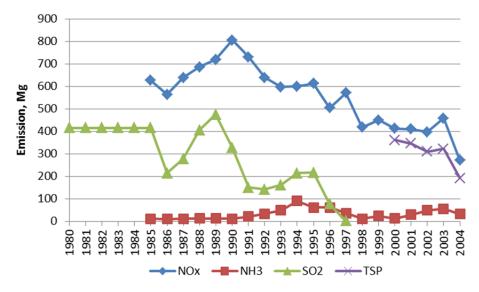


Figure 4.3.1 Emissions from nitric and sulphuric acid production.

4.3.2 Catalyst production

Production of a wide range of catalysts and potassium nitrate (fertiliser) is concentrated at one company: Haldor Topsøe A/S situated in Frederikssund. The products are catalysts for many purposes (for hydroprocessing, ammonia, DeNO_x, methanol, hydrogen and synthesis gas, sulphuric acid, formaldehyde, and combustion catalysts) and potassium nitrate (fertiliser). The following SNAP code is covered:

• 04 04 16 Other: catalysts

The following pollutants are relevant for the catalyst production process:

- NO_x
- NH₃
- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC

Methodology

The emissions of NO_X , NH_3 and PM_{10} from production of catalysts and fertilisers are measured yearly from 1996 to 2014 (TSP from 2000 to 2014) (Haldor Topsøe, 2015). The emissions from 1985-1995 were extrapolated.

The process related NO_X emission has been estimated as 80 % of the measured total NO_X emission; Haldor Topsøe reports this assumption in their environmental report. The plant is equipped with $DeNO_x$ flue gas cleaning systems and depending on the efficiency of the cleaning system emission of NH₃ will occur.

Activity data

The activity data regarding production of catalysts and fertiliser are obtained through environmental reports from Haldor Topsøe. The data are presented in Table 4.3.4.

Table 4.3.4 Production of cal	alysis a	inu pot	assium	minale	, Gy (i		opsøe,	2013).		
	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Catalysts produced ¹	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
Potassium nitrate produced ¹	18.4	18.4	18.4	18.4	18.4	18.4	18.4	18.4	18.4	18.4
Total produced	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4	35.4
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Catalysts produced ¹	17.0	15.5	16.9	14.4	17.0	17.2	19.5	19.3	15.3	22.0
Potassium nitrate produced ¹	18.4	16.8	18.8	15.6	18.1	19.2	20.4	21.7	19.6	27.1
Total produced	35.4	32.3	35.6	30.0	35.1	36.4	39.9	41.0	34.8	49.2
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Raw materials used	-	-	-	-	-	91.2	91.2	110.7	111.6	119.8
Catalysts produced	23.2	20.3	20.7	28.1	22.5	20.5	22.3	22.9	-	-
Potassium nitrate produced	23.3	24.9	27.0	31.4	22.1	25.9	25.3	32.9	-	-
Total produced	46.5	45.2	47.7	59.5	44.6	46.4	47.5	55.8	57.1	61.2

Table 4.3.4 Production of catalysts and potassium nitrate, Gg (HaldorTopsøe, 2015)

¹ Production 1985-1996 assumed to be the average of 1997-2001.

Production data for 2013-2014 are estimated using the consumption of raw materials as surrogate data.

Emission factors

The calculated implied emission factors (IEFs) for NO_{x} , NH_3 and particles are presented in Table 4.3.5.

Table 4.3.	5 IEFs for p	roduction of o	catalysts and	a potassium	nitrate.	
Pollutant	NO _x	NH ₃	TSP	PM ₁₀	PM _{2.5}	BC
Unit	Mg/Gg	Mg/Gg	Mg/Gg	Mg/Gg	Mg/Gg	kg/Gg
Value	0.40-2.20	0.26-3.70	0.13-0.70	0.11-0.56	0.08-0.42	1.45-7.56

Table 4.3.5 IEFs for production of catalysts and potassium nitrate

TSP and PM_{2.5} are estimated from the distribution between TSP, PM₁₀ and PM_{2.5} (1/0.8/0.6) from CEPMEIP (Values for 'Production of nitrogen fertiliser'). The emission factor for BC is calculated based on 1.8 % of PM_{2.5} (EMEP/EEA, 2013, chemical industry, average).

Emission trends

The emission of NH_3 shows an increasing trend throughout the 00's; from 14 Mg in 2000 to 165 Mg in 2009; in the same period the IEF fluctuates around the average 1.77 Mg per Gg product but shows no trend. For the remaining time series, the NH_3 emission only varies between 9-21 Mg with the exception of 2010 where 123 Mg were emitted.

The emission of NO_X decreases from the end of the 90's to the beginning of the 00's, in spite of the increasing production.

Emissions of NO_x, NH₃ and TSP are shown in Figure 4.3.2.

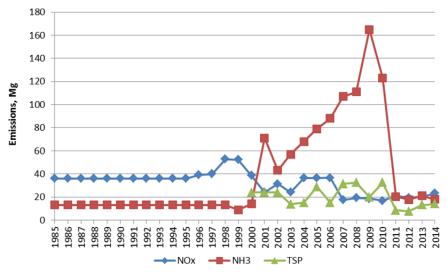


Figure 4.3.2 Emissions from catalyst and fertiliser production.

4.3.3 Production of chemical ingredients

The production of chemical ingredients takes place in a number of different companies. One of the major companies is Danisco Grindsted located in Grindsted (Danisco Grindsted, 2015). The following SNAP code is covered:

• 04 05 00

The following pollutant is relevant for the production process of chemical ingredients:

NMVOC

Methodology

The following description of the production of chemical ingredients is based on the historical environmental reports from the company.

The raw materials are primarily natural or nature identical raw materials/substances: vegetable oils, animal fatty acids, glycerine, other organic substances, mineral acidic and alkaline compounds, solvents etc. The products are emulsifiers, stabilisers, flavours, enzymes, antioxidants, pharmaceuticals, and preservatives.

Activity data

Due to confidentiality no activity data are available.

Emission factors

Due to confidentiality no emission factors are available.

Emission trends

The emission of NMVOC from production of chemical ingredients has been measured from 1997 to 2009 (Danisco Grindsted, 2015). The emission has in this period decreased from 93 to 12 Mg. However, no explanation can be given on these conditions, as information on activity is not available. The NMVOC emissions are presented in Table 4.3.6.

Table 4.3.6 Emissions from the production of chemical ingredients, Mg.

						-			
	1990	1991	1992	1993	1994	1995	1996	1997	1998
NMVOC	100	100	100	100	100	100	100	93	103
	1999	2000	2001	2002	2003	2004	2005	2006	2007
NMVOC	62	40	18	18	15	16	14	15	17
	2008	2009	2010	2011	2012	2013	2014		
NMVOC	15	12	12	12	12	12	12		

4.3.4 Pesticide production

The production of pesticides in Denmark is concentrated at one company: Cheminova A/S situated in Harboøre. The following SNAP code is covered:

• 04 05 25 Pesticide production

The following pollutants are relevant for the pesticide production process:

- SO₂
- NMVOC

Methodology

The air emissions from Cheminova are measured from a number of sources; e.g. exhaust from process plant, sulphur recovery plant and biological sewage treatment plant. The environmental reports do only include some of the emissions and they do only present aggregated data.

The produced amount of pesticides is known for 1996-2009 (Cheminova,). Emissions of SO_2 and NMVOC are measured yearly for 1990-2014 and 1990-2000 respectively. For the years where data are not available, activity data are extrapolated and emissions are calculated using implied emission factors.

Activity data

Activity data for 1980-1995 are calculated using the national statistics on value of pesticides produced (million DKK) as surrogate data. Activity data on the production of pesticides are presented in Table 4.3.7.

		, ,	0						
	1980	1981	1982	1983	1984	1985	1986	1987	1988
Pesticide production	20796	23914	26517	33331	38924	42010	42492	42781	48020
	1989	1990	1991	1992	1993	1994	1995	1996	1997
Pesticide production	48342	37671	39631	29764	38988	41913	45320	55800	56500
	1998	1999	2000	2001	2002	2003	2004	2005	2006
Pesticide production	52985	64264	60284	60376	55464	52849	65310	53504	52575
	2007	2008	2009	2010	2011	2012	2013	2014	
Pesticide production	49796	49747	37484	31000	31000	31000	30000	30000	

Table 4.3.7 Production of pesticides, Mg.

Emission factors

The implied emission factors for pesticide production are presented in Table 4.3.8.

	Substance	Interval, kg/Mg	Average, kg/Mg
Pesticides	SO ₂	0.3-11.1	6.0 ¹
	NMVOC	0.5-2.0	0.9 ²
1			

¹ of 1996-2009

² of 1996-2000

Emission trends

The emission of NMVOC from production of pesticides is reduced significantly from 1985 to 1993. The decrease can be explained by introduction of flue gas cleaning equipment rather than any decrease in activity. The emission of SO_2 is from the sulphur regeneration plant (Claus plant).

Emissions are presented in Figure 4.3.3.

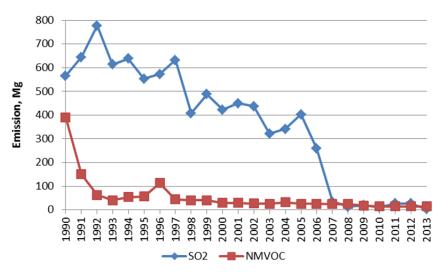


Figure 4.3.3 Emissions of SO₂ and NMVOC from pesticide production.

4.3.5 Production of tar products

One Danish factory situated in Nyborg produces tar products. The following SNAP code is covered:

• 04 05 27 Production of tar products

The following pollutants are relevant for the production process of tar products:

- SO₂
- NMVOC
- Hg

Methodology

Activity data

No activity data are available.

Emission factors

The emissions are based on yearly measured process emissions reported in the environmental reports (Koppers, 2015). The emissions for the years 1985 – 2004 are assumed to be the same as for 2005.

Emission trends

Emissions are presented in Table 3.3.9.

10010-0.0				oudout		product					
	Unit	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
SO ₂	Mg	210	210	210	210	210	210	210	210	210	210
NMVOC	Mg	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Hg	kg	-	-	-	-	-	4.8	4.8	4.8	4.8	4.8
	Unit	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
SO ₂	Mg	210	210	210	210	210	210	210	210	210	210
NMVOC	Mg	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Hg	kg	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
	Unit	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
SO ₂	Mg	212	122	61	95	93	105	166	203	174	136
NMVOC	Mg	0.9	1.2	1.0	0.5	2.0	1.3	1.1	1.2	0.6	2.6
Hg	kg	4.8	4.8	4.8	12.1	0.5	1.5	1.4	10.0	0.0	0.0

Table 3.3.9 Emissions from production of tar products.

4.3.6 Source specific recalculations and improvements

For the production of nitric acid, PM_{10} and $PM_{2.5}$ emissions have increased by 25 % and 67 % respectively. The particle distributions applied in last year's submission is no longer used as it was not properly referenced. In addition, BC is new for this process in this year's submission.

An error was corrected for NH_3 from nitric acid production in 1985-1988, the emission factor had by mistake been reported as 30 g/Mg but the correct factor is 35 g/Mg (increase of 17 %).

All old environmental reports from the catalyst producer Haldor Topsøe have been reassessed, resulting in recalculations for NO_x for 1999-2013 of between -10 % (1999) and +102 % (2001) (average increase for 1999-2013 is 16 %). Particle emissions were also altered as it turns out that measured particle emissions are actually PM₁₀ and not TSP, assumptions on the particle distribution were not changed. Based on this TSP emissions from catalyst production have increased 25 %. BC is a new pollutant from this source.

 SO_2 emissions from pesticide production have been extrapolated back to 1980. Small recalculations were performed for emissions of NMVOC in 1985-1989 for pesticide production leading to minor increases.

4.3.7 Source specific planned improvements

For catalyst production, it will be attempted to verify the assumptions on the split between combustion and process emissions for NO_x .

NMVOC from chemical ingredients will be extrapolated back to 1985.

For tar products, the emission of SO_2 will be extrapolated back to 1980 to comply with the requirement to have a time-series back to the base year. And it will be evaluated whether the assumption to keep emissions constant back in time at the 2005 level is appropriate.

4.4 Metal production

4.4.1 Source category description

The processes within the sub-sector *Metal industry* (NFR 2C) in Denmark in relation to emission of other pollutants are:

- Steel production (SNAP 040207/040208)
- Iron production (SNAP 030303)
- Red bronze production (SNAP 040306)
- Secondary aluminium production (SNAP 030310)
- Secondary lead production (SNAP 030307)

The time series for emission of particulate matter, heavy metals, and POPs from *Metal production* is available in the NFR tables. Table 4.4.1 presents an overview of emissions from 2014.

Table 4.4.1 Overview of 2014 emissions from metal production.

	Т	Total	Fraction		Emis	sion	Fraction
	emis	sion	of	Largest contributor in Metal industries	1	from	of Metal
	from m	netal	IPPU,	IPPU, Largest contributor in Metal industries larges			industries,
	indus	tries	%		contrib	outor	%
NMVOC	0.004	Gg	0.01	2C1 Iron and steel production	0.004	Gg	100.0
TSP	0.23	Gg	4.6	2C1 Iron and steel production	0.23	Gg	99.0
HMs	3.38	Mg	52.8	Zn from 2C7c Other metal production	0.81	Mg	23.9
POPs	0.24	kg	0.1	HCBs from 2C3 Aluminium production	0.14	kg	61.1

In the NFR tables, steel production and iron production are summed into one category called "Iron and steel production". This NFR sector 2C1 comprises three activities: An electric arc furnace (EAF) (until 2001/2002 and in 2005), rolling mills (from 2003) and grey iron foundries (whole time series). The most interesting activity from an emission perspective is the EAF. After the closing of the EAF, the site has since 2003 been used for rolling steel slabs imported from steelworks in other countries. This change in production results in large changes in activity data and emissions reported for the year 2002. In 2005, the EAF was shortly reopened, which explains the higher activity level this year.

Regarding the steelworks that use iron and steel scrap as raw material, the emissions to a large degree depend on the quality of the scrap. This fact may result in large annual variations for one or more of the heavy metals. This may also be the case for iron foundries, as they also use scrap as raw material, but they have not been subject to the same requirements to analyse emissions of heavy metals to air.

4.4.2 Steel production

The production of semi-manufactured steel products (e.g. steel sheets/plates and bars) is concentrated at one company: Det Danske Stålvalseværk A/S situated in Frederiksværk. After the closure of the primary production in 2002, the two rolling mills were divided in two companies called DanSteel and Duferco The following SNAP codes are covered:

- 04 02 07 Electric furnace steel plant
- 04 02 08 Rolling mill

The following pollutants are relevant for the steel production processes:

- NMVOC
- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC
- Heavy metals: As, Cd, Cr, Cu, Hg, Ni, Pb, Zn
- POPs: HCB, PCDD/F, PCB

Methodology

•

The steelwork was closed down in January 2002 and then partly re-opened again in November 2002. The production of steel sheets/plates was reopened by DanSteel in 2003, the production of steel bars was reopened by DanScan Metal in March 2004, and the electro steelwork was reopened by DanScan Steel in January 2005. The production at DanScan Metal and Steel ceased in the last part of 2005 and in June 2006 DanScan Metal was taken over by Duferco; the future for the electro steelwork (DanScan Steel) is still uncertain and the plant has not been in operation since 2005. The timeline is presented in Activity data.

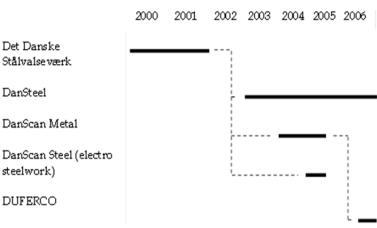


Figure 4.4.1 Timeline for production at the Danish steelwork.

Activity data

Statistical data on activities are available in environmental reports from the single Danish plant (Stålvalseværket) supplemented with other literature; see Table 4.4.2.

Table 4.4.2 Overall m	ass flow for Danish ste	el produ	ction, G	g (Stălva	alsevær	ket, 200	2; DanS	iteel, 20	15; Dufe	rco, 201	5).
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Det danske stålvalse	værk										
Raw material	Iron and steel scrap	-	630 ¹	557	-	673	657	664	735	737	691
Intermediate product	Steel slabs etc.	-	-	599	-	730	654	744	794	800	727
Product	Steel sheets	444	444	444	451	459	478	484	571	514	571
	Steel bars	170	170	170	217	264	239	235	245	238	226
	Products, total	614 ²	614 ²	614	668 ³	722	717	720	816	752	798
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Det danske stålvalse	værk										
Raw material	Iron and steel scrap	731	680				-				
Intermediate product	Steel slabs etc.	803	746				-				
Product	Steel sheets	380	469				-				
	Steel bars	251	256				-				
	Products, total	631	725				250 ⁴				
Dansteel											
Raw material	Steel slabs				553	600	515	561	635	590	254
Product	Steel sheets				469	506	433	468	520	484	211
Duferco											
Raw material	Steel billets							126	156	154	100
Product	Steel bars							111	141	140	92
		2010	2011	2012	2013	2014					
Dansteel											
Raw material	Steel slabs	457	490	338	460	483					
Product	Steel sheets	381	390	275	379	403					
Duferco											
Raw material	Steel billets	141	184	161	143	131					
Product	Steel bars	129	169	150	136	123					

Table 4.4.2 Overall mass flow for Danish steel production, Gg (Stålvalseværket, 2002; DanSteel, 2015; Duferco, 2015).

¹ Jensen & Markussen (1993).

² Extrapolation.

³ Intrapolation.

⁴ Assumed.

The mass balances/flow sheets presented in the annual environmental reports do not for all years tell about the changes in the stock and therefore the balance cannot be checked off.

Emission factors

The applied emission factors are presented in Table 4.4.3. Regarding the electric arc furnace the emissions for all other pollutants than TSP have been estimated by use of emission factor from literature.

Table 4.4.3	Emission	factors	for	steel	production.
-------------	----------	---------	-----	-------	-------------

1 able 4.4.5	LIIIISSIUITIAU	lors for steel production.	
	Unit	Electric Arc Furnace	Rolling Mill
NMVOC	g/Mg	46 ¹	7 ¹
TSP	g/Mg	61-68 ⁴	5-5781 ⁴
PM ₁₀	g/Mg	80 % of TSP ¹	5-5494 ⁴
PM _{2.5}	g/Mg	70 % of TSP ¹	3-3465 ⁴
BC	g/Mg	0.36 % of PM _{2.5} 1	-
As	mg/Mg	15 ¹	-
Cd	mg/Mg	10-80 ²	0.2-0.4 ⁴
Cr	mg/Mg	100 ¹	-
Cu	mg/Mg	20 ¹	-
Hg	mg/Mg	50-400 ²	-
Ni	g/Mg	0.4-1.4 ²	0.004-0.01 ⁴
Pb	g/Mg	1.0-5.0 ²	0.005 ⁵
Zn	g/Mg	3.6-19.0 ²	0.005 ⁵
HCB	mg/Mg	3.2 ³	-
PCDD/F	mg/Mg	0.8 ¹	-
PCB	mg/Mg	2.5 ³	-

¹ EMEP/EEA (2013), Tier 2 no abatement.

² Illerup et al. (1999).

³ Nielsen et al. (2013).

⁴ Implied emission factor.

⁵ Estimated.

Emission trends

Emissions from the electro steelwork and rolling mills are presented in Table 4.4.4.

Table 4.4.4	Emissions from the electro steelwork and rolling mills.

	Unit	1990	1995	2000	2005	2010	2011	2012	2013	2014
NMVOC	Mg	28.2	33.0	29.0	14.5	3.6	3.9	3.0	3.6	3.7
TSP	Mg	-	-	41.0	2520.9	2202.7	3.6	2.8	3.3	3.1
PM_{10}	Mg	-	-	33.0	2393.4	2093.2	3.4	2.7	3.1	2.9
PM _{2.5}	Mg	-	-	23.0	1510.4	1320.2	2.2	1.7	2.0	1.8
BC	Mg	-	-	0.08	0.03	-	-	-	-	-
As	kg	9.2	10.8	9.5	3.8	-	-	-	-	-
Cd	kg	39.0	22.0	16.0	7.1	0.1	0.1	0.1	0.1	0.2
Cr	kg	61.4	71.7	63.1	25.0	-	-	-	-	-
Cu	kg	12.3	14.3	12.6	5.0	-	-	-	-	-
Hg	kg	246.0	143.0	63.0	13.0	-	-	-	-	-
Ni	kg	757.0	430.0	252.0	103.6	3.9	3.0	2.7	3.5	2.6
Pb	kg	2967.0	1720.0	669.0	268.2	2.5	2.8	2.1	2.6	2.6
Zn	kg	11492.0	6547.0	3085.0	902.2	2.5	2.8	2.1	2.6	2.6
HCB	kg	2.0	2.3	2.0	0.8	-	-	-	-	-
PCDD/F	g	12.0	7.5	0.5	0.2	-	-	-	-	-
PCB	kg	1.5	1.8	1.6	0.6	-	-	-	-	-

Due to the change in production process in the beginning of the 00's, the emissions (and even more so the implied emission factors) change drastically from 2001 to 2002 and from 2002 to 2003. Please refer to Figure 4.4.1 and Table 4.4.2.

4.4.3 Iron production

Multiple grey iron foundries exist in Denmark, producing a wide range of products like e.g. cast iron pipes, central heating boilers and flywheels. The following SNAP code is covered:

• 03 03 03 Grey iron foundries

The following pollutants are relevant for the iron production process:

- Particulate matter: TSP, PM₁₀, PM_{2.5}
- Heavy metals: As, Cd, Cr, Ni, Pb, Se, Zn
- POPs: HCB, PCB

Methodology

The emission of heavy metals from iron foundries is based on standard emission factors and yearly production statistics from Statistics Denmark (2015). The emission of TSP and distribution between TSP, PM_{10} and $PM_{2.5}$ (1/0.3/0.045) is obtained from CEPMEIP. Emission factors for HCB and PCB are obtained from Nielsen et al. (2013).

Activity data

Statistical data on production in grey iron foundries are available from Statistics Denmark (2015) for the entire time series. The activity data are presented in Table 4.4.5.

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Grey iron foundries	104.9	86.1	84.5	74.1	89.8	100.5	88.0	98.6	100.4	94.5
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Grey iron foundries	107.9	100.7	109.3	110.5	119.5	107.2	90.6	83.5	83.3	53.4
	2010	2011	2012	2013	2014					
Grey iron foundries	86.4	97.5	90.5	91.0	111.5					

Table 4.4.5 Activity data, iron foundries, Gg.

Emission factors

The applied emission factors are presented in Table 4.4.6.

Table 4.4.6 Emission factors for grey iron foundries.

	Unit	Grey iron foundries
TSP	g/Mg	2000
PM_{10}	g/Mg	600
PM _{2.5}	g/Mg	90
As	g/Mg	0.3
Cd	g/Mg	0.14
Cr	g/Mg	1.1
Ni	g/Mg	1.3
Pb	g/Mg	7.2
Se	g/Mg	5
Zn	g/Mg	5
HCB	mg/Mg	0.04
PCB	mg/Mg	0.5

Emission trends

Emissions from grey iron foundries are presented in Table 4.4.7.

Table 4.4.7 Emissions from grey iron foundries.

	Unit	1990	1995	2000	2005	2010	2011	2012	2013	2014
TSP	Mg	-	-	215.7	214.4	172.8	195.0	180.9	182.1	223.1
PM_{10}	Mg	-	-	64.7	64.3	51.8	58.5	54.3	54.6	66.9
$PM_{2.5}$	Mg	-	-	9.7	9.6	7.8	8.8	8.1	8.2	10.0
As	kg	31.5	30.1	32.4	32.2	25.9	29.3	27.1	27.3	33.5
Cd	kg	14.7	14.1	15.1	15.0	12.1	13.7	12.7	12.7	15.6
Cr	kg	115.4	110.5	118.7	117.9	95.0	107.3	99.5	100.1	122.7
Ni	kg	136.3	130.6	140.2	139.4	112.3	126.8	117.6	118.3	145.0
Pb	kg	755.0	723.3	776.7	771.9	621.9	702.1	651.4	655.4	803.0
Se	kg	524.3	502.3	539.4	536.0	431.9	487.6	452.4	455.2	557.6
Zn	kg	524.3	502.3	539.4	536.0	431.9	487.6	452.4	455.2	557.6
HCB	g	4.2	4.0	4.3	4.3	3.5	3.9	3.6	3.6	4.5
PCB	g	52.4	50.2	53.9	53.6	43.2	48.8	45.2	45.5	55.8

4.4.1 Red bronze production

The following SNAP code is covered:

• 04 03 06 Allied metal manufacturing (Red bronze production)

The following pollutants are relevant for the red bronze production process:

• Heavy metals: Cd, Cu, Pb, Zn

Methodology

Activity data

Activity data are available for the years 1990 and 1995-1997. Data for 1991-1994 was interpolated and 1998-2013 are kept constant on the same level as 1997.

Table 4.4.8 Activity data for red bronze production.

	Unit	1990	1995	1996	1997
Red bronze production	Mg	3895	4350	4400	4532

Emission factors

The applied emission factors are presented in Table 4.4.9 and are all referenced to Illerup et al. (1999).

Table 4.4.9	Emission factors for red bronze production.
-------------	---

Cd	g/Mg	1
Cu	g/Mg	10
Pb	g/Mg	15
Zn	g/Mg	140

Emission trends

Emissions trends for Cd, Cu, Pb, and Zn from red bronze production are presented in Table 4.4.10.

Table 4.4.10 Emissions from red bronze production, kg.

					. 0			
	1990	1991	1992	1993	1994	1995	1996	1997-2014
Cd	3.9	4.0	4.1	4.2	4.3	4.4	4.4	4.5
Cu	39.0	39.9	40.8	41.7	42.6	43.5	44.0	45.3
Pb	58.4	59.8	61.2	62.5	63.9	65.3	66.0	68.0
Zn	545.3	558.0	570.8	583.5	596.3	609.0	616.0	634.5

4.4.1 Secondary aluminium production

Two active Danish production sites have been identified for secondary aluminium; "Stena Aluminium" and "Jydsk Aluminium Industri". The following SNAP codes are covered:

• 03 03 10 Secondary aluminium production

The following pollutants are relevant for the secondary aluminium production:

- Particulate matter: TSP, PM₁₀, PM_{2.5}, BC
- Heavy metals: Cd, Pb
- POPs: HCB, PCDD/F, PCB

Methodology

Secondary aluminium industries were identified from a list of companies with the relevant environmental approvals acquired from the Danish Environmental Agency. The largest producer, called Stena Aluminium, stood for approximately 90 % of the total Danish production until the factory was closed in the end of 2008.

Activity data

The activity data are presented in Table 4.4.11.

Table 4.4.11 Activity data for secondary aluminium production (Stena Aluminium, 2008 and Jydsk Aluminiums Industri, 2013), Gg.

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Stena Aluminium ¹	30.23	30.23	30.23	30.23	30.23	30.23	25.06	31.79	32.98	28.48
Jydsk Aluminium ^{2, 3, 4}	1.26	1.26	1.26	1.26	1.74	2.22	2.70	3.00	3.30	3.61
Total	31.49	31.49	31.49	31.49	31.97	32.45	27.76	34.79	36.28	32.08
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Stena Aluminium	32.87	33.38	32.13	26.42	19.56	23.43	31.32	35.12	36.22	
Jydsk Aluminium ²	3.91	4.21	4.51	4.81	5.11	5.42	5.72	6.02	6.07	3.80
Total	36.78	37.59	36.64	31.23	24.67	28.85	37.03	41.14	42.29	3.80
	2010	2011	2012	2013	2014	_				
Stena Aluminium						-				
Jydsk Aluminium ²	5.20	6.26	6.49	6.84	7.20					
Total	5.20	6.26	6.49	6.84	7.20	_				

¹1990-1995: Calculated average of 1996-2000.

²1993, 1996, 2007-2014: Estimated based on information from the environmental reports.

³1990-1992: Estimated based on 1993.

⁴1994-1995, 1997-2006: Interpolated.

Emission factors

Emission factors for the production of secondary aluminium are presented in Table 4.4.12.

Table 4.4.12 Emission factors for secondary aluminium production.

Pollutant	Unit	Value	Source
TSP	kg/Mg	0.120	Calculated based on environmental reports from Stena, average for 1998-2000
PM ₁₀	kg/Mg	0.084	Particle distribution from EMEP/EEA (2013)
PM _{2.5}	kg/Mg	0.033	Particle distribution from EMEP/EEA (2013)
Cd	g/Mg	0.032	Calculated based on environmental reports from Stena, average for 1998-2000
Pb	g/Mg	0.146	Calculated based on environmental reports from Stena, average for 1998-2000
HCB	g/Mg	0.020	Nielsen et al. (2013)
PCDD/F	mg/Mg	0.035	EMEP/EEA (2013)
PCB	mg/Mg	3.40	Nielsen et al. (2013)

Emission trends

Emissions from secondary aluminium production are available in the NFR tables.

4.4.2 Secondary lead production

One Danish company producing secondary lead has been identified; Hals Metal. The following SNAP code is covered:

• 03 03 07 Secondary lead production

The following pollutants are relevant for the secondary lead production:

- Particulate matter: TSP, PM₁₀, PM_{2.5}
- Heavy metals: As, Cd, Pb, Zn
- POPs: HCB, PCDD/F, PCB

Methodology

Only one Danish company, called Hals metal, has been identified as producing secondary lead from scrap metal. In addition to Hals metal, old lead tiles from castles, churches etc. are melted and recast on site during preservation of the many historical buildings in Denmark.

Activity data

Activity data from Hals metal is provided by the company. A clause affected in 2002 meant that Hals metal could no longer burn cables containing lead. The processing of cables was therefore stopped and the company's activity changed to melting. This transition resulted in a low activity in 2003.

The activity of recasting lead tiles is not easily found because it is spread out on many craftsmen and poorly regulated. However, an estimate by Lassen et al. (2004) stated that 200-300 Mg lead tiles were recast in 2000. Since the building stock worthy of preservation is constant, it is considered reasonable to also let the activity of recasting of lead tiles be constant.

Activity data for secondary lead is shown in Table 4.4.13.

et al., 2004), iviy.									
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Hals metal	540	540	540	750	750	750	540	540	540	540
Lead tiles	250	250	250	250	250	250	250	250	250	250
Total	790	790	790	1000	1000	1000	790	790	790	790
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Hals metal	540	1080	419	64	520	691	500	670	582	780
Lead tiles	250	250	250	250	250	250	250	250	250	250
Total	790	1330	669	314	770	941	750	920	832	1030
	2010	2011	2012	2013	2014					
Hals metal	635	938	412	533	412					
Lead tiles	250	250	250	250	250					
Total	885	1188	662	783	662					

Table 4.4.13 Activity data for secondary lead production (Hals metal, 2015 and Lassen et al., 2004), Mg.

Emission factors

Emission factors are presented in Table 4.4.14.

Table 4.4.1	4 Emiss	ion factors	for secondary lead production.
Pollutant	Value	Unit	Reference
TSP	1.63	kg/Mg	EMEP/EEA (2013)
PM ₁₀	1.30	kg/Mg	EMEP/EEA (2013)
PM _{2.5}	0.65	kg/Mg	EMEP/EEA (2013)
As	3.5	g/Mg	EMEP/EEA (2013)
Cd	1.1	g/Mg	EMEP/EEA (2013)
Pb	426	g/Mg	EMEP/EEA (2013)
Zn	2.6	g/Mg	EMEP/EEA (2013)
HCB	0.3	mg/Mg	Nielsen et al. (2013)
PCDD/F	8.0	μg/Mg	EMEP/EEA (2013)
PCB	7.3	mg/Mg	Nielsen et al. (2013)

Emission trends

Emissions from secondary lead production are available in the NFR tables.

4.4.3 Source specific recalculations and improvements

BC is a new pollutant from the electro steelwork and NMVOC is a new pollutant for both the electro steelwork and the two rolling mills.

The smaller of the two Danish rolling mills (Duferco) has been included in this year's submission for the years 2006-2014.

Heavy metal emission factors from the larger of the rolling mills (DanSteel) have been changed from factors without proper references to implied emission factors calculated for the years where emissions are measured. This results in general decreases in emissions that are not outweighed by the addition of the second rolling mill. Due to the lack of reference and measurements, Hg is no longer reported for rolling mills.

No changes were made in the heavy metal emission factors for the electro steelwork, there are therefore no recalculations for Cu because this stems only from this source. However there is the exception of 2001 and 2005 there Cu was not previously reported in spite of activity being reported.

Changes in the activity date for iron foundries result in recalculations for As, Cd, Cr, Ni, Pb, Se and Zn. Recalculations for heavy metal emissions in years that are only influenced by iron production are between -22 % and +103 % (+9 % in average).

BC is a new pollutant from secondary aluminium production.

4.4.4 Source specific planned improvements

NMVOC emissions from the electro steelwork will be extrapolated back to 1985.

All emission factors for iron foundries will be reviewed and clear references provided.

It will be investigated whether activity data for red bronze production (Allied metal manufacturing) are available from Statistics Denmark.

4.5 Non-energy products from fuels and solvent use

4.5.1 NMVOCs used as solvents

Description of source category

Non-energy products from fuels and solvent use (NFR 2D) includes the following categories:

- Domestic solvent use including fungicides (NFR 2D3a, SNAP 060408 & 060411)
- Road paving with asphalt (NFR 2D3b, SNAP 040611)
- Asphalt roofing (NFR 2D3c, SNAP 040610)
- Coating applications (NFR 2D3d, SNAP 0601)
- Degreasing (NFR 2D3e, SNAP 0602)
- Dry cleaning (NFR 2D3f, SNAP 060202)
- Chemical products (NFR 2D3g, SNAP 0603)
- Printing (NFR 2D3h, SNAP 060403)
- Other solvent use (NFR 2D3i, SNAP 0604)
- Paraffin wax use (No NFR category placed in NFR 2D3h in this years reporting, SNAP 060606)

Methodologies, activity data, emission factors and pollutants for Road paving with asphalt (NFR 2D3b) and Asphalt roofing (NFR 2D3c) are described in their respective sections below. For all other categories in NFR 2D the methods for compiling activity data and emission factors, values of activity data and emission factors and calculated emissions are presented in this section.

Solvent use categories are aggregated according to the following four categories, which corresponds to the grouping in IPCC (2006):

- Coating applications (NFR 2D3d)
- Degreasing (NFR 2D3e) and Dry cleaning (NFR 2D3f)
- Chemical products (NFR 2D3g)
- Domestic solvent use including fungicides (NFR 2D3a), Printing (NFR 2D3h) and Other solvent use (NFR 2D3i)

Only NMVOCs used as solvents are relevant for these categories. Solvents are chemical compounds that are used on a global scale in industrial processes and as constituents in final products to dissolve e.g. paint, cosmetics, adhesives, ink, rubber, plastic, pesticides, aerosols or are used for cleaning purposes, i.e. degreasing. NMVOCs are main components in solvents - and solvent use in industries and households is typically the dominant source of anthropogenic NMVOC emissions (UNFCCC, 2008; Pärt, 2005; Karjalainen,

2005). In industrial processes where solvents are produced or used, NMVOC emissions to air and as liquid can be recaptured and either used or destroyed. Solvent containing products are used indoor and outdoor and the majority of solvent sooner or later evaporate. A small fraction of the solvent ends up in waste or as emissions to water and may finally also contribute to air pollution by evaporation from these compartments. Emission inventories for solvents are based on model estimates, as direct and continuous emissions are only measured from a limited number of sources.

Methodology

Until 2002 the Danish solvent emission inventory was based on questionnaires, which were sent to selected industries and sectors requiring information on solvent use. In 2003 it was decided to implement a method that is more complete, accurate and transparent with respect to including the total amount of used solvent, attributing emissions to industrial sectors and households and establishing a reliable model that is readily updated on a yearly basis.

The method is mainly based on the detailed approach and methodology described in EMEP/EEA (2013) and IPCC (2006), and emissions are calculated for industrial sectors, households for the stated NFR sectors, as well as for individual pollutants.

Emission modelling of solvents can basically be done in two ways: 1) By estimating the amount of (pure) solvents consumed, or 2) By estimating the amount of solvent containing products consumed, taking account of their solvent content (EMEP/EEA, 2013).

In 1) all relevant solvents must be estimated, or at least those together representing more than 90 % of the total pollutant emission, and in 2) all relevant source categories must be inventoried or at least those together contributing more than 90 % of the total pollutant emission. A simple approach is to use a per capita emission for each category, whereas a detailed approach is to get all relevant consumption data (EMEP/EEA, 2013; IPCC, 2006).

The detailed method 1) is used in the Danish emission inventory for solvent use, thus representing a chemicals approach, where each pollutant is estimated separately. The sum of emissions of all estimated pollutants used as solvents equals the pollutant emission from solvent use.

Pollutant list

The definitions of solvents and (NM)VOC that are used in the Danish emission inventory are as defined in the solvent directive (Directive 1999/13/EC) of the EU legislation: "Organic solvent shall mean any VOC which is used alone or in combination with other agents, and without undergoing a chemical change, to dissolve raw materials, products or waste materials, or is used as a cleaning agent to dissolve contaminants, or as a dissolver, or as a dispersion medium, or as a viscosity adjuster, or as a surface tension adjuster, or a plasticiser, or as a preservative". VOCs are defined as follows: "Volatile organic compound shall mean any organic compound having at 293.15 K a vapour pressure of 0.01 kPa or more, or having a corresponding volatility under the particular condition of use".

This implies that some NMVOCs, e.g. ethylene glycol, that have vapour pressures just around 0.01 kPa at 20 °C, may only be defined as VOCs at use

conditions with higher temperature. However, use conditions at elevated temperatures are typically found in industrial processes. Here the capture of solvent fumes is often efficient, thus resulting in small emissions (communication with industries).

The Danish list of NMVOCs comprises approx. 30 pollutants or pollutant groups representing more than 95 % of the total emission from solvent use, cf. Table 4.5.4.

Activity data

For each pollutant or product a mass balance is formulated:

Consumption = (*production* + *import*) – (*export* + *destruction/disposal* + *hold-up*) (Eq. 1)

Data on production, import and export amounts of solvents and solvent containing products are collected from Statistics Denmark (2015), which contains detailed statistical information on the Danish society. Manufacturing and trading industries are committed to reporting production and trade figures to the Danish Customs & Tax Authorities in accordance with the Combined Nomenclature. Import and export figures are available on a monthly basis from 1990 to present and contain trade information from 272 countries world-wide. Production figures are reported quarterly as "industrial commodity statistics by commodity group and unit" from 1990 to present. Prior to 1990 the figures are assumed constant on a 1990 level.

Destruction and disposal of solvents lower the pollutant emissions. In principle this amount must be estimated for each pollutant in all industrial activities and for all uses of pollutant containing products. At present the solvent inventory only considers destruction and disposal for a limited number of pollutants. For some pollutants it is inherent in the emission factor, and for others the reduction is specifically calculated from information obtained from the industry or literature.

Hold-up is the difference in the amount in stock in the beginning and at the end of the year of the inventory. No information on solvents in stock has been obtained from industries. Furthermore, the inventory spans over several years so there will be an offset in the use and production, import and export balance over time.

In some industries the solvents are consumed in the process, e.g. in the graphics and plastic industry, whereas in the production of paints and lacquers the solvents are still present in the final product. These products can either be exported or used in the country. In order not to double count consumption amounts of pollutants it is important to keep track of total solvent use, solvents not used in products and use of solvent containing products. Furthermore some pollutants may be represented as individual pollutants and also in chemical groups, e.g. "o-xylene", "mixture of xylenes" and "xylene". Some pollutants are better inventoried as a group rather than individual pollutants, due to missing information on use or emission for the individual pollutants. The Danish inventory considers single pollutants, with a few exceptions.

Activity data for pollutants are thus primarily calculated from Equation 1 with input from Statistics Denmark (2015). When Statistics Denmark holds no information on production, import and export or when more reliable in-

formation is available from industries, scientific reports or expert judgements the data can be adjusted or even replaced. The used amounts of products (activity data) in Table 4.5.1 are derived from used amounts of pollutants by assessing the amount of pollutants that is comprised within products belonging to each of the categories.

Table 4.3.1 Activity data (AD) in Gg per year. Complete time series can be seen in <u>Attrex 30-1</u> . 1985 1990 1995 2000 2010 2011 2012 2013 2014 Coating applications (NFR 2D3d) 83.2 82.2 91.1 104 74.2 45.8 42.3 46.3 40.3											
	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014	
Coating applications (NFR 2D3d)	83.2	82.2	91.1	104	74.2	45.8	42.8	42.3	46.3	40.3	
Degreasing (NFR 2D3e) and Dry cleaning											
(NFR 2D3f)	1.41	1.41	1.53	0.59	0.37	0.25	0.22	0.055	0.097	0.19	
Chemical products (NFR 2D3g)	406	406	504	567	740	641	640	516	517	485	
Domestic solvent use - including fungicides											
(NFR 2D3a), Printing (NFR 2D3h) and											
Other solvent use (NFR 2D3i)	197	206	256	239	213	178	176	176	190	155	

Table 4.5.1 Activity data (AD) in Gg per year. Complete time series can be seen in <u>Annex 3C-1</u>.

Emission factors

For each pollutant the emission is calculated by multiplying the consumption with the fraction emitted (emission factor), according to:

Emission = consumption * emission factor

The present Danish method uses emission factors that represent specific industrial activities, such as processing of polystyrene, dry cleaning etc. or that represent use categories, such as paints and detergents. Some pollutants have been assigned emission factors according to their water solubility. Higher hydrophobicity yields higher emission factors, since a lower amount ends in waste water, e.g. ethanol (hydrophilic) and turpentine (hydrophobic).

Emission factors for solvents are categorised in four groups in ascending order: (1) Lowest emission factors in the chemical industry, e.g. lacquer and paint manufacturing, due to emission reducing abatement techniques and destruction of solvent containing waste, (2) Other processes in industry, e.g. graphic industry, have higher emission factors, (3) Non-industrial use, e.g. auto repair and construction, have even higher emission factors, (4) Diffuse use of solvent containing products, e.g. painting, where practically all the pollutant present in the products will be released during or after use.

For a given pollutant the consumed amount can thus be attributed with two or more emission factors; one emission factor representing the emissions occurring at a production or processing plant and one emission factor representing the emissions during use of a solvent containing product. If the chemical is used in more processes and/or is present in several products more emission factors are assigned to the respective chemical amounts.

Emission factors can be defined from surveys of specific industrial activities or as aggregated factors from industrial branches or sectors. Furthermore, emission factors may be characteristic for the use pattern of certain products. The emission factors used in the Danish inventory also rely on the work done in a joint Nordic project (Fauser et al., 2009).

In Table 4.5.2 the emission factors are listed. They are based on the values in the Guidebook (EMEP/EEA, 2013) and adjusted on a country specific basis

according to the assessment described above. See more details in the QA/QC section.

Table 1 5 2	Emission factors in Ca	NIMV/OC per G		aloto timo sorios (can be seen in <u>Annex 3C-2</u> .
1 abie 4.5.2	LINISSION IACIOIS IN GY	NIVIVOC PELC	у др. сотпр		Lan De Seen in Annex JO-Z.

		0								
	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Coating applications (NFR 2D3d)	0.0614	0.0603	0.0631	0.0600	0.0562	0.0580	0.0636	0.0641	0.0634	0.0629
Degreasing (NFR 2D3e) and Dry										
cleaning (NFR 2D3f)	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05	5E-05
Chemical products (NFR 2D3g)	0.0200	0.0200	0.0185	0.0123	0.00844	0.00787	0.00753	0.00945	0.00889	0.00893
Domestic solvent use including										
fungicides (NFR 2D3a), Printing										
(NFR 2D3h) and Other solvent use										
(NFR 2D3i)	0.125	0.123	0.119	0.119	0.100	0.112	0.111	0.110	0.116	0.115

Source allocation

The Danish Working Environment Authority (WEA) is administrating the registrations of chemicals and products to the Danish product register. All manufacturers and importers of products for occupational and commercial use are obliged to register. The following products are comprised in the registration agreement:

- Chemicals and materials that are classified as dangerous according to the regulations set up by the Danish Environmental Protection Agency (EPA).
- Chemicals and materials that are listed with a limit value on the WEA "limit value list".
- Materials, containing 1 % or more of a chemical, which is listed on the WEA "limit value list".
- Materials, containing 1 % or more of a chemical, which are classified as hazardous to humans or the environment according to the EPA rules on classification.

There are the following important exceptions for products, which do not need to be registered:

- Products exclusively for private use.
- Pharmaceuticals ready for use.
- Cosmetic products.

The Danish product register does therefore not comprise a complete account of used pollutants. Source allocations of exceptions from the duty of declaration are done based on information from trade organisations, industries, scientific reports and information from the internet.

The data base Substances in Preparations in the Nordic Countries (SPIN) (www.spin2000.net) holds information on use of various pollutants in product and activities, i.e. Use Categories Nordic (UCN), and on use in industrial categories, i.e. according to the standard nomenclature for economic activities (NACE) system

(http://ec.europa.eu/comm/competition/mergers/cases/index/nace_all.h tml). The use amount from DK Statistics is first distributed in SNAP categories according to UCN data, and second according to NACE industrial use in NFR categories.

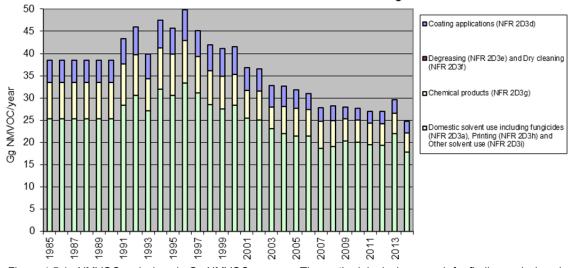

Emission trends

Table 4.5.3 and Figure 4.5.1 show the emissions of NMVOC from 1985 to 2014, where the used amounts of single pollutants have been assigned to specific products and NFR sectors. From 1985 to 1990 the emission level is set constantly equal to the 1990 emission level, due to missing reliable data. A general increase is seen for all sectors from 1990 to 1996 followed by a decrease from 1997 to 2006 and stagnation in the period 2007 to 2014.

In Table 4.5.4 the emission for 2014 is split into individual pollutants. The most abundantly used solvents are ethanol, turpentine, or white spirit defined as a mixture of stoddard solvent and solvent naphtha and propylalcohol. Ethanol is used as solvent in the chemical industry and as windscreen washing agent. Turpentine is used as thinner for paints, lacquers and adhesives. Propylalcohol is used in cleaning agents in the manufacture of electrical equipment, flux agents for soldering, as solvent and thinner and as windscreen washing agent. Household emissions are dominated by propane and butane, which are used as aerosols in spray cans, primarily in cosmetics. For some pollutants the emission factors are precise but for others they are rough estimates. The division of emission factors into four categories implies that high emission factors are applicable for use of solvent containing products and lower emission factors are applicable for use in industrial processes.

Table 4.5.3 Emissions in Gg NMVOC per year. Complete time series can be seen in Annex 3C-3.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Coating applications (NFR 2D3d)	4.96	4.96	5.75	6.25	4.17	2.60	2.73	2.71	2.94	2.54
Degreasing (NFR 2D3e) and										
Dry cleaning (NFR 2D3f)	7E-05	7E-05	8E-05	3E-05	2E-05	1E-05	1E-05	3E-06	5E-06	1E-05
Chemical products (NFR 2D3g) Domestic solvent use including fungicides (NFR 2D3a), Printing (NFR 2D3h) and Other solvent	8.14	8.14	9.32	6.96	6.25	5.04	4.81	4.87	4.60	4.33
use (NFR 2D3i)	25.3	25.3	30.6	28.4	21.4	20.0	19.5	19.3	22.0	17.8
Total NMVOC	38.0	38.4	45.6	41.6	31.8	27.7	27.0	26.9	29.5	24.7

NMVOC emissions from NFR source categories

Figure 4.5.1 NMVOC emissions in Gg NMVOC per year. The methodological approach for finding emissions in the period 1985 – 2014 is described in the text. Figures can be seen in Table 4.5.3 and in <u>Annex 3C-3</u>.

Pollutant	CAS no Emis	sions 2014 (t)
ethanol	64-17-5	8108
turpentine (white spirit: stoddard	64742-88-7	5594
solvent and solvent naphtha)	8052-41-3	
cyanates	79-10-7	1868
propyl alcohol	67-63-0	2496
pentane	109-66-0	1671
propylene glycol	57-55-6	968
methanol	67-56-1	751
acetone	67-64-1	624
propane	74-98-6	282
outane	106-97-8	282
outanone	78-93-3	543
kylene	1330-20-7	247
	95-47-6	
	108-38-3	
	106-42-3	
glycol ethers	110-80-5	240
	107-98-2	
	108-65-6	
	34590-94-8	
	112-34-5	
	and others	
ethylene glycol	107-21-1	77.9
oluene	108-88-3	94.8
styrene	100-42-5	42.4
phenol	108-95-2	148
cyclohexanones	108-94-1	119
outanoles	78-92-2	74.1
	2517-43-3	
	and others	
formaldehyde	50-00-0	81.0
ethyl acetate	141-78-6	50.2
1-butanol	71-36-3	305
butyl acetate	123-86-4	26.7
acyclic aldehydes	78-84-2	5.7
	111-30-8	
	and others	
tetrachloroethylene	127-18-4	1.6
Total		24700

Table 4.5.4 2014 NMVOC emissions of single pollutants or pollutant groups.

4.5.1 Road paving with asphalt

Description of source category

Road paving with asphalt is an activity that can be found all over the country and especially in relation to establishing new traffic facilities. The raw materials for construction of transport facilities are prepared on one of the plants located near the locality of application to limit the transport distance. The asphalt concrete is mixed and brought to the locality of application on a truck.

Transport facilities are constructed by a number of different layers:

- a load bearing layer (e.g. course gravel)
- an adhesive layer (liquefied asphalt e.g. "cutback" asphalt or asphalt emulsion)
- a wearing coarse (e.g. hot mix asphalt concrete)

Different qualities of "cutback" asphalt (e.g. asphalt dissolved in organic solvents/petroleum distillates) and asphalt emulsion contains different

kinds and amounts of solvent. Cutback asphalt contains 25-45%v/v solvent e.g. heavy residual oil, kerosene-type solvent, naphtha or gasoline solvent. Approximately 500.000 litre solvent evaporates annually from the use of "cutback" asphalt (Asfaltindustrien, 2003). This amount of solvent, which is added to the asphalt, is comprised in the solvent categories above with an emission factor of approximately unity. This means that NMVOC emissions from "cutback" asphalt in Road paving NFR 2D3b only include emissions from the asphalt fraction as quantified in Table 4.5.5.

Methodology

Emissions are calculated from Eq. 1 for the pollutants NMVOC and CO.

Activity data

The use amounts of asphalt for road paving have been compiled from production, import and export statistics of asphalt products in Statistics Denmark (2015).

Table 4.5.5 Activity data for asphalt in road paving in Gg per year. Complete time series can be seen in <u>Annex 3C-4</u>.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Road paving with										
asphalt (NFR 2D3b)	2 370	2 370	3 144	2 933	3 879	3 005	3 896	3 233	3 339	3429

Emission factors

Default emission factors are derived from EMEP/EEA (2013) and US EPA (2004).

Table 4.5.6 Emission factors for NMVOC and CO from road paving with asphalt.

		Road paving with asphalt (incl. cutback)
NMVOC	g per tonnes	16
CO	g per tonnes	75

Emission trends

 Table 4.5.7
 NMVOC and CO emissions in Gg per year from road paving with asphalt. Complete time series can be seen in <u>Annex 3C-5</u>.

_	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
NMVC	DC 0.0379	0.0379	0.0503	0.0469	0.0621	0.0481	0.0623	0.0517	0.0534	0.0549
СО	0.178	0.178	0.236	0.220	0.291	0.225	0.292	0.242	0.250	0.257

4.5.2 Asphalt roofing

Methodology

Emissions are calculated from Eq. 1 for the pollutants NMVOC and CO.

Activity data

The use amounts of asphalt for roofing has been compiled from production, import and export statistics of asphalt products in Statistics Denmark (2015).

Table 4.5.8 Activity data for asphalt roofing in Gg per year. Complete time series can be seen in <u>Annex 3C-6</u>.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Asphalt										
roofing										
(NFR 2D3c)	120	120	123	204	187	105	134	131	125	152

Emission factors

Default emission factors are derived from EMEP/EEA (2013) and US EPA (2004).

Table 4.5.9	Emission factors for NMVC	DC and CO fror	n asphalt roofing.
-------------	---------------------------	----------------	--------------------

		Asphalt roofing
NMVOC	g per tonnes	80
CO	g per tonnes	9.5

Emission trends

Table 4.5.10 NMVOC and CO emissions in Gg per year from asphalt roofing. Complete time series can be seen in <u>Annex 3C-7</u>.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
NMVOC	0.0096	0.0096	0.0099	0.0163	0.0150	0.0084	0.0108	0.0105	0.0100	0.0122
СО	0.00114	0.00114	0.00117	0.00194	0.00178	0.00100	0.00128	0.00124	0.00119	0.00144

4.5.3 Paraffin wax use

Methodology

The category Paraffin wax use covers the following activity:

• Combustion of candles

Paraffin waxes are used in applications such as candles, corrugated boxes, paper coating, board sizing, adhesives, food production, packaging, wax polishes, surfactants (used in detergents or in wastewater treatment), and many others. Emissions from the use of paraffin waxes occur primarily when they are combusted during use, e.g. candles, or when incinerated or used in waste water treatment. The latter cases should be reported in the energy or waste sectors, respectively (IPCC, 2006).

In the Danish inventory emissions are calculated from Eq. 1 for the pollutants CO, TSP, PM_{10} , $PM_{2.5}$, PCDD/Fs, benzo[k]fluoranthene, benzo[a]pyrene and indeno[1,2,3-cd]pyrene only from the combustion of candles, which is considered to be the main emission source, are included.

Activity data

Activity data in Gg used candles are derived from import, export and production data from Statistics DK (2015).

Table 4.5.11 Activity data for paraffin wax use in Gg per year. Complete time series can be seen in Annex 3C-8.

Paraffin wax use (No						
NFR category) ¹⁾ 7.44 7.44 9.09 16.9	34.4	35.3	30.2	27.9	29.1	30.3

¹⁾ Placed in NFR 2D3h in this year's reporting.

Emission factors

Default emission factors that are constant for all years are compiled from the scientific literature.

Table 4.5.12 Emission factors for paraffin wax use. Complete time series can be seen in Annex 3C-9.

Par	Paraffin wax use											
СО	kg per Mg	10										
TSP	kg per Mg	1,338										
PM ₁₀	kg per Mg	1,338										
PM _{2.5}	kg per Mg	1,338										
PCDD/Fs	µg per Mg	0,027										
Benzo[k]fluoranthene	mg per Mg	0,004638										
Benzo[a]pyrene	mg per Mg	0,00371										
Indeno[1,2,3-cd]pyrene	mg per Mg	0,000928										

Emission trends

Table 4.5.13 Emissions from paraffin wax use. Complete time series can be seen in <u>Annex 3C-10</u>.

		1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
СО	Mg per y	74,4	74,4	90,9	169	344	353	302	279	291	303
TSP	Mg per y	9,98	9,98	12,2	22,7	46,1	47,3	40,4	37,3	39.0	40,6
PM ₁₀	Mg per y	9,98	9,98	12,2	22,7	46,1	47,3	40,4	37,3	39.0	40,6
PM _{2.5}	Mg per y	9,978	9,98	12,2	22,7	46,1	47,3	40,4	37,3	39.0	40,6
PCDD/Fs	mg per y	0,201	0,201	0,246	0,457	0,930	0,953	0,815	0,752	0,786	0,82
Benzo[k]fluoranthene	g per y	34,5	34,5	42,2	78,5	160	164	140	129	135	141
Benzo[a]pyrene	g per y	27,6	27,6	33,7	62,8	128	131	112	103	108	113
Indeno[1,2,3-cd]pyrene	g per y	6,92	6,92	8,46	15,7	32,0	32,8	28,1	25,9	27,1	28,2

4.5.4 Source specific recalculations and improvements

Emissions from use of spray cans (CRF 3D3 Other-Solvent Use) have been updated. Previously only the propellant (propane and butane) was included but now, solvents are included as well as adjusted propellant amounts. Propellants comprise, according to communication with "Aerosol Industriens Brancheforening" and FORCE (2009), approx. 33 vol-% (24 weight-%) of a can. According to Rambøll (2004) the remaining amount is solvents (VOCs), 71 weight-% for spray paint and 51 weight-% for cosmetics, and non-VOCs, 5 weight-% for spray paints and 25 weight-% for cosmetics. 3% of the Danish marked is spray paints. The rest is cosmetics, which comprises deodorants, hairspray and foam products. 90% of the use in Denmark is imported. It is assumed that approx. 5% remains in the can and is destroyed in waste handling. Based on these assumptions the total VOC emissions from use of spray cans in Denmark is 1788 tonnes per year, which is an increase of 454 tonnes per year. This amount is assigned to all years as no detailed consumption trend is available. The specific compounds are propane and butane as propellants and ethanol, tert-butanol, acetone, butanone, butylacetate, ethylacetate, propanol, toluene and xylene as solvents.

Rambøll, 2004. Kortlægning af kemiske stoffer i forbrugerprodukter. Kortlægning nr. 45fra Miljøstyrelsen.

FORCE, 2009. Revision af beregninger af danske VOC emissioner fra opløsningsmidler og husholdninger. Arbejdsrapport fra Miljøstyrelsen nr. 5.

4.5.5 Source specific planned improvements

Emissions of TSP, PM_{10} , $PM_{2.5}$, BC, PAHs and possibly heavy metals will be included for road paving and asphalt roofing, with emissions factors from EMEP/EEA (2013) and US EPA (2004).

4.6 Other product use

4.6.1 Source category description

The sub-sector *Other product use* (NFR 2G) covers the following processes relevant for the Danish inventories:

- Use of fireworks (SNAP 060601)
- Use of tobacco (SNAP 060602)
- Use of charcoal for barbeques (SNAP 060605)

The time series for emission from *Other product use* is available in the NFR tables. Table 4.6.1 presents an overview of emissions from 2014.

	Total emi	ssion	Fraction		Emissio	n Fraction of
	from othe	-	of IPPU,	Largest contributor in Mineral industries	from large	
	product u	se	%		contribute	or use, %
SO ₂	0.05	Gg	6.2	Charcoal for barbeques	0.04 G	j 78.3
NOx	0.05	Gg	67.1	Charcoal for barbeques	0.03 G	72.8
NMVOC	0.07	Gg	0.3	Use of tobacco	0.03 G	50.1
CO	2.83	Gg	83.2	Charcoal for barbeques	2.41 G	3 85.2
NH ₃	0.03	Gg	7.7	Use of tobacco	0.03 G	96.4
TSP	0.28	Gg	5.5	Use of fireworks	0.14 G	g 51.8
HMs	2.96	Mg	46.3	Cu from use of fireworks	1.60 M	g 54.2
POPs	82.1	kg	81.2	PAH from charcoal for barbeques	82.1 kg	100.0

Table 4.6.1 Overview of 2014 emissions from Other product use

4.6.2 Use of other products

As listed above Table 4.6.1, this category includes the use of fireworks, tobacco and charcoal for barbeques.

The following pollutants are relevant for the other product use:

- SO₂
- NO_x
- NMVOC
- CO
- NH₃
- Particulate matter: TSP, PM₁₀, PM_{2.5}
- Heavy metals: As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn
- POPs: HCB, PCDD/F, PAHs (benzo(a)pyrene, benzo(b)flouranthene, benzo(k)flouranthene, indeno(1,2,3-c-d)pyrene), PCBs

Methodology

Data on the used amounts of product are obtained from Statistics Denmark (2015), emission factors are primarily from international literature and guidelines.

For more information on what is included and descriptions of the trends, please refer to Hjelgaard et al. (2014).

4.6 Other product use

4.6.1 Source category description

The sub-sector *Other product use* (NFR 2G) covers the following processes relevant for the Danish inventories:

- Use of fireworks (SNAP 060601)
- Use of tobacco (SNAP 060602)
- Use of charcoal for barbeques (SNAP 060605)

The time series for emission from *Other product use* is available in the NFR tables. Table 4.6.1 presents an overview of emissions from 2014.

	Total emi	ssion	Fraction		Emissio	n Fraction of
	from othe	-	of IPPU,	Largest contributor in Mineral industries	from large	
	product u	se	%		contribute	or use, %
SO ₂	0.05	Gg	6.2	Charcoal for barbeques	0.04 G	j 78.3
NOx	0.05	Gg	67.1	Charcoal for barbeques	0.03 G	72.8
NMVOC	0.07	Gg	0.3	Use of tobacco	0.03 G	g 50.1
CO	2.83	Gg	83.2	Charcoal for barbeques	2.41 G	3 85.2
NH ₃	0.03	Gg	7.7	Use of tobacco	0.03 G	96.4
TSP	0.28	Gg	5.5	Use of fireworks	0.14 G	g 51.8
HMs	2.96	Mg	46.3	Cu from use of fireworks	1.60 M	g 54.2
POPs	82.1	kg	81.2	PAH from charcoal for barbeques	82.1 kg	100.0

Table 4.6.1 Overview of 2014 emissions from Other product use

4.6.2 Use of other products

As listed above Table 4.6.1, this category includes the use of fireworks, tobacco and charcoal for barbeques.

The following pollutants are relevant for the other product use:

- SO₂
- NO_x
- NMVOC
- CO
- NH₃
- Particulate matter: TSP, PM₁₀, PM_{2.5}
- Heavy metals: As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn
- POPs: HCB, PCDD/F, PAHs (benzo(a)pyrene, benzo(b)flouranthene, benzo(k)flouranthene, indeno(1,2,3-c-d)pyrene), PCBs

Methodology

Data on the used amounts of product are obtained from Statistics Denmark (2015), emission factors are primarily from international literature and guidelines.

For more information on what is included and descriptions of the trends, please refer to Hjelgaard et al. (2014).

Activity data

Data on consumption of other products are presented in Table 4.6.2.

1 4010 4.0.2	Activity		lie use t		JIOUUCIS	, wy.				
	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Fireworks	1000	1000	1000	1000	1000	1000	1000	1000	1041	1043
Tobacco	14137	14303	15071	13893	14118	14017	13752	13299	13261	12738
BBQ	1943	2440	2937	3435	3932	4429	4926	5424	3596	7067
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Fireworks	1279	1693	1830	1617	1963	2998	2750	2165	3524	6673
Tobacco	12991	12188	12316	11767	11640	11644	11243	11391	11324	11447
BBQ	7172	6199	9542	7062	5997	7895	10154	13488	10233	10961
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Fireworks	4855	3831	4738	6053	8642	3684	4210	4473	4369	5379
Tobacco	11365	10915	10864	11291	11073	10378	10343	9786	9587	9402
BBQ	13358	10897	16397	20037	16211	14925	19767	12151	10384	11644
	2010	2011	2012	2013	2014					
Fireworks	5422	4732	3484	4202	3609					
Tobacco	9152	8281	8198	8432	7128					
BBQ	7834	6761	14222	14150	11468					

Table 4.6.2 Activity data for the use of other products, Mg.

Emission factors

The emission factor for fireworks for Pb was changed in 2000 and Hg and Pb, along with any compounds derived here from, were forbidden in 2003 and 2007, respectively. Emissions are therefore noted as not occurring for these years and forward.

Table 4.6.3 Emission factors for other product use

Table 4.6.3 Emission fa	ctors for o	ther product	use	
Compound	Unit	Fireworks	Tobacco	BBQ
SO ₂	kg/Mg	1.94 (a)	0.40(e)	3.10 (i)
NO _X	kg/Mg	-	1.80(f)	3.00 (j) ⁴
NMVOC	kg/Mg	-	4.84 (f)	3.00 (j) ⁴
CO	kg/Mg	6.90 (a)	55.10(f)	210.0 (j) ⁴
NH ₃	kg/Mg	-	4.15(f)	0.10 (e)
TSP	kg/Mg	39.66 (b)	13.67(g)	3.10 (i)
PM ₁₀	kg/Mg	19.83 (b)	13.67(g)	3.10 (i)
PM _{2.5}	kg/Mg	13.88 (b)	13.67(g)	3.10 (i)
As	g/Mg	1.33 (f)	0.16 (h)	0.10 (i)
Cd	g/Mg	0.67 (c)	0.02(e)	0.04 (i)
Cr	g/Mg	15.56 (f)	0.35 (h)	0.04 (e)
Cu	g/Mg	444.4 (f)	0.15 (h)	0.15 (e)
Hg	g/Mg	0.06 (f) ¹	0.01(e)	0.07 (i)
Ni	g/Mg	30 (f)	0.03(e)	0.13 (i)
Pb	g/Mg	2200 (d) ²	0.64(e)	4.45 (i)
		666.7 (c) ³		
Se	g/Mg	-	0.01(e)	0.65 (i)
Zn	g/Mg	260 (f)	1.61(e)	1.90 (i)
HCB	mg/Mg	-	-	0.10 (e)
PCDD/Fs	ug/Mg	-	0.10 (f)	10.50 (k)
Benzo[b]fluoranthene	g/Mg	-	0.05 (f)	2.14 (e)
Benzo[k]fluoranthene	g/Mg	-	0.05 (f)	1.25 (e)
Benzo[a]pyrene	g/Mg	-	0.11 (f)	2.16 (e)
Indeno[1,2,3-cd]pyrene	g/Mg	-	0.05 (f)	1.46 (e)
PCB		-	-	0.13 (e)

¹ The emission of Hg from fireworks was banned in 2002, ² 1980-1999, ³ 2000-2006, ⁴ Calculated from default uncontrolled combustion and a net calorific value of 30 MJ/kg, (a) Van der Maas et al. (2010), (b) Klimont et al. (2002), (c) Passant et al. (2003), (d) Miljöförvaltningen (1999), (e) Emission factors for wood (111A) combustion in residential plants (1A4b i), SNAP 020200, the energy content used in the calculation is the average of wood pills and wood waste (16.1 GJ/Mg), (f) EMEP/EEA (2013), (g) Martin et al. (1997), (h) Finstad & Rypdal (2003), (i) Environment Australia (1999), (j) IPCC (1996), (k) Hansen (2000).

Emission trends

An excerpt of the calculated emissions from other product use is shown in Table 4.6.4. The full time series for all pollutants is available in the NFR tables.

Table 4.6.4 Excerpt of the emissions from other product use

Table 4	1.0.4 EXC	erpt of	the emis	SIONS ITOI	n otner p	broduct u	se.							
		Unit	1990	1995	2000	2002	2004	2006	2008	2010	2011	2012	2013	2014
NO _x	Tobacco	Mg	23.4	21.0	20.5	19.6	19.9	18.6	17.3	16.5	14.9	14.8	15.2	12.8
	BBQ	Mg	21.5	23.7	40.1	49.2	48.6	59.3	31.2	23.5	20.3	42.7	42.5	34.4
CO	Fireworks	Mg	8.8	20.7	33.5	32.7	59.6	29.0	30.1	37.4	32.6	24.0	29.0	24.9
	Tobacco	Mg	715.8	641.6	626.2	598.6	610.1	569.9	528.3	504.3	456.3	451.7	464.6	392.8
	BBQ	Mg	1506.2	1658.0	2805.1	3443.4	3404.3	4151.0	2180.5	1645.2	1419.8	2986.6	2971.5	2408.2
$PM_{2.5}$	Fireworks	Mg			67.4	65.8	119.9	58.4	60.6	75.3	65.7	48.4	58.3	50.1
	Tobacco	Mg			155.4	148.6	151.4	141.4	131.1	125.1	113.2	112.1	115.3	97.5
	BBQ	Mg			41.4	50.8	50.3	61.3	32.2	24.3	21.0	44.1	43.9	35.5
Cu	Fireworks	s kg	568.4	1332.3	2157.5	2105.6	3840.5	1870.8	1941.4	2409.8	2102.8	1548.3	1867.3	1603.7
	Tobacco	kg	2.0	1.8	1.7	1.7	1.7	1.6	1.5	1.4	1.3	1.2	1.3	1.1
	BBQ	kg	1.1	1.2	2.0	2.5	2.5	3.0	1.6	1.2	1.0	2.2	2.2	1.7
Hg	Fireworks	s kg	0.1	0.2	0.3	0.3	NO							
	Tobacco	kg	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0
	BBQ	kg	0.5	0.5	0.9	1.1	1.1	1.3	0.7	0.5	0.4	0.9	0.9	0.7
Pb	Fireworks	s kg	2813.9	6595.4	3236.7	3158.9	5761.6	2806.6	NO	NO	NO	NO	NO	NO
	Tobacco	kg	8.4	7.5	7.3	7.0	7.1	6.7	6.2	5.9	5.3	5.3	5.4	4.6
	BBQ	kg	31.9	35.1	59.4	73.0	72.1	88.0	46.2	34.9	30.1	63.3	63.0	51.0
Zn	Fireworks	s kg	332.6	779.5	1262.3	1231.9	2246.9	1094.5	1135.8	1409.8	1230.2	905.9	1092.5	938.2
	Tobacco	kg	20.9	18.7	18.3	17.5	17.8	16.7	15.4	14.7	13.3	13.2	13.6	11.5
	BBQ	kg	13.6	15.0	25.4	31.2	30.8	37.6	19.7	14.9	12.8	27.0	26.9	21.8
POPs	Tobacco	kg	3.2	2.9	2.8	2.7	2.7	2.5	2.4	2.3	2.0	2.0	2.1	1.8
	BBQ	kg	50.3	55.3	93.6	114.9	113.6	138.6	72.8	54.9	47.4	99.7	99.2	80.4
NO. N														

NO: Not occuring

4.6.3 Source specific recalculations and improvements

Statistics Denmark has made some changes for the statistical data for 2011-2013 for charcoal and fireworks. Updating the activity data for these years resulted in increases of around 1 % for BBQs and below 0.1 % for fireworks with the exception of a decrease of 6 % for fireworks in 2013.

Optimised mathematics in the calculation of cross-border shopping of tobacco has resulted in increases in the activity data for tobacco in 1980-1999 and 2011-2013. The increases amount to 224-273 Mg (1.7-2.1 %) for 1980-1999 and 26-27 Mg (0.3 %) for 2011-2013.

The emission factor for Zn from barbeques was by mistake reported as 13.9 g per Mg in 2004, this has been corrected to 1.9 g per Mg and results in a decrease of 7.8 % in Zn for this year.

4.6.4 Source specific planned improvements

Emissions of BC will be included for tobacco smoking.

4.7 Other production

4.7.1 Source category description

The sub-sector *Other production* (NFR 2H) covers the following process relevant for the Danish inventories: 2H2 Food and beverages industry

4.7.2 Food and beverages industry

The following SNAP-codes are covered:

- 04 06 05 Bread
- 04 06 06 Wine
- 04 06 07 Beer
- 04 06 08 Spirits
- 04 06 25 Sugar production
- 04 06 27 Meat, fish etc. frying/curing
- 04 06 98 Margarine and solid cooking fats
- 04 06 99 Coffee roasting

The pollutant relevant for the food and beverages industry is NMVOC.

Methodology

The emission of NMVOC from production of foods and alcoholic beverages is estimated from production statistics (Statistics Denmark, 2015), standard emission factors from the EMEP/EEA (2013) and a country specific emission factor for sugar refining.

Activity data

The production statistics for the relevant processes have been aggregated based on data from Statistics Denmark and presented in Table 4.7.1.

Table 4.7.1 Production of foods and beverages (Statistics Denmark, 2015).

Table 4.7.1 Production of foods and beve	rages (Sta	tistics D	enmark	, 2015).							
	Unit	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Bread (rye and wheat)	Gg	193	178	179	176	178	190	205	196	208	218
Biscuits, cakes and other bakery products	Gg	119	99	101	101	103	99	123	129	136	138
Red wine	million I	12	20	12	8	8	10	14	14	12	6
White wine	million I	NO	NO	NO	0.4	0.6	3.2	6.6	6.7	5.9	0.1
Beer	million I	836	879	875	916	922	930	967	978	944	941
Malt whisky	million I	0.24	0.25	0.22	0.20	0.16	0.02	0.01	0.01	0.01	0.003
Other spirits	million I	39	33	31	30	31	33	33	36	37	30
Sugar production	Gg	533	532	522	468	476	506	510	471	484	496
Poultry curing	Gg	4	5	5	9	12	11	14	16	15	13
Fish and shellfish curing	Gg	35	32	36	38	42	52	48	52	46	40
Other meat curing	Gg	531	503	474	455	439	448	487	457	477	506
Margarine and solid cooking fats	Gg	222	227	245	212	230	161	155	152	145	137
Coffee roasting	Gg	53	53	53	51	54	52	51	56	55	56
		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Bread (rye and wheat)	Gg	231	213	240	247	234	244	271	252	247	256
Biscuits, cakes and other bakery products	Gg	148	164	163	150	131	138	146	151	156	165
Red wine	million I	5	7	11	10	10	5	4	3	2	2
White wine	million I	0.5	0.6	3.5	6.2	6.7	0.3	2.4	2.5	2.2	2.6
Beer	million I	990	959	918	804	821	745	723	820	835	855
Malt whisky	million I	NO	NO	NO	NO	NO	NO	NO	0.001	0.003	0.002
Other spirits	million I	27	29	29	28	23	24	25	25	24	24
Sugar production	Gg	444	432	487	557	535	443	563	508	512	453
Poultry curing	Gg	14	15	16	18	19	24	30	32	33	33
Fish and shellfish curing	Gg	31	40	36	33	35	44	46	44	43	45
Other meat curing	Gg	464	434	443	440	400	393	390	385	400	357
Margarine and solid cooking fats	Gg	144	136	145	154	115	123	122	117	115	112
Coffee roasting	Gg	49	55	53	55	61	56	59	57	51	55
		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Bread (rye and wheat)	Gg	257	270	256	254	267	245	207	233	227	208
Biscuits, cakes and other bakery products	Gg	157	149	136	124	115	118	114	109	115	113
Red wine	million I	1	1	0	1	3	4	3	2	4	1
White wine	million I	3.1	2.1	1.7	1.1	1.2	4.6	3.6	5.5	7.5	4.6
Beer	million I	868	817	766	647	604	634	659	608	604	611
Malt whisky	million I	0.001	0.001	NO	NO	NO	NO	NO	NO	NO	NO
Other spirits	million I	26	25	20	25	12	17	21	16	15	7
Sugar production	Gg	503	458	357	466	395	262	218	262	493	506
Poultry curing	Gg	35	38	39	40	50	54	57	63	65	65
Fish and shellfish curing	Gg	41	45	39	84	76	73	63	62	67	69
Other meat curing	Gg	361	342	318	310	307	303	307	249	241	227
Margarine and solid cooking fats	Gg	109	106	109	106	104	105	114	106	98	105
Coffee roasting	Gg	37	35	34	35	35	37	23	19	17	17
NO: not occuring	- 0							_,			

NO: not occuring

Emission factors

The emission factors used to calculate the NMVOC emissions from food and beverage production are shown in Table 4.7.2. Regarding refining of sugar, the default emission factor has been revised based on company specific measurements obtained from Nielsen (2011). TOC has been measured in order to solve odour issues. The emission of TOC has been used as indicator for NMVOC assuming a conversion factor at: 0.6 kg C/kg NMVOC.

Table 4.7.2 Emission factors for NMVOC for production of alcoholic beverages.

Production	Unit	Value	Reference
Bread (rye and wheat)	kg/Mg bread	4.5	EMEP/EEA (2013)
Biscuits, cakes and other bakery products	kg/Mg product	1	EMEP/EEA (2013)
Red wine	kg/m ³ wine	0.8	EMEP/EEA (2013)
White wine	kg/m ³ wine	0.35	EMEP/EEA (2013)
Beer	kg/m ³ beer	0.35	EMEP/EEA (2013)
Malt whisky	kg/m ³ alcohol	150	EMEP/EEA (2013)
Other spirits	kg/m³ alcohol	4	EMEP/EEA (2013)
Sugar production	kg/Mg sugar	0.2	Nielsen (2011)
Meat, fish and poultry	kg/Mg product	0.3	EMEP/EEA (2013)
Margarine and solid cooking fats	kg/Mg product	10	EMEP/EEA (2013)
Coffee roasting	kg/Mg beans	0.55	EMEP/EEA (2013)

Emission trends

The emission trend for emission of NMVOC from production of food and beverage is presented in Figure 4.7.1.

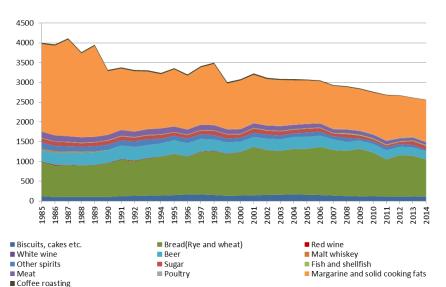


Figure 4.7.1 NMVOC emissions from the production of food and beverages, Mg.

The emission of NMVOC from production of food and beverage follows the activity as the same emission factors have been used for the entire period.

4.7.3 Source specific recalculations and improvements

Activity data for sugar production was reassessed and data from Statistics Denmark was chosen for the entire time series to improve consistency. Previously, production data from the company's environmental reports were used for 1996-2009. In addition, NMVOC emissions from sugar production are now reported back to 1985.

The activity data decreased for cooking fats for the entire time series due to the correction of an overestimation in last year's submission. Last year, industrial fats were included by mistake; the correction of this results in a decrease in emissions of between 5 % (1985) and 48 % (2002).

Activity data from Statistics Denmark were altered for 2011-2013 for beer, white wine, bread, cake and coffee. Bread and cake activity data have in-

creased (+0.1 %) while the three other sources have decreased (-2 %, -9 % for white wine).

The overall recalculation for this category is a decrease in NMVOC emissions between 0.1 % (1985) and 25.8 % (2002).

4.7.4 Source specific planned improvements

Other activities not currently included, such as flour production, grain drying and fish meal processing will be investigated further.

4.8 Wood processing

4.8.1 Source category description

The sub-sector *Wood processing* (NFR 2I) covers the production of wood products.

4.8.2 Wood processing

The following SNAP-code is covered:

04 06 20 Wood processing

The following pollutants are relevant for the wood processing industry:

• Particulate matter: TSP, PM₁₀, PM_{2.5}

Methodology

The emission of particles from production of wood products is estimated from production statistics (Statistics Denmark, 2015), standard emission factors from the EMEP/EEA (2013) and an assumption for the particle distribution $TSP/PM_{10}/PM_{2.5}$.

In addition to this, activity data from Statistics Denmark (m³) are multiplied by a country specific density to gain the unit of Gg wood product.

Activity data

The production data from Statistics Denmark (2015) are multiplied with the density 0.522 Mg per m³. The density is calculated from the carbon content of 0.261 Mg C per m³ (Schou et al., 2015) and the carbon fraction of 0.5 (KP Sup., 2013, Table 2.8.1). The resulting activity data are presented in Table 4.8.1.

Table 4.8.1 Activity data wood processing, Gg.

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Wood processing	481.3	396.3	349.3	399.9	357.9	368.3	372.8	377.2	434.8	438.9
	2010	2011	2012	2013	2014	_				
Wood processing	436.6	405.0	386.9	392.5	394.8	-				

Emission factors

The emission factors used to calculate the particle emissions from wood processing are shown in Table 4.8.2.

Pollutant	Unit	Value	Reference
TSP	Mg/Gg	1	EMEP/EEA (2013)
PM10	% of TSP	40	Expert judgement
PM2.5	% of TSP	20	Expert judgement

Emission trends

The emission trends for particles are available in the NFR tables.

4.8.3 Source specific recalculations and improvements

Wood processing is a new source in this year's inventory.

4.8.4 Source specific planned improvements

Due to an error in the emission database, emissions of PM10 and PM2.5 have not been included in this submission (NFR tables). Emissions factors for PM_{10} and $PM_{2.5}$ will be added in the next submission.

4.9 Other production, consumption, storage, transportation or handling of bulk products

4.9.1 Source category description

The sub-sector *Other production, consumption, storage, transportation or handling of bulk products* (NFR 2L) covers the treatment of slaughterhouse waste (NFR 2L3).

4.9.2 Slaughterhouse waste

One company treats slaughterhouse waste: Daka with five departments located in Løsning, Randers, Lunderskov, Ortved, and Nyker. The following SNAP-code is covered:

• 04 06 17 Slaughterhouse waste

The following pollutant is relevant for the treatment of slaughterhouse waste:

• NH₃

Methodology

The raw materials for the processes are by-products from the slaughterhouse, animals dead from accident or disease, and blood. The outputs from the processes are protein and fat products as well as animal fat, meat and bone meal.

The emissions from the processes are related to the consumption of energy and emissions of e.g. NH_3 and odour. The last-mentioned emissions are related to storage of the raw materials as well as to the drying process.

The emission of NH_3 from treatment of slaughterhouse waste has been calculated from an average emission factor based on measurements from Danish plants (Daka, 2002; 2004) and activity data from Statistics Denmark (2013).

Activity data

The activity data for treatment of slaughterhouse waste are compiled from different sources. Due to changes in the company structure environmental reports are only available for some years (1997-2006). Therefore, data from Statistics Denmark are used in combination with blood meal data (partly estimated based on data from the environmental reports). The activity data are presented in Table 4.9.1.

Table 4.9.1 Activity data for treatment of slaughterhouse waste, Gg.

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Meat/bone meal ¹	134.4	142.0	166.0	143.6	147.1	128.8	186.1	181.0	209.2	197.8
Animal fat ¹	11.1	14.3	15.0	41.6	18.6	72.1	81.9	85.9	75.8	63.9
Blood meal ²	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Total	156.5	167.3	192.0	196.2	176.7	211.9	279.0	277.9	296.0	272.7
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Meat/bone meal ¹	197.0	191.3	166.6	177.7	201.5	198.6	154.0	209.1	227.8	241.6
Animal fat ¹	54.2	57.7	72.6	72.8	89.2	73.4	56.4	108.5	93.8	98.6
Blood meal ²	11.0	11.0	11.0	11.4	11.5	11.4	9.7	8.9	9.5	10.6
Total	262.2	260.0	250.2	261.8	302.2	283.4	220.1	326.6	331.0	350.7
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Meat/bone meal ¹	177.4	161.7	142.6	140.5	116.4	104.6	96.3	73.7	78.5	88.3
Animal fat ¹	90.2	75.6	82.6	84.7	70.9	75.3	77.7	76.2	48.2	37.6
Blood meal ²	10.2	8.9	10.6	10.0	7.5	7.5	7.5	7.5	7.5	7.5
Total	277.9	246.2	235.8	235.2	194.8	187.4	181.5	157.4	134.3	133.4
1										

¹ Statistics Denmark (2015).

 2 Based on environmental reports from Daka (2009) for the years 1998 – 2009 and assumed for the other years.

Emission factors

The emission of NH_3 from treatment of slaughterhouse waste has been calculated from an average emission factor based on measurements from Danish plants (Daka, 2004). Measurements of NH_3 during the years 2002/3 from three locations (Lunderskov, Løsning and Randers) with different product mix have been included in the determination of an emission factor.

Weighted emission factors covering all the products within the sector have been estimated for 2002 and 2003 as well as a weighted emission factor covering 1985-2001. The estimated emission factors are presented in Table 4.9.2.

Table 4.9.2 Emission factors for treatment of slaughterhouse waste.

	EF	1985-2001	2002	2003-2014
NH_3	g/Mg	120	151	475

Emission trends

Emissions from the treatment of slaughterhouse waste are available in the NFR tables.

4.9.3 Source specific recalculations and improvements

There are no performed recalculations for "Other production, consumption, storage, transportation or handling of bulk products" in this submission.

4.9.4 Source specific planned improvements

Emissions of NH_3 from slaughterhouse waste will be extrapolated back to 1985 in the NFR tables.

4.10 QA/QC and verification

Please refer to the Danish National Inventory Report reported to the UN-FCCC (Nielsen et al., 2015).

4.11 Uncertainty estimates

The Danish uncertainty estimates are based on the simple "Approach 1".

The uncertainty estimates are based on emission data for the base year and year 2014 as well as on uncertainties for activity data and emission factors for each of the NFR source categories.

For particulate matter and BC, year 2000 is considered to be the base year, but for all other pollutants, the base year is 1990.

Table 4.11.1 presents the calculated Approach 1 uncertainties for the IPPU sector.

2).			
	Uncertainty total	Trend 1990-2014	l la containte du cond
Pollutant	emission %	(2000-2014) %	Uncertainty trend %-age points
SO ₂	153.60	-80.8	8.6
NO _x	68.93	-92.1	7.2
NMVOC	16.29	-35.1	7.8
CO	84.44	-76.5	41.9
NH ₃	182.33	-40.7	99.0
TSP	243.68	-30.0	62.8
PM ₁₀	146.50	-34.1	54.4
PM _{2.5}	93.47	-46.3	26.4
BC	86.19	-67.9	7.6
As	694.62	-49.2	147.9
Cd	631.70	-67.6	47.2
Cr	653.44	-28.2	76.3
Cu	149.16	165.3	121.9
Hg	150.75	-99.7	3.1
Ni	569.48	-73.2	95.1
Pb	678.21	-82.4	48.2
Se	935.77	-23.1	222.5
Zn	373.48	-82.3	126.4
НСВ	479.68	-94.2	46.6
PCDD/F	188.15	-96.8	29.4
benzo(b)flouranthene	150.75	56.0	33.1
benzo(k)flouranthene	149.32	54.4	32.5
benzo(a)pyrene	150.09	51.4	32.0
indeno(1,2,3-c,d)pyrene	150.50	54.5	32.7
PCB	582.43	-94.2	21.7

Table 4.11.1 Approach 1 uncertainties for Industrial Processes and product use (NFR 2).

4.12 References

Asfaltindustrien, 2003: Asfalt 3/03, Asfalt vore veje. Direktion, Ib Frandsen.

Ardagh Glass Holmegaard, 2015: Grønt regnskab for 2014 (PRTR). Ardagh Glass Holmegaard A/S, CVR nr. 18445042 (In Danish), Partly confidential. (Environmental reports).

CEPMEIP: The Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance (CEPMEIP). Database. Available at: <u>http://www.air.sk/tno/cepmeip/</u> (21/01-2016).

Cheminova, 2009: Grønt regnskab 2009 for Cheminova A/S. (Environmental reports).

Daka, 2002: Grønt regnskab for 2001-2002 (In Danish). (Environmental reports).

Daka, 2004: Grønt regnskab for 2003-2004 (In Danish). (Environmental reports).

Danisco Grindsted, 2015: Grønt regnskab for 2014 (PRTR). Dupont Nutrition Biosciences ApS, CVR nr. 11350356 (In Danish), Partly confidential. (Environmental reports).

DanSteel, 2015: NLMK DanSteel A/S 2015, Grønt Regnskab for 2014. (Environmental reports).

Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations, Brüssel, 1999.

Duferco, 2015: Grønt Regnskab for 2014 (PRTR). Duferco Danish Steel A/S, CVR nr. 29600953 (In Danish), Partly confidential. (Environmental reports).

EMEP/EEA Guidebook, 2013: EMEP/EEA air pollutant emission inventory guidebook 2013. Published by the EEA with the CLRTAP Task Force on Emission Inventories and Projections responsible for the technical content of the chapters. Technical report No 12/2013. Available at:

http://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (13/01-2016).

Environment Australia, 1999: Emissions Estimation Technique Manual for Aggregated Emissions from Barbeques, September 1999, Version 1.

Fauser, P., Saarinen, K., Harðardóttir, K., Kittilsen, M.O., Holmengen, N. & Skårman, T., 2009: Improvement of Nordic Emission Models for Solvent Use in Selected Sectors. TemaNord 2009:556. Nordic Council Of Ministers, Copenhagen.

Finstad; A. & Rypdal, K., 2003: Utslipp til luft av kobber, krom og arsen i Norge – Dokumentasjon av metode og resultater 2003/7, Statistisk Sentralbyrå, Statistics Norway. (In Norwegian)

FORCE, 2009. Revision af beregninger af danske VOC emissioner fra opløsningsmidler og husholdninger. Arbejdsrapport fra Miljøstyrelsen nr. 5.

Hansen, E., 2000: Substance Flow Analysis for dioxins in Denmark, Environmental Project No. 570, Miljøstyrelsen, 2000. Available at: <u>http://www2.mst.dk/udgiv/publications/2000/87-7944-295-1/pdf/87-7944-297-8.pdf</u> (25/1-2016). Haldor Topsøe, 2015: Grønt regnskab for 2014 (PRTR). Haldor Topsøe A/S, CVR nr. 41853816 (In Danish), Partly confidential. (Environmental reports).

Hals metal, 2015: Personal communication with Helle Bjerrum Holm November 2015.

Henriksen, T. C., Illerup, J. B., Nielsen, O.-K., 2006: Dioxin Air Emission Inventory 1990-2004, National Environmental Research Institute (NERI) Technical Report No. 602, 2006, Ministry of the Environment. Denmark. Available at: http://www.dmu.dk/Pub/FR602.pdf (13/01-2016)

Hjelgaard, K. & Nielsen, O.-K., 2015. Danish emission inventory for industrial processes. Results of inventories up to 2013. Aarhus University, DCE – Danish Centre for Environment and Energy, 159 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No.172 http://dce2.au.dk/Pub/SR172.pdf (21/1-2016)

Illerup, J.B., Geertinger A.M., Hoffmann, L. & Christiansen, K., 1999: Emissionsfaktorer for tungmetaller 1990-1996. Faglig rapport fra DMU, nr. 301. Miljø- og Energiministeriet, Danmarks Miljøundersøgelse. Available at: http://www2.dmu.dk/1_viden/2_publikationer/3_fagrapporter/rapporter /fr301.pdf (in Danish) (21/01-2016).

IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/</u> (23/01-2015).

IPCC, 1996: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Available at: <u>http://www.ipcc-</u> <u>nggip.iges.or.jp/public/gl/invs1.html</u> (25/1-2016).

Jensen & Markussen, 1993: Jensen, A., & Markussen, J. 1993. Forbrug af og forurening med cadmium (Miljøprojekt nr. 213). København: Miljøstyrelsen.

Jydsk Aluminiums Industri, 2013: Grønt Regnskab 2012 (PRTR). A/S Jydsk Aluminium Industri, CVR nr. 38523716 (In Danish), Partly confidential.. (Environmental reports).

Karjalainen, T. 2005: Commission research in Action: tackling the hormone disrupting chemicals issue, EUR report 21941.

Kemira GrowHow, 2004: Miljø & arbejdsmiljø. Grønt regnskab 2003. (Environmental reports).

Kemira GrowHow, 2005: Personal communication with Gert Jacobsen, September 2005.

Zbigniew Klimont, Janusz Cofala, Imrich Bertok, Markus Amann, Chris Heyes, Frantisek Gyarfas, 2002: Modellierung von Feinstaubemissionen in Europa, Entwicklung eines Technologie- und Kosten-Moduls für Staubemissionen im Rahmen des Integrated Assessment Modelling zur Unterstützung europäischer Luftreinhaltestrategien, juni 2002. Internationales Institut für angewandte Systemanalyse Laxenburg, Austria. (In Dutch) Koppers, 2015: Miljøredegørelse 2014. Koppers European Operations, Carbon Materials and Chemicals, Nyborg Works, Denmark, 2015. (Environmental reports).

KP Sup., 2013: IPCC 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. Task Force on National Greenhouse Gas Inventories. Available at: <u>http://www.ipcc-</u> nggip.iges.or.jp/public/kpsg/pdf/KP_Supplement_Entire_Report.pdf

Lassen, C, Christensen, C.L. & Skårup, S. 2004: Cowi A/S, Massestrømsanalyse for bly 2000 - revideret udgave, Miljøprojekt Nr. 917 2004. (In Danish). Available at:

http://www.unep.org/chemicalsandwaste/Portals/9/Lead_Cadmium/do cs/submissions/Massestromsanalyse_for_bly_2000_revised_Nr_917.pdf (21/01-2016)

Martin, P., Heavner, D.L., Nelson, P.R., Maiolo, K.C., Risner, C.H., Simmons, P.S., Morgan, W.T., Ogden, M.W., 1996: Environmental tobacco smoke (ETS): A market cigarette study. Environment International, Vol. 23, No. 1, pp. 75-90, 1997.

Miljöförvaltningen, 1999: Kemisk Analys av Fyrverkeripjäser, Fyrverkeriers miljöpåverkan - En undersökning av metaller i konsumentfyrverkerier, Miljöförvaltningen Göteborg, PM 1999:1, ISSN 1401-243X, ISRN GBG-M-PM-99/1--SE (In Swedish).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Fauser, P., Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L., Thomsen, M., Bruun, H.G., 2013: Danish emission inventory for hexachlorobenzene and polychlorinated biphenyls. Aarhus University, DCE – Danish Centre for Environment and Energy, 65 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 103. Available at: http://dce2.au.dk/pub/SR103.pdf (13/01-2016).

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Møller, I.S., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2015. Denmark's National Inventory Report 2015. Emission Inventories 1990-2013 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy, 911pp. Scientific Report from DCE – Danish Centre for Environment and Energy. Available at: http://dce2.au.dk/pub/SR171.pdf (25/01-2016).

Nielsen, V.V., 2011: Personal communication Vibeke Vestergaard Nielsen, Danish EPA, 9 September 2011.

Pärt, P. (main author) 2005: Environment and health, EEA Report No 10/2005, Copenhagen.

Passant, 2003: Passant, Neil, Characterisation of Emissions Of New Persistent Organic Pollutants, Department for Environment, Food and Rural Affairs, AEAT/ENV/R/1421 Issue 1.

Rambøll, 2004. Kortlægning af kemiske stoffer i forbrugerprodukter. Kortlægning nr. 45fra Miljøstyrelsen.

Rockwool, 2015: Grønt regnskab for 2014 (PRTR) for fabrikkerne i Vamdrup og Hobro. Rockwool A/S, CVR nr. 42391719 (In Danish), Partly confidential (Environmental reports).

Saint-Gobain Isover, 2013: Grønt regnskab for 2012 (PRTR). Saint-Gobain Isover A/S, CVR nr. 11933238 (In Danish), Partly confidential (Environmental reports).

Schou, E., 2015: Personal communication with Erik Schou from Department of Geosciences and Natural Resource Management at University of Copenhagen.

SPIN on the Internet. Substances in Preparations in Nordic Countries. Available at: <u>http://www.spin2000.net/spin.html</u>.

Statistics Denmark, 2015: Statistics Denmark, StatBank Denmark (Danish/English). Available at: <u>http://www.dst.dk/</u> (21/01-2016).

Stena Aluminium, 2008: Miljøredegørelse/Grønt Regnskab for Stena Aluminium A/S 2007/2008, CVR nr. 13801479. (Environmental reports).

Stålvalseværket, 2002: Grønt regnskab og miljøredegørelse 2001. Det Danske Stålvalseværk A/S. (Environmental reports).

UNFCCC, 2008: Available at:

http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/3929.php (29/01-2015).

US EPA, 2004: Technology Transfer Network Clearinghouse for Inventories & Emissions Factors. AP 42, Fifth Edition, Volume I, Chapter 11: Mineral Products Industry. Available at: <u>http://www.epa.gov/ttnchie1/ap42/ch11/</u> (29/01-2015).

Van der Maas C.W.M., Coenen P.W.H.G., Zijlema P.J., Baas, K., van den Berghe, G., van den Born, G.J., Brandt, A.T., Guis, B., Geilenkirchen, G., te Molder, R., Nijdam, D.S., Peek, C.J. & van der Sluis, S.M., 2010: Greenhouse Gas Emissions in the Netherlands 1990-2008, National Inventory Report 2010. Netherlands Environmental Assessment Agency.

5 Agriculture (NFR sector 3)

5.1 Overview of the sector

The emission from the agricultural activities covers range of pollutants. In Table 5.1 are given an overview of sources and pollutants.

Table 5.1 Overview of sources and pollutants.

NFR codes Longnar		Longname		Particulate matter (from 2000)						
			NO _x (as NO ₂)	NMVOC	SO _x (as SO ₂)	NH_3	PM _{2.5}	PM ₁₀	TSP	BC
3B		Manure management	х	х		х	х	х	х	
3D	3Da	Agricultural soils	х			х				
		Farm-level agricul-					.,	.,		
	3Dc	tural operations					х	х	х	
	3De	Cultivated crops		х		х				
	3Df	Use of pesticides								
		Field burning of								
3F		agricultural residues	Х	Х	x	х	х	х	х	х
					Other					
NFR	codes	Longname			om 2000)					
			CO	HM ^a	POP⁵	HCB	PCB			
3B		Manure management								
3D	3Da	Agricultural soils								
		Farm-level agricul-								
	3Dc	tural operations								
	3De	Cultivated crops								
	3Df	Use of pesticides				х				
		Field burning of								
3F		agricultural residues	х	х	х	х	х			

^a As, Cd, Cr, Cu, Hg, Ni, Pb, Se and Zn

^b dioxins and furanes (PCDD/F) and polycyclic aromatic hydrocarbons (PAH – benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoran-thene and indeno(1,2,3-cd)pyrene)

Buffalos, camels, lamas, mules and donkeys are not farmed in Denmark therefore no emission estimates from these animal categories.

Table 5.2 shows the agricultural contribution of total national emissions in 2014. The main part of the NH_3 emission (95 %) is related to the agricultural sector, while the agricultural contribution of TSP, PM_{10} and $PM_{2.5}$ are 73 %, 37 % and 11 %, respectively. Due to implementation of NMVOC emission from manure management, the agricultural share now accounts for 36 % of the total. The inventory also includes the NO_x emission from application of inorganic fertilisers and animal manure, which result in an agricultural part on 12 % of the total. The agricultural part of the total SO_x emission is lower than 1 %.

Table 5.2 Emission 2014, Agricultural share of the Danish total emission.

NH₃	TSP	PM ₁₀	PM _{2.5}	NMVOC	SOx	NOx
73	91	31	18	106	11	113
70	67	11	2	38	<1	14
95	73	37	11	36	<1	12
	73 70	73 91 70 67	73 91 31 70 67 11	73 91 31 18 70 67 11 2	73 91 31 18 106 70 67 11 2 38	73 91 31 18 106 11 70 67 11 2 38 <1

5.1.1 Ammonia

The majority of the Danish NH_3 emission, corresponding to 95 %, originates from the agricultural sector. The remaining 5 % is mainly related to

emission from transport. Figure 5.1 shows the distribution of sources of NH_3 emission from the agricultural sector for 2014. The main part of the agricultural emission is directly related to the livestock production by 51 % from manure management, 28 % from manure applied to soils and 3% from grazing animals. Emissions from use of inorganic fertiliser and cultivated crops contribute with 10 % and 8 %, respectively. Emissions from NH_3 -treated straw, field burning of agricultural residues and sewage sludge used as fertiliser amount to less than 1 %.

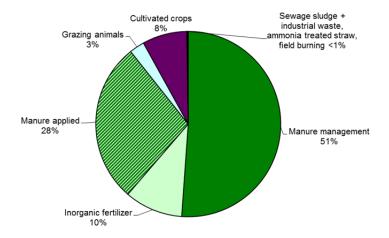


Figure 5.1 NH₃ emissions from the agricultural sector, 2014.

The NH₃ emission from the agricultural sector has decreased between 1985 and 2014 from 126.13 kt NH₃ to 69.84 kt NH₃, corresponding to a 45 % reduction (Table 5.3). This significant drop in NH₃ emissions should be read in a conjunction of a very active national environmental policy designed to reduce the loss of nitrogen to the aquatic environment. A string of measures have been introduced by action plans, for example the NPO (Nitrogen, phosphor, organic matter) Action Plan (1986), Action Plans for the Aquatic Environment (1987, 1998, 2004), the Action Plan for Sustainable Agriculture (1991), the Ammonia Action Plan (2001) and latest the action plan the Agreement on Green Growth (2009 and 2010). Based on these action plans have legislative changes and actions led to an optimization of manure as a resource.

Requirements to capacity of slurry storage and requirements to handling of manure during spreading has led to a decrease in animal nitrogen excretion, improvement in use of nitrogen in manure and a fall in the use of inorganic fertiliser. A Danish environmental approval act for livestock holdings was acted in January 2007 and according to the act, farmers are required to apply for an environmental approval if the farmer wants to change or expand the livestock production facilities. In order to get environmental approval farmers has to fulfil requirements concerning Best Available Technique (BAT) and specific environmental requirements as for example emission of ammonia. The action plans have helped to reduce the overall NH₃ emission significantly and the Danish environmental approval act for livestock will contribute to a further reduction in emissions in future.

Table 5.3 Total NH₃ emissions from the agricultural sector 1985 to 2014, kt NH₃.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Manure management, total	53.45	51.00	46.81	46.74	47.22	39.75	39.60	38.49	35.63	35.71
Cattle	13.80	12.62	11.48	11.69	10.45	10.70	11.01	11.03	11.02	10.74
Swine	31.67	28.92	26.20	25.03	24.80	17.66	17.49	16.31	15.78	15.93
Other animals	7.98	9.47	9.14	10.02	11.97	11.39	11.11	11.15	8.83	9.03
Inorganic N-fertiliser	15.66	16.87	15.27	9.90	7.81	7.14	7.36	7.06	7.29	7.12
Manure applied to soil	39.80	36.74	29.66	25.55	20.91	20.72	19.72	19.52	19.49	19.56
Sewage slugde applied to soil	0.05	0.07	0.11	0.08	0.05	0.06	0.06	0.06	0.06	0.06
Urine and dung deposite by grazing animals	3.12	2.91	3.02	2.92	2.21	1.87	1.81	1.84	1.86	1.84
Cultivated crops	5.97	5.92	5.28	5.21	5.34	5.41	5.42	5.40	5.37	5.45
Field burning of agricultural residue	1.53	0.08	0.09	0.11	0.13	0.09	0.09	0.10	0.11	0.11
NH ₃ treated straw	6.54	10.19	6.63	2.47	0.26	0.24	0.24	NO	NO	NO
Agricultural sector - total	126.13	123.78	106.87	92.99	83.93	75.27	74.30	72.47	69.81	69.84
	Cattle Swine Other animals Inorganic N-fertiliser Manure applied to soil Sewage slugde applied to soil Urine and dung deposite by grazing animals Cultivated crops Field burning of agricultural residue NH ₃ treated straw	Manure management, total53.45Cattle13.80Swine31.67Other animals7.98Inorganic N-fertiliser15.66Manure applied to soil39.80Sewage slugde applied to soil0.05Urine and dung deposite by grazing animals3.12Cultivated crops5.97Field burning of agricultural residue1.53NH3 treated straw6.54	Manure management, total 53.45 51.00 Cattle 13.80 12.62 Swine 31.67 28.92 Other animals 7.98 9.47 Inorganic N-fertiliser 15.66 16.87 Manure applied to soil 39.80 36.74 Sewage slugde applied to soil 0.05 0.07 Urine and dung deposite by grazing animals 3.12 2.91 Cultivated crops 5.97 5.92 Field burning of agricultural residue 1.53 0.08 NH ₃ treated straw 6.54 10.19	Manure management, total 53.45 51.00 46.81 Cattle 13.80 12.62 11.48 Swine 31.67 28.92 26.20 Other animals 7.98 9.47 9.14 Inorganic N-fertiliser 15.66 16.87 15.27 Manure applied to soil 39.80 36.74 29.66 Sewage slugde applied to soil 0.05 0.07 0.11 Urine and dung deposite by grazing animals 3.12 2.91 3.02 Cultivated crops 5.97 5.92 5.28 Field burning of agricultural residue 1.53 0.08 0.09 NH ₃ treated straw 6.54 10.19 6.63	Manure management, total 53.45 51.00 46.81 46.74 Cattle 13.80 12.62 11.48 11.69 Swine 31.67 28.92 26.20 25.03 Other animals 7.98 9.47 9.14 10.02 Inorganic N-fertiliser 15.66 16.87 15.27 9.90 Manure applied to soil 39.80 36.74 29.66 25.55 Sewage slugde applied to soil 0.05 0.07 0.11 0.08 Urine and dung deposite by grazing animals 3.12 2.91 3.02 2.92 Cultivated crops 5.97 5.92 5.28 5.21 Field burning of agricultural residue 1.53 0.08 0.09 0.11 NH ₃ treated straw 6.54 10.19 6.63 2.47	Manure management, total 53.45 51.00 46.81 46.74 47.22 Cattle 13.80 12.62 11.48 11.69 10.45 Swine 31.67 28.92 26.20 25.03 24.80 Other animals 7.98 9.47 9.14 10.02 11.97 Inorganic N-fertiliser 15.66 16.87 15.27 9.90 7.81 Manure applied to soil 39.80 36.74 29.66 25.55 20.91 Sewage slugde applied to soil 0.05 0.07 0.11 0.08 0.05 Urine and dung deposite by grazing animals 3.12 2.91 3.02 2.92 2.21 Cultivated crops 5.97 5.92 5.28 5.21 5.34 Field burning of agricultural residue 1.53 0.08 0.09 0.11 0.13 NH ₃ treated straw 6.54 10.19 6.63 2.47 0.26	Manure management, total 53.45 51.00 46.81 46.74 47.22 39.75 Cattle 13.80 12.62 11.48 11.69 10.45 10.70 Swine 31.67 28.92 26.20 25.03 24.80 17.66 Other animals 7.98 9.47 9.14 10.02 11.97 11.39 Inorganic N-fertiliser 15.66 16.87 15.27 9.90 7.81 7.14 Manure applied to soil 39.80 36.74 29.66 25.55 20.91 20.72 Sewage slugde applied to soil 0.05 0.07 0.11 0.08 0.05 0.06 Urine and dung deposite by grazing animals 3.12 2.91 3.02 2.92 2.21 1.87 Cultivated crops 5.97 5.92 5.28 5.21 5.34 5.41 Field burning of agricultural residue 1.53 0.08 0.09 0.11 0.13 0.09 NH ₃ treated straw 6.54 10.19 6.63 2.47 0.26 0.24	Manure management, total 53.45 51.00 46.81 46.74 47.22 39.75 39.60 Cattle 13.80 12.62 11.48 11.69 10.45 10.70 11.01 Swine 31.67 28.92 26.20 25.03 24.80 17.66 17.49 Other animals 7.98 9.47 9.14 10.02 11.97 11.39 11.11 Inorganic N-fertiliser 15.66 16.87 15.27 9.90 7.81 7.14 7.36 Manure applied to soil 39.80 36.74 29.66 25.55 20.91 20.72 19.72 Sewage slugde applied to soil 0.05 0.07 0.11 0.08 0.05 0.06 0.06 Urine and dung deposite by grazing animals 3.12 2.91 3.02 2.92 2.21 1.87 1.81 Cultivated crops 5.97 5.92 5.28 5.21 5.34 5.41 5.42 Field burning of agricultural residue 1.53 0.08 0.09 0.11 0.13 0.09 0.09 NH ₃ treated straw 6.54 10.19 6.63 2.47 0.26 0.24 0.24	Manure management, total 53.45 51.00 46.81 46.74 47.22 39.75 39.60 38.49 Cattle 13.80 12.62 11.48 11.69 10.45 10.70 11.01 11.03 Swine 31.67 28.92 26.20 25.03 24.80 17.66 17.49 16.31 Other animals 7.98 9.47 9.14 10.02 11.97 11.39 11.11 11.15 Inorganic N-fertiliser 15.66 16.87 15.27 9.90 7.81 7.14 7.36 7.06 Manure applied to soil 39.80 36.74 29.66 25.55 20.91 20.72 19.72 19.52 Sewage slugde applied to soil 0.05 0.07 0.11 0.08 0.05 0.06 0.06 0.06 Urine and dung deposite by grazing animals 3.12 2.91 3.02 2.92 2.21 1.87 1.81 1.84 Cultivated crops 5.97 5.92 5.28 5.21 5.34 5.41 5.42 5.40 Field burning of agricultural residue 1.53 0.08 0.09 0.11 0.13 0.09 0.09 0.10 NH ₃ treated straw 6.54 10.19 6.63 2.47 0.26 0.24 0.24 NO	Manure management, total53.4551.0046.8146.7447.2239.7539.6038.4935.63Cattle13.8012.6211.4811.6910.4510.7011.0111.0311.02Swine31.6728.9226.2025.0324.8017.6617.4916.3115.78Other animals7.989.479.1410.0211.9711.3911.1111.158.83Inorganic N-fertiliser15.6616.8715.279.907.817.147.367.067.29Manure applied to soil39.8036.7429.6625.5520.9120.7219.7219.5219.49Sewage slugde applied to soil0.050.070.110.080.050.060.060.060.06Urine and dung deposite by grazing animals3.122.913.022.922.211.871.811.841.86Cultivated crops5.975.925.285.215.345.415.425.405.37Field burning of agricultural residue1.530.080.090.110.130.090.090.100.11NH3 treated straw6.5410.196.632.470.260.240.24NONO

The management of manure has to be considered as the most important emission source. Most of the emission originates from the production of swine and cattle, which contributed, respectively with 45 % and 30 %.

It is noteworthy that the overall emission from swine has decreased by 50 % from 1985 to 2014 despite a considerable increase in swine production from 14.8 million produced fattening pigs in 1985 to 19.8 million in 2014. The most important reason for this is the improvement in feed efficiency. In 1985, the nitrogen excretion for a fattening pig was estimated to 5.09 kg N (Poulsen & Kristensen, 1998). In 2014, that figures were considerably lower at 2.93 kg N per fattening pig produced (Poulsen, 2015). Due to the large contribution from the swine production, the lower level of N-excretion has a significant influence on total agricultural emissions.

Since 1985, changes in practice of manure application to the fields have taken place, which has reduced the emission from manure applied to soils. From the beginning of the 1990s slurry has increasingly been spread using trailing hoses. From the late 1990s the practice of slurry injection or mechanical incorporation into the soil has increased. This development is a consequence of a ban on broad spreading but it is also a consequence of the general requirement to improve the utilisation of nitrogen in the manure e.g. requirements that a larger part of the nitrogen in manure has to be included in the farmer's nitrogen accounting. This has forced farmers to consider the manure as a fertiliser resource instead of a waste product.

5.1.2 Particulate matter

In NFR, the emission of particulate matter (PM) is reported for the years 2000 to 2014. The emission from the agricultural sector includes the emission of dust from animal housing systems, field operations and field burning of agricultural residues.

TSP (total suspended particulate) emission from the agricultural sector contributes with 73 % to the national TSP emission in 2014 and the emission shares for PM_{10} and $PM_{2.5}$ are 37 % and 11 % respectively. The majority of the TSP emission originates from the field operations 84 % while the emission from animal housings contributes with 15 % and field burning of agricultural residues, contributes with less than 1 % to the agricultural emission in 2014.

The PM emission from agricultural activities, given in TSP, is decreased 9 % during the period from 2000 to 2014 (Figure 5.2) mainly to decrease in the emission from field operations.

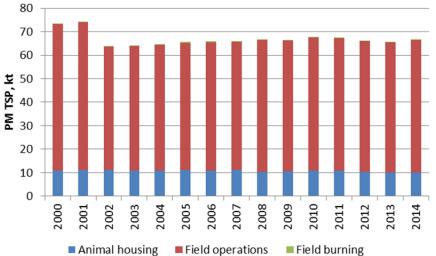


Figure 5.2 Emission of particulate matter (TSP) from the agricultural sector 2000 to 2014.

5.2 References - sources of information

DCE – the Danish Centre for Environment and Energy, Aarhus University, which is responsible for the emission inventory, has established data agreements with the institutes and organisations to assure that the necessary data are available for timely completion of the emission inventory. The main part of the emission is related to livestock production and most of the data are based on Danish standards.

Activity data, emissions factors (EF) and additional values are collected, evaluated and discussed in cooperation with Statistics Denmark, DCA - Danish Centre for Food and Agriculture, Aarhus University, SEGES, Danish Environmental Protection Agency and the Danish AgriFish Agency. It means that both the data and the methods used are evaluated continuously according to latest knowledge and information. Table 5.4 shows the source of data input from the different institutes.

References	Abbreviation	Data / information
Statistics Denmark - Agricultural Statistics	DSt	-livestock production
(http://www.dst.dk/en.aspx)		-milk yield
		-slaughtering data
		-land use
		-crop production
		-crop yield
Danish Centre for Food and Agriculture,	DCA	-N-excretion
Aarhus University		-feeding situation
		-NH ₃ emissions factor
		-PM emissions factor
SEGES	SEGES	-housing type (until 2004)
(https://www.seges.dk/)		-grazing situation
		-manure application time and methods
		-field burning of agricultural residue
		-acidification of slurry
Danish Environmental Protection Agency	EPA	-sewage sludge used as fertiliser
(http://www.mst.dk)		(until 2004)
The Danish AgriFish Agency	DAFA	-inorganic fertiliser
(http://naturerhverv.fvm.dk)		-number of animals from CHR
		-housing type (from 2005)
		-sewage sludge used as fertiliser(from
		2005)

5.2.1 Methods

The emission calculation is based on the methodologies provided in the EMEP/EEA air pollutant emission inventory guidebook (EMEP/EEA, 2013).

The agricultural sector includes emission from manure management (NFR 3A), agricultural soils (NFR 3D) and field burning of agricultural residue, (NFR 3F). The field burning of agricultural residue has been prohibited since 1989. However, burning of straw may take place in connection with fields continuously cultivating seed grass or in cases where weather conditions result in surplus of straw in form of wet or broken bales.

The emissions from the agricultural sector are calculated in a comprehensive agricultural model complex called IDA (Integrated Database model for Agricultural emissions). The model complex is designed in a relational database system (MS Access). Input data are stored in tables in one database called IDA_Backend and the calculations are carried out as queries in another linked database called IDA. The model, as shown in Figure 5.3, is implemented and used to calculate emissions of air pollutants NH₃, PM, NO_x, CO, NMVOC, SO₂, heavy metals, dioxin, PAH, HCB, PCB and greenhouse gases (N₂O, CH₄ and CO₂). Thus, the same activity data is used for both the air pollutants and the greenhouse gases and there is direct link between the NH₃ emission and the emission estimation of N₂O.

DCA, Danish Centre for Food and Agriculture, Aarhus University delivers Danish standards relating to feeding consumption, manure type in different housing types, nitrogen content in manure, etc. Previously, the standards were updated and published every third or fourth year - the last one is Poulsen et al. from 2001. From year 2001, DCE receives updated data annually directly from DCA in the form of spread sheets. These standards have been described and published in English in Poulsen & Kristensen (1998). From 2004 the standards are uploaded every year at

http://anis.au.dk/forskning/sektioner/husdyrernaering-og-fysiologi/normtal/.

IDA - Integrated Database model for Agricultural emissions

Data collecti	on, processing and pre	paring	
Data collected			
versity - SEGES - Danish Envir - The Danish /	nmark re for Food and Agricultur onmental Protection Ager AgriFish Agency Energy Authority		Uni-
	•		
IDA-backend	l		
Variables:	-		
Animals			Number
			Housing type distribution
			N-excretion
			Amount of straw
			Days on grass
			Amount of feed
			Amount of manure
Crops	•		Area
Inorganic fertil			Amount of fertiliser and N
N-leaching and		-l	Amount of N
fertiliser	e and industrial waste use	a as	Amount of N
Crop residue			Amount of N
Histosols			Area
	of agricultural residues		Amount of burnt straw
Mineral soils	agricultural reclauce		Amount of N
Pesticides			Amount of
Liming			Amount of lime
All			Emission factors
_			
	•	_	[
<u>IDA</u>			CRF and NFR templates
Emission calco	ulations of:		Output:
- CH₄	- NO _x - BC		Emissions and additional information
- N ₂ O	- SO ₂		required in the template.
- NH₃	- Heavy metals		
- PM	- PAHs		
- NMVOC	- Dioxin		
- CO	- CO ₂		

Figure 5.3 Overview of the data process for calculation of agricultural emissions.

- PCB

- HCB

IDA includes 39 different livestock categories, divided on weight class and age. Each of these subcategories is subdivided according to housing system and manure type, which results in 266 different combinations of subcategories and housing type (Table 5.5). The emissions are calculated from each of these subcategories and then aggregated in accordance with the livestock categories given in the NFR. It is important to point out that changes in the emission and the implied emission factor over the years are not only a result of changes in the number of animals, but also depend on changes in the allocation of subcategories, changes in feed consumption,

changes in housing type and changed practices with regard to the handling of livestock manure in relation to storage and application.

NFR	Animal	Includes	No. of sub-
3B	categories		categories in IDA,
			animal type/housing
			system/manure type
3B 1a	Dairy Cattle	¹ Dairy Cattle	35
3B 1b	Non-dairy	Calves (<1/2 year), heifers, bulls, suckling	129
	Cattle ¹	cattle	
3B 2	Sheep	Sheep and lambs	2
3B 3	Swine	Sows, weaners, fattening pigs	37
3B 4d	Goats	Including kids (meet, dairy and mohair)	3
3B 4e	Horses	<300 kg, 300 - 499 kg, 500 - 700 kg, >700 kg	4
3B 4gI-gIV	Poultry	Hens, pullet, broilers, turkey, geese, ducks, ostrich, pheasant	47
3B 4h	Other	Fur bearing animals, deer	9

Table 5.5 Livestock categories and subcategories.

¹⁾ For all cattle categories, large breed and jersey cattle are distinguished from each other.

5.3 Manure management

For the sector manure management is the emissions of NH_3 , PM, NMVOC and NO_x estimated.

5.3.1 Activity data

Animals

Table 5.6 shows the development in livestock production from 1985 to 2014 based on the Agricultural Statistics (Statistics Denmark). The number of animal corresponds to average annual production (AAP), which means the number of animals that are present on average within the year (EMEP/EEA, 2013). For many animal categories the number given in the annual Agricultural Statistics can be used directly. However, for weaners, fattening pigs, bulls and poultry the number is based on slaughter data also collected from the Agricultural Statistics, because the total production cycle for these animals is less than one year and because the normative figures are based on one produced animal. See Annex 3D Table 3D-1 for number of animals allocated on subcategories.

Only farms larger than five hectares are included in the annual census. Especially horses, goats and sheep are placed on small farms, which mean that the number of animals given in the Agricultural Statistics is not representative. Therefore, the number of sheep and goats is based on the Central Husbandry Register (CHR) which is the central register of farms and animals managed by the Ministry of Food, Agriculture and Fisheries. The number of deer and ostriches is also based on CHR because these are not included in the Agricultural Statistics published by Statistics Denmark. The number of horses is based on data from SEGES. The number of pheasants is based on expert judgement from Department of Bioscience, Aarhus University and the Danish pheasant breeding association.

Since 1985, the production of swine, poultry and fur has increased significantly. This is contrary to the production of cattle, which has decreased as a result of increasing milk yields. The production of non-dairy cattle follows same trend as dairy cattle, the production of beef cattle is negligible in the Danish agricultural production.

Table 5.6 Livestock production 1985 to 2014 given in AAP, 1000 head - NFR category 3B.

NFR	Animal category	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
3B 1a	Dairy Cattle	896	753	702	636	564	568	565	587	582	563
3B 1b	Non-dairy cattle	1 721	1 486	1 388	1 232	1 006	1 003	1 003	1 020	1 032	1 052
3B 2	Sheep*	99	230	202	279	316	278	234	226	221	220
3B 3	Swine	9 0 8 9	9 4 9 7	11 084	11 922			12 932	12 331	12 076	12 332
3B 4d	Goats*	8	7	7	8	11	16	13	13	13	12
3B 4e	Horses*	140	135	143	150	175	165	155	155	150	150
3B 4gl	Laying hens	5 577	5 696	6 088	4 935	5 168	5 248	5 679	5 597	5 766	5 585
3B 4gll	Broilers	8 490	9 802	12 585	16 047	11 905	12 836	12 528	12 576	13 215	12 318
3B 4gIII	Turkeys	308	238	456	456	516	494	400	460	289	248
3B 4gIV	Other poultry	1 822	1 600	1 563	1 374	1 509	1 510	1 963	1 444	1 263	1 253
3B 4h	Other										
3B 4h	Fur bearing animals	1 906	2 264	1 850	2 199	2 552	2 699	2 757	2 948	3 143	3 315
3B 4h	Deer	9	10	10	10	10	10	8	7	8	7

*Includes animals on small farms (less than 5 ha), which are not included in the Agricultural Statistics published by Statistics Denmark.

See Annex 3D Table 3D-1 for number of animals allocated on subcategories.

N-excretion

The normative figures for both total nitrogen excretion and the content of Total Ammoniacal Nitrogen (TAN) are provided by DCA, Aarhus University.

The emission of NH_3 from manure management is calculated on the basis on nitrogen excreted from livestock. Most of the N excreted that is readily degradable and broken down to NH_4 -N is found in the urine. The relationship between NH_4 -N and total N will not remain constant over time due to changes in feed composition and feed use efficiency. In order to be able to implement the effect of NH_3 reducing measures as improvements in feed intake and composition in the emission inventory, it is necessary to calculate the emission based on the TAN content. Since 2007, DCA has established Danish standards based on TAN for liquid manure, which is incorporated in the inventory. The emission for solid manure and deep litter is based on the total N excreted because DCA's estimate of TAN follows urine-N.

In Annex 3D Table 3D.2 is given the average N-excretion based on Total-N for each NFR livestock category from 1985 to 2006 (Table 3D.2a) and N-excretion based on TAN for 2007-2014 (Table 3D.2b). These values include N excretion from grazing animals. Notice that each livestock category is an aggregated average of different subcategories (see Table 5.5).

Housing system

A systematic registration of the housing of husbandry for all farms does not exist from 1985 to 2004 and the housing type distribution is therefore based on estimates from Danish Agricultural Advisory Centre (now SEGES) (Rasmussen, 2006) and Lundgaard (2006). From 2005 the distribution of housing system is based on information from the Danish AgriFish Agency, which is based on information from the farmers.

The structural development in the agricultural sector has an influence on the changes in housing type distribution. The trend in housing system for dairy cattle goes from older tied-up housings, which is replaced by bigger housings with loose-holding. In 1985, 85 % of the dairy cattle were kept in tied-up housings and in 2014 the share is reduced to 7 %. In loose-holding systems the cattle have more space and more straw bedding and this will in general increase the NH_3 emission per animal compared to the tied-up housings. In Annex 3D Table 3D.3 the distribution of housing type for all animals for 1985-2014 is listed.

5.3.2 NH₃

Description

The main part of the NH_3 emission (51 %) is related to manure management – mainly from the cattle and swine production (Figure 5.4). The reduced emission from swine over time is due to an active environmental policy in combination with improvements within the genetic development and improvements of feed intake effeciency. The emission from cattle has decrease as a consequence of less number of cattle. The emission has increased slightly from "other", which is mainly due to an increase in number of produced mink.

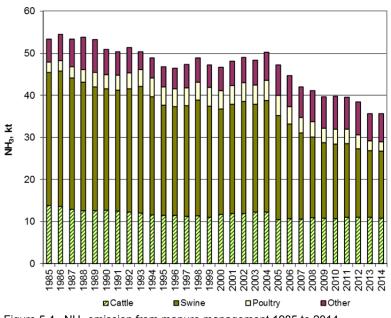


Figure 5.4 NH_3 emission from manure management 1985 to 2014.

Methodological issues

NH₃ emission from manure management covers emission from housings and storage and is based on N excreted and emission factors given in the normative figures (Poulsen et al., 2001; Poulsen 2015).

Activity data

See Chapter 5.2.1

Emission factor

Emission factors - Housing

The emission from housings is thus determined by a number of different conditions that depends on housing type and the different kinds of manure disposal systems placed in these housings. Danish Centre for Food and Agriculture, Aarhus University has carried out a number of emission surveys and estimated emission coefficients for each type of housings (Poulsen et al., 2001 and Poulsen, 2015). In Table 5.7 is shown the emission factors for the most important animal categories; dairy cattle and fattening pigs in different housing systems. For the slurry and liquid manure is given TAN emission factors (TAN ex animal) and for solid and deep litter manure is given N ex animal.

Manure system	Manure type	NH ₃ emission	NH ₃ emission	
		Pct. NH ₃ -N of	Pct. NH ₃ -N of	
		N ex Animal	TAN ex Animal	
Dairy cattle				
Tied-up	Solid manure	6.0		
	+ Liquid		10.0	
Tied-up	Slurry		6.0	
Loose-holding with beds, slatted floor	Slurry		16.0	
Loose-holding with beds, slatted floor, scrapes	Slurry		12.0	
Loose-holding with beds, solid floor	Slurry		20.0	
Loose-holding with beds, drained floor	Slurry		8.0	
Deep litter (all)	Deep litter	6.0		
Deep litter, slatted floor	Deep litter	6.0		
	+ Slurry		16.0	
Deep litter, slatted floor, scrapes	Deep litter	6.0		
	+ Slurry		12.0	
Deep litter, solid floor, scrapes	Deep litter	6.0		
	+ Slurry		20.0	
Fattening pigs				
Full slatted floor	Slurry		24.0	
Partly slatted floor (50-75% solid floor)	Slurry		13.0	
Partly slatted floor (25-49% solid floor)	Slurry		17.0	
Solid floor	Solid manure	15.0		
	+ Liquid		27.0	
Deep litter	Deep litter	15.0		
Partly slatted floor and partly deep litter	Deep litter	15.0		
	+ Slurry		18.0	

Table 5.7 NH_3 emission factors in different housing systems 2014 – dairy cattle and fattening pigs.

Emission factors - Storage

Livestock manure is collected either as solid manure or as slurry depending on housing type. In Table 5.8 are shown the emission factors used for storage. It is assumed that the part of solid manure taken directly from the housing into the field is 65 % from cattle, 25 % from pigs, 50 % from sows, 15 % from poultry and 5 % from hens (Poulsen, 2008). The remaining part of the solid manure is deposited in stock piles in the field before field application.

By law all slurry tanks have to be covered by a fixed cover or a full floating cover in order to reduce NH_3 emission. However, it can be difficult to establish a natural full floating cover every day all year especially for tank with pig slurry. In 2014 it is assumed that 5 % of the tanks with swine slurry and 2 % of tanks with cattle slurry are incompletely covered (Annex 3D Table 3D-4).

		Liquid manure	Slurry	Solid manure	Deep litter
			Loss of NH ₃	₃-N in %	
Animal catego	ry	of TAN ex housing	of TAN ex housing	of N ex housing	of N ex housing
Cattle		2.2	3.5	4.0	1.05
Swine	Fattening pigs	2.2	2.9	19.0	9.75
	Sows		2.9	19.0	6.50
Poultry	Hens and pullet		2.0 ^a	7.5	4.75
	Broilers, geese and ducks			7.5	6.80
	Turkeys			7.5	8.00
Fur bearing animals			3.1	11.5	
Sheep/goats					3.0
Horses					3.0

Table 5.8 NH₃ emission factors for storage 2014.

^a Loss of NH₃-N in % of N ex housing.

Reduction factors

Acidification of slurry in the housings and storage is an increasing used technique in Denmark. The acidification of the manure lowers the emission of NH_3 and this effect is included in the emission inventory. Use of acidification of slurry is a result of environmental requirements.

If farmers plan to expand the livestock production and build new housing or modified existing housing, the ammonia emissions from animal housing and stores must be reduced by 30 percent in accordance with the reference animal housing system. The requirement may be met by reducing ammonia loss in both existing and new facilities.

The amount of slurry acidified is estimated by SEGES (Vestergaard, 2015). The reduction of the emission from storage and application are described in Chapter 5.4.2. Amount of slurry acidified in housings and storage is estimated for the years 2012, 2013 and 2014. In 2014, approximately 3 % of total amount of slurry is acid treated in housing and storage.

Table 5.9 Amount of slurry acidified in housing.

Amount of slurry, tonnes	2012	2013	2014
Total	38 401 894	37 365 664	38 210 485
Acidified i housing	874 000	1 100 000	1 200 000
Share, %	2	3	3

The estimation of reduced emission due to acidified slurry is based on the Environmental Technologies List (MST, 2016). The list contains technologies which through tests have been documented to be environmentally efficient and are continuously adjusted to knowledge on new technology. Due to the list the acidified slurry in housing the emission expected to be reduced by 50 % for cattle slurry and 65 % for swine slurry. Same reducing effect is assumed for acidification in storage. No information on the distribution of cattle- and swine slurry is available, thus it is assumed that 50 % of the slurry acidified is cattle slurry and 50 % are swine slurry.

Implied emission factor

Table 5.10 shows the implied emission factors for each NFR livestock category from 1985 to 2014. The implied emission factors express the average emission of NH₃ from housing and storage per AAP (annual average population) per year. The implied emission factors are changing from year to year depending on a combination of several factors, such as:

- change in number of animals or change in the share of different subcategories,
- change in feed intake and N-excretion,
- change in housing type
- acidification of slurry

It should be mentioned that the emission from urine and dung deposited by grazing animals is included in the emission from agricultural soils (NFR – 3Da3).

For most of the animal categories are the implied emission factor decreased from 1985 to 2014, which is mainly the result of measures in relation to the environmental Action Plans. Strict requirements to obtain improvements in utilisation of nitrogen in manure have resulted in reduction of Nexcretion and especially for fattening pigs. For dairy cattle the implied emission factor has increased and this is due to increase in feed intake and milk production per cow.

Table 5.10 Implied emission factor, manure management 1985 to 2014, kg NH₃ per AAP per year.

NFR	Animal category	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
3B 1a	Dairy cattle	9.64	10.50	10.37	11.49	13.50	12.86	13.32	12.88	12.82	12.93
3B 1b	Non-dairy cattle	3.00	3.17	3.02	3.56	2.81	3.38	3.47	3.40	3.44	3.30
3B 2	Sheep	0.51	0.52	0.53	0.44	0.44	0.40	0.40	0.40	0.40	0.40
3B 3	Swine	3.48	3.04	2.36	2.10	1.83	1.34	1.35	1.32	1.31	1.29
3B 4d	Goats	1.39	1.40	1.44	1.12	1.05	0.98	0.98	0.99	0.99	0.99
3B 4e	Horses	5.44	5.34	4.80	4.84	4.84	4.34	4.34	4.34	4.34	4.34
3B 4gl	Laying hens	0.15	0.20	0.25	0.27	0.34	0.27	0.27	0.24	0.23	0.23
3B 4gll	Broilers	0.15	0.20	0.18	0.17	0.21	0.15	0.14	0.13	0.07	0.07
3B 4gIII	Turkeys	0.49	0.51	0.65	0.63	0.63	0.52	0.52	0.52	0.52	0.52
3B 4gIV	Other poultry	0.10	0.10	0.14	0.10	0.08	0.03	0.02	0.03	0.02	0.02
3B 4h	Other	2.46	2.28	2.15	2.13	2.44	2.55	2.47	2.39	1.80	1.81

Emissions

The NH₃ emission from manure management is estimated to 35.71 kt NH₃ in 2014 (Table 5.11). From 1985 to 2014, the emission is reduced by 33 %. As mentioned in Chapter 6.1.1 this development is mainly due to implementation of a number of action plans to reduce nitrogen losses from the agricultural production.

In 2014, cattle production contributes with 30 % of the total emission from manure management. The swine production contributes in 2014 with 45 % of the total emission from manure management. The number of cattle has decreased as a result of a growth in milk yield. The production of fattening pigs has increased by more than 50 % compared with 1985. However, despite this development the emission from swine is still decreasing. This is due to a breeding of pigs with focus on a biological development and improvement in fodder efficiency. Thus the N-excretion for fattening pigs has decreased from 5.09 kg per pig per year in 1985 to 2.93 in 2014.

Table 5.11 Emission of NH₃ from manure management 1985 to 2014, kt NH₃.

NFR	Animal category	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
3B 1a	Dairy cattle	8.64	7.90	7.29	7.30	7.62	7.31	7.53	7.56	7.47	7.27
3B 1b	Non-dairy cattle	5.17	4.72	4.19	4.39	2.83	3.39	3.48	3.47	3.55	3.47
3B 2	Sheep	0.05	0.12	0.11	0.12	0.14	0.11	0.09	0.09	0.09	0.09
3B 3	Swine	31.67	28.92	26.20	25.03	24.80	17.66	17.49	16.31	15.78	15.93
3B 4d	Goats	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01
3B 4e	Horses	0.76	0.72	0.68	0.73	0.85	0.72	0.67	0.67	0.65	0.65
3B 4gl	Laying hens	0.86	1.17	1.51	1.35	1.76	1.44	1.53	1.34	1.35	1.28
3B 4gll	Broilers	1.24	1.99	2.31	2.68	2.52	1.89	1.71	1.68	0.87	0.84
3B 4gIII	Turkeys	0.15	0.12	0.29	0.29	0.33	0.26	0.21	0.24	0.15	0.13
3B 4gIV	Other poultry	0.18	0.16	0.22	0.14	0.12	0.04	0.04	0.04	0.03	0.02
3B 4h	Other	4.72	5.18	4.01	4.70	6.25	6.92	6.84	7.07	5.69	6.02
3B	Total	53.45	51.00	46.81	46.74	47.22	39.75	39.60	38.49	35.63	35.71

Figure 5.5 shows the percentage distribution of the NH_3 emission from housing, storage and application of manure. The main part of the reduction in NH_3 emission has taken place in connection with the application of manure in fields, due to changes in manure application practice, see Chapter 5.4.2. There has been a reduction in emissions associated with storage of manure, which is a result of improvement in coverage of slurry tanks. As a consequence of this development, the percentage of emission from housing is increased from 38 % in 1985 to 54 % in 2014.

The possibilities for NH_3 reduction will likely be focused on measures in housings by various technological solutions. Some ammonia reducing technology is already implemented in housing e.g. air cleaning systems and slurry acidification. The reduced effect of air cleaning systems is not taken into account in the Danish inventory because improvement in documentation is needed. The slurry acidification of slurry both in the housings, storage and application is taken in to account.

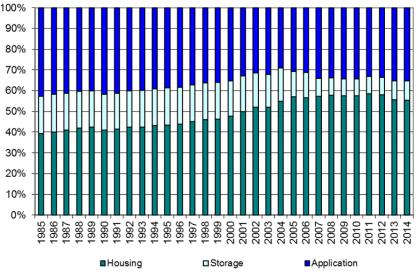


Figure 5.5 The percentage distribution of the NH_3 emission in manure management 1985-2014.

5.3.3 PM

Description

Investigations have shown that farmers, as well as livestock, are subject to an increased risk of developing lung and respiratory related diseases due to the particulate emissions (Hartung and Seedorf, 1999). This is because the particles are able to carry bacteria, viruses and other organic compounds.

In 2014 the PM emission from housings, given as TSP, is estimated to 10.19 kt, which correspond to 15 % of the emission of TSP from the agricultural sector. Of the 10.19 kt TSP, 71% relates to swine production. The emission from cattle and poultry contributes with 14 % and 15 %, respectively and the remainder animals contribute with 1 %.

Methodological issues

The estimation of PM emission is based on the EMEP/EEA guidebook (2013) where the scientific data mainly are based on an investigation of PM emission in North European housings (Takai et al., 1998).

The PM emission includes primary particles in the form of dust from housings. The inventory includes PM emission from cattle, swine, poultry, horses, sheep, goats and fur bearing animals (Table 5.12). The number of grazing days is taken into account. Some animal categories are divided into subcategories and for some categories (if applicable) distinction is made between solid and slurry based housing systems.

The PM emission is related to the annual average population (AAP) and to the time the animal is housed. The PM emission from grazing animals is considered as negligible.

Livestock categories	Subcategories as given in	n Danish inventory	Grazing
as given in NFR	the EMEP/EEA guideboo	k	days
Dairy Cattle	Dairy cattle	Dairy cattle	18
Non-Dairy Cattle	Calves	Calves < ½ yr	0
	Beef cattle	Bulls	0
		Heifers	132
		Suckling cattle	224
Swine	Sows	Sows (incl. weaners until 7 kg)	0
	Weaners	Weaners (7-32 kg)	0
	Fattening pigs	Fattening pigs (32-107 kg)	0
Poultry	Laying hens	Laying hens	0
	Broilers	Broilers	0
	Turkeys	Turkeys	0
	Other poultry	Ducks	0
		Geese	365
Horses	Horses	Horses	183
Sheep	Sheep	Sheep	265
Goats	Goats	Goats	265

Table 5.12 Livestock categories used in the PM emission inventory.

Activity data

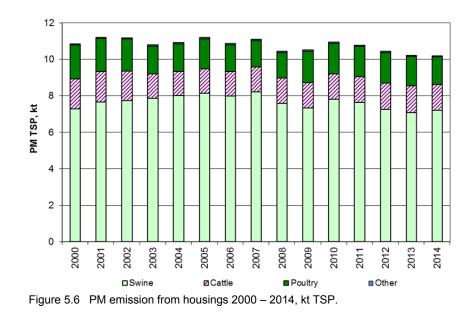
See Chapter 5.2.1

Emission factor

Emission factors for TSP, PM_{10} and $PM_{2.5}$ are based on the EMEP/EEA guidebook (EMEP/EEA, 2013). The same emissions factors are used for all years. Estimation of TSP is based on the transformation factors between TSP and PM_{10} as given in the EMEP/EEA emission inventory guidebook (2013).

		Emissic	on factor		Transfor- mation factor
Livestock category	Housing	PM ₁₀	PM _{2.5}	TSP	PM ₁₀ to TSP
	system		kg per	AAP per year	
Cattle:					
Dairy cattle	Slurry	0.83	0.54	1.81	0.46
	Solid	0.43	0.28	0.94	0.46
Calves < ½ yr	Slurry	0.15	0.10	0.34	0.46
	Solid	0.16	0.10	0.35	0.46
Beef cattle	Slurry	0.32	0.21	0.69	0.46
	Solid	0.24	0.16	0.52	0.46
Heifer ¹⁾	Slurry	0.49	0.32	1.07	0.46
	Solid	0.30	0.19	0.64	0.46
Suckling cattle ²⁾	Slurry	0.32	0.21	0.69	0.46
	Solid	0.24	0.16	0.52	0.46
Swine:					
Sows	Slurry	0.61	0.11	1.36	0.45
	Solid	0.80	0.14	1.77	0.45
Weaners	Slurry	0.16	0.03	0.36	0.45
	Solid	0.16	0.03	0.36	0.45
Fattening pigs	Slurry	0.31	0.06	0.70	0.45
	Solid	0.37	0.07	0.83	0.45
Poultry:					
Laying hens, cages	Solid	0.025	0.003	0.02	1.00
Laying hens, perchery	Solid	0.119	0.023	0.12	1.00
Broilers	Solid	0.069	0.009	0.07	1.00
Ducks	Solid	0.139	0.018	0.14	1.00
Geese	Solid	0.243	0.032	0.24	1.00
Turkeys	Solid	0.521	0.068	0.52	1.00
Horses	Solid	0.22	0.14	0.48	0.46
Sheep	Solid	0.06	0.02	0.12	0.46
Goats	Solid	0.06	0.02	0.12	0.46
Fur bearing animals	Solid	0.008	0.004	0.01	1.00

Table 5.13 Emission factors for particle emission from animal housing system.


¹⁾ Average of "calves" and "dairy cattle".

²⁾ Assumed the same value as for "Beef cattle".

³⁾ Same as slurry based systems.

Emissions

Figure 5.6 shows the PM emission, given in TSP for each animal category in the period 2000 to 2014. It is seen that the main part of the emission originates from swine housings. See Annex 3D Table 3D-5 for the PM emission, given in TSP, PM_{10} and $PM_{2.5}$. In the period 2000 to 2014, the total agricultural emission of TSP from housings is decreased by 6 %. The decrease in the emission in 2003 is mainly due to change in housing type for non-dairy cattle. The decrease in 2008 is mainly due to change in housing types for swine. The increase in 2010 and following decrease in 2011 to 2013 is mainly due to change in number of swine.

5.3.4 NMVOC

Description

An estimate of NMVOC from manure has been calculated and shows that 34 % of the total Danish NMVOC emission is related to animal husbandry and mainly to the cattle production.

Methodological issues

The estimation of NMVOC emission is based on the EMEP/EEA guidebook (2013). NMVOC emissions from animal husbandry comes from feed, degradation of feed in the rumen and from undigested fat, carbohydrate and protein decomposition in the rumen and in the manure. Silage is a major source of NMVOC emissions and therefore two sets of emission factor are introduced in the Guidebook; a high emission factor based on feeding with silage and a low emission factor based on feeding without silage.

The calculation of NMVOC emissions is based on Tier1 approach.

Activity data

The NMVOC emission is estimated on the number of animal multiplied with the NMVOC emission factor for each animal category. The number of animal is given as the average annual population (AAP) – see Table 5.6.

Emission factor

NMVOC emission factors recommended in EMEP/EEA Guidebook Table 3-3 is used (Table 5.14). For days on grass, the emission factor for feeding without silage is used for cattle, sheep, goats and horses (Table 5.12). However, all emissions are entered in NFR category 3B, while the notation key NE is used for NFR category 3Da3.

Same emissions factors are used during all years, which mean that changes of the emission over time depends on change in animal production or change in grazing days.

Table 5.14 INIVOC emission factors (EMEP/EEA Guidebook 2015, TIET).										
	EF NMVOC with silage	EF NMVOC without silage ¹								
Dairy Cattle	17.937	8.047								
Non-Dairy Cattle	8.902	3.602								
Sheep	0.279	0.169								
Swine – sows		1.704								
Swine – other		0.551								
Goats	0.624	0.542								
Horses	7.781	4.275								
Laying hens		0.165								
Broilers		0.108								
Turkeys		0.489								
Other poultry		0.489								
Fur bearing animals		1.941								

Table 5.14 NMVOC emission factors (EMEP/EEA Guidebook 2013, Tier1).

¹Emission factor is also used for time on grass.

Emissions

The development of NMVOC emission from 1990 to 2014 shows a decrease from 38 kt to 36 kt with the highest fall in the beginning of the period (Figure 5.7). Back in 1990 two third of the emission originates from the cattle production, which is fallen to half the emission in 2014. A decrease of emission from cattle is a consequence of less number of animals due to higher milk yield. An increase of the production of swine and fur bearing animals has resulted in an increase of the emission from 1990 to 2014

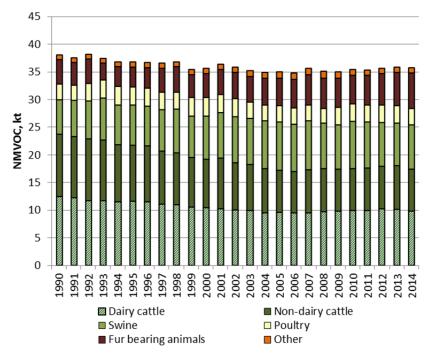


Figure 5.7 Emission of NMVOC from manure management, 1990-2014.

5.3.5 NO_x

Description

An estimate of NO_x from manure management has been calculated and shows that 2 % of the total Danish NO_x emission in 2014 is related to animal husbandry.

Methodological issues

The estimation of NO_x emission is based on the EMEP/EEA guidebook (2013) Tier1 approach. The Guidebook mentioned that "*Emissions of NO are estimated to quantify the N mass balance for the Tier 2 methodology for calculating NH₃ emissions*". However, only two EF Tier2 is shown in Guidebook Chapter 3.3. Manure Management Appendix B – for dairy cattle and fattening pigs. Using of Tier 2 approach requires probably that the estimation of the NO_x EF is based on a national N-balance.

Activity data

The Tier 1 approach is based on number of animal given as the average annual population (AAP). The Number is showed in Table 5.6.

Emission factor

Emission factor for estimation of NO emission from manure management is listed in Table 5.15. Some of the manure from the mink production is handled as slurry, but no EF for slurry is mentioned in the Guidebook. Therefore, the same emissions factor is used for both slurry and solid systems.

The emission factors in the Guidebook are given as NO. All emissions are converted from NO emission to NO_2 emission by multiply with a conversion factor of 46/30 due to the differences on molecular weight.

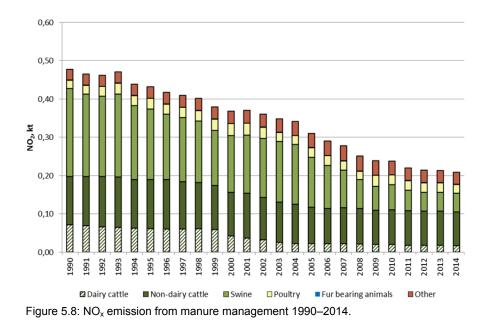

	· · · · · · · · · · · · · · · · · · ·		<i>,,</i>
NFR code	Livestock	slurry	solid
3B 1a	Dairy cows	0.007	0.154
3B 1b	Other cattle	0.002	0.094
3B 2	Sheep		0.005
3B 3	Sows	0.004	0.132
3B 3	Fattening pigs	0.001	0.045
3B 4d	Goats		0.005
3B 4e	Horses		0.131
3B 4gi	Laying hens	0.003	0.0001
3B 4gii	Broilers		0.001
3B 4giii	Turkeys		0.005
3B 4giv	Ducks		0.004
3B 4giv	Geese		0.001
3B 4h	Fur bearing animals	0.0002 ¹	0.0002

Table 5.15 NO emission factors (EMEP/EEA Guidebook 2013), kg NO per AAP.

¹ Used the same EF as given for solid manure.

Emissions

The NO_x emission from 1990 to 2014 has decreased significantly from 0.48 kt NO_x to 0.21 kt NO_x corresponding to a 56 % reduction. The emission depends on number of animal and manure type and the decrease is mainly related to changes from solid based system to slurry based system for both the dairy cattle and the swine production. Thus, the allocation of solid manure was 23 % in 1990 and dropped to the half 10 % in 2014.

5.4 Soils

At present, farmed area covers about 60 % of the total land area in Denmark. In recent decades, farmed area has decreased, being replaced by built-up areas, roads, forest and nature habitats.

5.4.1 Inorganic N-fertilisers

Description

For the sector inorganic N-fertiliser the emission of NH_3 and NO_x are estimated.

The emission of NH₃ from inorganic fertiliser contributes in 2014 with 10 % of the emission from the agricultural sector. The emission of NO_x contributes in 2014 with 53 % of the emission from the agricultural sector.

Methodological issues

Emission of NH_3 from inorganic fertiliser is based on the consumption of fertiliser of different types and emission factors. In Table 5.16 are shown emission factors and consumption for 2014. See Annex 3D Table 3D-6 for assumptions for fertiliser type.

Emission of NO_x is based on the total consumption of N in inorganic N-fertiliser and emission factor.

	NH ₃ Emission factor ¹ , 0	Consumption ²
	Kg NH₃-N pr kg N	t N
Fertiliser type		
Calcium and boron calcium nitrate	0.11	0.2
Ammonium sulphate	0.01	5.1
Calcium ammonium nitrate and other nitrate types	0.02	89.6
Ammonium nitrate	0.04	4.8
Liquid ammonia	0.01	6.5
Urea	0.24	0.3
Other nitrogen fertiliser	0.04	18.5
Magnesium fertiliser	0.11	0.0
NPK-fertiliser	0.04	53.4
Diammonphosphate	0.11	1.6
Other NP fertiliser types	0.11	5.6
NK fertiliser	0.04	1.8
Total consumption of N in inorganic N-fertiliser		186.8

Table 5.16 Inorganic N-fertiliser consumption 2014 and emission factors.

¹ EMEP/EEA (2013), see Annex 3D Table 3D-6 for assumptions for fertiliser type.

² The Danish AgriFish Agency.

Activity data

Data on the use of inorganic fertiliser is based on the annual sale estimations collected by the Danish AgriFish Agency (2014). The use of inorganic fertiliser includes fertiliser used in parks, golf courses and private gardens. Approximately 1 % of the inorganic fertiliser can be related to use outside the agricultural area.

Emission factor

Emission factors for both NH_3 and NO_x are based on the values given in EMEP/EEA guidebook (EMEP/EEA, 2013) and the same emission factors are used for all years 1985-2014. The implied emission factor for NH_3 is shown in Table 5.17 and it depends on consumption and type of fertiliser.

Table 5.17 Implied emission factor NH₃ for inorganic N-fertiliser, 1985-2014.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Implied emission factor NH ₃ , % of total N	3.24	3.47	3.98	3.24	3.12	3.10	3.08	3.11	3.10	3.14

Emissions

Since 1985 there has been a significant decrease in use of inorganic N-fertiliser. This is due to requirements to utilising of nitrogen in manure as outlined in various environmental action plans. Another explanation for a reduction of emission is a decrease in use of urea as currently accounting for less than 1 % of the total nitrogen (Table 5.16). In Figure 5.9 are shown emission of NH_3 and NO_x .

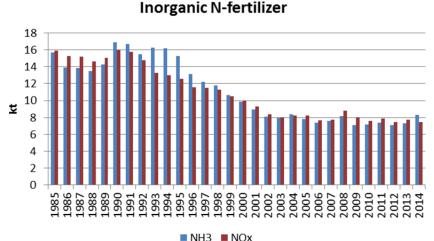


Figure 5.9 Emission of NH₃ and NO_x for 1985-2014, kt.

5.4.2 Animal manure applied to soils

Description

For the sector animal manure applied to soils the emission of NH_3 and NO_x are estimated.

Emission of NH_3 from animal manure applied to soils contributes in 2014 with 28 % of the NH_3 emission from the agricultural sector. Emission of NO_x from animal manure applied to soils contributes in 2014 with 43 % of the NO_x emission from the agricultural sector.

Methodological issues

To calculate both emissions of NH_3 and NO_x from animal manure applied to soils an emission factor are estimated and multiplied with TAN ex storage for liquid manure and N ex storage for solid manure for each animal type.

Activity data

Based on the normative figures (Poulsen, 2015) the amount of TAN ex storage for liquid manure and the amount of N ex storage for solid manure are estimated.

Emission factor NH₃

The emission factor are based on background estimates of time of application, application methods, application in growing crops or on bare soil and the time from application to ploughing in soil. The amount of manure an acidified is also taken into account. The emission factor differs between solid manure and liquid manure and also between manure from cattle and swine. For all other animals same emission factor as for cattle is used.

The emission factors will vary from year to year depending on changes in the practice of application. In Table 5.18 background information for 2014 are given. This estimate is based on information from SEGES.

Liquid manure				Len	gth of t	time bef	ore inc	orporati	on into	soil, ho	urs
		Perce	ntage			4		4	,		
		distribu	ution of		and the		hen	and then		Not	
Application method	Is Application time	mar	nure	0		harro	wed	Ploug	ghed	incorpo	orated
		Cattle	Pigs	Cattle	Pigs	Cattle	Pigs	Cattle	Pigs	Cattle	Pigs
Incorporated	winter-spring	61	24	61	24	-	-	-	-	-	-
Incorporated	summer-autumn	18	4	18	4	-	-	-	-	-	-
Trailing hoses	winter-spring	17	64	-	-	-	3	-	2	17	59
Trailing hoses	spring-summer	2	2	-	-	-	-	-	-	2	2
Trailing hoses	late summer-autumn	2	6	-	-	-	2	-	1	2	3
Total		100	100	79	28	-	5	-	3	21	64
Solid manure				Length of time before incorporation into soil, hours							
		Perce	ntage								
		distribu	ution of							No	ot
Application method	Is Application time	mar	nure	0		4		6		incorpo	orated
		Cattle	Pigs	Cattle	Pigs	Cattle	Pigs	Cattle	Pigs	Cattle	Pigs
Broad spreading	winter-spring	90	76	-	-	70	60	20	16	-	-
Broad spreading	spring-summer	5	5	5	5	-	-	-	-	-	-
Broad spreading	late summer-autumn	5	19	-	-	5	19		-	-	-
Total		100	100	5	5	75	79	20	16	-	-

Table 5.18 Estimate for application method, time of application and time before the manure is incorporated in the soil for 2014.

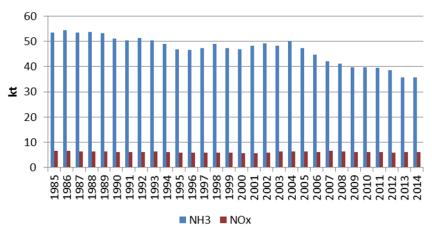
Acidification of slurry just before application on fields is an increasing used technique in Denmark and a result of environmental requirements. If slurry is applied on grass fields or on soil without vegetation, the slurry has to be injected or treated with acid to lower the ammonia emission.

The acidification of the manure lowers the emission of NH_3 from the treated manure by 49 % (VERA, 2010). The amount of manure acidified is estimated by SEGES for the years 2011, 2012, 2013 and 2014 (Vestergaard, 2015). It is mainly cattle manure which is acidified in storage and just before application.

Table 5.19Share of liquid manure acidified in storage and just before application,2011-2014.

	2011	2012	2013	2014
Share of cattle manure, %	3	6	10	13
Share of swine manure, %	1	1	1	1

In 2014 the emission factor for cattle is for solid manure estimated to 7 % of N ex storage and for liquid manure estimated to 13 % TAN ex storage, for swine the emission factors are 6 % and 11 %, respectively.


Emissions factor NO_x

The emission factor for NO_x is based on EMEP/EEA guidebook (2013). Only one emission factor regarding the NO_x emission for 3D is mentioned in the EMEP/EEA Guidebook (refer to Table 3-1). The background reference for the Tier 1 emission factor is based on a literature study, which do not distinguish between different kinds of fertiliser types. This indicate that the same emission factor can be used independent of the crops are fertilized with mineral fertiliser or manure. The NO_x emission is estimated based on the Tier 1 emission factor at 0.026 kg NO per kg N fertilized. Because the emission factor in the Guidebook is given as NO, the emission is converted from NO emission to NO₂ emission by multiply with a conversion factor of 46/30 due to the differences on molecular weight.

Emissions

The emission of NH_3 from manure applied to soils has decreased by 51 % from 1985 to 2014, this is due to decrease of N excreted by animals and by changes in the way manure is handled during application. Based on the action plans various initiatives has been implemented and include for example requirement for a minimum 9-month manure storage capacity, requirement that manure applied to soil be ploughed down within six hours, a ban on the application of manure in winter and broad spreading is no longer allowed. An increasing share of the slurry is injected to soil which result in a lower emission.

Emission of NO_x from manure applied to soils has decreased by 7 % from 1985 to 2014 this is mainly due to decrease of N excreted.

Manure applied to soil

Figure 5.10 Emission of NH_3 and NO_x from manure applied to soils, 1895-2014, kt NH_3 and NO_x .

5.4.3 Sewage sludge applied to soils

Description

For the sector sewage sludge applied to soils the emission of NH_3 and NO_x are estimated.

Emission of NH_3 and NO_x from sewage sludge applied to soils contributes in 2014 with less than 1 % and 2 % from the agricultural sector, respectively.

Methodological issues

Amount of N applied are multiplied with the emission factor.

Activity data

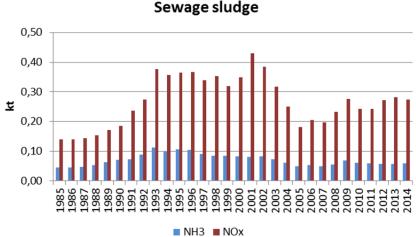
Information on amount of sewage sludge, N-content and NH₃ emission factor is obtained from reports prepared by the Danish Environmental Protection Agency and based on data from the fertiliser accounts controlled by The Danish AgriFish Agency. Farmers with more than 10 animal units have to be registered and keep accounts of the use of N content in manure, received manure or other organic fertiliser.

Table 5.20 Activity data used to estimate NH₃ and NO_x from sewage sludge, 1985-2014.

		1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Amount of sludge	Tonnes of dry										
applied on soil	matter	50 000	77 883	112 235	83 727	45 739	56 665	54 564	52 002	51 731	53 766
N-content	%	4.00	4.00	4.13	4.33	4.75	4.75	4.75	4.75	4.75	4 75
N applied on soil	Tonnes N	2 000	3 115	4 635	3 625	2 173	2 692	2 592	2 470	2 457	2 554

Emission factor NH₃

The emission factor for NH_3 emission from sewage sludge applied to soil is based on information from the Danish Environmental Protection Agency. It is estimated to 0.019 kg NH₃-N per kg N and the same for all years 1985-2014.


Emission factor NO_x

The emission factor for NO_x is based on EMEP/EEA guidebook (2013). Only one emission factor regarding the NMVOC emission from 3 D is mentioned in the EEA/EMEP Guidebook (refer to Table 3-1). The background reference for the Tier 1 emission factor is based on a literature study, which do not distinguish between different kinds of fertiliser types. Emission from N in sewage sludge could be lower or higher, but no information on this is available and therefore the emission factor from the Guidebook at 0.026 kg NO per kg N sewage sludge applied to soils is used.

Because the emission factor in the Guidebook is given as NO, the emission is converted from NO emission to NO₂ emission by multiply with a conversion factor of 46/30 due to the differences on molecular weight.

Emissions

Emission of NH_3 and NO_x from sewage sludge is shown in Figure 5.11. The emission follow the amount of N applied.

5.4.4 Urine and dung deposited by grazing animals

Description

It is assumed that 5 % of the manure from dairy cattle is deposited in the field, which corresponding to 18 days per year (Aaes, 2008). For heifers 36 % of the nitrogen in the manure is estimated deposited during grazing (Aaes, 2008), 61 % for suckling cows (Poulsen et al, 2001), 50 % for horses (Clausen, 2008) and 73 % for sheep and goats (Poulsen et al, 2001).

Figure 5.11 Emission of NH₃ and NO_x from sewage sludge, 1985-2014, kt.

Emission of NH_3 from urine and dung deposit by grazing animals contributes in 2013 with 3 % of the emission from the agricultural sector.

Methodological issues

Emission of urine and dung deposited by grazing animals is based on N excreted ab animal, number of days the animals are on grass and the emission factor.

Activity data

The activity data are number of animals (see Chapter 5.2.1), N excreted ab animal and number of days on grass (see Table 5.12) which combined gives the N deposit on grass, see Table 5.21.

Table 5.21 N deposit on grass, 1985-2014, M kg N.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
N deposited on grass	37	34	36	34	26	22	21	22	22	22

Emission factor

Study of grazing cattle indicates that 7 % of the total nitrogen content is assumed to evaporate as NH_3 (Jarvis *et al.* 1989a, Jarvis *et al.* 1989b and Bussink 1994). This emission factor is used for all animal categories.

Emissions

The emission of NH_3 from urine and dung deposit by grazing animals has decreased by 41 % from 1985 to 2014 and this is mainly due to decrease in number of dairy cattle and decrease in number days on grass for dairy cattle.

Table 5.22 Emission of NH_{3} from urine and dung deposit by grazing animals, 1985-2014, kt $NH_{3}.$

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Grazing animals	3.12	2.91	3.02	2.92	2.21	1.87	1.81	1.84	1.86	1.84

5.4.5 Farm-level agricultural operations including storage, handling and transport of agricultural products

Description

During agricultural operations such as soil cultivation, harvesting, cleaning, drying and transport an emission PM occur. In the EMEP/EEA guidebook are only method and emission factors for the operations done in the field that is soil cultivation, harvesting, cleaning and drying.

The emission of PM TSP from field operations contributes with 62 % of the total emission of TSP in 2014.

Methodological issues

The emission of PM from field operations is calculated by area of cultivated crops multiplied with number of operations and emission factor, for each crop type and type of operation.

Activity data

For activity data are used area of cultivated crops and number of operations for each crop. The area of crops is estimated by Statistic Denmark (DSt, 2015) and number of operations are based on budget estimates made by Knowledge Centre for Agriculture. See Annex 3D Table 3D-7 for area of cultivated crops and Annex 3D Table 3D-8a-8d for number of operations divided in soil cultivation, harvesting, cleaning and drying.

Emission factor

The emission factors used are given in Table 5.23 and they are based on EMEP/EEA guidebook (EMEP/EEA, 2013) and van der Hoek (2007).

Table 5.23 Emission factors for field operations, kg per ha.								
PM ₁₀	Soil cultivation	Harvesting	Cleaning	Drying				
Wheat	0.25 ^a	0.27 ^b	0.19 ^a	0.56 ^a				
Rye	0.25 ^a	0.2 ^b	0.16 ^a	0.37 ^a				
Barley	0.25 ^a	0.23 ^b	0.16 ^a	0.43 ^a				
Oat	0.25 ^a	0.34 ^b	0.25 ^a	0.66 ^a				
Other arable	0.25 ^a	0.26 ^c	0.19 ^c	0.51 ^c				
Grass	0.25 ^a	0.25 ^a	0 ^a	0 ^a				
PM _{2.5}								
Wheat	0.015 ^a	0.011 ^b	0.009 ^a	0.168 ^a				
Rye	0.015 ^a	0.008 ^b	0.008 ^a	0.111 ^a				
Barley	0.015 ^a	0.009 ^b	0.008 ^a	0.129 ^a				
Oat	0.015 ^a	0.014 ^b	0.0125 ^ª	0.198 ^a				
Other arable	0.015 ^a	0.010 ^c	0.009 ^c	0.152 ^c				
Grass	0.015 ^a	0.01 ^a	0 ^a	0 ^a				
TSP ^d								
Wheat	2.5	2.7	1.9	5.6				
Rye	2.5	2	1.6	3.7				
Barley	2.5	2.3	1.6	4.3				
Oat	2.5	3.4	2.5	6.6				
Other arable	2.5	2.6	1.9	5.1				
Grass	2.5	2.5	0	0				

^a EMEP/EEA (2013).

^b van der Hoek (2007).

 $^{\rm c}$ average of wheat, rye, barley and oat.

^d PM₁₀ multiplied by 10 (van der Hoek, 2007).

Emissions

The emission of PM_{10} , $PM_{2.5}$ and TSP are shown in Table 5.24. The emission of TSP has decreased 10 % from 2000 to 2014 due to decrease in the area of cultivated crops and number of treatments of the fields.

Table 5.24 Emissions of PM_{10} , $PM_{2.5}$ and TSP from field operations, 1985-2014, tonnes.

	2000	2005	2010	2011	2012	2013	2014
PM_{10}	6 238	5 415	5 665	5 654	5 559	5 522	5 637
PM _{2.5}	479	436	468	457	445	448	466
TSP	62 382	54 146	56 655	56 541	55 587	55 218	56 365

5.4.6 Cultivated crops

Description

For the sector cultivated crops the emission of $\ensuremath{NH_3}$ and \ensuremath{NMVOC} are estimated.

The Danish emission inventory includes NH_3 emission from crops, despite the uncertainties related to this emission source. Literature research shows that the volatilisation from crop types differs considerably. However, as for the emission ceiling given in the Gothenburg-Protocol and the EU NEC Directive the emission from crops is not taken into account.

Methodological issues

The emission is calculated based on area of agricultural land and emission factors.

Activity data

Activity data are obtained from Statistics Denmark, see Annex 3.D Table 3D-7.

Emission factor NH₃

EF's for crops are estimated to 2 % for crops and 0.5 % for grass based on a literary survey (Gyldenkærne and Albrektsen, 2009).

Table 5.25	EF used to estimate the	emission of NH ₃ from crops.
------------	-------------------------	---

Crops	kg NH₃-N per ha
Cash crops, beets and silage maize	2
Grass/clover in rotation	0.5
Permanent grass	0.5
Set-a side	0

Emission factor NMVOC

The calculation of the NMVOC emission is based on emission factors recommended in EMEP/EEA Guidebook 2013 Table A3-2 for cultivation of wheat, rye, rape and grass land (15 C). A Tier 2 IEF is estimated corresponding to Danish yield level dry matter content (DM) for these crop types. The emission from other crop types is not available in the Guidebook. However, the total NMVOC emission is estimated as the Tier 2 IEF multiplied with the total cultivated area.

The NMVOC emission from cultivated crops is estimated to 1.94 kt in 2014 based on an IEF at 0.73 and a cultivated area of 2 652 thousand hectare. The IEF varies annually from 0.51 -0.73 kg NMVOC per hectare depending on the allocation of the four mentioned crop types. Higher allocation of rape and rye result in higher IEF due to a higher emission factor for these two crop types.

	EEA/EMEP, Emission factor	Fraction of year emitting	Total	Mean dry matter of crop	NMVOC EF	Cultivated area	NMVOC emission	Tier 2 DK
Crop	Kg NMVOC /kg DM/yr		Kg/kg DM//yr	kg DM/ha	Kg/ha/yr	ha	Kg/ha/yr	IEF, kg NMVOC/ha
Wheat	2.60E-08	0.3	6.82E-05	6 681	0.46	651 530	296 851	
Rye	1.41E-07	0.3	3.70E-04	5 415	2.00	104 093	208 623	
Rape	2.02E-07	0.3	5.30E-04	3 949	2.09	165 595	346 470	
Grass land*	1.03E-08	0.5	4.51E-05	8 501	0.38	505 153	193 732	
Total						1 426 371	1 045 676	0.73

Table 5.26 Estimation of a Tier 2 NMVOC emission factor, 2014.

*Grass land 15 C.

Emissions

Emission of NH_3 and NMVOC are shown in Figure 5.12. The emission of NH_3 has decreased by 9 % from 1985 to 2014 and the emission of NMVOC has increased by 4 %. This is mainly due to decrease in the agricultural area.

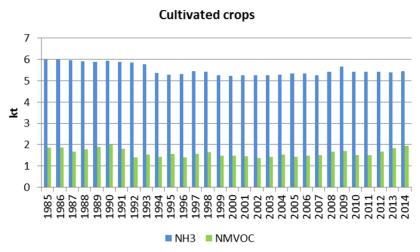


Figure 5.12 Emission of NH₃ and NMVOC from cultivated crops, 1985-2014, kt.

5.4.7 Use of pesticides

Description

A range of pesticides are use in the Danish agricultural sector and some of them contain Hexachlorobenzene (HCB), but pure HCB used as pesticide is banned. HCB is a poisonous substance, which is dangerous to human and animal health but is used as agent in pesticides.

The emission of HCB from use of pesticides contributes with less than 1 % of the Danish total HCB emission.

Methodological issues

Emission of HCB from use of pesticides is based on amount of effectual substance used and emission factors for each type of pesticides.

Activity data

A range of pesticides are used in Denmark. In the period from 1990 to 2014 six types of pesticides containing HCB have been identified as used in Denmark. These are atrazine, chlorothalonil, clopyralid, lindane, pichloram and simazine. Data of amounts of effectual substance used in Denmark are collected from Environmental Protection Agency (EPA), see Table 5.27. The use of atrazine and lindane stopped in 1994 and the use of chlorothalonil and simazine ceased in 2000 and 2004, respectively.

Table 5.27 Amounts of effectual substance used in Denmark, 1990-2014, kg.

	Table 3.27 Amounts of chectual substance used in Definiary, 1990 2014, kg.								
	1990	1995	2000	2005	2010	2011	2012	2013*	2014
Atrazine	91 294	-	-	-	-	-	-	-	-
Chlorothalonil	10 512	10 980	7 340	-	-	-	-	-	-
Clopyralid	16 461	22 587	7 446	5 874	9 122	11 840	8 170	14 284	14 284
Lindane	8 356	-	-	-	-	-	-	-	-
Pichloram	-	-	-	-	723	1 349	206	255	255
Simazine	30 234	19 865	23 620	-	-	-	-	-	-

*Same as 2012 due to lack of data.

Emission factor

No default emission factors are given in EMEP/EEA Guidebook. Emission factors given in Yang (2006) are used in the calculation of the emissions, see Table 5.28.

	1990	1995	2000	2001-2014
Atrazine	100	1	1	1
Chlorothalonil	500	40	40	10
Clopyralid	2.5	2.5	2.5	2.5
Lindane	100	50	50	1
Pichloram	100	50	50	8
Simazine	100	1	1	1

Table 5.28 Emission factors for HCB from pesticides, 1990-2014, g per tonnes.

Emissions

Table 5.29 shows the emission of HCB from the agricultural sector for the years 1990-2014. The emission has decreased significantly from 1990 to 2014 due to decrease in use of pesticides containing HCB.

	1990	1995	2000	2005	2010	2011	2012	2013	2014
Pesticides	18.28	0.50	0.33	0.01	0.02	0.03	0.02	0.03	0.03

5.5 Field burning of agricultural residues

Description

Field burning of agricultural residues has been prohibited in Denmark since 1990 and may only take place in connection with production of grass seeds on fields with repeated production and in cases of wet or broken bales of straw.

Emissions of NH₃, NO_x, CO, NMVOC, SO₂, PM, BC, heavy metals, dioxin, PAHs, HCB and PCB are included under the NFR category 3F. The emission of NH₃ from field burning contributes in 2014 with less than 1 % of the agricultural emission. Emissions of PM and NMVOC from field burning contributes with less than 1 % TSP, 2 % PM₁₀, 13 % PM_{2.5} and less than 1 % NMVOC of the agricultural emission. The emission of NO_x, BC, CO, SO₂, heavy metals, dioxin and PCB from field burning contribute with less than or around 1 % of the total national emission, while the emission of PAHs and HCB contribute with around 4-6 % of the national emission. From 1989 to 1990 all emissions decrease significantly due to the ban on field burning.

Methodological issues

Emissions from field burning of agricultural residues are calculated based on the amount of burnt straw given in tons dry matter and emission factors given in the EMEP/EEA guidebook (EMEP/EEA, 2013).

Activity data

The amount of burnt straw from the grass seed production is estimated as 15-20 % of the total amount produced. The amount of burnt bales of wet straw is estimated as 0.1 % of total amount of straw. Both estimates are based on expert judgement by SEGES. The total amounts are based on data from Statistics Denmark. See Annex 3D Table 3D-9 for activity data.

Emission factor

The EMEP/EEA guidebook (EMEP/EEA, 2013) default values for the emission factors for field burning of agricultural residues are used (Table 5.30).

rning of agric	ultural residues
EF	Unit
2.4	g/kg DM
58.9	g/kg DM
6.3	g/kg DM
0.3	g/kg DM
2.4	g/kg DM
5.8	g/kg DM
5.8	g/kg DM
5.5	g/kg DM
0.5	g/kg DM
500	ng TEQ/t
0.865	mg/kg DM
0.049	mg/kg DM
0.008	mg/kg DM
0.058	mg/kg DM
0.22	mg/kg DM
0.177	mg/kg DM
0.036	mg/kg DM
0.028	mg/kg DM
0.0003	mg/kg DM
2 787	mg/kg DM
2 735	mg/kg DM
1 073	mg/kg DM
1 017	mg/kg DM
0.003	g/tonnes
0.002	g/tonnes
3	ng TEQ/t
0.05	ng TEQ/t
	EF 2.4 58.9 6.3 0.3 2.4 5.8 5.5 0.5 500 0.865 0.049 0.008 0.058 0.022 0.177 0.036 0.028 0.028 0.0003 2 787 2 735 1 073 1 017 0.003 0.002 3

Table 5.30 EF for field burning of agricultural residues.

² Jenkins, 1996.

³ Yang (2006).

⁴ Black et al. (2012).

Emissions

See Annex 3D Table 3D-10 for emissions of all pollutants 1985 to 2014.

5.6 Agriculture other

5.6.1 NH₃ treated straw

Description

 NH_3 is used for conservation of straw for feeding. As for the emission ceiling given in the Gothenburg-Protocol and the EU NEC Directive the emission from NH_3 treated straw is not taken into account.

Methodological issues

Emissions are calculated as NH₃ used for treatment of straw multiplied the emission factor.

Activity data

Information on NH₃ used for treatment of straw is collected from the suppliers. NH₃ treated straw has been prohibited from 2006, but in 2010 and 2011 an exemption were given due to wet weather.

Table 5.31 Activity data for NH_3 treated straw 1985 to 2014.

	1985	1990	1995	2000	2005	2010	2011	2012	2013	2014
Tonnes NH ₃ -N	8 285 1	12 912	8 406	3 125	329	300	300	0	0	0

Emission factor

Investigations show that up to 80-90% of the supplied NH₃ (given in NH₃-N) can emit (Andersen et al., 1999). However, the emissions can be reduced particularly if the right dose is used. It is assumed that the emission factor is 65 % of the applied NH₃-N.

Emissions

Emission of NH₃ from NH₃-treated straw is shown in Figure 5.13.

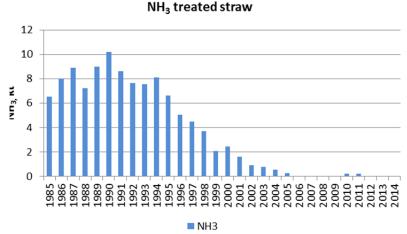


Figure 5.13 Emission of NH₃ from NH₃-treated straw, 1985-2014.

5.7 Uncertainties

Table 5.32 shows the estimated uncertainties for activity data and emissions factor for each pollutant.

NH₃

3B Manure management

It is defined that activity for manure management covers both the number of animals and housing type. The allocation of animal on different housing types determines if the manure is handled as slurry or solid manure.

The number of animals for the most important animal categories is estimated by Statistic Denmark. The uncertainties for the most important livestock categories are relatively low e.g. for swine and cattle the uncertainties is estimated to 1.3 % and 0.9 %, respectively. The uncertainty is higher for less important animal groups, e.g. fur bearing animals (3.4 %), poultry, horses, sheep (10.4 %). The uncertainty for number of animals overall is estimated to 2 %. The allocation of housing system is based on information from the farm nitrogen budgets handled and controlled by the Danish AgriFish Agency. All farmers have to submit the information regarding the housing type annually and the uncertainty is assumed as relatively low. The uncertainties for the activity data is thus a combination of low uncertainty in animal numbers, a relatively low uncertainty for housing type, which assumed to result in an overall uncertainty by 5 %.

The uncertainty for the emission factor covers nitrogen excretion, grazing days and NH₃ emission factors from housing and during storage of the manure. The Danish Normative System for animal excretions is based on data from SEGES, which is the central office for all Danish agricultural advisory services. SEGES engages in a great deal of research as well as the collection of efficacy reports from Danish farmers for dairy production, meat production, pig production, etc., to optimise productivity in Danish agriculture. Feeding plans from 15-18 % of the Danish dairy productions, 25-30 % of swine productions, 80-90 % of poultry productions and approximately 100 % of fur productions are collected annually. These basic feeding plans are used to develop the standard values of the "Danish Normative System". However, due to the large number of farms included in the norm figures, the arithmetic mean can be assumed as a very good estimate with a low uncertainty.

Regarding the uncertainties for the emission factor, it has to be included that the emission comes from three different places in the livestock production; from manure in housing, from stored manure and from application of manure. The uncertainties for emission measurements in housing, which are the basement for the normative standards varies from 15 -25 % (Poulsen et al., 2001). But there is no specified uncertainty estimates for emission factors for storage and application of manure. The overall uncertainty value for NH_3 emission factor for manure management is assumed to be around 25 %.

3Da1 Inorganic fertilisers

The activity data for the emission from inorganic N-fertiliser depends on the amount of sold fertiliser and the N-content for each fertiliser type, which is based on annually information given by the Danish AgriFish Agency. Uncertainty is considered to be low; 3 % based on expert judgement.

No uncertainty values for the emission factor are given in the EMEP/EEA guidebook. The Danish inventory assume an uncertainty value at 25 %, which indicated a uncertainty in the translation of the Danish fertiliser types to types specified in the guidebook but also indicate an uncertainty of the emission factors specified in the guidebook.

3Da2a Animal manure applied to soils

Besides the number of animal, the uncertainty for activity data covers Nexcretion, grazing days and the NH₃ emission from housing and storage. It is assumed that the most important variables are the number of animal which has a low uncertainty 2 %. However, the uncertainty is also affected by the other variable which has a higher uncertainty estimate. Thus, the uncertainty for the activity data is assumed to be around 15 %.

The emission factor depends on the uncertainty regarding the information on application time, application technics and plant cover. The uncertainty is estimated to 25 %.

3Da2b Sewage sludge applied to soils

From 2005 and onwards the amount of N applied from wastewater treatment is based on the fertiliser accounts controlled by the Danish AgriFish Agency. Farmers with more than 10 animal units have to be registered and have to keep accounts of the N content in manure, received manure or other organic fertiliser. The uncertainty for the activity data is assumed to be 15 %.

The emission factor depends on the application of time, application technic and the climate conditions and the uncertainty is assumed to be relatively high – around 50 %.

3Da3 Urine and dung deposited by grazing animals

The overall uncertainty for the activity is estimated to 5 %. Besides the number of animals, the uncertainty depends on number of grassing days.

Regarding the uncertainty for the emissions factor, this depends on the N excretion and the climate conditions as temperature, wind and precipitation. The uncertainty value is estimated to 25 %.

3De Cultivated crops

The activity data covers the cultivated area which is based on Statistics Denmark. For the major crops, the uncertainty is relatively low – e.g. winter wheat it is 1.1 % in 2014. The overall uncertainty for the activity is estimated to 2 %. Knowledge concerning the emission is relatively limited and therefore the uncertainty is assumed to be 50 %.

3F Field burning of agricultural residues

An uncertainty of 25 % for the activity for field burning of agricultural residues is used. The uncertainty is a combination of the uncertainty for area of grass for seed production, which has a low uncertainty, amount of burned straw and yield, which have a high uncertainty. The uncertainties for the emission factor are based on the EMEP/EEA Guidebook (EMEP/EEA, 2013) and Jenkins et al. (1996).

3I Agriculture other

Under NFR category 3I emissions from NH_3 treated straw is entered. NH_3 treated straw was until 2006 used as cattle feed. By law in 2006 the NH_3 treatment of straw was banned. However, due to wet weather conditions a dispensation to the law was given in 2010 and 2011. The activity depends on the amount of ammonia used in the second half of the year and is based on information from the AgriFish Agency. The uncertainty value is assumed to be 20 %. The uncertainty level for the emission factor is assumed to be 50 %.

PM

Uncertainty estimates due to the activity data is estimated to 7 %. Besides number of animal and housing type, also uncertainty related to the production cycles plays a role.

The activity data covers the cultivated crops and number of operations for each crop type. The area of crops is estimated by Statistic Denmark and number of operations is based on budget estimates made by Knowledge Centre for Agriculture. The uncertainty is assumed to be 10 %.

The uncertainties for the PM emission factors have been considered to be very high and especially for animal husbandry and manure management. The uncertainty estimates regarding the PM emission factors for manure management and farm level agricultural operations are based on the EMEP/EEA guidebook.

Other pollutants

For both the NO_x and NMVOC emission the activity data is based on the same conditions as mentioned in NH_3 chapter and therefore the same uncertainty estimates is used.

The uncertainty for the NO_x and NMVOC emission factor is based on expert judgment and is considered to be very high; 100 - 500 % based on the on the EMEP/EEA guidebook.

Emission of BC, CO, SO₂, heavy metals, dioxin, PAHs, HCB and PCB from the agricultural sector originates from field burning of agricultural residues. The uncertainty for activity data for these emissions is a combination of the uncertainty for crop production which is low and the uncertainty of the amount of burned straw which is high. The uncertainties for the emission factors are based on EMEP/EEA guidebook. All uncertainties for field burning are relatively high. The uncertainty for activity data for the emission of HCB from pesticides are estimated to 5 % and the uncertainty for the emission factor are relatively high.

			Activity	Emission	Combined	Total
Compound	NFR sector	Emission	data, %	factor, %	Uncertainty, %	Uncertainty, %
NH ₃ , kt	3.B Manure management	35.71	5	25	25	16
	3.Da1 Inorganic fertilisers	7.12	3	25	25	
	3.Da2a Animal manure applied	19.56	15	25	29	
	3.Da2b Sewage sludge applied	0.06	15	50	52	
	3.Da3 Deposited by grazing	1.84	5	25	25	
	3.De Cultivated crops	5.45	2	50	50	
	3.F Field burning	0.11	25	50	56	
	3.G Agriculture other	NO	20	50	54	
TSP, kt	3.B Manure management	10.19	7	300	300	257
	3.Dc Farm-level agri. operations	56.37	10	300	300	
	3.F Field burning	0.26	25	50	56	
PM ₁₀ , kt	3.B Manure management	5.44	7	300	300	207
	3Dc Farm-level agri. operations	5.44	10	300	300	
	3.F Field burning	0.26	25	50	56	
PM _{2.5} , kt	3.B Manure management	1.29	7	300	300	206
	3Dc Farm-level agri. operations	0,47	10	300	300	
	3.F Field burning	0.25	25	50	56	
NMVOC, kt	3 B Manure management	35.74	2	300	300	284
	3.De Cultivated crops	1.94	5	500	500	
	3.F Field burning	0.28	25	100	103	
NO _x , kt	3.B Manure management	0.21	5	100	100	210
	3.Da1 Inorganic fertilisers	7.45	3	400	400	
	3.Da2a Animal manure applied	6.13	15	400	400	
	3.Da2b Sewage sludge applied	0,27	15	400	400	
	3.F Field burning	0,11	25	25	35	
HCB, kg	3.F Field burning	0.11	25	500	501	407
HCB, kg	3 G Agriculture other	0.03	5	500	500	
PCB, kg	3.F Field burning	< 0.01	25	500	501	501
SO ₂ , kt	3.F Field burning	0.01	25	100	103	103
BC, kt	3.F Field burning	0.02	25	100	103	103
CO, kt	3.F Field burning	2.63	25	100	103	103
Pb, Mg	3.F Field burning	0.04	25	50	56	56
Cd, Mg Hg, Mg	3.F Field burning 3.F Field burning	< 0.01	25	100	103	103
	3.F Field burning	<0.01	25	200	202	202
As, Mg Cr, Mg	3.F Field burning	< 0.01	25	100	103	103
Cu, Mg	3.F Field burning	0.01	25	200	202	202
Ni, Mg	3.F Field burning	< 0.01	25	200	202	202
Se, Mg	3.F Field burning	0.01	25	200	202	202
Zn, Mg	3.F Field burning	<0.01	25 25	100	103	103
∠n, ⋈g Dioxin, g I-Teq	3.F Field burning	< 0.01	25 25	200	202	202
Benzo(a)pyrene, Mg	3.F Field burning	0.03	25 25	500	501	501
	-	0.12	25 25	500	501	501
Benzo(b)fluoranthen, Mg	3.F Field burning	0.12	25	500	501	501
Benzo(k)fluoranthen, Mg	3.F Field burning	0.05	25	500	501	501
Indeno(1,2,3 cd)pyrene, Mg	3.F Field burning	0.05	25	500	501	501

Table 5.32 Estimated uncertainty associated with activities and emission factors for the agricultural sector.

5.8 Quality assurance and quality control (QA/QC)

A general QA/QC and verification plan for the agricultural sector is continuously under development and will be improved and developed in line with the deficiencies are identified and corrected. The objectives for the quality planning, as given in the CLRTAP Emission Inventory Guidebook, which is closely related to the IPCC Good Practice Guidance, are to improve the transparency, consistency, comparability, completeness and confidence.

To ensure consistency a procedure for internal quality check are provided. Input of external data is checked and certain time series have been prepared for both the activity data, the emission factors and implied emission factors, 1985 - 2014. The annual change for each emission source on activity will be checked for significant differences and if necessary explained. Considerable variation between years can reveal miscalculations or changes in methods. All checks of all activity data, emission factor, implied emission factor and other important key parameters are provided and achieved in excel spread sheet.

Activity data and emission factors are collected and discussed in cooperation with specialists and researchers at different institutes and research departments. As a consequence, both data and methods are evaluated continuously according to latest knowledge and information. A more detailed description of quality assurance and quality control is given in the Denmark's National Inventory Report 2014 - submitted under the United Nations Framework Convention on Climate Change (http://dce2.au.dk/pub/SR101.pdf).

5.9 Recalculations

Compared with the previous NH₃, NMVOC and PM emissions inventory (submission 2015), some changes and updates have been made, see Table 5.33. These changes cause a low (up till 1 %) decrease/increase in the total NH₃, NMVOC and PM emission for all years (1985–2013).

NFR reported last year.									
NH_3 emission, kt NH_3	1985	1990	1995	2000	2005	2010	2011	2012	2013
2015 submission	125.97	123.71	106.83	93.15	83.84	75.52	74.72	73.30	70.53
2016 submission	126.13	123.78	106.87	92.99	83.93	75.27	74.30	72.47	69.81
Difference, %	0.13	0.06	0.04	-0.17	0.10	-0.33	-0.56	-1.13	-1.02
NMVOC emission, kt	1990	1995	2000	2005	2010	2011	2012	2013	
2015 submission	40.20	38.69	37.71	36.83	37.26	37.18	37.78	38.25	
2016 submission	40.20	38.69	37.71	36.83	37.26	37.18	37.78	37.99	
Difference, %	-0.01	-0.36	-0.81	-0.21	-0.22	-0.38	-0.50	-0.68	
PM emission, kt TSP	2000	2005	2010	2011	2012	2013			
2015 submission	73.51	65.64	67.81	67.53	66.27	65.72			
2016 submission	73.50	65.63	67.81	67.52	66.26	65.70			
Difference, %	-0.02	-0.01	0.00	-0.01	-0.01	-0.03			

Table 5.33 Changes in NH₃, NMVOC and PM emission in the agricultural sector compared to NFR reported last year.

The small changes in the emission of NH₃, NMVOC and PM are mainly due to changes in the calculation of number of produced bulls, weaners and fattening pigs. For 2012 and 2013 reduction in NH₃ emission due to ammonia reducing technology in housings are implemented and reduces the emission.

Other small changes are made due to updated data. These changes are crop area (2009 and 2013), number of poultry (2013), feed intake for poultry

and fur bearing animals (2013) and changes in production cycle for hens (2011-2012) and for bulls, weaners and fattening pigs 1985-2013.

5.10 Planned improvements

In recent years, there has been focus on reduction of the NH₃ emission and especially the possibilities for emission reduction in housings. Data regarding acidification of slurry received from SEGES is included in the inventory, but no other technologies are included. Until now, still relatively few housing has implemented NH₃ reduction technologies. There is no doubt, that the ammonia reducing technology will play an important role in the future. Information on use of different reducing technologies is not yet available in a form which can be included in the inventory. However, DCE are in contact and dialog with the ministry and the agricultural sector and when data is available other reducing technologies can be implemented in the emission inventory.

The QA/QC plan for the agricultural sector is continually under development. Until now, the main focus has been on the internal procedure check. There is still a need to provide the procedure for control of the inventory data calculations. This means to identify the possibility to compare the calculations made by other institutions or organisations e.g. calculation of total N-excretion made by the DCA-Danish Centre for Food and Agriculture, Aarhus University. Furthermore, it is a need to consider how to ensure a quality assurance procedure for the entire inventory.

5.11 References

Aaes, Ole, 2008: Personal communication. Knowledge Centre for Agriculture.

Andersen, J.M., Sommer, S.G., Hutchings, N., Kristensen, V.F. & Poulsen, H.D., 1999: Emission af ammoniak fra landbruget – status og kilde. National Environmental Research Institute and the Danish Institute of Agricultural Sciences. (In Danish).

Black, R.R., Meyer, C.P., Touati, A., Gullett, B.K., Fiedler, H. and Mueller, J.F., 2012: Emission factors for PCDD/PCDF and dl-PCB from open burning of biomass, Environment International, Volume 38, Issue 1, January 2012, Pages 62-66

Bussink, D.W., 1994: Relationship between ammonia volatilisation and nitrogen fertiliser application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Fertil. Res. 38. 111-121.

Clausen, Eric F., 2008: Personal communication. Knowledge Centre for Agriculture.

Danish AgriFish Agency, 2014: Danmarks salg af handelsgødning 2013/2014 (Consumption of inorganic N-fertiliser in Denmark 2013/14). (In Danish). Available at:

https://naturerhverv.dk/fileadmin/user_upload/NaturErhverv/Filer/Vi rksomhe-

<u>he-</u> <u>der/Handelsgoedning/Statistik_salg_af_handelsgoedning/Statistik_salg_</u> <u>af_handelsgoedning_i_DK_2013-14.pdf</u> (Jan. 2016). EMEP/EEA air pollutant emission inventory guidebook, 2013: Available at: <u>http://www.eea.europa.eu//publications/emep-eea-guidebook-2013</u> (Jan. 2016)

Gyldenkærne, S. & Albrektsen, R., 2009: Report on the emission of NH₃ and NMVOC emission from agricultural crops. In press.

Hartung, J. & Seedorf, J. 1999: Characterisation of Airborne Dust in Livestock Housing and its Effects on Animal and Environment. International Symposium on Dust control in animal production facilities. June 1999.

Jarvis, S.C., Hatch, D.J. & Roberts, D.H., 1989a: The effects of grassland management on nitrogen losses from grazed swards through ammonia volatilization; the relationship to extral N returns from cattle. J. Agric. Sci. Camb. 112.205-216.

Jarvis, S.C., Hatch, D.J. & Lockyer, D.R., 1989b: Ammonia fluxes from grazed grassland annual losses form cattle production systems and their relation to nitrogen inputs. J. Agric. Camp. 113. 99-108.

Jenkins, B.M., 1996: Atmospheric Pollutant Emission Factors from Open Burning of Agricultural and Forest Biomass by Wind Tunnel Simulations; Final Report (3 Vols.); CARB Project A932-126; California Air Resources Board, Sacramento, California.

Lundgaard. N.H., 2006: Personal Communication: Department of Farm buildings and Machinery. Danish Agricultural Advisory Centre.

MST, 2016: List of Environmental Technologies for Livestock Holdings, <u>http://eng.mst.dk/topics/agriculture/environmental-technologies-for-</u> <u>livestock-holdings/livestock-housing-system/</u> (Jan. 2016)

Poulsen, H.D., 2008: Baggrundstal 2008. DCA, Aarhus University. Available at: http://anis.au.dk/forskning/sektioner/husdyrernaering-og-

fysiologi/normtal/ (Jan. 2016).

Poulsen, H.D., 2015: Normative figures 2000-2014. DCA, Aarhus University. Available at: <u>http://anis.au.dk/forskning/sektioner/husdyrernaering-og-</u><u>fysiologi/normtal/</u> (Jan. 2016).

Poulsen, H.D., Børsting, C.F., Rom, H.B. & Sommer, S.G., 2001: Kvælstof. fosfor og kalium i husdyrgødning – normtal 2000. DJF rapport nr. 36 – husdyrbrug. The Danish Institute of Agricultural Sciences. (In Danish).

Poulsen, H.D. & Kristensen, V.F., 1998: Standards Values for Farm Manure – A revaluation of the Dansih Standards Values concerning the Nitrogen. Phosphorus and Potassium Content of Manure. DIAS Report No. 7 - Animal Husbandry. Danish Institute of Agricultural Sciences.

Rasmussen, J.B., 2006: Personal Communication. Department of Farm buildings and Machinery. Danish Agricultural Advisory Centre.

Statistics Denmark, Agricultural Statistics. Available at: <u>www.dst.dk/en.aspx</u> (Jan. 2016).

Takai, H., Pedersen, S., Johnsen, J.O., Metz, J.H.M., Grott Koerkamp, P.W.G., Uenk, G.H., Phillips, V.R., Holden, M.R., Sneath, R.W., Short, J.L., White, R.P., Hartung, J., Seedorf, J., Schröder, M., Linkert, K.H. & Wathers, C.M., 1998: Concentrations and Emissions of Airborne Dust in Livestock Buildings in Northern Europe. Journal of Agricultural Engineering Research, Volume 70 no. 1. May 1998.

VERA, 2010: Available at:

http://mst.dk/media/mst/9409997/vera_erklaering_2012_okt_enkeltside .pdf (Jan. 2016).

Vestergaard, A.V., 2015: Personal Communication. Knowledge Centre for Agriculture.

Yang, C., 2006: Estimating HCB Releases from Pesticide Applications, HCB Releases from Pesticide Applications in USA and Canada – All Years. Environment Canada.

6 Waste

The waste sector consists of the four main NFR categories 5A Solid waste disposal, 5B Biological treatment of solid waste, 5C Incineration and open burning of waste, 5D Wastewater treatment and discharge and 5E Other waste. Table 6.1 below shows the relevant SNAP codes for the waste sector.

	between SNAF coues and NFR sectors.	
SNAP code	SNAP name	NFR code
090401	Managed Waste Disposal on Land	5A
090402	Unmanaged Waste Disposal Sites	5A
090403	Other	5A
091001	Wastewater treatment in industry	5D
091007	Latrines	5D
091002	Wastewater treatment in residential/commercial sector	5D
090201	Incineration of domestic or municipal wastes	5C
090202	Incineration of industrial wastes (except flaring)	5C
090204	Flaring in chemical industries	5C
090205	Incineration of sludge from waste water treatment	5C
090207	Incineration of hospital wastes	5C
090208	Incineration of waste oil	5C
090901	Incineration of corpses	5C
090902	Incineration of carcasses	5C
090700	Open burning of agricultural wastes	5C
091003	Sludge spreading	5E
091005	Compost production	5B
091006	Biogas production	5B
091008	Other production of fuel (refuse derived fuel)	5E
091009	Accidental fires	5E

Table 6.1 Link between SNAP codes and NFR sectors.

Incineration of waste (municipal, industrial, clinical and hazardous) in Denmark is done with energy recovery and therefore the emissions are included under the relevant sectors under NFR sector 1A. The documentation for waste incineration is included in Chapter 3.2.

6.1 Solid waste disposal

Major emissions from landfilling are emissions of greenhouse gases, i.e. CH₄. It is assumed that landfilling also leads to emission of small quantities of NMVOC, CO, NH₃ and NO_x. PM emissions are emitted from waste handling as well, but these have not been included in the current submission.

Currently, Denmark has not estimated emissions of air pollutants from solid waste disposal. The EMEP/EEA Guidebook contains default NMVOC and particle emission factor, however due to limited amounts of resources it has not been possible to estimate such emissions.

6.2 Biological treatment of solid waste

This sector covers two activities: composting and anaerobic digestion at biogas facilities. These are described in more detail below.

6.2.1 Compost production

This section covers the biological treatment of solid organic waste called composting. Pollutants that are emitted during composting are CO and NH₃.

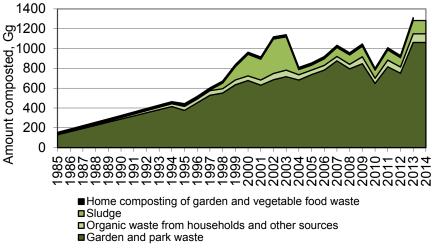
Methodology

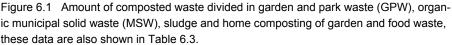
Emissions from composting have been calculated according to a country specific Tier 1 method. However, a Tier 1 default methodological guidance is available in the 2006 IPCC Guidelines (IPCC, 2006).

In Denmark, composting of solid biological waste includes composting of:

- garden and park waste (GPW),
- organic waste from households and other sources,
- sludge,
- home composting of garden and vegetable food waste.

In 2001, 123 composting facilities treated only garden and park waste (type 2 facilities), nine facilities treated organic waste mixed with GPW or other organic waste (type 1 facilities) and 10 facilities treated GPW mixed with sludge and/or "other organic waste" (type 3 facilities). 92 % of these facilities consisted entirely of windrow composting, which is a simple technology composting method with access to only natural air. It is assumed that all facilities can be considered as using windrow composting (Petersen & Hansen, 2003).


Composting is performed with simple technology in Denmark; this implies that temperature, moisture and aeration are not consistently controlled or regulated. Temperature is measured but not controlled, moisture is regulated by watering the windrows in respect to weather conditions and aeration is assisted by turning the windrows (Petersen & Hansen, 2003).


During composting a fraction of the degradable organic carbon (DOC) in the waste material is converted into CO. Even though the windrows are occasionally turned to support aeration, anaerobic sections are inevitable and will cause a small emission of CH_4 . In the same manner, aerobic biological digestion of N leads to an emission of NO_X , while the anaerobic decomposition leads to the emission of NH_3 (IPCC, 2006).

Activity data

All Danish waste treatment plants are obligated to statutory registration and reporting of all waste entering and leaving the plants. All waste streams are weighed, categorised with a waste type and a type of treatment and registered to the ISAG waste information system, which contain data for 1995-2009 (ISAG, 2010). For 2010 to 2013 data was from the new waste data system was obtained from the Danish EPA. For 2013, the total amount of composted waste was allocated according to the fractional distribution between the four waste types in 2009 and the in 2014 data was kept equal to 2013. The new waste data system (WDS) replaces ISAG from 2010 and forward. Activity data for 2010-2014 are provided in table 6.3. Based on the approach of allocation the total amount of waste composted in 2010 to 2014, no visible data break are observed in the time series as visualised in Figure 6.1. It should however be mentioned that work is ongoing in regard to reallocating composted amounts according to EWC level 3 description, why adjustments in data and methodology may occur in the reporting year 2016.

Figure 6.1 illustrates the composted amount of waste divided in the four categories mentioned earlier.

Activity data for the years 1995-2009 are collected from the ISAG database for the categories: "sludge", "organic waste from households and other sources" and "garden and park waste". Activities for 2010-2014 are collected from the new WDS.

The Danish legislation on sludge (DEPA, 2006) was implemented in the summer of 2003. This stated that composted sludge may only be used as a fertilizer on areas not intended for growing foods of any kind for at least 2-3 years. This restriction caused the amount of composted sludge to drop drastically from 2003 to 2004.

The trend in composting of sludge does not demonstrate a convincing trend that can be used for estimation of activity data for previous years. Since this activity is insignificant for 1995-1997 (1-2 %) it is assumed to be "not occurring" for 1985-1994.

The amount of organic waste from households composted in the years 1985-1994 is estimated by multiplying the number of facilities treating this type of waste with the average amount composted per facility in the years 1995-2001 (2.6-3.8 Gg per facility per year). Table 6.2 shows the number of composting plants grouped into plant types composting organic waste mixed with GPW (type1), GPW only (type 2) and GPW mixed with sludge and/or "other organic waste" (Type 3) described in the methodology section above.

Table 6.2	Number of composting facilities in the years 1985-2001.
-----------	---

		1 oomp	ooung	laointio		s youro	1000 /	2001.		
Plant type*	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Туре 1	2	2	3	3	4	5	6	7	8	9
Туре 2	6	10	14	18	22	38	54	70	86	102
Туре 3	0	0	0	0	0	1	2	2	3	4
Total	8	12	17	21	26	44	62	79	97	115
Continued										
Facility type	1995	1996	1997	1998	1999	2000	2001			
Туре 1	13	14	13	14	13	11	9			
Туре 2	113	108	99	102	111	115	123			
Туре 3	9	9	11	10	10	7	10			
Total	136	133	126	130	139	138	149			

Type 1 waste treatment sites normally includes biogas producing facilities, but these are not included in this table.

*Petersen, 2001 and Petersen & Hansen, 2003

The ISAG activity data for composting of GPW include wood chipping. Compost data for GPW provided by Petersen (2001) and Petersen & Hansen (2003) show that for 1997-2001, wood chipping accounts for about 3 % of the total chosen ISAG activity data for GPW. Activity data for GPW for the years 1985-1994 and 2010-2013 are estimated by extrapolating the trend.

The last waste type involved in composting is home composting of garden waste and vegetable waste. The activity data for this category are known from Petersen & Kielland (2003) to be 21.4 Gg in 2001. It is assumed that the following estimates made by Petersen & Kielland (2003) are valid for all years 1985-2014:

- 28 % of all residential buildings with private gardens (including summer cottages) are actively contributing to home composting.
- 14 % of all multi-dwelling houses are actively contributing to home composting.
- 50 kg waste per year will on average be composted at every contributing residential building.
- 10 kg waste per year will on average be composted at every contributing multi-dwelling house.

Multi-dwelling houses include apartment buildings and it is very uncommon for people in these types of buildings to compost their biowaste and the average amount of composted waste is therefore lower in spite of the higher number of residents. Statistics on the total number of occupied residential buildings, summer cottages and multi-dwelling houses are available at the Statistics Denmark's website.

The calculated activity data for home composting of garden and vegetable waste are shown in Table 6.3 and Annex 3E-5.

1005	1000	1005	2000	200F	2011	2012	2012	2014
1985	1990	1995	2000	2005	2011	2012	2013	2014
130	288	376	677	737	816	751	1061	1061
5	16	40	47	45	67	62	88	88
NO	NO	7	218	50	103	95	134	134
19	20	21	21	22	22	20	29	29
154	324	444	963	854	1008	929	1312	1312
	5 NO 19	130 288 5 16 NO NO 19 20	130 288 376 5 16 40 NO NO 7 19 20 21	130 288 376 677 5 16 40 47 NO NO 7 218 19 20 21 21	130 288 376 677 737 5 16 40 47 45 NO NO 7 218 50 19 20 21 21 22	130 288 376 677 737 816 5 16 40 47 45 67 NO NO 7 218 50 103 19 20 21 21 22 22	130 288 376 677 737 816 751 5 16 40 47 45 67 62 NO NO 7 218 50 103 95 19 20 21 21 22 22 20	130 288 376 677 737 816 751 1061 5 16 40 47 45 67 62 88 NO NO 7 218 50 103 95 134 19 20 21 21 22 22 20 29

Table 6.3 Activity data composting, Gg.

Emission factors

The emissions from composting strongly depend on both the composition of the treated waste and on process conditions such as aeration, mechanical agitation, moisture control and temperature pattern (Amlinger et al., 2008).

The emission factors provided in Table 6.4 are considered the best available for the calculation of Danish national emissions from composting.

Table 0.	 Compositing emission 	on laciois, per ling	J.	
	Composting of			Home composting
	garden and park	Composting of	Composting of	of garden and
	waste (GPW)	organic waste	sludge	vegetable food waste
Unit	Kg	Kg	kg	kg
NOx	NAV	NAV	NAV	NAV
СО	0.56	NAV	NAV	0.08
NH_3	0.66	0.24	0.31	0.63
Source	Boldrin et al., 2009	EEA, 2009	MST, 2013	Boldrin et al., 2009

Table 6.4 Composting emission factors, per Mg

Emissions from Boldrin et al. (2009) are given in percentage of total degraded carbon or nitrogen respectively. The factors shown in Table 6.4 are calculated by assuming 37.5 % DOC in dry matter, 2 % N in dry matter and 50 % moisture in the waste (Boldrin et al., 2009).

Boldrin et al. (2009) and MST (2013) do not directly provide any emission factors, the following assumptions were made to derive the factors shown in Table 6.4:

- 0.5 % N per dry matter waste water sludge
- 25 % moisture in waste water sludge.
- 2 % N per dry matter garden waste (incl. home composting)
- DOC is 25-50 % in garden waste (incl. home composting)
- 50 % moisture in garden waste (incl. home composting)

Emissions

Table 6.5 show the total national emissions from composting. The full time series is shown in Annex 3E-6.

Table 6.5 National emissions from composting, Mg.

_	1985	1990	1995	2000	2005	2011	2012	2013	2014
СО	74.6	163.5	213.1	382.4	416.2	460.5	424.2	599.0	599.0
NH ₃	99.0	206.5	273.2	538.8	526.5	600.4	553.1	781.0	781.0

6.2.2 Biogas production

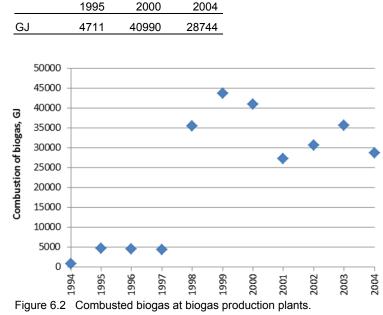
Emissions from biogas production are divided and reported in different sectors according to waste type and method.

Methodology

Emissions from the combustion of biogas regardless of the origin are included in the energy sector and are allocated to the appropriate subsector in the Danish energy statistics. See this IIR Chapter 3, Energy.

The reduced emissions from biogasified versus raw manure spread on agricultural soils are described in the agricultural sector in Chapter 5. Fugitive emissions of NMVOC and NH₃ from anaerobic digestion of sludge from wastewater treatment should be included in the NFR source category 5D Wastewater treatment and discharge. However, NMVOC and NH₃ emission from anaerobic digestion of sludge from wastewater treatment are not presently included in the submission but should be investigated and possibly added to this chapter to the extent that emissions originates from the digester tank, while the emissions originating from wastewater treatment processes should be described and included in Chapter 6.4.

Emissions that may be presented in this section in the future include fugitive emissions from the digester tank at the wastewater treatment plants treating the sludge by anaerobic digestion and emissions from combustion of biogas at the biogas production plants (own production and use).


Fugitive emissions from anaerobic digestion of bio-waste is to be included in this chapter, but fugitive emissions from storage, pre- and post-treatment of the digestate should be included in the relevant chapters as appropriate.

Emissions from combustion of biogas at site of production are included for the years 1994-2004 for which years these are reported separately in the energy statistics produced by the Danish Energy Agency. This activity is not reported from 2005 and forward. Pollutants from this activity are SO₂, NO_x, NMVOC, CO, particulate matter, heavy metals, HCB, PCDD/F and PCBs.

Activity data

Activity data for this source category are collected from the energy statistics (DEA, 2013). Combustion of biogas at biogas production plants occurred for the years 1994-2004, the full time-series is available in Annex 3E Table 3E-7.

Table 6.6 Combusted biogas at biogas production plants

Emission factors

Emission factors for combustion of biogas at biogas production plants are presented in Table 6.7.

Unit	Emission factor
g	25
g	28
g	2
g	36
g	1.5
g	1.5
g	1.5
mg	0.04
mg	0.002
mg	0.18
mg	0.31
mg	0.12
mg	0.23
mg	0.005
mg	0.21
mg	3.95
ng	190
ng	0.025
ng	90
	g g g g mg mg mg mg mg mg mg mg ng ng

Table 6.7 Emission factors for combustion of biogas, per GJ.

Emissions

Table 6.8 shows the total national emissions from combustion of biogas at biogas production plants. This activity is reported separately for the time period 1994 to 2004, the full time-series is available in Annex 3E Table 3E-8.

Table 6.8 Emissions from the combustion of biogas at biogas production plants

	LIII330			
		1995	2000	2004
SO ₂	Mg	0.1	1.0	0.7
NOx	Mg	0.1	1.1	0.8
NMVOC	Mg	0.01	0.1	0.1
CO	Mg	0.2	1.5	1.0
TSP	kg	7.1	61.5	43.1
PM ₁₀	kg	7.1	61.5	43.1
PM _{2.5}	kg	7.1	61.5	43.1
As	g	0.2	1.6	1.1
Cd	g	0.01	0.1	0.1
Cr	g	0.8	7.4	5.2
Cu	g	1.5	12.7	8.9
Hg	g	0.6	4.9	3.4
Ni	g	1.1	9.4	6.6
Pb	g	0.02	0.2	0.1
Se	g	1.0	8.6	6.0
Zn	g	18.6	161.9	113.5
HCB	mg	0.9	7.8	5.5
PCDD/F	μg	0.1	1.0	0.7
PCBs	mg	0.4	3.7	2.6

6.3 Waste incineration

Incineration of municipal, industrial, clinical and hazardous waste takes place with energy recovery, therefore the emissions are included in the relevant subsectors under NFR sector 1A. For documentation please refer to Chapter 3.2. Flaring off-shore and in refineries are included under NFR sector 1B2c, for documentation please refer to Chapter 3.4. No flaring in chemical industry occurs in Denmark.

6.3.1 Human cremation

The incineration of human corpses is a common practice that is performed on an increasing percentage of the deceased. All Danish crematoria use optimised and controlled cremation facilities, with temperatures reaching 800-850 °C, secondary combustion chambers, controlled combustion air flow and regulations for coffin materials.

However, the emissions of especially Hg caused by cremations can still contribute to a considerable part of the total national emissions. In addition to the most frequently discussed emissions of Hg and PCDD/Fs (dioxins and furans), are the emissions of compounds like SO₂, NO_x, NMVOC, CO, other heavy metals (As, Cd, Cr, Cu, Ni, Pb, Se, Zn), particulate matter, HCB, PAHs and PCBs.

Crematoria are usually located within cities, close to residential areas and normally, their stacks are relatively low. Therefore environmental and human exposure is likely to occur as a result of emissions from cremation facilities.

Methodology

During the 1990es all Danish crematoria were rebuilt to meet new standards. This included installation of secondary combustion chambers and in most cases, replacement of old primary combustion chambers (Schleicher et al., 2001). All Danish crematoria are therefore performing controlled incinerations with a good burn-out of the gases, and a low emission of pollutants.

Following the development of new technology, the emission limit values for crematoria were lowered again in January 2011. These new standards were originally expected from January 2009 but were postponed two years for existing crematoria.

Table 6.9 shows a comparison of the emission limit values from February 1993 and the new standard limits.

Component	1993 standard*	2011 standard**
Total dust	80	10
СО	50	50
Hg	No demands	0.1
Other demands:		
Stack height	3 m above rooftop	3 m above rooftop
Temperature in stack	Minimum 150 °C	Minimum 110 °C
Flue gas flow in stack	8 – 20 m/s	No demands
Temperature in after burner	850 °C	800 °C
Residence time in after burner	2 seconds	2 seconds
Odour	The crematory	The crematory must not cause
	must not cause	odour nuisance outside the
	noticeable odour	crematory perimeter, that is sig-
	in the	nificant according to the supervi-
	surroundings	sory authority

Table 6.9 Emission limit values mg per Nm³ at 11 % O₂.

* Schleicher et al., 2001;**Schleicher & Gram, 2008.

To meet the new standards, some crematoria have been rebuilt to larger capacity while others are closed (MILIKI, 2006). In 2011, there were 26 operating crematoria in Denmark, some with multiple furnaces (DKL, 2015).

Crematoria that are not closed are equipped with flue gas cleaning (bag filters with activated carbon). The use of air pollution control devices, and activated carbon, for the removal of Hg will also reduce the flue gas concentration of dioxins, PAHs and odour. Existing knowledge on the reduction efficiencies justifies are presented in Schleicher & Gram (2008).

Around half of the Danish crematoria are currently connected to the district heating system and in addition, a few crematoria produce heat for use in their own buildings. The bag filter cleaning system requires that the flue gas is cooled down to 125-150 °C, and the cheapest way to do so is to use the surplus heat in the district heating system (DKL, 2009). The heat contribution from crematoria is negligible compared to the total district heat production and is not part of the Danish energy statistics.

Activity data

Table 6.10 shows the time series of total number of deceased persons (Statistics Denmark, 2015), number of cremations and the fraction of cremations in relation to the total number of deceased (DKL, 2015). Annex 3E Table 3E-1 presents data for the entire time series.

Table 6.10 Data human cremations (DKL 2015, Statistics Denmark 2015).

							,			
	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
Nationally deceased	55939	58378	60926	63127	57998	54962	52516	52325	52471	51340
Cremations	33986	36705	40991	43847	41651	40758	41248	40909	42349	41532
Cremation fraction, %	60.8	62.8	67.3	69.5	71.8	74.2	78.6	79.6	80.7	80.9

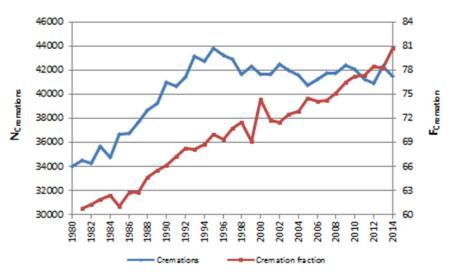


Figure 6.3 Illustration of the development in cremations (DKL 2015), where the number of cremations, $N_{cremations}$, is shown at the left Y-axis. The cremation percentage, $F_{cremations}$, shows the percentage of cremated deceased of the total number of deceased for the years 1984 to 2014. Data for 1980-1983 are estimated values, for details on the estimation, see Annex 3E-1.

Even though the total number of annual cremations is fluctuating, the cremation percentage has been steadily increasing since 1984, and is likely to continue to increase.

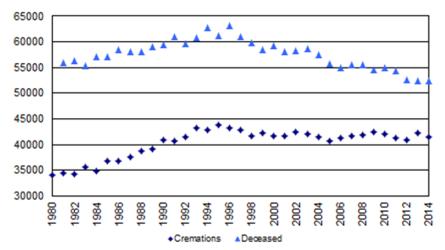


Figure 6.4 Trends of the activity data for cremation of human corpses and the number of deceased persons.

Figure 6.4 presents the trend of the number of deceased persons together with the activity data for human cremation. The figure shows a direct connection between the number of deceased and the activity of human cremation as the two trends are quite similar. Figure 6.4 also shows the effect of the increasing fraction of cremations per deceased, as the number of cremations is not decreasing along with the number of deceased. The percentage of the deceased being cremated has increased from 67 % in 1990 to 81 % in 2014 as shown in Figure 6.3, Table 6.10 and Annex 3E Table 3E-1.

Emission factors

For crematoria, emissions are calculated by multiplying the total number of cremations by the emission factors. The emission factors are gathered from literature and are based on the measurements performed in countries that are comparable with Denmark. By comparable is meant countries that use similar incineration processes, similar cremation techniques including support fuel and have a similar composition of sources to lifetime exposure, lifetimes and coffins.

Table 6.11 lists the emission factors in the time period 1980-2010 and their respective references. As mentioned earlier, 2011 is year one after installation of bag filters with activated carbon at all Danish crematoria, causing the emission factors for particles, heavy metals, PAhs and PCDD/Fs to decrease quite drastically (Schleicher & Gram, 2008).

	Table 6.11	ission factors for human cremation with references.
--	------------	---

Pollutant name	Unit	Emission factor*	Reference
SO ₂	kg/body	0.113	Santarsiero et al., 2005
NO _X	kg/body	0.825	Santarsiero et al., 2005
NMVOC	kg/body	0.013	EEA, 1996
CO	kg/body	0.010	Schleicher et al., 2001
NH ₃		NA	
TSP	kg/body	0.039	Webfire, 2012
PM ₁₀	kg/body	0.035	Webfire, 2012
PM _{2.5}	kg/body	0.031	Webfire, 2012
As	g/body	0.014	Webfire, 2012
Cd	g/body	0.005	Webfire, 2012
Cr	g/body	0.014	Webfire, 2012
Cu	g/body	0.012	Webfire, 2012
Hg	g/body	1.12	Kriegbaum et al., 2005
Ni	g/body	0.017	Webfire, 2012
Pb	g/body	0.030	Webfire, 2012
Se	g/body	0.020	Webfire, 2012
Zn	g/body	0.160	Webfire, 2012
HCB	mg/body	0.152	Toda, 2006
PCDD/F	µg I-TEQ/body ^{**}	0.350	Schleicher et al., 2001
Benzo(b)flouranthene	µg/body	7.21	Webfire, 2012
Benzo(k)flouranthene	µg/body	6.44	Webfire, 2012
Benzo(a)pyrene	µg/body	13.20	Webfire, 2012
Indeno(1,2,3-c-d)pyrene	µg/body	6.99	Webfire, 2012
PCBs	mg/body	0.414	Toda, 2006

*NA = not applicable. ** I-TEQ: International Toxicity Equivalents.

The average body weight of cremated corpses is assumed to be 65 kg.

Flue gas cleaning efficiencies are based on measurements performed at Danish crematoria and expert judgements, and set equal to 99 % for PCDD/Fs, particles, PAHs and heavy metals. These abatement efficiencies are implemented from 2011. For all other pollutants the emission factors are as listed in Table 6.11.

It has not been possible to find data for ammonia. Ammonia might appear in lesser amounts, but will most likely be converted to NO_X at the high incineration temperatures.

There might for some emission factors be included a small part of the support fuel (natural gas) if the measurements were taken early in the burning process. This would then be a double counting since fuel for cremation is reported under NFR code 1A4a, commercial and institutional. However, this double counting is considered miniscule.

Emissions

Table 6.12 shows the total emissions from selected years. To view the entire time series 1980-2014, see Annex 3E Table 3E-3a-d. The dioxin emission is given in I-TEQ; i.e. International Toxicity Equivalents which is a weighted addition of congener toxicity with reference to 2,3,7,8-TCDD (Seveso-dioxin).

Emissions from human cremations have been steady over the last two decades but have decreased strongly for the pollutants TSP, PM₁₀, PM_{2.5}, As, Cd,

Cr, Cu, Hg, Ni, Pb, Se, Zn, PCDD/Fs and PAHs from 2010 to 2011 because of the installation of bag filters with activated carbon.

Table 6.12 Total nation	al emis	ssions fro	om hum	an cren	nations.						
	Unit	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
SO ₂	Mg	3.83	4.14	4.62	4.94	4.70	4.60	4.65	4.61	4.77	4.68
NO _X	Mg	28.04	30.28	33.82	36.17	34.36	33.63	34.03	33.75	34.94	34.26
NMVOC	Mg	0.442	0.477	0.533	0.570	0.541	0.530	0.536	0.532	0.551	0.540
CO	Mg	0.340	0.367	0.410	0.438	0.417	0.408	0.412	0.409	0.423	0.415
TSP	Mg	1.31	1.42	1.58	1.69	1.61	1.57	0.02	0.02	0.02	0.02
PM ₁₀	Mg	1.18	1.27	1.42	1.52	1.45	1.41	0.01	0.01	0.01	0.01
PM _{2.5}	Mg	1.18	1.27	1.42	1.52	1.45	1.41	0.01	0.01	0.01	0.01
As	kg	0.46	0.50	0.56	0.60	0.57	0.55	0.01	0.01	0.01	0.01
Cd	kg	0.17	0.18	0.21	0.22	0.21	0.21	0.002	0.002	0.002	0.002
Cr	kg	0.46	0.50	0.56	0.59	0.56	0.55	0.01	0.01	0.01	0.01
Cu	kg	0.42	0.46	0.51	0.55	0.52	0.51	0.01	0.01	0.01	0.01
Hg	kg	38.03	41.07	45.87	49.06	46.61	45.61	0.46	0.46	0.47	0.46
Ni	kg	0.59	0.64	0.71	0.76	0.72	0.71	0.01	0.01	0.01	0.01
Pb	kg	1.02	1.10	1.23	1.32	1.25	1.22	0.01	0.01	0.01	0.01
Se	kg	0.67	0.73	0.81	0.87	0.82	0.81	0.01	0.01	0.01	0.01
Zn	kg	5.44	5.88	6.56	7.02	6.67	6.53	0.07	0.07	0.07	0.07
HCB	g	5.15	5.56	6.21	6.65	6.31	6.18	6.25	6.20	6.42	6.30
PCDD/F	mg	11.90	12.85	14.35	15.35	14.58	14.27	0.14	0.14	0.15	0.15
benzo(b)flouranthene	g	0.25	0.26	0.30	0.32	0.30	0.29	0.003	0.003	0.003	0.003
benzo(k)flouranthene	g	0.22	0.24	0.26	0.28	0.27	0.26	0.003	0.003	0.003	0.003
benzo(a)pyrene	g	0.45	0.48	0.54	0.58	0.55	0.54	0.005	0.005	0.006	0.005
indeno(1,2,3-c-d)pyrene	g	0.24	0.26	0.29	0.31	0.29	0.28	0.003	0.003	0.003	0.003
PCB	g	14.05	15.18	16.95	18.13	17.22	16.86	17.06	16.92	17.51	17.18

Table 6.12 Total national emissions from human cremations.

6.3.2 Animal cremation

The incineration of animal carcasses in animal crematoria follows much the same procedure as human cremation. Animal crematoria use similar two chambered furnaces and controlled incineration. However, animal carcasses are burned in special designed plastic (PE) bags rather than coffins. Emissions from animal cremation are similar to those from human cremation, with the exception of Hg which mainly stems from amalgam tooth fillings.

Animal cremations are performed in two ways, individually where the owner often pays for receiving the ashes in an urn or collectively which is most often the case with animal carcasses that are left at the veterinarian.

Methodology

Open burning of animal carcasses is illegal in Denmark and is not occurring and small-scale incinerators are not known to be used at Danish farms. Livestock that is diseased or in other ways unfit for consumption is disposed of through rendering plants, incineration of livestock carcasses is illegal and these carcasses are therefore commonly used in the production of fat and soap at Daka Bio-industries.

The only animal carcasses that are approved for cremation in Denmark are deceased pets and animals used for experimental purposes, where the incineration must take place at a specialised animal crematorium. There are four animal crematoria in Denmark but one of these is situated at a waste incineration company in northern Jutland called AVV. The specially designed cremation furnaces are at this location connected to the flue gas cleaning equipment of the municipal waste incineration plant with energy recovery and the emission from the cremations are therefore included in the annual inventory from AVV. Consequently, this crematorium is included in Chapter 3.2 Stationary combustion. Therefore only three animal crematoria are included in this sector.

Animal by-products are regulated under the EU commission regulation no. 142/2011. This states that animal crematoria must be approved by the authority and comply either with the EU directive (2000/76/EC) on waste incineration or with Regulation (EC) No. 1069/2009 (EC, 2011).

The incineration of animal carcasses is, as the incineration of human corpses, performed in special incineration chambers. All Danish animal crematoria have primary combustion chambers with temperatures around 850 °C and secondary combustion chambers with temperatures around 1100 °C. The support fuel used at the Danish facilities is natural gas.

Emissions from pet cremations are calculated for SO_2 , NO_x , NMVOC, CO, NH_3 , particles, heavy metals (As, Cd, Cr, Cu, Ni, Pb, Se, Zn), HCB, dioxins/furans, PAHs and PCBs. For the pollutants SO_2 , NO_x , CO, As, Se, HCB, PAHs and PCBs, emissions are estimated by using the same emission factors as for human cremation.

Activity data

Activity data for animal cremation are gathered directly from the animal crematoria. There is no national statistics available on the activity from these facilities. The precision of activity data therefore depends on the information provided by the crematoria.

The following Table 6.13 lists the four Danish pet crematoria, their foundation year and provides each crematorium with an id letter.

Table 6.13 Animal crematoria in Denmark.

ld	Name of crematorium	Founded in
А	Dansk Dyrekremering ApS	May 2006
В	Ada's Kæledyrskrematorium ApS	Unknown, existed in more than 30 years, assumed 1980
С	Kæledyrskrematoriet	2006
D	Kæledyrskrematoriet v. Modtagestation Vendsyssel I/S	-

Crematoria D is situated at the AVV municipal waste incineration site and the emissions from this site are, as previously mentioned, included in the annual emission reporting from AVV and consequently included in the energy sector as waste incineration with energy recovery. Therefore, only crematoria A-C are considered in this chapter.

Table 6.14 lists the activity data for crematoria A-C. The entire dataset for 1980-2014 is available in Annex 3E Table 3E-2.

	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
Total, Mg	50	100	150	200	443	762	1219	1238	1148	1125

Crematorium B delivered exact annual activity data for the years 1998-2014. They were not certain about the founding year but believe to have existed since the early 1980es. It is assumed that crematorium B was founded at January 1st 1980 and activity data for 1980-1997 must therefore be estimated.

Statistical data describing the national consumption for pets including food and equipment for pets were evaluated as surrogate data. These statistical data show an increase of consumption of 6 % from 1998 to 2000, in the same period the amount of cremated animal carcasses increased with 89 % and no correlation seems to be present. Since there are no other available data on the subject of pets, it is concluded that there are no surrogate data available.

It is not possible to extrapolate data linearly back to 1980 because the activity, due to the steep increase, in this case would become negative from 1993 and back in time.

The activity data for animal cremation for the period of 1980-1997 are estimated by expert judgement. The estimated data are shown in Table 6.14, Figure 6.5 and Annex 3E Table 3E-2.

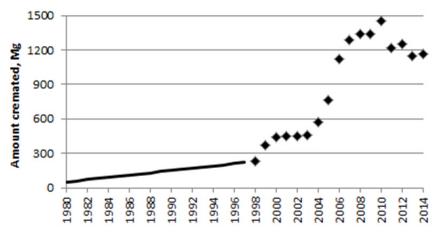


Figure 6.5 The amount of animal carcasses cremated, in Mg. Data from 1998-2014 are delivered by the crematoria and is considered to be exact; these data are marked as points. Data from 1980-1997 are estimated and are shown as the thick line in the figure.

Emission factors

Concerning the incineration of animal carcasses in animal crematoria there is not much literature to be found. The EMEP/EEA Guidebook (EEA, 2009) is the only available source to emission factors for NMVOC, NH_3 , TSP, PM_{10} , $PM_{2.5}$ and PCDD/F.

Chen et al. (2004) is the only available source to emission factors for the heavy metals Cd, Cr, Cu, Ni, Pb and Zn.

There is a good agreement between the emission factors for animal and human cremation for PCDD/F and a relatively good agreement for NMVOC, TSP, PM_{10} , $PM_{2.5}$ and heavy metals.

The emission factors of the remaining pollutants SO_2 , NO_x , CO, As, Se, HCB, PAHs and PCBs are collected from the literature search on human crema-

tion, and it is assumed that humans and animals are similar in composition for this purpose. Emission factors from human cremation are recalculated to match the activity data for animal cremation, emission per Mg.

No data were available for the emission of Hg in animal cremations. The Hg emission factor for human cremation is not transferable to animal cremations, because the Hg emission from human cremations primarily stems from tooth fillings.

Table 6.15 lists the emission factors and their respective references.

Table 6.18	5 Emission fac	tors for an	imal cremation with	n references, per Mg.
Pollutant		Unit	Emission factor	Source
SO ₂		kg	1.73*	Santarsiero et al, 2005
NO _X		kg	12.69*	Santarsiero et al, 2005
NMVOC		kg	2 00	EEA, 2009
CO		kg	0.15*	Schleicher et al., 2001
NH_3		kg	1.90	EEA, 2009
TSP		kg	2.18	EEA, 2009
PM ₁₀		kg	1.53	EEA, 2009
PM _{2.5}		kg	1.31	EEA, 2009
As		g	0.21*	Webfire, 2012
Cd		g	0.01	Chen et al., 2004
Cr		g	0.07	Chen et al., 2004
Cu		g	0.02	Chen et al., 2004
Hg		-	NAV	-
Ni		g	0.06	Chen et al., 2004
Pb		g	0.18	Chen et al., 2004
Se		g	0.30*	Webfire, 2012
Zn		g	0.19	Chen et al., 2004
HCB		mg	2.33*	Toda, 2006
PCDD/F		µg I-TEQ	10.00	EEA, 2009
Benzo(b)f	louranthene	mg	0.11*	Webfire, 2012
Benzo(k)f	louranthene	mg	0.10*	Webfire, 2012
Benzo(a)p	oyrene	mg	0.20*	Webfire, 2012
Indeno(1,2	2,3-c-d)pyrene	mg	0.11*	Webfire, 2012
PCB		mg	6.36*	Toda, 2006

Table 6.15 Emission factors for animal cremation with references per Ma

* Emission factors from human cremations.

Emissions

For the incineration of animal carcasses, emissions are calculated by multiplying the amount of incinerated animals by the emission factors.

Emissions are summarised in Table 6.16, while emissions for the full time series are shown in Annex 3E Table 3E-4.

Table 6.16	Emissions	from animal	cremation.
------------	-----------	-------------	------------

	unit	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
SO ₂	Mg	0.09	0.17	0.26	0.35	0.77	1.32	2.11	2.15	1.99	2.01
NO _X	Mg	0.63	1.27	1.90	2.54	5.63	9.68	15.47	15.71	14.57	14.73
NMVOC	Mg	0.10	0.20	0.30	0.40	0.89	1.52	2.44	2.48	2.30	2.32
CO	Mg	0.01	0.02	0.02	0.03	0.07	0.12	0.19	0.19	0.18	0.18
NH ₃	Mg	0.10	0.19	0.29	0.38	0.84	1.45	2.32	2.35	2.18	2.21
TSP	Mg	0.11	0.22	0.33	0.44	0.97	1.66	2.66	2.70	2.50	2.53
PM ₁₀	Mg	0.08	0.15	0.23	0.31	0.68	1.17	1.86	1.89	1.76	1.78
PM _{2.5}	Mg	0.07	0.13	0.20	0.26	0.58	1.00	1.60	1.62	1.50	1.52
As	kg	0.01	0.02	0.03	0.04	0.09	0.16	0.25	0.26	0.24	0.24
Cd	kg	0.001	0.001	0.002	0.002	0.004	0.01	0.01	0.01	0.01	0.01
Cr	kg	0.004	0.01	0.01	0.01	0.03	0.05	0.09	0.09	0.08	0.08
Cu	kg	0.001	0.002	0.003	0.004	0.01	0.02	0.02	0.02	0.02	0.02
Ni	kg	0.003	0.01	0.01	0.01	0.03	0.05	0.07	0.07	0.07	0.07
Pb	kg	0.01	0.02	0.03	0.04	0.08	0.14	0.22	0.22	0.21	0.21
Se	kg	0.02	0.03	0.05	0.06	0.13	0.23	0.37	0.38	0.35	0.35
Zn	kg	0.01	0.02	0.03	0.04	0.08	0.14	0.23	0.24	0.22	0.22
HCB	g	0.12	0.23	0.35	0.47	1.03	1.78	2.84	2.89	2.68	2.71
PCDD/F	mg	0.50	1.00	1.50	2.00	4.43	7.62	12.19	12.38	11.48	11.61
benzo(b)flouranthene	g	0.01	0.01	0.02	0.02	0.05	0.08	0.14	0.14	0.13	0.13
benzo(k)flouranthene	g	0.005	0.01	0.01	0.02	0.04	0.08	0.12	0.12	0.11	0.11
benzo(a)pyrene	g	0.01	0.02	0.03	0.04	0.09	0.15	0.25	0.25	0.23	0.24
indeno(1,2,3-c-d)pyrene	g	0.01	0.01	0.02	0.02	0.05	0.08	0.13	0.13	0.23	0.12
РСВ	g	0.32	0.64	0.95	1.27	2.82	4.85	7.75	7.87	7.30	7.39

6.4 Wastewater handling

According to the EMEP/EEA Guidebook wastewater handling can be a source for emissions of POPs, NMVOC, NH_3 and CO. Of these pollutants, only NMVOC is thought to be significant.

For the current submission Denmark has not estimated emissions of air pollutants from wastewater handling. The EMEP/EEA Guidebook contains a default NMVOC emission factor for latrines and wastewater handling, however due to limited resources it has not been possible to estimate such emissions.

6.5 Other waste

This category is a catch all for the waste sector. Emissions in this category could stem from e.g. sludge spreading, accidental fires and other combustion without energy recovery.

6.5.1 Sludge spreading

Sludge from wastewater treatment plants is only spread out in the open with the purpose of fertilising agricultural land. Emissions that derive from this activity are included in Chapter 5.

6.5.2 Accidental building fires

Emissions from accidental fires are categorised under the NFR category 5E Other waste. Pollutants that are emitted from building fires include SO_2 , NO_x, NMVOC, CO, heavy metals (As, Cd, Cr, Cu, Hg, Pb), particles, PCDD/F and PAHs.

Methodology

Emissions from building fires are calculated by multiplying the number of building fires with selected emission factors. Six types of buildings are distinguished with different emission factors: detached houses, undetached houses, apartment buildings, industrial buildings, additional buildings and containers.

Activity data

In January 2005 it became mandatory for the local authorities to register every rescue assignment in the *online data registration- and reporting system called ODIN, ODIN is developed and run by* the Danish Emergency Management Agency (DEMA, 2007).

Activity data for accidental building fires are given by ODIN (DEMA, 2012). Fires are classified in four categories: full, large, medium and small. The emission factors comply for full scale fires and the activity data are therefore recalculated as a full scale equivalent where it is assumed that a full, large, medium and a small scale fire leads to 100 %, 75 %, 30 % and 5 % of a full scale fire respectively.

In practice, a full scale fire is defined as a fire where more than three fire hoses were needed for extinguishing the fire, a full scale fire is considered as a complete burnout. A large fire is in this context defined as a fire that involves the use of two or three fire hoses for fire extinguishing and is assumed to typically involve the majority of a house, an apartment, or at least part of an industrial complex. A medium size fire is in this context defined as a fire involving the use of only one fire hose for fire-fighting and will typically involve a part of a single room in an apartment or house. And a small size fire is in this context defined as a fire that was extinguished before the arrival of the fire service, extinguished by small tools or a chimney fire.

The total number of registered fires is known for the years 1989-2013. For the years 2007-2013 the total number of registered building fires is known with a very high degree of detail.

Table 6.17 shows the occurrence of all types of fires (registered for 1989-2012) and the occurrence of building fires (2007-2014) registered at DEMA. The 1980-1988 data for all fires are estimated to be the average of 1989-2010 data. In 2007-2014 the average per cent of building fires, in relation to all fires, was 60 %. The total numbers of building fires 1980-2006 are calculated using this percentage. The full time series is presented in Annex 3E-9.

T 1 1 0 1 T	^	c			~
Table 6.17	Occurrence	of all fires	and	building	fires.

	Coourience			ang meo.						
	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014*
All fires	17751	17751	17025	19543	17174	16551	16157	14084	14546	13180
Building fire	s 10621	10621	10187	11694	10276	9903	11447	9932	9893	9473

The building fires that occurred in the years 2007-2014 are subcategorised into six building types; detached houses, undetached houses, apartment buildings, industrial buildings, additional buildings and container fires.

Table 6.18 states the average registered activity data for building fires for the years 2007-2010, divided in both damage size and building type. This describes the average share of building fires from 2007-2010 of a certain type and size, in relation to all building fires in the same four years period.

Table 6.18 Registered occurrence of building fires, average of 2007-2010 fires, %. (DEMA).

Size	Detached	Undetached	Apartment	Industry	Additional	Container	All building fires
Full	2.46	0.50	0.31	0.73	0.44	0.17	4.61
Large	4.01	1.14	1.09	1.69	3.08	1.92	12.93
Medium	5.24	2.33	6.15	2.92	4.30	18.46	39.40
Small	11.77	4.24	12.64	5.36	4.79	4.27	43.06
All	23.47	8.21	20.19	10.70	12.61	24.82	100.00

It is assumed that the average percentages provided by the years 2007-2010 shown in Table 6.18 are compliable for the years 1980-2006. Hereby, similar activity data for building fires can be estimated back to 1980.

By applying the damage rates of 100 %, 75 %, 30 % and 5 % corresponding to the damage sizes full, large, medium and small, a full scale equivalent can be determined. Table 6.19 shows the calculated full scale equivalents (FSE). The full time-series is presented in Annex 3E-10.

Table 6.19 Accidental building fires full scale equivalent activity data.

	0				,					
	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
Container fires	782	782	750	861	756	729	729	584	584	584
Detached house fires	810	810	777	892	784	755	818	742	761	660
Undetached house fires	240	240	231	265	233	224	206	181	162	318
Apartment building fires	383	383	367	421	370	357	362	327	316	299
Industry building fire	334	334	320	368	323	311	334	298	275	751
Additional building fires	455	455	437	501	440	424	740	610	619	577

Emission factors

For building fires, emissions are calculated by multiplying the number of full scale equivalent fires with the emission factors. The emission factors are produced from different measurements and assumptions from literature and expert judgements. When possible, emission factors are chosen that represent conditions that are comparable to Denmark. By comparable is meant countries that have similar building traditions, with respect to the materials used in building structure and interior.

In the process of selecting the best available emission factors for the calculation of the emissions from Danish accidental building fires, a range of different sources has been studied. Unfortunately it is difficult to do an interrelated comparison of the different sources because they all establish emission factors on different assumptions and many of these assumptions are not fully accounted for.

Table 6.20 lists the emission factors that are used for the year 2014 and their respective references.

Table 6.20	Emission	factors	building	fires.
------------	----------	---------	----------	--------

	Unit	Detached	Undetached	Apartment	Industrial	Additional		
Compound	/fire	house	house	building	building	building	Container	Reference
SO ₂	kg	266.6	214.4	124.5	802.9	32.1	2.4	Blomqvist et.al. 2002
NO _x	kg	19.9	16.0	9.3	24.0	1.0	3.0	NAEI, 2009
NMVOC*	kg	99.6	80.1	46.5	120.0	4.8	0.7	NAEI, 2009
CO	kg	278.9	224.3	130.3	336.0	13.4	42.0	NAEI, 2009
TSP	kg	143.8	61.6	43.8	27.2	1.1	23.2	Aasestad, 2008**
PM ₁₀	kg	143.8	61.6	43.8	27.2	1.1	23.2	Aasestad, 2008**
PM _{2.5}	kg	143.8	61.6	43.8	27.2	1.1	23.2	Aasestad, 2008**
As	g	1.35	0.58	0.41	0.25	0.01	0.22	Aasestad, 2008**
Cd	g	0.85	0.36	0.26	0.16	0.01	0.14	Aasestad, 2008**
Cr	g	1.29	0.55	0.39	0.24	0.01	0.21	Aasestad, 2008**
Cu	g	2.99	1.28	0.91	0.57	0.02	0.48	Aasestad, 2008**
Hg	g	0.85	0.36	0.26	0.16	0.01	0.14	Aasestad, 2008**
Pb	g	0.42	0.18	0.13	0.08	0.003	0.07	Aasestad, 2008**
PCDD/F*	mg	3.5	2.8	1.6	4.2	0.2	1.1	Hansen, 2000
Benzo[b]fluoranthene	g	12.6	10.1	5.9	15.2	0.6	1.9	NAEI, 2009
Benzo[k]fluoranthene	g	4.4	3.6	2.1	5.4	0.2	0.7	NAEI, 2009
Benzo[a]pyrene	g	8.0	6.4	3.7	9.6	0.4	1.2	NAEI, 2009
Indeno[1,2,3-cd]pyrene	g	8.6	6.9	4.0	10.4	0.4	1.3	NAEI, 2009

*Container fires have a different source than the other five categories; Blomqvist et.al. 2002, ** Personal contact with Kristin Aasestad has provided a correction of the units which are inaccurate in the text of Aasestad (2008)

Emission factors for detached, undetached and apartment fires depend on the annual average floor space; see Table 6.21. Industrial, additional and container fires on the other hand are assumed to have a constant size/volume throughout the time series. Emission factors for all building fires for 1980-2014 are shown in Annex 3E-11.

Emission factors from Aasestad (2008) are already specified for four of the six building types; detached houses, undetached houses, apartment buildings and industrial buildings. Aasestad (2008) and all other sources considered were altered to match the six building types. This alternation was performed simply by adjusting the average floor space for each of the building types respectively, whereas factors like loss rate and mass of combustible contents per area are not altered.

The average floor space in Danish buildings is stated in Table 6.21. The data are collected from Statistics Denmark and takes into account possible multiple building floors but not attics and basements. For the full time series see Annex 3E-12. The average floor space in industrial buildings, schools etc. is estimated to 500 square meters for all years and the average floor space for additional buildings, sheds etc. is estimated to 20 square meters for all years.

Table 0.21 Average hoor space in building types (Statistics Deninark, 2013).										
	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
Detached houses	154	154	156	155	156	162	164	165	166	167
Undetached houses	130	130	129	129	131	131	132	134	133	132
Apartment buildings	74	75	75	75	75	76	78	78	78	78

Table 6.21 Average floor space in building types (Statistics Denmark, 2015).

Emission factors from literature are given in mass emission per mass burned. For the calculation of these emission factors to a unit that matches, the activity data, the building masses are estimated using the same methodology as in Hansen (2000). The total building masses are calculated using an average weight loss rate of 12.4 % (Persson et al., 1998) and data for the amount of combustible material in the building structure itself (Blomqvist et al., 2002) and the amount of combustible interior (Persson et al., 1998).

Emission factors for container fires cannot be calculated based on an average floor space but on an average mass. The average mass of a container is set to 1 Mg and covers all types of containers, from small residential garbage containers to large shipping containers and waste/goods in storage piles.

Building masses for 2014 are presented in Table 6.22.

·	Unit	Detached	Undetached	Apartment	Inductor	Additional	Container
	Onit	Detacheu	Undetached	Apartment	muusuy	Auditional	Container
		house	house	building	building	building	
Average floor area*	m²	167	132	78	500	20	-
Building mass per floor area	kg/m ²	40	40	35	30	30	-
Total building mass*	Mg/fire	6.7	5.4	2.7	15.0	0.6	1

Table 6.22 Building mass per building type

* 2014 numbers

For further detail on the emission factors and calculations, please refer to Hjelgaard (2013).

Emissions

Table 6.23 shows the total emissions from building fires. The entire time series 1980-2014 is shown in Annex 3E-13.

Table 6.23	Emissions	from	building fires.
------------	-----------	------	-----------------

Tubic 0.20 Emissions	nom bullan	ig mes.									
	unit	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
SO ₂	Mg	580.4	581.3	559.3	640.2	565.2	552.4	598.2	536.3	519.3	904.5
NO _x	Mg	32.9	33.0	31.8	36.3	32.1	31.5	33.7	30.1	29.6	40.1
NMVOC	Mg	153.3	153.7	148.0	169.3	149.7	147.2	158.0	142.3	139.9	198.5
CO	Mg	460.7	461.6	444.5	508.4	449.5	441.2	471.6	421.9	415.1	579.1
TSP	Mg	175.8	175.8	168.6	193.5	170.1	163.9	173.0	154.5	155.0	162.3
PM ₁₀	Mg	175.8	175.8	168.6	193.5	170.1	163.9	173.0	154.5	155.0	162.3
PM _{2.5}	Mg	175.8	175.8	168.6	193.5	170.1	163.9	173.0	154.5	155.0	162.3
As	kg	1.6	1.6	1.6	1.8	1.6	1.5	1.6	1.4	1.5	1.5
Cd	kg	1.0	1.0	1.0	1.1	1.0	1.0	1.0	0.9	0.9	1.0
Cr	kg	1.6	1.6	1.5	1.7	1.5	1.5	1.5	1.4	1.4	1.5
Cu	kg	3.7	3.7	3.5	4.0	3.5	3.4	3.6	3.2	3.2	3.4
Hg	kg	1.0	1.0	1.0	1.1	1.0	1.0	1.0	0.9	0.9	1.0
Pb	kg	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5
PCDD/F	g I-TEQ	6.2	6.2	6.0	6.9	6.1	5.9	6.3	5.6	5.5	7.6
Benzo(b)fluoranthene	kg	20.8	20.9	20.1	23.0	20.3	20.0	21.3	19.1	18.8	26.2
Benzo(k)fluoranthene	kg	7.3	7.4	7.1	8.1	7.2	7.0	7.5	6.7	6.6	9.2
Benzo(a)pyrene	kg	13.2	13.2	12.7	14.5	12.8	12.6	13.5	12.1	11.9	16.5
Indeno(1,2,3-cd)pyrene	kg	14.3	14.3	13.8	15.7	13.9	13.7	14.6	13.1	12.8	17.9

6.5.3 Accidental vehicle fires

Pollutants that are emitted from accidental vehicle fires include SO_2 , NO_x , NMVOC, CO, particulate matter, heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn), PCDD/F and PAHs.

Methodology

Emissions from vehicle fires are calculated by multiplying the mass of vehicle fires with selected emission factors. Emission factors are not available for different vehicle types, whereas it is assumed that all the different vehicle types leads to similar emissions. The activity data are calculated as an annual combusted mass by multiplying the number of different full scale vehicle fires with the Danish registered average weight of the given vehicle type.

Activity data

As with accidental building fires, data for accidental vehicle fires are available through the Danish Emergency Management Agency (DEMA). DEMA provides very detailed data for 2007-2014; the remaining years back to 1980 are estimated by using surrogate data.

Table 6.24 shows the occurrence of fires in general and vehicle fires registered at DEMA. In <u>2007</u>-2010 the average per cent of vehicle fires, in relation to all fires, was 20 %. The total numbers of vehicle fires in 1980-2006 are calculated using this percentage. The full time series is presented in Annex 3E-9.

Table 6.24 Occurrence of all fires and vehicle fires.

	00001101100									
Year	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
All fires	17751	17751	17025	19543	17174	16551	16157	14084	14546	13180
Vehicle fires	3497	3497	3354	3850	3383	3260	3255	2889	2841	2981

There are fourteen different vehicle categories. The activity data are categorised in passenger cars (lighter than 3500 kg), buses, light duty vehicles (vans and motor homes), heavy duty vehicles (trucks and tankers), motorcycles/mopeds, other transport, caravans, trains, boats, airplanes, bicycles, tractors, combine harvesters and machines.

In the same manner as accidental building fires, the 2007-2014 data from DEMA can be divided in four categories according to damage size. It is assumed that a full scale fire is a complete burnout of the given vehicle, and that a large, medium and small scale fire corresponds to 75 %, 30 % and 5 % of a full scale fire respectively. The total number of full scale equivalent (FSE) fires can be calculated for each of the fourteen vehicle categories for 2007-2014.

The total number of registered vehicles is known from Jensen et al. (2012) and Statistics Denmark (2014). By assuming that the share of vehicle fires in relation to the total number of registered vehicles, of every category respectively, can be counted as constant, the number of vehicle fires is estimated for the years 1980-2006. The numbers of registered vehicles from 1980 to 1984 are extrapolated based on the years 1985 to 1989, where a clear trend has been visible this trend has been extrapolated (e.g. passenger cars), otherwise the average value of 1985 to 1989 has been used (e.g. buses).

Table 6.25 states the total number of national registered vehicles and the number of full scale equivalent vehicle fires. The full time series 1980-2014 is shown in Annex 3E-16.

Table 6.25 Number of nationally registered vehicles and full scale equivalent vehicle fires.

	Passenge	r Cars	Buses		Light Duty \	/ehicles	Heavy Duty	Vehicles
	Registered	FSE fires	Registered	FSE fires	Registered	FSE fires	Registered	FSE fires
1980	1475109	429	8070	12	99168	10	47428	60
1985	1564319	455	8010	11	147874	14	46962	60
1990	1645454	479	8109	12	192317	19	45664	58
1995	1733242	504	14371	21	228074	22	48077	61
2000	1916364	557	15051	22	272386	27	50227	64
2005	2012216	585	15131	22	372674	36	49311	63
2010	2246675	646	14577	23	362385	38	44813	60
2011	2281539	584	13915	13	343355	43	43640	54
2012	2326778	514	13177	11	318668	32	42326	53
2013	2373251	514	12829	11	306421	32	41999	53
2014	2390554	514	12846	11	310417	32	43568	53
Continu	ed							

	Motorcycles/	Mopeds	Caravans	6	Trair	า	Boa	t
	Registered	FSE fires	Registered	FSE fires	Registered	FSE fires	Registered	FSE fires
1980	220273	78			7284	9	2222	25
1985	191478	68			7284	9	2222	25
1990	163133	58	86257	24	7156	9	2324	26
1995	165272	58	95831	26	6854	8	1911	21
2000	233309	82	106935	29	4907	6	1759	19
2005	273904	97	121350	33	3195	4	1792	20
2010	301562	83	142354	37	2740	2	1773	16
2011	295488	91	142764	34	2943	3	1768	21
2012	295798	82	142654	33	3055	2	1772	14
2013	296522	82	142667	33	3048	2	1781	14
2014	295948	82	141418	33	3085	2	1722	14

Contin	ued								
	Airpla	ane	Tractor		Combined Harvester		Bicycle	Other Transport	Machine
	Registered	FSE fires	Registered	FSE fires	Registered	FSE fires	FSE fires	FSE fires	FSE fires
1980	1060	1	139600	87	38781	64			
1985	1060	1	128700	80	35708	59			
1990	1055	1	131880	82	33594	56			
1995	1058	1	130028	81	27986	46			
2000	1070	1	111736	69	23272	39			
2005	1073	1	104551	65	20965	35			
2010	1152	1	89141	77	15986	32	4	58	94
2011	1132	0	85776	59	14990	21	3	50	111
2012	1111	0	82410	68	13994	18	2	50	115
2013	1069	0	79045	68	12998	18	-	-	-
2014	1053	0	79045	68	12998	18	-	-	-

The average weights of a passenger car, bus, light- and heavy commercial vehicle and motorcycle/moped are known for every year back to 1993 (Statistics Denmark, 2015), the weight of combined harvesters is based on an expert judgement. The corresponding weights from 1980 to 1992 and the average weight of the units from the remaining categories are estimated by an expert judgment; see Table 6.26 and Annex 3E-15.

Table 6.26	Average	weight of	different	vehicle	categories,	kg.

			Light Duty	Heavy Duty	Motorcycles/	Combined
	Cars	Buses	Vehicles	Vehicles	Mopeds	Harvester
1980	850	10000	2000	15000	75	8000
1985	850	10000	2000	15000	75	8750
1990	850	10000	2000	15000	86	9500
1995	923	10807	2492	14801	97	10250
2000	999	11195	3103	15214	103	11000
2005	1068	11560	3793	13258	116	11750
2010	1144	11804	4498	11883	133	12500
2011	1154	11907	4296	11291	135	12650
2012	1160	11625	4150	10844	136	12800
2013	1162	11463	4046	10861	137	12950
2014*	1162	11463	4046	10861	137	12950

*The statistics for 2014 has been set equal to 2013.

It is assumed that the average weight of a boat equals that of a bus. That tractors and vans weigh the same and that trains and airplanes have the same average weight as trucks.

Bicycles, machines and other transport can only be calculated for the years 2007-2014 due to the lack of surrogate data (number of nationally registered vehicles). The average weight of a bicycle, caravan, machine and other transport is estimated as 12 kg, 90 % of a car, 50 % of a car and 40 % of a car respectively.

By multiplying the number of full scale fires with the average weight of the vehicles respectively, the total amount of combusted vehicle mass can be calculated. The result is shown in Table 6.27 and in Annex 3E-14.

-					<u> </u>	<u> </u>				
	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014*
Passenger cars	365	387	407	466	557	625	674	592	555	524
Buses	116	115	116	223	242	251	160	130	121	217
Light duty vehicles	19	29	37	55	82	138	185	133	118	105
Heavy duty vehicles	902	893	869	902	969	829	606	579	455	422
Motorcycle, moped	6	5	5	6	8	11	12	11	11	12
Other transport	-	-	-	-	-	-	29	29	26	27
Caravan	-	-	30	36	44	53	59	57	59	55
Train	130	130	128	121	89	51	28	23	18	18
Boat	246	246	257	228	218	229	249	160	100	111
Airplane	12	12	12	11	12	10	3	5	5	4
Bicycle	-	-	-	-	-	-	0	0	0	0
Tractor	174	160	164	202	216	247	254	283	330	346
Combine harvester	515	518	530	476	425	409	271	236	402	469
Machine	-	-	-	-	-	-	51	53	53	53
Total	2484	2495	2555	2727	2863	2858	2580	2291	2253	2364

Table 6.27 Burnt mass of different vehicle categories, Mg.

Emission factors

In the process of selecting the most reliable emission factors for the calculation of the emissions from Danish vehicle fires, a range of different sources have been studied. Unfortunately it is difficult to make an interrelated comparison of the different sources because they all establish emission factors on different assumptions and many of these assumptions are not fully accounted for. Table 6.28 lists the accepted emission factors and their respective references.

1 able 6.28	Emission la	ciors venicie ili	es.	
		Unit, per Mg	Emission factor	Source
SO ₂		kg	5	Lönnermark et al., 2004
NO _x		kg	2	Lemieux et al., 2004
NMVOC		kg	8.5	Lönnermark et al., 2004
CO		kg	63	Lönnermark et al., 2004
TSP		kg	38	Lönnermark et al., 2004
PM ₁₀		kg	38	Lönnermark et al., 2004
PM _{2.5}		kg	38	Lönnermark et al., 2004
As		g	0.26	Lönnermark et al., 2004
Cd		g	1.70	Lönnermark et al., 2004
Cr		g	3.80	Lönnermark et al., 2004
Cu		g	27.0	Lönnermark et al., 2004
Ni		g	2.80	Lönnermark et al., 2004
Pb		g	820	Lönnermark et al., 2004
Zn		g	3200	Lönnermark et al., 2004
PCDD/F		mg	0.04	Hansen, 2000
Benzo(b)fluc	oranthene	g	32.3	Lemieux et al., 2004
Benzo(k)fluc	oranthene	g	32.3	Lemieux et al., 2004
Benzo(a)pyr	rene	g	14.7	Lemieux et al., 2004
Indeno(1,2,3	3-cd)pyrene	g	23.3	Lemieux et al., 2004

Table 6.28 Emission factors vehicle fires.

No data are available for Hg, Se, HCB and PCBs. NH_3 is assumed not to be emitted.

Emissions

Table 6.29 shows the total national emissions from vehicle. The entire time series is shown in Annex 3E-17.

Table 6.29	National	emissions	from	vehicle fires.
10010 0.20	i tational	011110010110		10111010 11100.

	unit	1980	1985	1990	1995	2000	2005	2011	2012	2013	2014
SO ₂	Mg	12.42	12.47	12.77	13.64	14.32	14.29	13.12	11.59	11.27	11.82
NO _X	Mg	4.97	4.99	5.11	5.45	5.73	5.72	5.25	4.64	4.51	4.73
NMVOC	Mg	21.11	21.21	21.72	23.18	24.34	24.29	22.30	19.71	19.15	20.09
CO	Mg	156.48	157.18	160.95	171.80	180.40	180.04	165.31	146.07	141.95	148.94
TSP	Mg	94.39	94.81	97.08	103.63	108.81	108.60	99.71	88.11	89.84	89.84
PM ₁₀	Mg	94.39	94.81	97.08	103.63	108.81	108.60	99.71	88.11	89.84	89.84
PM _{2.5}	Mg	94.39	94.81	97.08	103.63	108.81	108.60	99.71	88.11	89.84	89.84
As	kg	0.65	0.65	0.66	0.71	0.74	0.74	0.68	0.60	0.61	0.61
Cd	kg	4.22	4.24	4.34	4.64	4.87	4.86	4.46	3.94	4.02	4.02
Cr	kg	9.44	9.48	9.71	10.36	10.88	10.86	9.97	8.81	8.98	8.98
Cu	kg	67.06	67.36	68.98	73.63	77.31	77.16	70.85	62.60	63.83	63.83
Ni	kg	6.95	6.99	7.15	7.64	8.02	8.00	7.35	6.49	6.62	6.62
Pb	Mg	2.04	2.05	2.09	2.24	2.35	2.34	2.15	1.90	1.94	1.94
Zn	Mg	7.95	7.98	8.18	8.73	9.16	9.14	8.40	7.42	7.57	7.57
PCDD/F	g I-TEQ	0.10	0.10	0.10	0.11	0.11	0.11	0.10	0.09	0.09	0.09
Benzo(b)fluoranthene	kg	40.11	40.29	41.26	44.04	46.25	46.15	42.38	37.44	38.18	38.18
Benzo(k)fluoranthene	kg	40.11	40.29	41.26	44.04	46.25	46.15	42.38	37.44	38.18	38.18
Benzo(a)pyrene	kg	36.51	36.68	37.56	40.09	42.09	42.01	38.57	34.08	34.75	34.75
Indeno(1.2.3-cd)pyrene	kg	57.87	58.13	59.53	63.54	66.72	66.59	61.14	54.02	52.50	55.08

6.5.4 Other

Other combustion sources include open burning of yard waste and bonfires.

Due to the cold and wet climatic conditions in Denmark wild fires very seldom occur. Controlled field burnings and the occasional wild fires are categorised under the sectors Agriculture and Land Use. Land Use Change and Forestry (LULUCF), respectively.

In Denmark, the open burning of private yard waste is under different restrictions according to the respective municipality. These restrictions involve what can be burned but also the quantity. and how. when and where. or in some cases a complete ban is imposed. The burning of yard waste is not allowed within urban areas (DEPA. 2011). There is no registration of private waste burning and the activity data on this subject are very difficult to estimate. Citizens are generally encouraged to compost their yard waste or to dispose of it through one of the many waste disposal/recycling sites.

The occurrence of bonfires at midsummer night and in general are likewise not registered. Therefore it has not been possible to obtain activity data and consequently. Bonfires are not included in this inventory.

6.6 Uncertainties and time series consistency

This section covers the uncertainty estimates

6.6.1 Input data

The uncertainty of the number of human cremations is miniscule. However, for the purpose of the calculation it has been set to 1 %.

The uncertainty of the activity data from animal cremations is also minimal for the most recent years (1998-2014) but is increasing back in time (to 200 % in 1980). The uncertainty is set to 40 % for all years.

Activity data for composting are estimated for the years 1990-1994 and 2010-2014 resulting in a higher level of uncertainty these years; this is set at 40 %.

The uncertainty of the total number of accidental fires is very small but the division into building and transportation types and also the calculation of full scale equivalents will lead to some uncertainty - partly caused by the category "other". The uncertainty for both building and vehicle activity data is therefore set to 10 % for all years. The uncertainty is however lowest for the most recent years (2007-2014).

Activity data for combustion of biogas at biogas production facilities are available from the national energy statistics; the uncertainty for this activity is set to 5 %.

The following Table 6.30 lists the uncertainties for activity data in the waste sector.

5	Building ng fires	fires	Biogas Production*
Activity data			
$\frac{1}{2}$			
uncertainty. % 1 80 50	10	10	5*
*This category only exists from 1994-2004 and is ther	efore (with th	e exceptior	n of particles)

not included in the uncertainty calculations included in this report. Uncertainties for all pollutants are calculated for 1990 and 2014, except for those for particles which are calculated for 2000 and 2013.

The uncertainties for emission factors in the waste sector and at the present level of available information are listed in Table 6.31. The uncertainties are assumed valid for all years 1990-2014.

	Human	Animal	Compos-	Building	Vehicle	Biogas
Pollutant	cremation	cremation	ting	fires	fires	production
SO ₂	100	100		300	500	100
NO _x	150	150		500	500	100
NMVOC	100	300		500	500	100
CO	150	150	100	500	500	100
NH ₃		300	100			
TSP	500	300		500	700	500
PM ₁₀	500	300		500	700	500
PM _{2.5}	500	300		500	700	500
As	700	700		500	500	400
Cd	700	500		500	500	150
Cr	700	500		500	500	100
Cu	700	500		500	500	100
Hg	150			500		100
Ni	700	500			500	100
Pb	600	500		500	500	100
Se	700	700				100
Zn	700	500			500	150
HCB	500	500				1000
PCDD/F	300	300		100	100	1000
Benzo(b)flouranthene	1000	1000		500	500	
Benzo(k)flouranthene	1000	1000		500	500	
Benzo(a)pyrene	1000	1000		500	500	
Indeno(1.2.3-c.d)pyrene	1000	1000		500	500	
PCB	1000	1 000				1000

Table 6.31 Estimated uncertainty rates for emission factors, %.

6.6.2 Uncertainty results

The Tier 1 uncertainty estimates for the waste sector are calculated from 95 % confidence interval uncertainties. Results are shown in Table 6.32.

Pollutant	Emission	Total emission	Trend	Trend Uncertainty.
	2014. Mg	uncertainty. %	1990-2014. %	%-age points
SO ₂	537	±290,2	-7.0	±12,8
NO _x	85	±189,3	16.7	±61,5
NMVOC	162	±435,6	-5.2	±13,2
СО	1156	±197,5	50.2	±187,5
NH ₃	783	±107,4	278.8	±213,7
TSP	243	±402,7	-13.5	±26,8
PM ₁₀	243	±404,0	-13.7	±26,7
PM _{2.5}	242	±404,5	-13.7	±26,7
As	2.30E-03	±349,2	-18.7	±128,5
Cd	4.76E-03	±413,8	-14.2	±26,5
Cr	1.00E-02	±432,0	-14.8	±32,5
Cu	6.41E-02	±475,4	-12.2	±12,7
Hg	1.39E-03	±333,5	-97.0	±9,9
Ni	6.39E-03	±493,8	-18.8	±60,9
Pb	1.85E+00	±499,9	-11.8	±12,5
Se	3.84E-04	±686,0	-55.1	±409,7
Zn	7.21E+00	±500,1	-11.9	±12,5
HCB	9.30E-06	±378,4	41.8	±257,3
PCDD/F	5.61E-06	±98,7	-8.0	±12,8
Benzo(b)flouranthene	5.51E-02	±371,3	-10.2	±12,2
Benzo(k)flouranthene	4.30E-02	±430,2	-11.1	±11,7
Benzo(a)pyrene	4.50E-02	±391,3	-10.5	±11,9
Indeno(1.2.3-c.d)pyrene	6.53E-02	±413,8	-10.9	±11,7
РСВ	2.54E-05	±756,5	41.8	±512,8

Table 6.32 Tier 1 uncertainty results for waste.

*Trend 2000-2014. %

6.7 QA/QC and verification

A list of QA/QC tasks are performed directly in relation to the emissions from the waste sector part of the Danish emission inventories. The following procedures are carried out to ensure the data quality:

- Checking of time series in the NFR and SNAP source categories. Considerable changes are controlled and explained.
- Comparison with the inventory of the previous year. Any major changes are verified.
- A manual log table is applied to collect information about recalculations.
- Some automated checks have been prepared for the emission databases:
- Check of units for fuel rate and emission factors
- Additional checks on database consistency

The QC work will continue in future years.

6.7.1 Data deliveries

Table 6.33 lists the external data deliveries used for the waste emission inventory. Further the table holds information on the contacts at the data delivery companies.

Category	Data description	Activity data.	Reference	Contact(s)	Data agreement/	http. file or folder
		emission factors			Comment	name
		or emissions				
Human	Annual number	Activity data	Association of	Hanne Ring	Public access	http://www.dkl.dk
cremation	of cremated		Danish			
	persons		Crematories			
Human	Population	Activity data	Statistics		Public access	http://www.statistikb
cremation	statistics		Denmark			anken.dk/BEF5
Animal	Annual number	Activity data	Dansk	Knud	Personal	
cremation	of cremated		Dyre-kremering	Ribergaard	contact	
	carcasses		ApS			
Animal	Annual number	Activity data	Ada's Kæle-	Frederik Møller	Personal	
cremation	of cremated		dyrskrematorium		contact	
	carcasses		ApS			
Animal	Annual number	Activity data	Kæledyrs-	Annette	Personal	
cremation	of cremated		krematoriet	Laursen	contact	
	carcasses					
Accidental	Average floor	Activity data	Statistics		Public access	http://www.statistikb
building	space in buildings		Denmark			anken.dk/BOL511
fires						
Accidental	Categorised fires	Activity data	The Danish	Steen Hjere	Public access	https://statistikbank.
fires			Emergency	Nonnemann		brs.dk
			Management			
			Agency			
Accidental	Building type	Activity data	Statistics		Public access	http://www.statistikb
building	statistics		Denmark			anken.dk/ BOL11.
fires						BOL3. BOL33 AND
						BYGB11
Accidental	Weight	Activity data	Statistics		Public access	http://www.statistikb
vehicle	categorisation of		Denmark			anken.dk
fires	vehicles					BIL10. BIL12. BIL15
	(passenger cars.					and BIL18
	busses. vans and					
	trucks)					
Compostir	Waste categories	Activity data	Waste Statistics		Public access	http://www2.mst.dk/
g	for composting		(Affaldsstatistik)			dgiv/publikationer/2
						10/978-87-92668-
						21-9/pdf/978-87-
						92668-22-6.pdf

6.8 Source-specific recalculations and improvements

Previously emissions from the own use of biogas at biogas plants have been reported in the waste sector. This activity occurred from 1994-2004. These combustion emissions have been reallocated to the energy sector.

6.9 Source-specific planned improvements

There are currently no planned improvements for this sector.

6.10 References

Aasestad, K. (eds.). 2008: Norwegian Emission Inventory 2008. Documentation of methodologies for estimating emissions of greenhouse gases and long-range transboundary air pollutants. Report 2008/48. Statistics Norway. Available at: http://www.ssb.no/english/subjects/01/04/10/rapp emissions en/rapp 200848_en/rapp_200848_en.pdf (30-12-2014).

Affaldsstatistik, 2006: (Waste Statistics). Orientering fra Miljøstyrelsen Nr. 2 2008. Miljøstyrelsen. Miljøministeriet. Available at: http://www2.mst.dk/udgiv/publikationer/2008/978-87-7052-753-8/pdf/978-87-7052-754-5.pdf (In Danish) (23-01-2015).

Affaldsstatistik, 2007 og 2008: (Waste Statistics). Orientering fra Miljøstyrelsen Nr. 5 2010. Miljøstvrelsen. Miljøministeriet. Available at: http://www2.mst.dk/udgiv/publikationer/2010/978-87-92668-21-9/pdf/978-87-92668-22-6.pdf (In Danish) (09-01-2014).

Amlinger, F., Peyr, S. & Cuhls, C. 2008: Greenhouse Gas Emissions from Composting and Mechanical Biological Treatment. Waste Management & Research 2008; 26; 47. Sage publications. International Solid Waste Association. Available at: http://wmr.sagepub.com/cgi/reprint/26/1/47.pdf (30-12-2014).

Blomqvist, P., Persson, B. & Simonson, M. 2002: Utsläpp från bränder till miljön. Utsläpp av dioxin. PAH och VOC till luften. Räddnindsverket. Karlstad. FoU rapport. SP Brandteknik. Borås (In Swedish).

Boldrin, A., Andersen, J.K. & Christensen, T.H. 2009: Miljøvurdering af haveaffald i Århus kommune. Danmarks Tekniske Universitet - Miljø. 3R.

Chen, S.-J., Hung, M.-C., Huang, K.-L. & Hwang, W.-I. 2004: Emission of heavy metals from animal carcass incinerators in Taiwan. Chemosphere 55 (2004) 1197-1205. Elsevier.

Claire, S. 1999: Source inventory. Category #750. Miscellaneous emission sources accidental fires - Structural 1999 Emissions. Base year: 1999. pp. 10.3.1 – 2. Available at:

www.arb.ca.gov/ei/areasrc/districtmeth/BayArea/C750.pdf (30-12-2014).

Danish Energy Agency (DEA), 2014: The Danish Annual Energy Statistics. Basicdata 2013.xls. Available at: http://www.ens.dk/en-

US/Info/FactsAndFigures/Energy_statistics_and_indicators/Annual%20St atistics/Sider/Forside.aspx (30-12-2014).

DEMA: The Danish Emergency Management Agency (DEMA). Beredskabsstyrelsen. Statistikbanken. Available at: https://statistikbank.brs.dk/sb/main/p/a0109 (In Danish) (30-12-2014).

DEMA, 2007: The Danish Emergency Management Agency (DEMA). Beredskabsstyrelsen. Redningsberedskabets Statistiske Beretning 2007. Available at:

http://brs.dk/viden/publikationer/Documents/RBS_Statistisk_Beretning_ 2007.pdf (In Danish) (30-12-2014).

Danish Environmental Protection Agency (DEPA), 2006: Legislation on sludge. Bekendtgørelse om anvendelse af affald til jordbrugsformål (Slambekendtgørelsen). BEK nr. 1650 af 13/12/2006. Available at: https://www.retsinformation.dk/Forms/R0710.aspx?id=13056 (30-12-2014) (Danish).

Danish Environmental Protection Agency (DEPA), 2011: Legislation on waste (Affaldsbekendtgørelsen). BEK nr. 1415 af 12/12/2011 Gældende. Chapter 7. §46 and §47. Available at:

<u>https://www.retsinformation.dk/forms/r0710.aspx?id=139654#Kap7</u> (30-12-2014) (Danish).

DKL, 2009: Danske Krematoriers Landsforening. Røggasrensning, miljøbehandling og varmeudnyttelse. Status juni 2009. Available at: <u>http://www.ft.dk/samling/20081/almdel/mpu/spm/591/svar/641398/7</u>14098/index.htm

DKL, 2014: Danske krematoriers landsforening. Statistisk materiale. Available at: <u>http://dkl.dk/Info/statistik.php</u> (In Danish) (30-12-2014).

European Commission (EC), 2011: Regulations. Commission Regulation (EU) No 142/2011. of 25 February 2011. Available at: http://eur-lex.europa.eu/LexUriServ.do?uri=OJ:L:2011:054:0001:0254:EN:PDF (30-12-2014)

EEA, 1996: European Environmental Agency. Emission Inventory Guidebook 2007. SNAP 090901. December 2006.

EEA, 2009: EMEP/EEA air pollutant emission inventory guidebook – 2009. Technical report No 6/2009. Available at:

http://www.eea.europa.eu/publications/emep-eea-emission-inventoryguidebook-2009 (30-12-2014).

EIIP, 2001: Structure Fires. Volume III: Chapter 18. Emission Inventory Improve-ment Program. Revised Final January 2001. Eastern Research Group. Inc.. Area Source Committee. Available at: <u>http://www.epa.gov/ttn/chief/eiip/techreport/volume03/iii18_apr2001.p</u> df (30-12-2014).

Hansen, E. 2000: Substance Flow Analysis for dioxins in Denmark. Environmental Project No. 570. Miljøprojekt. the Danish Environmental Protection Agency. Available at: <u>http://www2.mst.dk/udgiv/publications/2000/87-7944-295-1/pdf/87-</u>

<u>7944-297-8.pdf</u> (In Danish) (30-12-2014).

Hellebrand, H.J. 1998: Emission of Nitrous Oxide and other Trace Gases during Composting of Grass and Green Waste. Institute of Agricultural Engineering Bornim (ATB). Germany. Silsoe Research Institute. Journal of Agricultural Engineering Research (1998) 69. 365-375.

Henriksen, T.C., Illerup, J.B. & Nielsen, O.-K. 2006: Dioxin Air Emission Inventory 1990-2004. National Environmental Research Institute. Denmark. 90 pp. – NERI Technical report no 602. Available at: http://www.dmu.dk/Pub/FR602.pdf.

IPCC, 2006: Guidelines for National Greenhouse Gas Inventories. Chapter 4: Biological Treatment of Solid Waste. Available at: <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf</u>.

Hjelgaard, K. 2013: Danish Emission Inventory for Waste Incineration and Other Waste. Inventories until year 2011. Aarhus University. DCE – Danish Centre for Environment and Energy. 96 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 70. Available at: <u>http://www.dmu.dk/Pub/SR70.pdf</u>

Jensen, T.C. & Kveiborg, O. 2013: Dokumentation af konvertering af trafiktal til emissionsopgørelser. arbejdsnotat. DTU Transport. 2013.

Kriegbaum, M. & Jensen, E. 2005: Input til branchebilag for krematorieanlæg. Kommentarer og begrundelser. Dato 23. september 2005. Available at:

<u>http://mst.dk/media/mst/68544/060116Inputkrematorieanl%C3%A6g.pdf</u> (In Danish) (30-12-2014).

Lemieux, P.M., Lutes, C.C. & Santoianni, D.A. 2004: Emissions of organic air toxics from open burning: a comprehensive review. Elsevier. science direct; Progress in Energy and Combustion Science 30. Available at: <u>http://www.fire.uni-freiburg.de/vfe/Emissions-Open-Burning-Lemieux-etal-2004.pdf</u> (09/01-2014).

Lönnermark, A. & Blomqvist, P. 2004: Emissions from an automobile fire. Elsevier. chemosphere 62 (2006); Dec 2004; p1043-1056.

Ministeriet for Ligestilling og Kirke (MILIKI) (Ministry for Gender Equality and Ecclesiastical Affairs), 2006: Arbejdsgruppe foreslår at der skal være færre krematorier. december 2006. Available at: <u>http://www.km.dk/kirke/nyhedsarkiv-kirke/nyhed-om-</u> <u>kirke/artikel/arbejdsgruppe-foreslaar-at-der-skal-vaere-faerre-krematorier/</u> (In Danish) (30-12-2014).

MST, 2013: Livscyklusvurdering og samfundsøkonomisk analyse for anvendelse af spildevandsslam. Miljøministeriet. Miljøstyrelsen (MST). Miljøprojekt nr. 1459. 2013. ISBN nr. 978-87-92903-81-5. Available at: <u>http://www.mst.dk/Publikationer/Publikationer/2013/Maj/978-87-92903-81-5.htm</u> (Danish) (30-12-2014).

NAEI, 2009: The UK National Atmospheric Emission Inventory. Available at: <u>http://www.naei.org.uk/emissions/selection.php</u>

Pagans, E., Barrena, R., Font, X. & Sánchez, A. 2006: Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 62. 1534-1542. Elsevier.

Persson, B. & Simonson, M. 1998: Fire Emissions Into the Atmosphere. Swedish National Testing and Research Institute. Birås. Sweden. Fire Technology. Vol. 34. No. 3. 1998.

Petersen, C. 2001: Statistik for behandling af organisk affald fra husholdninger – Revideret udgave. 1999 (Statistics for treatment of organic waste from households – revised version). ECONET A/S. Miljøprojekt Nr. 654. Miljøstyrelsen. Miljøministeriet. Available at:

http://www2.mst.dk/Udgiv/publikationer/2001/87-7944-932-8/pdf/87-7944-933-6.pdf (In Danish) (30-12-2014).

Petersen, C. & Hansen, V.L. 2003: Statistik for behandling af organisk affald fra husholdninger 2001 (Statistics for treatment of organic waste from households). ECONET A/S. Miljøprojekt Nr. 856. Miljøstyrelsen. Miljøministeriet. Available at:

http://www2.mst.dk/Udgiv/publikationer/2003/87-7972-962-2/pdf/87-7972-963-0.pdf (In Danish) (30-12-2014).

Petersen, C. & Kielland, M. 2003: Statistik for hjemmekompostering 2001 (Statistics on home composting). Econet A/S. Miljøprojekt Nr. 855. Miljøstyrelsen. Miljøministeriet. Available at: http://www2.mst.dk/udgiv/publikationer/2003/87-7972-960-6/pdf/87-

<u>http://www2.mst.dk/udgiv/publikationer/2003/87-7972-960-6/pdf/87-7972-960-6/pdf/87-7972-961-4.pdf</u> (In Danish) (30-12-2014).

Santarsiero, A., Settimo, G., Cappiello, G., Viviano, G., Dell'Andrea, E. & Gentilini, L. 2005: Urban crematoria pollution related to the management of the deceased. Microchemical Journal. Vol. 79. Issues 1-2. Pp 299-306.

Schleicher, O. & Gram, L.K. 2008: Miljøprojekt Nr. 1191. Analyse af omkostningerne for rensning for kviksølv på krematorier i Danmark. Miljøministeriet. Miljøstyrelsen. Available at:

http://www2.mst.dk/common/Udgivramme/Frame.asp?http://www2.m st.dk/udgiv/publikationer/2008/978-87-7052-594-7/html/helepubl.htm (In Danish) (30-12-2013).

Schleicher, O. & Jensen, A.A. 2004: Håndbog om vurdering af spredning af dioxin og andre miljøskadelige stoffer fra ukontrollerede brande. Miljøprojekt nr. 918. FORCE Technology. Miljøstyrelsen. Miljøministeriet. Available at:

http://www.mst.dk/Publikationer/Publikationer/2004/05/87-7614-238-8.htm (In Danish) (30-12-2014).

Schleicher, O., Jensen, A.A. & Blinksbjerg, P. 2001: Miljøprojekt Nr. 649. Måling af dioxinemissionen fra udvalgte sekundære kilder. Miljøministeriet. Miljøstyrelsen. Available at: <u>http://www2.mst.dk/Udgiv/publikationer/2001/87-7944-868-2/pdf/87-7944-869-0.pdf</u> (In Danish) (30-12-2014).

Statistics Denmark, 2015: StatBank Denmark 2015. Available at: <u>http://www.statistikbanken.dk/statbank5a/default.asp?w=1024</u> (In Danish and English) (30-12-2014).

Toda, E. 2006: POPs and heavy metals emission inventory of Japan. Ministry of the Environment. Japan.

UNEP, 2005: UNEP toolkit. United Nations Environment Programme. Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases. Edition 2.1 December 2005. Prepared by UNEP Chemicals. Geneva. Switzerland. Available at:

http://chm.pops.int/Portals/0/Repository/toolkit1/UNEP-POPS-TOOLKIT.1-4.English.PDF (30-12-2014).

WEBFIRE, 1992: United States Environmental Protection Agency database. Available at:

<u>http://cfpub.epa.gov/oarweb/index.cfm?action=fire.simpleSearch</u> (30-12-2014).

7 Other and natural emissions

Denmark does not report emissions in the NFR category "Other" (NFR 6). Regarding natural emissions volcanoes do not occur in Denmark and hence the category is reported as NO (Not Occurring).

Emissions from forest fires are for most years negligible but have not been estimated. Any other natural emissions, to be reported under NFR category 11C, have also not been estimated.

8 Gridded emissions

This chapter include descriptions on input data, methodology and results of the Danish gridded emissions for the years 2005 and 2010. A detailed methodological description is given in Plejdrup & Gyldenkærne (2011).

8.1 Background for reporting

According to the UNECE Convention on Long-Range Transboundary Air Pollution parties are obligated to report gridded emissions.

In December 2013 the Executive Body for the Convention on Long-range Transboundary Air Pollution adopted new reporting guidelines, which include requirement of four-year reporting of gridded emissions from 2017. The new reporting guidelines are yet not implemented for gridded emissions, why the data and methodology presented in this chapter refer to the latest reporting of gridded emissions according to the previous guidelines.

In the 2012 reporting Denmark reported gridded emissions for the years 2005 and 2010. The mandatory reporting of gridded emissions includes the following 13 pollutants: SO_x , NO_x , NH_3 , NMVOC, CO, PM_{10} , $PM_{2.5}$, Pb, Cd, Hg, benzo(b)flouranthene, benzo(k)flouranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, HCB, and dioxins and furans. The reporting includes GNFR sectoral emissions as well as national total emissions disaggregated to the standard EMEP grid with a resolution of 50 km x 50 km. Table 9.1 lists the categories (sectors) used for reporting gridded emission data based on the Danish inventories.

GNFR ID	GNFR (long name)	NFR	SNAP	Note
A_PublicPower	PublicPower	1A1a	0101, 0102	
B_IndustrialComb	IndustrialCombustion	1A1c, 1A2a, 1A2b,	0103, 0105, 0301, 0302, 0304, 0305,	
		1A2c, 1A2d, 1A2e,	0306, 0307, 0308, 0309, 0310 , 0311,	
		1A2f i	0312, 0313, 0314, 0315, 0316, 0320	
C_SmallComb	SmallCombustion	1A4a i, 1A4b i, 1A4c	0201, 0202, 0203	
		i		
D_IndProcess	IndustrialProcesses	2	0303, 0402, 0404, 0405, 0406	
E_Fugitive	Fugitive emissions from	1B1, 1B2	0401, 0501, 0502, 0505, 0506, 0902	
	fuels			
F_Solvents	Solvent and other product	3	06	
	use			
G_RoadRail	RoadRailway	1A3b, 1A3c	07, 0802	
H_Shipping	Shipping	1A3d ii, 1A4c iii	0803, 080402, 080403	
I_OffRoadMob	OffRoadMobile	1A2f ii, 1A4a ii1A4b	0801, 0806, 0807, 0808, 0809, 0811	
		ii, 1A4c ii, 1A5b		
J_AviationLTO	AviationLTO	1A3 a i (i), 1A3 a ii (i)	080501, 080502	
L_OtherWasteDisp	OtherWasteDisposal	6D	0910	
M_WasteWater	WasteWater			NE
N_WasteIncin	WasteIncineration	6C	0909	
O_AgriLivestock	AgricultureLivestock	4B	*	
P_AgriOther	AgricultureOther	4D, 4G	*	
Q_AgriWaste	AgricultureWaste	4F	*	
R_Other	Other			NO
S_Natural	Natural			NO
K_CivilAviCruise	CivilAviationCruise	1A3a ii (ii)	080503	
T_IntAviCruise	IntAviationCruise	1A3a i (ii)	080504	
Z_memo	memo	1A3d i (i)	080404	

Table 9.1	GNFR categories and corresponding NFR categories and SNAP IDs in the Danish gridded emission in-
ventory.	

* The Danish national emission inventory system for agriculture builds on NFR categories and not SNAP categories as is the case for the remaining sectors in the Danish emission inventory system.

The Guidelines used for this reporting are included in UNECE (2009). The methodology in Danish emission gridding model SPREAD follows the EMEP/EEA Guidebook (2009)¹. The gridded emission data in the 2012 reporting are available at the EIONET Central Data Repository homepage:

http://cdr.eionet.europa.eu/dk/Air_Emission_Inventories/Submission_E MEP_UNECE

Further, a detailed methodological description is given in Plejdrup & Gyldenkærne (2011).

8.2 Methods and data for disaggregation of emission data

A national model for high resolution spatial distribution of emissions to air, the SPREAD model, has been developed at Department of Environmental Science, Aarhus University. SPREAD includes all sources and pollutants in

¹ The SPREAD version used for the 2012 reporting follow the 2009 EMEP/EEA Guidebook. From the 2017 reporting, the gridded emissions will be prepared according to the 2013 EMEP/EEA Guidebook.

the Danish emission inventory system, and generates emissions on a resolution of 1 km x 1 km.

SPREAD covers the area defined by the Exclusive Economic Zone (EEZ) and the national boarder. Denmark is geographically the peninsula of Jutland and 443 named islands and islets, of which approximately 72 are inhabited. The country is located in Scandinavia neighbouring the sea (the Baltic Sea, Skagerrak, Kattegat and the North Sea) as well as Germany, which Jutland are adjacent to the south (Figure 9.1).

The spatial emission distribution is carried out on the most disaggregated level possible and therefore SPREAD includes a large number of distribution keys related to single sources, sub categories and in a single case to a whole sector. Gridded emissions reported to UNECE LRTAP are based on the results from SPREAD, aggregated on the 50 km x 50 km EMEP grid.

The spatial distribution in SPREAD is based on a number of national geographical data sets. As the model is very complex and include many spatial data, only the most important input data and methodology descriptions are included in the IIR report. For a more detailed description, please refer to Plejdrup & Gyldenkærne (2011).

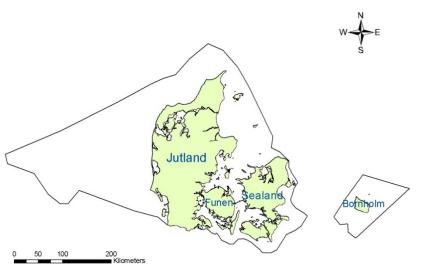


Figure 9.1 Map of Denmark including names of regions and the Exclusive Economic Zone.

8.2.1 The SPREAD model

The distribution in SPREAD is made on SNAP category level to assure the most accurate distribution of the emissions. It has been aimed to use the most disaggregated SNAP level (SNAP 3 level) but for some categories and sectors SNAP 2 or SNAP 1 level has been applied in the distribution model, due to a lack of detailed geographical information. An exception is the agricultural sector, as this sector is not treated on SNAP level in the Danish inventory system. Instead the agricultural data processing is carried out for the relevant NFR categories, and the same approach is applied in SPREAD. The SPREAD model is prepared in order to be applicable for the mandatory reporting of gridded emissions under CLRTAP.

SPREAD includes a number of sub-models covering separate sources or groups of sources in the emission inventory; Large Point Sources, Stationary combustion for point sources, Stationary combustion for area sources, Mobile sources, Aviation, Fugitive emissions from fuels, Industrial Processes, Fgases, Solvent and other product use, Waste, and a number of sub-models for the agricultural sector. All sub-models correspond to the methodology and groupings in the Danish inventory system. A number of sub-models include a higher disaggregation level compared to the NFR tables. Both SNAP and NFR categories are included in all SPREAD sub-models to enable a distribution in agreement with the international guidelines.

Emissions from all Large Point Sources (LPS) are treated in the LPS submodel in SPREAD. LPSs represent emissions at all SNAP 1 categories except solvents (SNAP 06) and road traffic (SNAP 07). Further, LPSs in agriculture are included in a separate part of the emission database system covering agriculture and are not included in the LPS sub-model in SPREAD. The Point Sources sub-model covers emissions from stationary combustion from point sources, which refer to the large number of plants, for which the fuel consumption is known at plant level but emissions are calculated using standard emission factors.

General methodology

The distribution of emissions in the Danish emission inventory is carried out in databases and in a geographical information system, GIS.

The methodology applied in the part of the distribution carried out in GIS is shortly described in this chapter. The description is made for the Industrial Processes sector as a case, as this distribution is rather simple.

The emission inventory for Industrial Processes covers both point sources and area sources. Emissions from point sources are allocated to the coordinates for the individual plants included in the Danish inventory system and are not relevant in relation to the GIS procedure. Emissions from area sources are calculated from production statistics and the resulting emissions are national totals as allocation of the sources (industrial plants) is not possible with the available data. Instead a proxy for the distribution is applied, in this case the location of industrial areas as given in the national topographic map KORT10 by the National Survey and Cadastre (Figure 9.2). The map of industrial areas is not reflecting differences in the location for different industries, but only holds industrial buildings (referred to as the industrial area as the buildings are treated as areas rather than units). The map is a shape file and the industrial areas are polygons.

Figure 9.2 Segment around Avedøre close to Copenhagen of the map of industrial areas (KORT10).

As SPREAD gives emissions on 1 km x 1 km, the map of industrial areas must be combined with the Danish 1 km x 1 km Grid Net. The grid is an orthogonal coordinate system and the cells are defined and named by their lower left corner coordinates. The grid net map is a shape file and the grid cells are polygons (Figure 9.3).

Figure 9.3 Segment around Avedøre in Copenhagen of the map of the Danish 1 km x 1 km grid net (KORT10).

To be able to distribute the emissions on 1 km x 1 km it is necessary to split the industrial polygons between the grid cells and thereby be able to calculate the industrial area in each grid cell (Figure 9.4). These functionalities are available in GIS, in this case ArcMAP. The split is made using the intersect tool, and afterwards the areas are applied to each cell using the Calculate Area function.

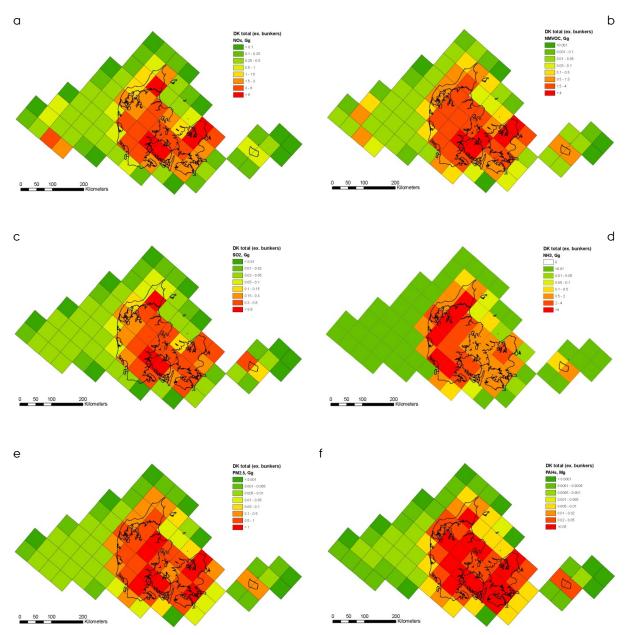


Figure 9.4 Segment around Avedøre in Copenhagen of the map of industrial areas and the Danish 1 km x 1 km grid net (KORT10).

The remaining part of the emission distribution for industrial processes is carried out in a database. The share of the national emissions that should be allocated to each grid cell is calculated as the industrial area of the cell divided by the total industrial area. The same distribution key is applied for all pollutants.

In the case of the Industrial Processes sector only one map is combined with the grid, but more maps or layers could be combined to make a distribution key. This is the case for some sources in the agricultural sector, e.g. emissions from organic soils where the distribution key is based on a map of organic soils, a map of the agricultural fields and the Danish Grid Net. A number of area sources are distributed on line features, e.g. emissions from railways and road traffic. In these cases the lines are split into segments by intersection with the 1 km x 1 km grid net. The emission in each grid cell is calculated as the national emission multiplied by the length of the line segment(s) in the cell and divided by the total length of the line feature.

For some sources the same distribution key can be applied for more or all years, while other sources demands a separate distribution key for every year. For Industrial Processes the distribution key can be applied for more years, as the dataset is not available on annual basis. Further, the industrial area does not change much from year to year. In other cases the distribution keys must be set up on annual basis as large changes occur from year to year. This is the case for e.g. agricultural soils and point sources (PS) in the energy sector.


National geographical data

A large number of national geographical data sets are implemented in the SPREAD model in preparation of the various distribution keys. The data sets are listed in Table 9.2 with specification of data owner and a short description of the content of each data set.

Table 9.2 List of geographic data a				
Data owner	Data set	Contents		
The National Survey and Cadastre	Topographic map	Geo-referenced basic map layers on administrative units, Land cover, territo- rial borders, coastline and infrastructure.		
National Agency for Enterprise and Construction	Central Dwelling and Building Register (Danish abbreviation BBR)	Geo-referenced information on dwell- ings and buildings		
Danish Ministry of the Environment	The Area Information System (AIS)	National maps of spatial data related to nature and environment (e.g. railways, industrial areas and one-storey settle- ments)		
The Directorate for Food, Fisheries	The Central Husbandry Register (CHR)	Information on stock of livestock at farm level		
and Agri Business	The General Agricultural Register (GLR)	Information on agricultural farms and crops on field level		
Ministry of food parioulture and	The fertilizer and husbandry register (Danish abbreviation GHI)	Information on manure and fertiliser amounts on farm level		
Ministry of food, agriculture and fisheries	The Land Parcel Identification System (LPIS)	Geo-referenced data on agricultural land parcels, including field IDs for field located in the parcels		
The Central Business Register	Central Business Register (Danish ab- breviation CVR)	Geo-referenced information on busi- nesses with a CVR number, e.g. farms		
The Central Office of the Civil Regis tration	-The Civil Registration System (Danish abbreviation CPR)	Geo-referenced information on popula- tion on address level		
The Department of Environmental Science, Aarhus University	National road and traffic database	Geo-referenced traffic load on the Dan- ish road network		
	Energy producer accountings	Geo-referenced information on fuel consumption for district heating and/or power producing plants		
The Danish Energy Agency	The regional inventory	Regional inventory of energy consump- tion for heating for oil boilers, natural gas boilers and solid fuel installations on municipality level		
DCE - Danish Centre for Environ- ment and Energy	Large Point Sources (LPS)	Geo-referenced information on power plants, large industrial plants and off- shore installations		
Danish Petroleum association	Service stations	Geo-referenced information on ad- dresses for all Danish service stations		
Energinet.dk	Measurement and regulator stations	Geo-referenced information on location of measurement and regulator stations in the Danish natural gas transmission network		
Danish Forest and Nature Agency	Military training terrain	Geo-referenced information on military training terrains		
The Danish Environmental Protec- tion Agency	Information system for waste and recy- cling (Danish abbreviation ISAG)	Data on waste treatment companies on address level		
Miljøportalen.dk	Waste water treatment plants	Data on waste water treatment on facili- ty level, including flow rates and organic matter content		

8.3 Gridded emission data

In this section selected maps of gridded emissions are presented, all referring to the year 2010. The selected maps in Figure 9.5 illustrate the emissions included in the national total in the NFR table (all emissions excluding Civil Aviation - Domestic and International Cruise, and international Maritime Navigation). All figures illustrate the sum of all included GNFR sectors. The Danish high resolution gridded emissions are aggregated on the 50 km x 50 km EMEP grid for reporting to CLRTAP. The share of each 1 km x 1 km grid cell located in the relevant EMEP grid cells are calculated and the aggregated emissions are calculated as the weighted sum of emissions in the 1 km

grid cells intersecting each EMEP grid cell being partial or fully part of the Danish Exclusive Economic Zone, EEZ.

Figure 9.5 National total gridded emissions excluding civil aviation and international navigation of a) NO_x, b) NMVOC, c) SO₂, d) NH₃, e) PM_{2.5} and f) PAHs (the sum of benzo(b)flouranthene, benzo(k)flouranthene, benzo(a)pyrene and indeno(1,2,3-c,d)pyrene) for the year 2010.

Even on the 50 km x 50 km aggregated level spatial patterns from the major sectors are recognisable for different pollutants.

8.3.1 NO_X

The major GNFR source to NO_x emissions is RoadRail followed by Shipping, OffRoadMob, PublicPower and IndustrialComb contributing 36 %, 16 %, 15 %, 15 % and 11 %, respectively. The pattern of the gridded NO_x emissions reflect the major road and rail network located in the eastern part of Jutland and across Funen and Zealand to Copenhagen (figure 9.5). Further, large emissions from PublicPower and IndustrialComb are seen around the major

cities. Part of the fugitive emissions is located offshore due to extraction of oil and gas on the North Sea.

8.3.2 NMVOC

The major source of NMVOC is Solvents followed by SmallComb, RoadRail, OffRoadMob and Fugitive contributing 31 %, 18 %, 15 %, 11 % and 11 %, respectively. Both emissions from Solvents, SmallComb and OffRoadMob are to a large degree allocated according to population density and location of one-storey settlements. Part of the fugitive emissions is located offshore due to extraction of oil and gas on the North Sea.

8.3.3 SO₂

The major sources of SO_2 are PublicPower and IndustrialComb followed by SmallComb and Shipping contributing 27 %, 26 %, 19 %, and 13 %, respectively. Even though the SO_2 emission has decreased over the years due to implementation of techniques for reduction of sulphur in the flue gas, it still produces a distinct pattern reflecting the localisation of large power plants in Denmark. The allocation of emissions from IndustrialComb reflect the location of a large number of CHP plants not reported as LPS due to no plant specific emission factors. The allocation of emissions from SmallComb reflects the areas with high population density and mainly one-storey settlements.

For the ferries operating between Copenhagen and Bornholm part of the route is outside the Danish EEZ. The emissions from all these ferries are included in Shipping and distributed on the part of the straight line between Copenhagen and Bornholm inside the Danish EEZ. This leads to an aggregation of the emissions in few EMEP cells, and thereby artificial high emissions at the part of the route inside the EEZ.

8.3.4 NH₃

The agricultural sector is by far the major contributor to the NH₃ emission. 81 % of the national emissions excluding civil aviation and international navigation derive from AgriLivestock and another 15 % from AgriOther. Emission of NH₃ is mainly related to livestock farming and especially to manure management. Emissions are distributed according to very detailed data on animals and fields, and the geographical pattern is in good agreement with the localisation of the major Danish livestock farming in Jutland.

8.3.5 PM_{2.5}

The major source of PM_{2.5} emissions is SmallComb contributing 73 %. Road-Rail is the second largest source contributing 10 % of the PM_{2.5} emission. Emissions from SmallComb are allocated rather evenly on the land area as a major source is residential wood combustion. Emissions from the residential sector are distributed on municipality level leading to equal emissions for larger areas. Further emissions from CHP plants are located in all parts of the country, also leading to a rather even distribution.

8.3.6 PAHs

Emissions of PAHs are the sum of benzo(b)flouranthene, benzo(k)flouranthene, benzo(a)pyrene and indeno(1,2,3-c,d)pyrene. The major source to emissions of PAHs in Denmark is SmallComb and hereof the all-important source is residential wood combustion. As described for PM_{2.5} the distribution are made on municipality level leading to a rather even distribution on the land area.

8.4 References

EMEP/EEA, 2009: EMEP/EEA air pollutant emission inventory guidebook 2009. Technical guidance to prepare national emission inventories. EEA Technical Report 9/2009. Available at:

http://www.eea.europa.eu/publications/emep-eea-emissioninventoryguidebook-2009 (10-02-2011).

Plejdrup, M.S. & Gyldenkærne, S. 2011: Spatial distribution of emissions to air – the SPREAD model. National Environmental Research Institute, Aarhus University, Denmark. 72 pp. – NERI Technical Report no. FR823. Available at: <u>http://www.dmu.dk/Pub/FR823.pdf</u>

UNECE, 2009: Guidelines for estimating and reporting emission data under the Convention on Long-range Transboundary Air Pollution (ECE/EB.AIR-/97). Available at:

http://www.ceip.at/fileadmin/inhalte/emep/reporting_2009/Rep_Guideli nes_ECE_EB_AIR_97_e.pdf

9 Recalculations and Improvements

In general, considerable work is being carried out to improve the inventories. Investigations and research carried out in Denmark and abroad produce new results and findings which are given consideration and, to the extent which is possible, are included as the basis for emission estimates and as data in the inventory databases. Furthermore, the updates of the EMEP/EEA Guidebook, and the work of the Task Force on Emission Inventories and its expert panels are followed closely in order to be able to incorporate the best scientific information as the basis for the inventories.

The implementation of new results in inventories is made in a way so that improvements, as far as possible, better reflect Danish conditions and circumstances. This is in accordance with good practice. Furthermore, efforts are made to involve as many experts as possible in the reasoning, justification and feasibility of implementation of improvements.

In improving the inventories, care is taken to consider implementation of improvements for the whole time series of inventories to make it consistent. Such efforts lead to recalculation of previously submitted inventories. This submission includes recalculated inventories for the whole time series. The recalculations are shown in Table 9.1 below. The table shows the difference between the latest and the previous submission, i.e. a positive number indicates an increase in emission.

NO _x , kt	1985	1990	1995	2000	2005	2010	2011	2012	2013
Stationary combustion	0.00	0.03	0.04	0.02	-0.12	0.23	-0.40	-1.04	-1.44
Mobile combustion	0.68	1.13	1.15	1.18	1.83	1.20	1.14	0.83	0.58
Fugitive emissions from fuels									
Industrial processes	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Agriculture	0.01	0.00	-0.01	-0.03	0.00	0.00	-0.03	-0.02	-0.03
Waste			0.00	0.00					
Total	0.69	1.16	1.18	1.16	1.72	1.43	0.71	-0.23	-0.89
NMVOC, kt	1985	1990	1995	2000	2005	2010	2011	2012	2013
Stationary combustion	0.06	0.05	0.07	0.00	0.00	0.00	0.00	-0.06	0.01
Mobile combustion	0.01	0.01	0.03	0.02	0.00	0.01	0.00	-0.01	0.02
Fugitive emissions from fuels	0.18	-0.58	-0.58	-0.58	-0.50	0.00	0.00	0.00	0.00
Industrial processes	0.09	-0.13	0.05	-0.21	-0.42	-0.28	-0.68	-0.70	0.14
Agriculture	-0.01	0.00	-0.14	-0.31	-0.08	-0.08	-0.14	-0.19	-0.26
Waste			0.00	0.00					
Total	0.33	-0.66	-0.58	-1.07	-0.99	-0.35	-0.82	-0.96	-0.10
SO ₂ , kt	1985	1990	1995	2000	2005	2010	2011	2012	2013
Stationary combustion		0.00	0.00	-0.02	0.00	0.00	-0.01	-0.32	-0.05
Mobile combustion	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.02
Fugitive emissions from fuels									
Industrial processes	3.83	0.23	0.35	0.00	0.00	0.25	-0.16	0.06	-0.60
Agriculture									0.00
Waste			0.00	0.00					
Total	3.84	0.24	0.36	0.00	0.01	0.26	-0.16	-0.24	-0.63

Table 9.1 Recalculations by selected pollutants and main sectors.

Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total TSP, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes	0.00 0.00 0.16 0.16 0.21 1985 NR NR NR NR NR NR NR NR 1985 NR	0.00 0.01 0.07 0.08 1990 NR NR NR NR NR NR NR NR NR NR NR	0.00 0.01 0.04 0.05 1995 NR NR NR NR NR NR NR NR	0.00 0.00 -0.16 -0.16 2000 -0.03 -0.07 5.87 -0.01 0.00 5.76	0.00 0.00 -0.01 0.08 0.07 2005 -0.18 -0.06 8.58 0.00 8.34	0.00 0.00 -0.25 -0.25 2010 -0.26 -0.04 -0.04 -0.00 -0.00	0.00 0.01 -0.42 -0.41 2011 -0.24 -0.04 4.53 -0.01	0.00 0.00 -0.83 -0.83 2012 -0.27 -0.03 4.94 -0.01	0.01 0.00 -0.72 -0.70 2013 -0.24 -0.02 4.49 -0.02
Fugitive emissions from fuels Industrial processes Agriculture Waste Total TSP, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PMuste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Fugitive emissions from fuels	0.05 0.16 0.21 1985 NR NR NR NR NR NR NR NR NR NR NR NR	0.01 0.07 0.08 1990 NR NR NR NR NR NR NR NR NR 1990	0.01 0.04 0.05 1995 NR NR NR NR NR NR NR NR	-0.16 -0.16 2000 -0.03 -0.07 5.87 -0.01 0.00	-0.01 0.08 0.07 2005 -0.18 -0.06 8.58 0.00	0.00 -0.25 -0.25 2010 -0.26 -0.04 7.09 0.00	0.01 -0.42 -0.41 2011 -0.24 -0.04 4.53	0.00 -0.83 -0.83 2012 -0.27 -0.03 4.94	0.00 -0.72 -0.70 2013 -0.24 -0.02 4.49
Agriculture Waste Total TSP, kt Stationary combustion Hobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM ₁₀ , kt Stationary combustion Mobile combustion Fugitive emissions from fuels	0.16 0.21 1985 NR NR NR NR NR NR NR 1985 NR	0.07 0.08 1990 NR NR NR NR NR NR NR 1990	0.04 0.05 1995 NR NR NR NR NR NR NR	-0.16 2000 -0.03 -0.07 5.87 -0.01 0.00	0.08 0.07 2005 -0.18 -0.06 8.58 0.00	-0.25 -0.25 2010 -0.26 -0.04 7.09 0.00	-0.42 -0.41 2011 -0.24 -0.04 4.53	-0.83 -0.83 2012 -0.27 -0.03 4.94	-0.72 -0.70 2013 -0.24 -0.02 4.49
Agriculture Waste Total TSP, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	0.16 0.21 1985 NR NR NR NR NR NR NR 1985 NR	0.07 0.08 1990 NR NR NR NR NR NR NR 1990	0.04 0.05 1995 NR NR NR NR NR NR NR	-0.16 2000 -0.03 -0.07 5.87 -0.01 0.00	0.08 0.07 2005 -0.18 -0.06 8.58 0.00	-0.25 -0.25 2010 -0.26 -0.04 7.09 0.00	-0.42 -0.41 2011 -0.24 -0.04 4.53	-0.83 -0.83 2012 -0.27 -0.03 4.94	-0.72 -0.70 2013 -0.24 -0.02 4.49
Waste Total TSP, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	0.21 1985 NR NR NR NR NR NR 1985 NR	0.08 1990 NR NR NR NR NR NR 1990	0.05 1995 NR NR NR NR NR NR NR	-0.16 2000 -0.03 -0.07 5.87 -0.01 0.00	0.07 2005 -0.18 -0.06 8.58 0.00	-0.25 2010 -0.26 -0.04 7.09 0.00	-0.41 2011 -0.24 -0.04 4.53	-0.83 2012 -0.27 -0.03 4.94	-0.70 2013 -0.24 -0.02 4.49
Total TSP, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	1985 NR NR NR NR NR NR 1985 NR	1990 NR NR NR NR NR NR 1990	1995 NR NR NR NR NR NR NR	2000 -0.03 -0.07 5.87 -0.01 0.00	2005 -0.18 -0.06 8.58 0.00	2010 -0.26 -0.04 7.09 0.00	2011 -0.24 -0.04 4.53	2012 -0.27 -0.03 4.94	2013 -0.24 -0.02 4.49
TSP, kt Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	1985 NR NR NR NR NR NR 1985 NR	1990 NR NR NR NR NR NR 1990	1995 NR NR NR NR NR NR NR	2000 -0.03 -0.07 5.87 -0.01 0.00	2005 -0.18 -0.06 8.58 0.00	2010 -0.26 -0.04 7.09 0.00	2011 -0.24 -0.04 4.53	2012 -0.27 -0.03 4.94	2013 -0.24 -0.02 4.49
Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR NR NR NR NR 1985 NR	NR NR NR NR NR NR 1990	NR NR NR NR NR NR NR	-0.03 -0.07 5.87 -0.01 0.00	-0.18 -0.06 8.58 0.00	-0.26 -0.04 7.09 0.00	-0.24 -0.04 4.53	-0.27 -0.03 4.94	-0.24 -0.02 4.49
Stationary combustion Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR NR NR NR NR 1985 NR	NR NR NR NR NR NR 1990	NR NR NR NR NR NR NR	-0.03 -0.07 5.87 -0.01 0.00	-0.18 -0.06 8.58 0.00	-0.26 -0.04 7.09 0.00	-0.24 -0.04 4.53	-0.27 -0.03 4.94	-0.24 -0.02 4.49
Mobile combustion Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM ₁₀ , kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR NR NR NR 1985 NR	NR NR NR NR NR 1990	NR NR NR NR NR NR	-0.07 5.87 -0.01 0.00	-0.06 8.58 0.00	-0.04 7.09 0.00	-0.04 4.53	-0.03 4.94	-0.02 4.49
Fugitive emissions from fuels Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR NR NR 1985 NR	NR NR NR NR 1990	NR NR NR NR NR	5.87 -0.01 0.00	8.58 0.00	7.09	4.53	4.94	4.49
Industrial processes Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR NR 1985 NR	NR NR NR NR 1990	NR NR NR NR	-0.01 0.00	0.00	0.00			
Agriculture Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR NR 1985 NR	NR NR NR 1990	NR NR NR	-0.01 0.00	0.00	0.00			
Waste Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR NR 1985 NR	NR NR 1990	NR NR	0.00			-0.01	-0.01	-0.02
Total PM10, kt Stationary combustion Mobile combustion Fugitive emissions from fuels	NR 1985 NR	NR 1990	NR		8.34	6 78			0.02
PM ₁₀ , kt Stationary combustion Mobile combustion Fugitive emissions from fuels	1985 NR	1990		5.76	8.34	6 78			
Stationary combustion Mobile combustion Fugitive emissions from fuels	NR					5.70	4.24	4.63	4.21
Stationary combustion Mobile combustion Fugitive emissions from fuels	NR								
Mobile combustion Fugitive emissions from fuels			1995	2000	2005	2010	2011	2012	2013
Fugitive emissions from fuels		NR	NR	-0.03	-0.17	-0.25	-0.23	-0.25	-0.21
	NR	NR	NR	-0.07	-0.06	-0.05	-0.04	-0.04	-0.03
Industrial processes	NR	NR	NR						
	NR	NR	NR	2.93	5.34	4.47	2.20	2.40	2.18
Agriculture	NR	NR	NR	-0.01	0.00	0.00	0.00	0.00	-0.02
Waste	NR	NR	NR	0.00					
Total	NR	NR	NR	2.83	5.11	4.17	1.92	2.11	1.93
PM _{2.5} , kt	1985	1990	1995	2000	2005	2010	2011	2012	2013
Stationary combustion	NR	NR	NR	-0.03	-0.20	-0.30	-0.27	-0.28	-0.24
Mobile combustion	NR	NR	NR	-0.07	-0.06	-0.05	-0.04	-0.04	-0.03
Fugitive emissions from fuels	NR	NR	NR						
Industrial processes	NR	NR	NR	0.60	1.96	1.69	0.36	0.38	0.35
Agriculture	NR	NR	NR	0.00	0.00	0.00	0.00	0.00	-0.01
Waste	NR	NR	NR	0.00					
Total	NR	NR	NR	0.49	1.70	1.35	0.05	0.06	0.08
	L							I	
CO, kt	1985	1990	1995	2000	2005	2010	2011	2012	2013
Stationary combustion	0.41	0.39	0.56	0.00	0.03	0.00	-0.01	-0.90	-0.41
Mobile combustion	-0.03	-0.10	-0.02	0.31	0.58	0.81	0.77	0.70	0.93
Fugitive emissions from fuels									
Industrial processes	0.01	0.01	0.01	0.00	-0.57	0.00	0.01	0.04	0.02
Agriculture									-0.08
Waste			0.00	0.00					
Total	0.39	0.31	0.55	0.30	0.04	0.81	0.77	-0.15	0.46
Pb, t	1985	1990	1995	2000	2005	2010	2011	2012	2013
Stationary combustion	NR	0.00	0.00	0.00	0.00	0.00	-0.01	-0.08	0.01
Mobile combustion	NR	-0.10	-0.11	-0.10	-0.21	-0.25	-0.30	-0.30	-0.29
Fugitive emissions from fuels	NR								
Industrial processes	NR	0.01	0.07	0.04	0.02	0.07	0.07	0.08	0.07
	NR								0.00
Agriculture Waste	NR		0.00	0.00					

1985	1990	1995	2000	2005	2010	2011	2012	2013
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NR								
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NR								0.00
NR		0.00	0.00					
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
1985	1990	1995	2000	2005	2010	2011	2012	2013
NR	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	0.00
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NR								
NR	0.00	0.00		-0.01	-0.01	-0.01	-0.01	-0.01
NR								0.00
NR		0.00	0.00					
NR	0.00	0.00	0.00	-0.01	-0.01	-0.01	-0.01	-0.01
1985	1990	1995	2000	2005	2010	2011	2012	2013
NR	0.00	0.04	0.00	0.00	0.00	0.00	-0.15	0.13
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NR								
NR	0.00	0.02	0.01	0.03	0.00	0.00	0.00	0.00
NR								0.00
NR		0.00	0.00					
NR	0.00	0.07	0.01	0.03	0.01	0.01	-0.15	0.14
1985	1990	1995	2000	2005	2010	2011	2012	2013
NR	0.00	0.00	0.00	0.00	0.00	0.00	-0.03	0.03
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NR								
NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NR NR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	NR NR NR NR NR NR 1985 NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR <td>NR 0.00 NR 0.00 1985 1990 NR 0.00 NR 0.00</td> <td>NR 0.00 0.00 NR 0.00 0.02 NR 0.00 0.02 NR 0.00 0.07 NR 0.00 0.07 NR 0.00 0.07 NR 0.00 0.00 NR 0.00 0.07 NR 0.00</td> <td>NR 0.00 0.00 0.00 NR 0.00<td>NR 0.00 0.00 0.00 0.00 NR 0.00 0.00 -0.01 NR NR 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00</td><td>NR 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00</td><td>NR 0.00 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00 0.00 0.00</td><td>NR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00 0.00 0.00 0.01 NR</td></td>	NR 0.00 1985 1990 NR 0.00 NR 0.00	NR 0.00 0.00 NR 0.00 0.02 NR 0.00 0.02 NR 0.00 0.07 NR 0.00 0.07 NR 0.00 0.07 NR 0.00 0.00 NR 0.00 0.07 NR 0.00	NR 0.00 0.00 0.00 NR 0.00 <td>NR 0.00 0.00 0.00 0.00 NR 0.00 0.00 -0.01 NR NR 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00</td> <td>NR 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00</td> <td>NR 0.00 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>NR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00 0.00 0.00 0.01 NR</td>	NR 0.00 0.00 0.00 0.00 NR 0.00 0.00 -0.01 NR NR 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00	NR 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00	NR 0.00 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00 0.00 0.00	NR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NR 0.00 0.00 0.00 0.00 0.00 0.00 0.01 NR

NR = Not Reported. This notation key is used for years preceding the base year of the relevant protocol. 0.00 indicates that the recalculation is between -0.0049 and 0.0049.

The reasoning for the recalculations performed is to be found in the sectoral chapters of this report. The text below focuses on recalculations, in general, and further serves as an overview and summary of the relevant text in the sectoral chapters. For sector specific planned improvements please also refer to the relevant sectoral chapters.

9.1 Energy

Improvements and updates of the Danish energy statistics are made regularly by the producer of the statistics, the Danish Energy Agency. In close cooperation with the DEA, these improvements and updates are reflected in the emission inventory for the energy sector. The Danish energy statistics have, for the most part, been aggregated to the SNAP categorisation.

The inventories are still being improved through work to increase the number of large point sources, e.g. power plants, included in the databases as individual point sources. Such an inclusion makes it possible to use plantspecific data for emissions, etc., available e.g. in annual environmental reports from the plants in question.

9.1.1 Stationary Combustion

For stationary combustion plants, the emission estimates for the years 1990-2013 have been updated according to the latest energy statistics published by the Danish Energy Agency. The update included both end use and transformation sectors as well as a source category update. The changes in the energy statistics are largest for the years 2011, 2012 and 2013.

The decreased fuel consumption and emissions from 1A1b Petroleum refining is a result of a change of methodology applied for refinery gas. Until last year the total consumption of refinery gas was based on the Danish energy statistics. However, the EU ETS data for fuel consumption reported by the two Danish refineries were not always in agreement with the energy statistics¹. Refinery gas is only applied in the two refineries. The total consumption of refinery gas is now based on the EU ETS data.

The increased emission from 1A1c Oil and gas extraction is also a result of a change of methodology. Until last year the total fuel consumption was based on the Danish energy statistics. However, the consumption of natural gas reported in the EU ETS data were not in agreement with the energy statistics. This is due to the fact that the energy statistics is based on the default NCV for natural gas applied in Denmark whereas the EU ETS data are based on fuel analysis of the natural gas applied offshore. The total consumption of natural gas in 1A1c Oil and gas extraction is now based on the EU ETS data.

9.1.2 Mobile sources

Road transport

Based on discussions with the Danish Ministry of Taxation the model principle for adjusting the calculated bottom up diesel fuel consumption to equal fuel sales has been modified. The amount of diesel fuel sold in Denmark and used abroad is allocated to trucks and coaches in a first step, based on studies on fuel price differences across borders, fuel discount for haulage contractors and fuel tanking behavior of truck and bus operators as well as private cars made by the Danish Ministry of Taxation (2015). Next, the percentage difference between the bottom-up diesel fuel consumption obtained after step one and total diesel fuel sold is used to scale fuel and emission results for all diesel vehicles regardless of vehicle category. The principle for adjusting gasoline bottom-up results according to fuel sales remains unchanged.

The amount of gasoline and diesel sold for road transport reported by the Danish Energy Agency has been slightly changed for the years 2011-2013.

Very small changes in mileage data have been made for the years 1985-2013 based on new information from DTU Transport.

The percentage emission change interval and year of largest percentage differences (low %; high %, year) for the different emission components are:

¹ Due to the use of default values for NCV in the energy statistics. The EU ETS data are based on fuel analysis.

SO₂ (-0.2 %; 0 %, 2012), NO_x (0.6 %; 3 %, 2007), NMVOC (-0.4 %; 0 %, 2012), NH₃ (-0.2 %; 0 %, 2012), TSP (-3.6 %; -1.5 %, 2011) and BC (-4.6 %; -2.0 %, 1988).

Navigation

Three new ferry routes have been included in the model as a part of national sea transport.

A few other changes have been made in relation to engine load factors for two specific ferries in 2013 and sailing time for one ferry in 2013 and error correction for two ferries that were not included in the model calculations for 2012 due to an error.

An error for the N_2O emission factor for diesel has been revealed during a model revision round. The emission factor reference is now EMEP/EEA (2013).

The following largest percentage differences (in brackets) for domestic navigation are noted for: SO₂ (0.3 %), NO_x (-1.3 %), NMVOC (1.1 %), TSP (1.0 %) and BC (1.6 %).

Fisheries

An error for the N_2O emission factor for diesel has been revealed during a model revision round. The emission factor reference is now EMEP/EEA (2013).

Fuel transferal made between fisheries and national sea transport has resulted in minor changes in fuel consumption for fisheries, due to changes in national sea transport as described above.

The following largest percentage differences (in brackets) for fisheries are noted for: SO_2 (-1.2 %), NO_x (-1.4 %), NMVOC (-1.2 %), TSP (-1.2 %) and BC (-1.2 %).

Civil aviation

The model used for calculating civil aviation emissions has been updated by including auxiliary power units (APU) as an emission source and by using airport specific aircraft taxi times provided by Eurocontrol. New emission factors for TSP, PM₁₀, PM_{2.5} and BC have also been included in the model based on Eurocontrol data (EMEP/EEA, 2013) for aircraft main engines, and APU emission data gathered from own research (Winther et al. 2015).

The following largest percentage differences (in brackets) for civil aviation are noted for: SO_2 (-5.0 %), NO_x (-8.8 %), NMVOC (5.4 %), TSP (-89 %) and BC (-88 %).

Other (Military and recreational craft)

Emission factors derived from the new road transport have caused a few emission changes from 1985-2013. The following largest percentage differences (in brackets) for military are noted for: SO_2 (0.0 %), NO_x (1.7 %), NMVOC (-0.1 %), NH3 (-0.7 %), TSP (-2.3 %) and BC (-3.8 %).

9.1.3 Fugitive emissions

Service stations (1B2a5)

The activity data has been updated for 2011-2013 according to the latest energy statistics published by the Danish Energy Agency. The recalculation has changed the NMVOC emission by 1.518 tonnes (2012) to 2.279 tonnes (2011), which correspond to ~ 0.02 % of the total fugitive NMVOC emission.

Distribution of gas (1B2b5)

Activity data have been updated for one natural gas distribution company for 2012-2013. Further, the admixing rate of atmospheric air in town gas distribution has been changed from 49 % to 50 % as detailed rates are not available for all companies and a calculation error has been corrected for one town gas company for the years 1990-2005. The recalculations have changed the NMVOC emissions by -0.8 tonnes (2013) to 701 tonnes (2002), corresponding -0.04 % and 0.08 % of the total fugitive NMVOC emission.

Flaring in gas treatment and storage facilities (1B2c)

NMVOC IEFs have been updated for the years 1990-1994 for flaring in gas treatment and storage facilities. The recalculation has increased the IEFs for NMVOC by 154 %. Compared to the total fugitive emissions the recalculation corresponds 0.02 %.

9.2 Industrial processes

9.2.1 Mineral industry

Lime production

The source of particle emission factors was changes from CEPMEIP to EMEP/EEA (2013). This resulted in recalculations for TSP and $PM_{2.5}$ (and therefore also changes for BC).

The recalculations result in decreases for TSP, $PM_{2.5}$ and BC of 20 %, 25 % and 23 % respectively for all years 2000-2013.

Glass production

Black carbon is a new pollutant from both container glass production and glass wool production this year.

The activity data for container glass production has been altered for 1998-2013. Emissions were previously calculated based total production (mass product) but this has now been changes to actual activity (known for 1997 and 2013) together with surrogate data (carbonate consumption). Where direct measured emissions are not available, increases occur due to the increased activity data, i.e. As, Cd, Cr, Ni, Se (2010-2011) and Zn (2002-2013).

The recalculations for Zn (2002-2012) are larger than for the other metals and result in both increases and decreases, this is caused by the correction of an error in the data import to the database from last year's submission.

Activity data has also increased slightly for glass wool production, resulting in minor increases where direct measured emissions are not available, i.e. NMVOC (1990-2006, 2013), CO (1985-2013), NH₃ (1985-1995, 2012-2013), TSP (2013), PM₁₀ (2013) and PM_{2.5} (2013).

NMVOC emissions from glass wool have been extrapolated back to 1985.

Quarrying and mining of minerals other than coal

This is a new category for this year's submission.

Construction and demolition

This is a new category for this year's submission.

Storage, handling and transport of mineral products

This is a new category for this year's submission.

Other mineral products

Black carbon is a new pollutant from stone wool production this year.

Minor errors were corrected for CO and NH_3 from stone wool production in 2003-2005 and 2009.

The SO_2 emission from ceramics was extrapolated back to year 1980 and PCDD/F back to year 1985.

Emissions of SO_2 from ceramics was reassessed for this year's submission and data from all available years was included in the calculation of an implied emission factor, this results in a decreased factor for brickwork (7.8 to 6.5 kg/Mg CaCO₃) and an increase for expanded clay products (30.3 to 63.3 kg/Mg CaCO₃). These emission factors are now only used for 1980-2006, after 2006 the emissions are based on actual measured SO₂ emissions.

An error in the reported unit of PCDD/F from ceramics was corrected for 1991-1999 and 2001-2003. In addition, a change in the assumption of the weight of a brick/tile from 2 kg to 2.5 kg results in an increased PCDD/F emission factor from bricks/tiles from 0.19 μ g/Mg CaCO₃ to 0.25 μ g/Mg CaCO₃. However, these recalculations only result in minor increases since rock wool production is the largest source of PCDD/F.

9.2.2 Chemical industry

For the production of nitric acid, PM_{10} and $PM_{2.5}$ emissions have increased by 25 % and 67 % respectively. The particle distributions applied in last year's submission is no longer used as it was not properly referenced. In addition, BC is new for this process in this year's submission.

An error was corrected for NH_3 from nitric acid production in 1985-1988, the emission factor had by mistake been reported as 30 g/Mg but the correct factor is 35 g/Mg (increase of 17 %).

All old environmental reports from the catalyst producer Haldor Topsøe have been reassessed, resulting in recalculations for NO_x for 1999-2013 of between -10 % (1999) and +102 % (2001) (average increase for 1999-2013 is 16 %). Particle emissions were also altered as it turns out that measured particle emissions are actually PM₁₀ and not TSP, assumptions on the particle distribution were not changed. Based on this TSP emissions from catalyst production have increased 25 %. BC is a new pollutant from this source.

 SO_2 emissions from pesticide production have been extrapolated back to 1980. Small recalculations were performed for emissions of NMVOC in 1985-1989 for pesticide production leading to minor increases.

9.2.3 Metal industry

BC is a new pollutant from the electro steelwork and NMVOC is a new pollutant for both the electro steelwork and the two rolling mills.

The smaller of the two Danish rolling mills (Duferco) has been included in this year's submission for the years 2006-2014.

Heavy metal emission factors from the larger of the rolling mills (DanSteel) have been changed from factors without proper references to implied emission factors calculated for the years where emissions are measured. This results in general decreases in emissions that are not outweighed by the addition of the second rolling mill. Due to the lack of reference and measurements, Hg is no longer reported for rolling mills.

No changes were made in the heavy metal emission factors for the electro steelwork, there are therefore no recalculations for Cu because this stems only from this source. However there is the exception of 2001 and 2005 there Cu was not previously reported in spite of activity being reported.

Changes in the activity date for iron foundries result in recalculations for As, Cd, Cr, Ni, Pb, Se and Zn. Recalculations for heavy metal emissions in years that are only influenced by iron production are between -22 % and +103 % (+9 % in average).

BC is a new pollutant from secondary aluminium production.

9.2.4 Non-energy products from fuels and solvent use

Emissions from use of spray cans have been updated. Previously only the propellant (propane and butane) was included but now, solvents are included as well as adjusted propellant amounts. The total VOC emissions from use of spray cans in Denmark is now estimated at 1788 tonnes per year, which is an increase of 454 tonnes per year. This amount is assigned to all years as no detailed consumption trend is available. The specific compounds are propane and butane as propellants and ethanol, tert-butanol, acetone, butanone, butylacetate, ethylacetate, propanol, toluene and xylene as solvents.

Statistics Denmark has made some changes for the statistical data for 2011-2013 for charcoal and fireworks. Updating the activity data for these years resulted in increases of around 1 % for BBQs and below 0.1 % for fireworks with the exception of a decrease of 6 % for fireworks in 2013.

Optimised mathematics in the calculation of cross-border shopping of tobacco has resulted in increases in the activity data for tobacco in 1980-1999 and 2011-2013. The increases amount to 224-273 Mg (1.7-2.1 %) for 1980-1999 and 26-27 Mg (0.3 %) for 2011-2013.

The emission factor for Zn from barbeques was by mistake reported as 13.9 g per Mg in 2004, this has been corrected to 1.9 g per Mg and results in a decrease of 7.8 % in Zn for this year.

9.2.5 Other production

Activity data for sugar production was reassessed and data from Statistics Denmark was chosen for the entire time series to improve consistency. Previously, production data from the company's environmental reports were used for 1996-2009. In addition, NMVOC emissions from sugar production are now reported back to 1985.

The activity data decreased for cooking fats for the entire time series due to the correction of an overestimation in last year's submission. Last year, industrial fats were included by mistake; the correction of this results in a decrease in emissions of between 5 % (1985) and 48 % (2002).

Activity data from Statistics Denmark were altered for 2011-2013 for beer, white wine, bread, cake and coffee. Bread and cake activity data have increased (+0.1 %) while the three other sources have decreased (-2 %, -9 % for white wine).

The overall recalculation for this category is a decrease in NMVOC emissions between 0.1 % (1985) and 25.8 % (2002).

9.2.6 Wood processing

Emissions from wood processing have been included in the inventory for this submission.

9.3 Agriculture

Compared with the previous NH₃, NMVOC and PM emissions inventory (submission 2015), some changes and updates have been made. These changes cause a low (up till 1 %) decrease/increase in the total NH₃, NMVOC and PM emission for all years (1985–2013).

The small changes in the emission of NH₃, NMVOC and PM are mainly due to changes in the calculation of number of produced bulls, weaners and fattening pigs. For 2012 and 2013 reduction in NH₃ emission due to ammonia reducing technology in housings are implemented and reduces the emission.

Other small changes are made due to updated data. These changes are crop area (2009 and 2013), number of poultry (2013), feed intake for poultry and fur bearing animals (2013) and changes in production cycle for hens (2011-2012) and for bulls, weaners and fattening pigs 1985-2013.

9.4 Waste

Previously emissions from the own use of biogas at biogas plants have been reported in the waste sector. This activity occurred from 1994-2004. These combustion emissions have been reallocated to the energy sector.

10 Projections

Projections of emissions are carried out by DCE at irregular time intervals. The most recent projection was made in 2013, projecting the emissions of NO_x , SO_2 , NMVOC, NH_3 , TSP, PM_{10} and $PM_{2.5}$ to 2035.

The total projected emissions for these pollutants for 2015, 2020, 2025, 2030 and 2035 are shown in the table below. For further documentation, please refer to Nielsen et al. (2013).

Tuble T0.1	T TOJECIEU CI		.010, 2020, 2	020, 2000 ui	la 2000, ton
Pollutant	2015	2020	2025	2030	2035
SO ₂	13 656	12 270	12 207	12 435	14 061
NO _x	105 244	83 006	73 265	69 251	67 095
NMVOC	73 384	68 386	65 760	65 283	64 894
NH_3	71 442	70 236	67 294	64 696	63 617
TSP	34 576	31 526	30 658	30 296	29 261
PM ₁₀	26 296	23 029	21 912	21 173	20 169
PM _{2.5}	20 218	16 734	15 411	14 371	13 340

Table 10.1 Projected emissions for 2015, 2020, 2025, 2030 and 2035, tonnes.

10.1 References

Nielsen, O.-K., Plejdrup, M., Hjelgaard, K., Nielsen, M., Winther, M., Mikkelsen, M.H., Albrektsen, R., Fauser, P., Hoffmann, L. & Gyldenkærne, S. 2013. Projection of SO₂, NOx, NMVOC, NH₃ and particle emissions - 2012-2035. Aarhus University, DCE – Danish Centre for Environment and Energy, 151 pp. Technical Report from DCE – Danish Centre for Environment and Energy No. 81. Available at: <u>http://dce2.au.dk/pub/SR81.pdf</u>

11 Adjustments

Decision 2012/3 of the Executive Body (UNECE, 2012a) decided that adjustments may be made under specific circumstances to the national emission inventories for the purpose of comparing the inventories with emission reduction commitments.

The circumstances under which an adjustment may be applied fall into three broad categories where:

- Emission source categories are identified that were not accounted for at the time when emission reduction commitments were set;
- Emission factors used to determine emissions levels for particular source categories for the year in which emissions reduction commitments are to be attained are significantly different than the emission factors applied to these categories when emission reduction commitments were set;
- The methodologies used for determining emissions from specific source categories have undergone significant changes between the time when emission reduction commitments were set and the year they are to be attained.

The supporting documentation required by Parties applying for an adjustment is set out in Decision 2012/12 (UNECE, 2012b) and is summarised below.

A Party's supporting documentation for an adjustment to its emission inventory or emission reduction commitments shall include:

- Evidence that the Party exceeds its emission reduction commitments;
- Evidence of to what extent the adjustment to the emission inventory reduces the exceedance and possibly brings the Party in compliance;
- An estimation of whether and when the reduction commitment is expected to be met based on emission projections without the adjustment, thereby using best available science;
- A full demonstration that the adjustment is consistent with one or more of the three broad categories above. Reference can be made, as appropriate, to relevant previous adjustments:
 - For new emission source categories:
 - Evidence that the new emission source category is acknowledged in scientific literature and/or the EMEP/EEA air pollutant emission inventory guidebook;
 - Evidence that this source category was not included in the relevant historic national emission inventory at the time when the emission reduction commitment was set;
 - Evidence that emissions from a new source category contribute to a Party being unable to meet its reduction commitments, supported by a detailed description of the methodology, data and emission factors used to arrive at this conclusion;
 - For significantly different emission factors used for determining emissions from specific source categories:
 - A description of the original emission factors, including a detailed description of the scientific basis upon which the emission factor was derived;

- Evidence that the original emission factors were used for determining the emission reductions at the time when they were set;
- A description of the updated emission factors, including detailed information on the scientific basis upon which the emission factor was derived;
- A comparison of emission estimates made using the original and the updated emission factors, demonstrating that the change in emission factors contributes to a Party being unable to meet its reduction commitments; and
- The rationale for deciding whether the changes in emission factors are significant;
- For significantly different methodologies used for determining emissions from specific source categories:
 - A description of the original methodology used, including detailed information on the scientific basis upon which the methodology was based;
 - Evidence that the original methodology was used for determining the emission reductions at the time when they were set;
 - A description of the updated methodology used, including a detailed description of the scientific basis or reference upon which it has been derived;
 - A comparison of emission estimates made using the original and updated methodologies demonstrating that the change in methodology contributes to a Party being unable to meet its reduction commitment; and
 - The rationale for deciding whether the change in methodology is significant;

11.1 Accepted adjustments

In the 2014 submission, Denmark applied for two adjustments related to the emission of NH₃, due to exceedance of the emission ceiling. One was related to ammonia from growing crops, which was a new emission source compared to when the emission reduction commitments were agreed. The other was related to the new NH₃ emission factors for inorganic fertilisers included in the 2013 EMEP/EEA Guidebook. The two adjustments were accepted during the technical review and approved by the EMEP Steering Body.

In the 2015 submission, Denmark applied for an adjustment to the emission of NMVOC, due to exceedance of the emission ceiling. The adjustment was related to NMVOC emission from animal husbandry and manure management, which was a new emission source compared to when the emission reduction commitments were agreed, since default methodology and emission factors were not available in the EMEP/EEA Guidebook until the 2013 version. The adjustment was accepted during the technical review and approved by the EMEP Steering Body.

The details on adjustments are included below.

11.1.1 NH₃ emissions from inorganic fertilisers

The 2013 EMEP/EEA Guidebook contained updated EFs for NH₃ from the use of synthetic fertilizer. These emission factors are unlike the emission factors in the previous version of the EMEP/EEA Guidebook not temperature dependent. This means that the current emission factors are significantly higher compared to the previous emission factors.

The NH_3 emission from inorganic fertilisers (NFR category 3Da1) using both the new emission factors and the original emission factors is shown in Table 11.1 below.

	2010	2011	2012	2013	2014
NH_3 emission from inorganic fertilisers using new EFs	7.14	7.36	7.06	7.29	7.12
NH_3 emission from inorganic fertilisers using old EFs	3.47	3.94	3.77	3.54	3.39
Adjustment	-3.67	-3.42	-3.30	-3.75	-3.73

Table 11.1 Overview of the adjusted and unadjusted NH₃ emission from inorganic fertilisers, kt.

The numbers presented in Table 11.1 for 2010 to 2012 are identical to the numbers included in the expert review report (CEIP, 2014). The values for 2013 onwards are estimated using the same methodology as the methodology presented to and approved by the expert review team.

11.1.2 NH₃ from cultivated crops

NH₃ emissions from cultivated crops are acknowledged in the EMEP/EEA Guidebook, but no default emission factor is provided. Denmark uses a country specific emission factor to estimate emissions from cultivated crops as documented in Chapter 5. This source was not included in the consideration when establishing the emission ceiling neither is it included in the GAINS model.

The NH_3 emission from cultivated crops (NFR category 3De) is shown in Table 11.2 below.

		ajuoteu ming		on oun van	
	2010	2011	2012	2013	2014
NH ₃ emission from cultivated crops	5.41	5.42	5.40	5.37	5.45
Adjustment	-5.41	-5.42	-5.40	-5.37	-5.45

Table 11.2 Overview of the adjusted and unadjusted NH_3 emission from cultivated crops, kt.

The numbers presented in Table 11.2 for 2010 to 2012 are identical to the numbers included in the expert review report (CEIP, 2014). The values for 2013 onwards are estimated using the same methodology as the methodology presented to and approved by the expert review team.

11.1.3 NMVOC from animal husbandry and manure management

The 2013 EMEP/EEA Guidebook implemented a default methodology and default emission factors for NMVOC from animal husbandry and manure management.

The NMVOC emission from animal husbandry and manure management (NFR category 3B) is shown in Table 11.3 below.

Table 11.3 Overview of the adjusted and unadjusted NMVOC emission from animal husbandry and manure management, kt.

	2010	2011	2012	2013	2014
NMVOC from animal husbandry and					
manure management	35,44	35,31	35,66	35,88	35,74
Adjustment	-35,44	-35,31	-35,66	-35,88	-35,74

The numbers presented in Table 11.3 are not identical to the numbers included in the expert review report (CEIP, 2015). This is due to recalculations related to the number of animals. The recalculations for the agriculture sector are described in Chapter 5. The emissions are estimated using the same methodology as the methodology presented to and approved by the expert review team.

11.1.4 Total effect of approved adjustments

The total effect of the approved NH_3 adjustments is documented in Table 11.4 below. The emission ceiling for NH_3 for Denmark was 69 kt.

Table 11.4 Total effect of NH₃ adjustments.

	0 · · j · · · · ·				
Emission, kt	2010	2011	2012	2013	2014
Total NH ₃ adjustment	-9,08	-8,84	-8,70	-9,13	-9,18
Unadjusted NH ₃ emission	79,72	78,42	76,30	73,62	73,32
Adjusted NH ₃ emission	70,65	69,57	67,60	64,49	64,14

The total effect of the approved NMVOC adjustment is documented in Table 11.5 below. The emission ceiling for NMVOC for Denmark was 85 kt.

Table 11.5 Total effect of NMVOC adjustments.

Emission, kt	2010	2011	2012	2013	2014
Total NMVOC adjustment	-35,44	-35,31	-35,66	-35,88	-35,74
Unadjusted NMVOC emission	125,03	117,75	114,74	114,33	105,79
Adjusted NMVOC	89,60	82,45	79,08	78,46	70,05

11.2 Application for adjustment

No application for an adjustment is made in this submission.

11.3 References

CEIP, 2014: Review of the 2014 Adjustment Application by Denmark. CEIP/Adjustment RR/2014/DENMARK. 01/09/2014. Available at: http://webdab.umweltbundesamt.at/download/adjustments2014/Adjust ment_Review_Report_DENMARK_2014.pdf?cgiproxy_skip=1 (18-01-2016).

CEIP, 2015: Review of the 2015 Adjustment Application by Denmark. CEIP/Adjustment RR/2015/DENMARK. 01/09/2015. Available at: <u>http://webdab.umweltbundesamt.at/download/adjustments2015/Denmark2015-adj.pdf?cgiproxy_skip=1</u> (18-01-2016).

UNECE, 2012a: Decision 2012/3 'Adjustments under the Gothenburg Protocol to emission reduction commitments or to inventories for the purposes of comparing total national emissions with them'. Available at: <u>http://www.unece.org/fileadmin/DAM/env/documents/2013/air/ECE_</u> EB.AIR_111_Add.1_ENG_DECISION_3.pdf (18-01-2016).

UNECE, 2012b: Decision 2012/12 'Guidance for adjustments under the 1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone to emission reduction commitments or to inventories for the purposes of comparing total national emissions with them'. Available at:

http://www.unece.org/fileadmin/DAM/env/documents/2012/EB/Decisi on_2012_12.pdf (18-01-2016).

Annex 1 - Key category analysis

Due to a lack of resources a key category analysis has not been performed for this submission.

Annex 2 - Information on the energy balance

The official Danish energy balance is prepared by the Danish Energy Agency (DEA). The DEA is responsible for reporting of energy data to Eurostat and the IEA. DCE uses the energy balance as published by the DEA. However, some reallocations between sectors are made in connection with the bottom-up modelling done at DCE for different subsectors within transport and mobile sources. For a more in-depth discussion of the energy statistics please see Annex 3A-9. For information on the reallocation of fuels please see Chapter 3.3.

Annex 3A - Stationary combustion

Annex 3A-1:	Correspondence list for SNAP/NFR	
Annex 3A-2:	Fuel rate	
Annex 3A-3:	Default Lower Calorific Value (LCV) of fuels and fuel correspondance list	
Annex 3A-4:	Emission factors	
Annex 3A-5:	Implied emission factors for power plants and municipal waste incineration plants	
Annex 3A-6:	Large point sources	
Annex 3A-7:	Uncertainty estimates	
Annex 3A-8:	Emission inventory 2014 based on SNAP sectors	
Annex 3A-9:	Description of the Danish energy statistics	
Annex 3A-10:	Time-series 1980/1985 - 2014	
Annex 3A-11:	QA/QC for stationary combustion	

Annex 3A-1 Correspondence list for SNAP/CRF

Table 3A-1.1 Correspondence list for stationary combustion SNAP/NFR.

	snap_name		nfr_name
010100	Public power	1A1a	Public electricity and heat production
010101	Combustion plants >= 300 MW (boilers)	1A1a	Public electricity and heat production
010102	Combustion plants >= 50 and < 300 MW (boilers)	1A1a	Public electricity and heat production
010103	Combustion plants < 50 MW (boilers)	1A1a	Public electricity and heat production
10104	Gas turbines	1A1a	Public electricity and heat production
010105	Stationary engines	1A1a	Public electricity and heat production
10200	District heating plants	1A1a	Public electricity and heat production
010201	Combustion plants >= 300 MW (boilers)	1A1a	Public electricity and heat production
010202	Combustion plants >= 50 and < 300 MW (boilers)	1A1a	Public electricity and heat production
010202		1A1a	Public electricity and heat production
	Combustion plants < 50 MW (boilers)		
010204	Gas turbines	1A1a	Public electricity and heat production
010205	Stationary engines	1A1a	Public electricity and heat production
010300	Petroleum refining plants	1A1b	Petroleum refining
010301	Combustion plants >= 300 MW (boilers)	1A1b	Petroleum refining
10302	Combustion plants >= 50 and < 300 MW (boilers)	1A1b	Petroleum refining
)10303	Combustion plants < 50 MW (boilers)	1A1b	Petroleum refining
010304	Gas turbines	1A1b	Petroleum refining
10305	Stationary engines	1A1b	Petroleum refining
10306	Process furnaces	1A1b	Petroleum refining
10300	Solid fuel transformation plants	1A1c	Oil and gas extraction
10401	Combustion plants >= 300 MW (boilers)	1A1c	Oil and gas extraction
			0
10402	Combustion plants >= 50 and < 300 MW (boilers)	1A1c	Oil and gas extraction
10403	Combustion plants < 50 MW (boilers)	1A1c	Oil and gas extraction
10404	Gas turbines	1A1c	Oil and gas extraction
10405	Stationary engines	1A1c	Oil and gas extraction
10406	Coke oven furnaces	1A1c	Oil and gas extraction
10407	Other (coal gasification, liquefaction)	1A1c	Oil and gas extraction
10500	Coal mining, oil / gas extraction, pipeline compressors	1A1c	Oil and gas extraction
10501	Combustion plants >= 300 MW (boilers)	1A1c	Oil and gas extraction
10502	Combustion plants >= 50 and < 300 MW (boilers)	1A1c	Oil and gas extraction
10503	Combustion plants < 50 MW (boilers)	1A1c	Oil and gas extraction
	Gas turbines	1A1c	
10504			Oil and gas extraction
10505	Stationary engines	1A1c	Oil and gas extraction
10506	Pipeline compressors	1A3e i	Pipeline transport
020100	Commercial and institutional plants	1A4a i	Commercial/institutional: Stationary
020101	Combustion plants >= 300 MW (boilers)	1A4a i	Commercial/institutional: Stationary
)20102	Combustion plants >= 50 and < 300 MW (boilers)	1A4a i	Commercial/institutional: Stationary
020103	Combustion plants < 50 MW (boilers)	1A4a i	Commercial/institutional: Stationary
020104	Stationary gas turbines	1A4a i	Commercial/institutional: Stationary
020105	Stationary engines	1A4a i	Commercial/institutional: Stationary
20106	Other stationary equipments	1A4a i	Commercial/institutional: Stationary
20200			
	Residential plants	1A4b i 1A4b i	Residential: Stationary
20201	Combustion plants >= 50 MW (boilers)	1A4bi	Residential: Stationary
20202	Combustion plants < 50 MW (boilers)	1A4b i	Residential: Stationary
20203	Gas turbines	1A4b i	Residential: Stationary
20204	Stationary engines	1A4b i	Residential: Stationary
20205	Other equipments (stoves, fireplaces, cooking)	1A4b i	Residential: Stationary
20300	Plants in agriculture, forestry and aquaculture	1A4c i	Agriculture/Forestry/Fishing: Stationary
20301	Combustion plants >= 50 MW (boilers)	1A4c i	Agriculture/Forestry/Fishing: Stationary
20302	Combustion plants < 50 MW (boilers)	1A4c i	Agriculture/Forestry/Fishing: Stationary
20303	Stationary gas turbines	1A4c i	Agriculture/Forestry/Fishing: Stationary
20303	Stationary engines	1A4c i	Agriculture/Forestry/Fishing: Stationary
20305	Other stationary equipments	1A4ci	Agriculture/Forestry/Fishing: Stationary
30100	Comb. in boilers, gas turbines and stationary	1A2g viii	Other manufacturing industry
30101	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
30102	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
30103	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
30104	Gas turbines	1A2g viii	Other manufacturing industry
30105	Stationary engines	1A2g viii	Other manufacturing industry
30106	Other stationary equipments	1A2g viii	Other manufacturing industry
30200	Process furnaces without contact (a)	1A2g viii	Other manufacturing industry
30203	Blast furnace cowpers	1A2g viii 1A2a	Iron and steel
130304	Plaster furnaces	1A2g viii	Other manufacturing industry
030204	Other furnesses		
030205	Other furnaces	1A2g viii	Other manufacturing industry
)30204)30205)30400)30401	Other furnaces Iron and Steel Combustion plants >= 300 MW (boilers)	1A2g vili 1A2a 1A2a	Iron and steel Iron and steel

snap_id	snap_name	nfr_id_EA	nfr. name
030403	Combustion plants < 50 MW (boilers)	1A2a	Iron and steel
030403	Gas turbines	1A2a	Iron and steel
030404	Stationary engines	1A2a	Iron and steel
030405	Other stationary equipments	1A2a	Iron and steel
030500	Non-Ferrous Metals	1A2b	Non-ferrous metals
030500	Combustion plants >= 300 MW (boilers)	1A2b	Non-ferrous metals
030502	Combustion plants >= 50 and < 300 MW (boilers)	1A2b	Non-ferrous metals
030502	Combustion plants < 50 MW (boilers)	1A2b	Non-ferrous metals
030504	Gas turbines	1A2b	Non-ferrous metals
030505	Stationary engines	1A2b	Non-ferrous metals
030506	Other stationary equipments	1A2b	Non-ferrous metals
030600	Chemical and Petrochemical	1A2c	Chemicals
030601	Combustion plants >= 300 MW (boilers)	1A2c	Chemicals
030602	Combustion plants >= 50 and < 300 MW (boilers)	1A2c	Chemicals
030603	Combustion plants < 50 MW (boilers)	1A2c	Chemicals
030604	Gas turbines	1A2c	Chemicals
030605	Stationary engines	1A2c	Chemicals
030606	Other stationary equipments	1A2c	Chemicals
030700	Non-Metallic Minerals	1A2f	Non-metallic minerals
030701	Combustion plants >= 300 MW (boilers)	1A2f	Non-metallic minerals
030702	Combustion plants >= 50 and < 300 MW (boilers)	1A2f	Non-metallic minerals
030703	Combustion plants < 50 MW (boilers)	1A2f	Non-metallic minerals
030704	Gas turbines	1A2f	Non-metallic minerals
030705	Stationary engines	1A2f	Non-metallic minerals
030706	Other stationary equipments	1A2f	Non-metallic minerals
030800	Mining and Quarrying	1A2g viii	Other manufacturing industry
030801	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
030802	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
030803	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
030804	Gas turbines	1A2g viii	Other manufacturing industry
030805	Stationary engines	1A2g viii	Other manufacturing industry
030806	Other stationary equipments	1A2g viii	Other manufacturing industry
030900	Food and Tobacco	1A2e	Food processing, beverages and tobacco
030901	Combustion plants >= 300 MW (boilers)	1A2e	Food processing, beverages and tobacco
030902	Combustion plants >= 50 and < 300 MW (boilers)	1A2e	Food processing, beverages and tobacco
030903	Combustion plants < 50 MW (boilers)	1A2e	Food processing, beverages and tobacco
030904	Gas turbines	1A2e	Food processing, beverages and tobacco
030905	Stationary engines	1A2e	Food processing, beverages and tobacco
030906	Other stationary equipments	1A2e	Food processing, beverages and tobacco
031000	Textile and Leather	1A2g viii	Other manufacturing industry
031001	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031002	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031003	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031004	Gas turbines	1A2g viii	Other manufacturing industry
031005	Stationary engines	1A2g viii	Other manufacturing industry
031006	Other stationary equipments	1A2g viii	Other manufacturing industry
031100	Paper, Pulp and Print	1A2d	Pulp, Paper and Print
031101	Combustion plants >= 300 MW (boilers)	1A2d	Pulp, Paper and Print
031102	Combustion plants >= 50 and < 300 MW (boilers)	1A2d	Pulp, Paper and Print
031103	Combustion plants < 50 MW (boilers)	1A2d	Pulp, Paper and Print
031104	Gas turbines	1A2d	Pulp, Paper and Print
031105	Stationary engines	1A2d	Pulp, Paper and Print
031106	Other stationary equipments	1A2d 1A2g viii	Pulp, Paper and Print
031200	Transport Equipment		Other manufacturing industry
031201 031202	Combustion plants >= 300 MW (boilers) Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii 1A2g viii	Other manufacturing industry Other manufacturing industry
031202	Combustion plants < 50 MW (boilers)	1A2g viii 1A2g viii	Other manufacturing industry
031203	Gas turbines	1A2g viii 1A2g viii	Other manufacturing industry
031204	Stationary engines	1A2g viii	Other manufacturing industry
031205	Other stationary equipments	1A2g viii	Other manufacturing industry
031200	Machinery	1A2g viii	Other manufacturing industry
031300	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031302	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031303	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031304	Gas turbines	1A2g viii	Other manufacturing industry
031305	Stationary engines	1A2g viii	Other manufacturing industry
031306	Other stationary equipments	1A2g viii	Other manufacturing industry
031400	Wood and Wood Products	1A2g viii	Other manufacturing industry
031401	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
		J	· · · · · · · · · · · · · · · · · · ·

snap_id	snap_name	nfr_id_EA	nfr_name
031402	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031403	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031404	Gas turbines	1A2g viii	Other manufacturing industry
031405	Stationary engines	1A2g viii	Other manufacturing industry
031406	Other stationary equipments	1A2g viii	Other manufacturing industry
031500	Construction	1A2g viii	Other manufacturing industry
031501	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
031502	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
031503	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
031504	Gas turbines	1A2g viii	Other manufacturing industry
031505	Stationary engines	1A2g viii	Other manufacturing industry
031506	Other stationary equipments	1A2g viii	Other manufacturing industry
031600	Cement production	1A2f	Non-metallic minerals
031601	Combustion plants >= 300 MW (boilers)	1A2f	Non-metallic minerals
031602	Combustion plants >= 50 and < 300 MW (boilers)	1A2f	Non-metallic minerals
031603	Combustion plants < 50 MW (boilers)	1A2f	Non-metallic minerals
031604	Gas turbines	1A2f	Non-metallic minerals
031605	Stationary engines	1A2f	Non-metallic minerals
031606	Other stationary equipments	1A2f	Non-metallic minerals
032000	Non-specified (Industry)	1A2g viii	Other manufacturing industry
032001	Combustion plants >= 300 MW (boilers)	1A2g viii	Other manufacturing industry
032002	Combustion plants >= 50 and < 300 MW (boilers)	1A2g viii	Other manufacturing industry
032003	Combustion plants < 50 MW (boilers)	1A2g viii	Other manufacturing industry
032004	Gas turbines	1A2g viii	Other manufacturing industry
032005	Stationary engines	1A2g viii	Other manufacturing industry
032006	Other stationary equipments	1A2g viii	Other manufacturing industry

		sumption rate of station		buotion	plants	1330-20	714, PJ.					
Sum of Fuel_rate_PJ			Year									
fuel_type	fuel id	fuel_gr_abbr	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
SOLID	101A	ANODIC CARBON	1330	1331	1332	1335	1334	1333	1330	1331	1330	1333
OOLID	101A	COAL	253.4	344.3	286.8	300.8	323.4	270.3	371.9	276.3	234.3	196.5
	102A	SUB-BITUMINOUS	200.4	044.0	200.0	000.0	525.4	270.5	571.5	210.0	204.0	100.0
	106A	BROWN COAL BRI.	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0
	107A	COKE OVEN COKE	1.3	1.4	1.2	1.2	1.2	1.3	1.2	1.3	1.3	1.4
LIQUID	110A	PETROLEUM COKE	4.5	4.4	4.3	5.7	7.5	5.3	5.9	6.0	5.3	6.8
	203A	RESIDUAL OIL	32.1	38.3	38.5	32.8	46.2	33.0	37.8	26.6	30.0	23.7
	204A	GAS OIL	61.4	64.9	56.0	62.0	53.9	53.6	58.0	51.0	48.4	47.4
	206A	KEROSENE	5.1	1.0	0.8	0.8	0.7	0.6	0.5	0.4	0.4	0.3
	225A	ORIMULSION						19.9	36.8	40.5	32.6	34.2
	303A	LPG	3.0	2.7	2.4	2.5	2.6	2.7	3.0	2.6	2.8	2.5
	308A	REFINERY GAS	14.2	14.5	14.9	15.4	16.4	20.8	21.4	16.9	15.2	15.7
GAS	301A	NATURAL GAS	76.1	86.1	90.5	102.5	114.6	132.7	156.3	164.5	178.7	187.9
WASTE	114A	WASTE	15.5	16.7	17.8	19.4	20.3	22.9	25.0	26.8	26.6	29.1
	115A	INDUSTR. WASTES										
BIOMASS	111A	WOOD	18.2	20.0	21.0	22.2	21.9	21.8	23.4	23.4	22.9	24.4
	117A	STRAW	12.5	13.3	13.9	13.4	12.7	13.1	13.5	13.9	13.9	13.7
	215A	BIO OIL	0.7	0.7	0.7	0.8	0.2	0.3	0.1	0.0	0.0	0.0
	309A	BIOGAS	0.8	0.9	0.9	1.1	1.3	1.8	2.0	2.4	2.7	2.7
	310A	BIO GASIF GAS					0.1	0.0	0.0	0.0	0.0	0.0
	315A	BIONATGAS										
Total	315A	BIONATGAS	498.9	609.6	549.9	580.6	623.0	600.2	756.7	652.6	615.2	586.4
Total	315A	BIONATGAS	498.9	609.6	549.9	580.6	623.0	600.2	756.7	652.6	615.2	586.4
Sum of	315A	BIONATGAS	498.9 Year	609.6	549.9	580.6	623.0	600.2	756.7	652.6	615.2	586.4
Sum of Fuel_rate_PJ			Year									
Sum of Fuel_rate_PJ fuel_type	fuel_id	fuel_gr_abbr		609.6 2001	549.9 2002	580.6 2003	623.0 2004	600.2 2005	756.7 2006	652.6 2007	615.2 2008	2009
Sum of Fuel_rate_PJ	fuel_id 101A	fuel_gr_abbr ANODIC CARBON	Year 2000	2001	2002	2003	2004	2005	2006	2007	2008	2009 0.0
Sum of Fuel_rate_PJ fuel_type	fuel_id 101A 102A	fuel_gr_abbr ANODIC CARBON COAL	Year									2009 0.0
Sum of Fuel_rate_PJ fuel_type	fuel_id 101A 102A 103A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS	Year 2000 164.7	2001 174.3	2002 174.7	2003 239.0	2004	2005	2006	2007	2008 170.5	2009 0.0 167.7
Sum of Fuel_rate_PJ fuel_type	fuel_id 101A 102A 103A 106A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI.	Year 2000 164.7 0.0	2001 174.3 0.0	2002 174.7 0.0	2003 239.0 0.0	2004 182.5	2005 154.0	2006 232.0	2007 194.1	2008 170.5	2009 0.0 167.7 0.0
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE	Year 2000 164.7 0.0 1.2	2001 174.3 0.0 1.1	2002 174.7 0.0 1.1	2003 239.0 0.0 1.0	2004 182.5	2005 154.0 1.0	2006 232.0 1.0	2007 194.1 1.1	2008 170.5 0.0 1.0	2009 0.0 167.7 0.0 0.8
Sum of Fuel_rate_PJ fuel_type	fuel_id 101A 102A 103A 106A 107A 110A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE	Year 2000 164.7 0.0 1.2 6.8	2001 174.3 0.0 1.1 7.8	2002 174.7 0.0 1.1 7.8	2003 239.0 0.0 1.0 8.0	2004 182.5 1.1 8.4	2005 154.0 1.0 8.1	2006 232.0 1.0 8.5	2007 194.1 1.1 9.2	2008 170.5 0.0 1.0 6.9	2009 0.0 167.7 0.0 0.8 5.9
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 110A 203A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL	Year 2000 164.7 0.0 1.2 6.8 18.8	2001 174.3 0.0 1.1 7.8 21.1	2002 174.7 0.0 1.1 7.8 26.2	2003 239.0 0.0 1.0 8.0 28.6	2004 182.5 1.1 8.4 24.5	2005 154.0 1.0 8.1 21.9	2006 232.0 1.0 8.5 26.1	2007 194.1 1.1 9.2 19.8	2008 170.5 0.0 1.0 6.9 15.8	2009 0.0 167.7 0.0 0.8 5.9 14.7
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 110A 203A 204A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2	2001 174.3 0.0 1.1 7.8 21.1 43.6	2002 174.7 0.0 1.1 7.8 26.2 38.6	2003 239.0 0.0 1.0 8.0 28.6 38.8	2004 182.5 1.1 8.4 24.5 35.7	2005 154.0 1.0 8.1 21.9 31.5	2006 232.0 1.0 8.5 26.1 26.4	2007 194.1 1.1 9.2 19.8 21.6	2008 170.5 0.0 1.0 6.9 15.8 21.2	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 110A 203A 204A 206A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3	2004 182.5 1.1 8.4 24.5 35.7 0.2	2005 154.0 1.0 8.1 21.9	2006 232.0 1.0 8.5 26.1	2007 194.1 1.1 9.2 19.8	2008 170.5 0.0 1.0 6.9 15.8	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 110A 203A 204A 206A 225A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0	2005 154.0 1.0 8.1 21.9 31.5 0.3	2006 232.0 1.0 8.5 26.1 26.4 0.2	2007 194.1 1.1 9.2 19.8 21.6 0.1	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 110A 203A 204A 206A 225A 303A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0	2003 239.0 0.0 1.0 28.6 38.8 0.3 1.9 2.1	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 110A 203A 206A 225A 303A 308A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2	2003 239.0 0.0 1.0 28.6 38.8 0.3 1.9 2.1 16.6	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 15.9	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID	fuel_id 101A 102A 103A 106A 107A 110A 203A 204A 206A 225A 303A 308A 301A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6	2003 239.0 0.0 1.0 28.6 38.8 0.3 1.9 2.1 16.6 195.9	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 15.9 195.1	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 1.7 14.1 173.0	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 1.5.0 165.7
Sum of Fuel_rate_PJ fuel_type SOLID	fuel_id 101A 102A 103A 106A 107A 100A 203A 206A 225A 303A 308A 301A 114A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 16.6 195.9 35.1	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 15.9 195.1 35.3	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID GAS WASTE	fuel_id 101A 102A 103A 106A 107A 100A 203A 206A 225A 303A 308A 301A 114A 115A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE INDUSTR. WASTES	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8 0.5	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3 1.4	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3 1.9	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 16.6 195.9 35.1 1.5	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 0.0 2.2 15.9 195.1 35.3 2.0	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8 2.0	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9 1.5	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1 1.6	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6 2.0	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6 1.7
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID	fuel_id 101A 102A 103A 106A 107A 203A 204A 205A 303A 308A 301A 114A 115A 111A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE INDUSTR. WASTES WOOD	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8 0.5 27.5	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3 1.4 30.8	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3 1.9 31.6	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 16.6 195.9 35.1 1.5 38.9	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 0.0 2.2 15.9 195.1 35.3 2.0 43.9	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8 2.0 49.7	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9 1.5 52.1	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1 1.6 60.3	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6 2.0 63.6	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6 1.7 66.0
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID GAS WASTE	fuel_id 101A 102A 103A 106A 107A 203A 204A 206A 225A 303A 308A 301A 114A 115A 111A 117A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE INDUSTR. WASTES WOOD STRAW	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8 0.5 27.5 12.2	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3 1.4 30.8 13.7	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3 1.9 31.6 15.7	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 16.6 195.9 35.1 1.5 38.9 16.9	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 2.5.9 195.1 35.3 2.0 43.9 17.9	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8 2.0 49.7 18.5	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9 1.5 52.1 18.5	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1 1.6 60.3 18.8	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6 2.0 63.6 15.9	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6 1.7 66.0 17.4
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID GAS WASTE	fuel_id 101A 102A 103A 106A 107A 100A 203A 204A 206A 225A 303A 308A 301A 114A 115A 111A 117A 215A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE INDUSTR. WASTES WOOD STRAW BIO OIL	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8 0.5 27.5 12.2 0.0	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3 1.4 30.8 13.7 0.2	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3 1.9 31.6 15.7 0.1	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 1.6 195.9 35.1 1.5 38.9 16.9 0.4	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 15.9 195.1 35.3 2.0 43.9 17.9 0.6	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8 2.0 49.7 18.5 0.8	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9 1.5 52.1 18.5 1.1	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1 1.6 60.3 18.8 1.2	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6 2.0 63.6 15.9 1.8	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6 1.7 66.0 17.4 1.7
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID GAS WASTE	fuel_id 101A 102A 103A 106A 107A 203A 204A 206A 225A 303A 308A 301A 111A 117A 215A 309A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE INDUSTR. WASTES WOOD STRAW BIO OIL BIOGAS	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8 0.5 27.5 12.2 0.0 2.9	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3 1.4 30.8 13.7 0.2 3.0	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3 1.9 31.6 15.7 0.1 3.4	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 16.6 195.9 35.1 1.5 38.9 16.9 0.4 3.6	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 15.9 195.1 35.3 2.0 43.9 17.9 0.6 3.7	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8 2.0 49.7 18.5 0.8 3.8	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9 1.5 52.1 18.5 1.1 3.9	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1 1.6 60.3 18.8 1.2 3.9	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6 2.0 63.6 15.9 1.8 3.9	2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6 1.7 66.0 17.4 1.7 4.2
Sum of Fuel_rate_PJ fuel_type SOLID LIQUID GAS WASTE	fuel_id 101A 102A 103A 106A 107A 100A 203A 204A 206A 225A 303A 308A 301A 114A 115A 111A 117A 215A	fuel_gr_abbr ANODIC CARBON COAL SUB-BITUMINOUS BROWN COAL BRI. COKE OVEN COKE PETROLEUM COKE RESIDUAL OIL GAS OIL KEROSENE ORIMULSION LPG REFINERY GAS NATURAL GAS WASTE INDUSTR. WASTES WOOD STRAW BIO OIL	Year 2000 164.7 0.0 1.2 6.8 18.8 41.2 0.2 34.1 2.4 15.6 186.1 29.8 0.5 27.5 12.2 0.0	2001 174.3 0.0 1.1 7.8 21.1 43.6 0.3 30.2 2.2 15.8 193.8 31.3 1.4 30.8 13.7 0.2	2002 174.7 0.0 1.1 7.8 26.2 38.6 0.3 23.8 2.0 15.2 193.6 33.3 1.9 31.6 15.7 0.1	2003 239.0 0.0 1.0 8.0 28.6 38.8 0.3 1.9 2.1 1.6 195.9 35.1 1.5 38.9 16.9 0.4	2004 182.5 1.1 8.4 24.5 35.7 0.2 0.0 2.2 15.9 195.1 35.3 2.0 43.9 17.9 0.6	2005 154.0 1.0 8.1 21.9 31.5 0.3 2.2 15.3 187.4 35.8 2.0 49.7 18.5 0.8	2006 232.0 1.0 8.5 26.1 26.4 0.2 2.3 16.1 191.1 36.9 1.5 52.1 18.5 1.1	2007 194.1 1.1 9.2 19.8 21.6 0.1 1.9 15.9 171.0 38.1 1.6 60.3 18.8 1.2	2008 170.5 0.0 1.0 6.9 15.8 21.2 0.1 1.7 14.1 173.0 39.6 2.0 63.6 15.9 1.8	586.4 2009 0.0 167.7 0.0 0.8 5.9 14.7 24.5 0.1 1.5 15.0 165.7 37.6 1.7 66.0 17.4 1.7 4.2 0.3

Annex 3A-2 Fuel rate

Sum of	_	_	Year	_	_	_	_	
Fuel rate PJ								
fuel type	fuel id	<u>fuel gr abbr</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	
SOLID	101A	ANODIC CARBON	0.0	0.0	<u>0.0</u>	0.0		
-	102A	COAL	<u>163.0</u>	<u>135.5</u>	<u>105.6</u>	<u>135.0</u>	<u>107.0</u>	
-	<u>103A</u>	SUB-BITUMINOUS	_	<u>0.0</u>	<u>0.1</u>	<u>0.1</u>	<u>0.0</u>	
-	106A	BROWN COAL BRI.	<u>0.0</u>	<u>0.0</u>	0.0	0.0	0.0	
-	107A	COKE OVEN COKE	<u>0.7</u>	<u>0.7</u>	<u>0.6</u>	<u>0.6</u>	<u>0.6</u>	
<u>LIQUID</u>	<u>110A</u>	PETROLEUM COKE	<u>5.1</u>	<u>6.5</u>	<u>6.7</u>	<u>6.1</u>	<u>6.6</u>	
-	203A	RESIDUAL OIL	<u>13.0</u>	<u>8.0</u>	<u>7.3</u>	<u>5.7</u>	<u>4.5</u>	
_	204A	GAS OIL	23.2	<u>16.9</u>	13.0	10.6	<u>3.8</u>	
_	206A	KEROSENE	<u>0.1</u>	<u>0.0</u>	0.0	0.0	0.0	
_	225A	ORIMULSION	_	-	-	-	-	
_	303A	LPG	<u>1.5</u>	<u>1.4</u>	<u>1.5</u>	<u>1.3</u>	<u>0.9</u>	
_	308A	REFINERY GAS	14.3	<u>13.7</u>	<u>14.8</u>	<u>14.8</u>	<u>15.4</u>	
GAS	301A	NATURAL GAS	186.0	<u>157.5</u>	147.3	<u>139.5</u>	<u>119.5</u>	
WASTE	114A	WASTE	36.8	36.7	<u>35.9</u>	<u>35.7</u>	36.9	
_	115A	INDUSTR. WASTES	1.4	1.7	1.5	1.8	1.8	
BIOMASS	111A	WOOD	81.3	78.8	81.8	80.9	78.8	
	117A	STRAW	23.3	20.2	18.3	20.3	18.4	
	215A	BIO OIL	2.0	0.8	1.1	0.9	0.7	
	309A	BIOGAS	4.3	4.1	4.4	4.6	5.1	
	310A	BIO GASIF GAS	0.2	0.3	0.4	0.4	0.4	
_	315A	BIONATGAS					0.3	
Total			556.2	482.9	440.3	458.2	400.8	

Table 3A-2.2 Detailed fuel consumption data for stationary combustion plants, PJ. 1990 -2013.

This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

Annex 3A-3 Default Lower Calorific Value (LCV) of fuels and fuel correspondance list

		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Crude Oil, Average	GJ pr tonne	42.40	42.40	42.40	42.70	42.70	42.70	42.70	43.00	43.00	42.40
Crude Oil, Golf	GJ pr tonne	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80
Crude Oil, North Sea	GJ pr tonne	42.70	42.70	42.70	42.70	42.70	42.70	42.70	43.00	43.00	42.70
Refinery Feedstocks	GJ pr tonne	41.60	41.60	41.60	41.60	41.60	41.60	41.60	42.70	42.70	41.60
Refinery Gas	GJ pr tonne	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00
LPG	GJ pr tonne	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00
Naphtha (LVN)	GJ pr tonne	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50
Motor Gasoline	GJ pr tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
Aviation Gasoline	GJ pr tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
JP4	GJ pr tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
Other Kerosene	GJ pr tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
JP1	GJ pr tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
Gas/Diesel Oil	GJ pr tonne	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70
Fuel Oil	GJ pr tonne	40.40	40.40	40.40	40.40	40.40	40.40	40.70	40.65	40.65	40.40
Orimulsion	GJ pr tonne	27.60	27.60	27.60	27.60	27.60	28.13	28.02	27.72	27.84	27.60
Petroleum Coke	GJ pr tonne	31.40	31.40	31.40	31.40	31.40	31.40	31.40	31.40	31.40	31.40
Waste Oil	GJ pr tonne	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90
White Spirit	GJ pr tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
Bitumen	GJ pr tonne	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80
Lubricants	GJ pr tonne	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90
Natural Gas	GJ pr 1000 Nm ³	39.00	39.00	39.00	39.30	39.30	39.30	39.30	39.60	39.90	40.00
Town Gas	GJ pr 1000 m ³							17.00	17.00	17.00	17.00
Electricity Plant Coal	GJ pr tonne	25.30	25.40	25.80	25.20	24.50	24.50	24.70	24.96	25.00	25.00
Other Hard Coal	GJ pr tonne	26.10	26.50	26.50	26.50	26.50	26.50	26.50	26.50	26.50	26.50
Coke	GJ pr tonne	31.80	29.30	29.30	29.30	29.30	29.30	29.30	29.30	29.30	29.30
Brown Coal Briquettes	GJ pr tonne	18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30
Straw	GJ pr tonne	14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50
Wood Chips	GJ pr Cubic metre	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Wood Chips	GJ pr m ³	9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30
Firewood, Hardwood	GJ pr m ³	10.40	10.40	10.40	10.40	10.40	10.40	10.40	10.40	10.40	10.40
Firewood, Conifer	GJ pr tonne	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60
Wood Pellets	GJ pr tonne	17.50	17.50	17.50	17.50	17.50	17.50	17.50	17.50	17.50	17.50
Wood Waste	GJ pr Cubic metre	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70
Wood Waste	GJ pr 1000 m ³	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
Biogas	GJ pr tonne	0.20	0.20	0.20	0.20	0.20	0.20	0.20	23.00	23.00	23.00
Wastes	GJ pr tonne	8.20	8.20	9.00	9.40	9.40	10.00	10.50	10.50	10.50	10.50
Bioethanol	GJ pr tonne	26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70
Liquid Biofuels	GJ pr tonne	37.60	37.60	37.60	37.60	37.60	37.60	37.60	37.60	37.60	37.60
Bio Oil	GJ pr tonne	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20
		51.20	51.20	51.20	51.20	51.20	51.20	51.20	51.20	51.20	51.20

Table 3A-3.1 Time-series for calorific values of fuels (DEA 2015a).

Continued		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Crude Oil, Average	GJ pr tonne	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
Crude Oil, Golf	GJ pr tonne	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80
Crude Oil, North Sea	GJ pr tonne	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00
Refinery Feedstocks	GJ pr tonne	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70
Refinery Gas	GJ pr tonne	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00	52.00
LPG	GJ pr tonne	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00	46.00
Naphtha (LVN)	GJ pr tonne	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50	44.50
Motor Gasoline	GJ pr tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
Aviation Gasoline	GJ pr tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
JP4	GJ pr tonne	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80	43.80
Other Kerosene	GJ pr tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
JP1	GJ pr tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
Gas/Diesel Oil	GJ pr tonne	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70	42.70
Fuel Oil	GJ pr tonne	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65	40.65
Orimulsion	GJ pr tonne	27.62	27.64	27.71	27.65	27.65	27.65	27.65	27.65	27.65	27.65
Petroleum Coke	GJ pr tonne	31.40	31.40	31.40	31.40	31.40	31.40	31.40	31.40	31.40	31.40
Waste Oil	GJ pr tonne	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90
White Spirit	GJ pr tonne	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50	43.50
Bitumen	GJ pr tonne	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80	39.80
Lubricants	GJ pr tonne	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90	41.90
Natural Gas	GJ pr 1000 Nm ³	40.15	39.99	40.06	39.94	39.77	39.67	39.54	39.59	39.48	39.46
Town Gas	GJ pr 1000 m ³	17.01	16.88	17.39	16.88	17.58	17.51	17.20	17.14	15.50	21.29
Electricity Plant Coal	GJ pr tonne	24.80	24.90	25.15	24.73	24.60	24.40	24.80	24.40	24.30	24.60
Other Hard Coal	GJ pr tonne	26.50	26.50	26.50	26.50	26.50	26.50	26.50	26.50	25.81	25.13
Coke	GJ pr tonne	29.30	29.30	29.30	29.30	29.30	29.30	29.30	29.30	29.30	29.30
Brown Coal Briquettes	GJ pr tonne	18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30	18.30
Straw	GJ pr tonne	14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50	14.50
Wood Chips	GJ pr Cubic	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Wood Chips	metre GJ pr m ³	9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30	9.30
•	GJ pr m ³					9.30	9.30				
Firewood, Hardwood	GJ pr tonne	10.40 7.60	10.40 7.60	10.40 7.60	10.40 7.60	7.60	7.60	10.40 7.60	10.40 7.60	10.40 7.60	10.40 7.60
Firewood, Conifer		17.50	17.50	17.50	17.50	17.50	17.50	17.50	17.50	17.50	7.60
Wood Pellets	GJ pr tonne										
Wood Waste	GJ pr Cubic metre	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70
Wood Waste	GJ pr 1000 m ³	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20
Biogas	GJ pr tonne	23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00
Wastes	GJ pr tonne	10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50	10.50
Bioethanol	GJ pr tonne	26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70	26.70
Liquid Biofuels	GJ pr tonne	37.60	37.60	37.60	37.60	37.60	37.60	37.60	37.60	37.50	37.50
Bio Oil	GJ pr tonne	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20	37.20

Continued		2010	2011	2012	2013	2014
Crude Oil, Average	GJ pr tonne	43.00	43.00	43.00	43.00	43.00
Crude Oil, Golf	GJ pr tonne	41.80	41.80	41.80	41.80	41.80
Crude Oil, North Sea	GJ pr tonne	43.00	43.00	43.00	43.00	43.00
Refinery Feedstocks	GJ pr tonne	42.70	42.70	42.70	42.70	42.70
Refinery Gas	GJ pr tonne	52.00	52.00	52.00	52.00	52.00
LPG	GJ pr tonne	46.00	46.00	46.00	46.00	46.00
Naphtha (LVN)	GJ pr tonne	44.50	44.50	44.50	44.50	44.50
Motor Gasoline	GJ pr tonne	43.80	43.80	43.80	43.80	43.80
Aviation Gasoline	GJ pr tonne	43.80	43.80	43.80	43.80	43.80
JP4	GJ pr tonne	43.80	43.80	43.80	43.80	43.80
Other Kerosene	GJ pr tonne	43.50	43.50	43.50	43.50	43.50
JP1	GJ pr tonne	43.50	43.50	43.50	43.50	43.50
Gas/Diesel Oil	GJ pr tonne	42.70	42.70	42.70	42.70	42.70
Fuel Oil	GJ pr tonne	40.65	40.65	40.65	40.65	40.65
Orimulsion	GJ pr tonne	27.65	27.65	27.65	27.65	27.65
Petroleum Coke	GJ pr tonne	31.40	31.40	31.40	31.40	31.40
Waste Oil	GJ pr tonne	41.90	41.90	41.90	41.90	41.90
White Spirit	GJ pr tonne	43.50	43.50	43.50	43.50	43.50
Bitumen	GJ pr tonne	39.80	39.80	39.80	39.80	39.80
Lubricants	GJ pr tonne	41.90	41.90	41.90	41.90	41.90
Natural Gas	GJ pr 1000 Nm3	39.46	39.51	39.55	38.99	39.53
Town Gas	GJ pr 1000 m3	21.35	21.37	19.30	19.31	20.10
Electricity Plant Coal	GJ pr tonne	24.44	24.38	24.23	24.49	24.70
Other Hard Coal	GJ pr tonne	24.44	24.38	24.23	24.49	24.70
Coke	GJ pr tonne	29.30	29.30	29.30	29.30	29.30
Brown Coal Briquettes	GJ pr tonne	18.30	18.30	18.30	18.30	18.30
Straw	GJ pr tonne	14.50	14.50	14.50	14.50	14.50
Wood Chips	GJ pr Cubic metre	2.80	2.80	2.80	2.80	2.80
Wood Chips	GJ pr m3	9.30	9.30	9.30	9.30	9.30
Firewood, Hardwood	GJ pr m3	10.40	10.40	10.40	10.40	10.40
Firewood, Conifer	GJ pr tonne	7.60	7.60	7.60	7.60	7.60
Wood Pellets	GJ pr tonne	17.50	17.50	17.50	17.50	17.50
Wood Waste	GJ pr Cubic metre	14.70	14.70	14.70	14.70	14.70
Wood Waste	GJ pr 1000 m3	3.20	3.20	3.20	3.20	3.20
Biogas	GJ pr tonne	23.00	23.00	23.00	23.00	23.00
Wastes	GJ pr tonne	10.50	10.50	10.50	10.60	10.60
Bioethanol	GJ pr tonne	26.70	26.70	26.70	26.70	26.70
Liquid Biofuels	GJ pr tonne	37.50	37.50	37.50	37.50	37.50
Bio Oil	GJ pr tonne	37.20	37.20	37.20	37.20	37.20

Table 3A-3.2 Fuel category correspondence list, DEA, DCE and NFR.							
Danish Energy Agency	DCE Emission database	IPCC fuel category					
Other Hard Coal	Coal	Solid					
Coke	Coke oven coke	Solid					
Electricity Plant Coal	Coal	Solid					
Brown Coal Briquettes	Brown coal briq.	Solid					
-	Anode carbon	Solid					
-	Fly ash	Solid					
Orimulsion	Orimulsion	Liquid					
Petroleum Coke	Petroleum coke	Liquid					
Fuel Oil	Residual oil	Liquid					
Waste Oil	Residual oil	Liquid					
Gas/Diesel Oil	Gas oil	Liquid					
Other Kerosene	Kerosene	Liquid					
LPG	LPG	Liquid					
Refinery Gas	Refinery gas	Liquid					
Town Gas	Natural gas	Gas					
Natural Gas	Natural gas	Gas					
Straw	Straw	Biomass					
Wood Waste	Wood and simil.	Biomass					
Wood Pellets	Wood and simil.	Biomass					
Wood Chips	Wood and simil.	Biomass					
Firewood, Hardwood & Conifer	Wood and simil.	Biomass					
Waste Combustion (biomass)	Municip. wastes	Biomass					
Bio fuels	Liquid biofuels	Biomass					
Biogas	Biogas	Biomass					
Biogas, other	Biogas	Biomass					
Biogas, landfill	Biogas	Biomass					
Biogas, sewage sludge	Biogas	Biomass					
(Wood applied in gas engines)	Biomass producer gas	Biomass					
Biogas upgraded for distribution	Bio-natural gas	Biomass					
in the natural gas grid							
Waste Combustion (fossil)	Fossil waste	Other fuel					

Annex 3A-4 Emission factors

SO₂ emission factors are discussed in Nielsen et al. (2014). The emission factors applied for 2014 are shown in Table 3A-4.1.

Fuel	Fuel	NFR	NFR_name	SNAP	SO2 emission Reference
/pe			-		factor,
					g/GJ
SOLID	ANODE CARBON	1A2g	Industry - other	032002	574 Assumed equal to coal. DCE assumption.
	COAL	1A1a	Public electricity and heat production	0101	8 DCE estimate based on data reported by plant owners to the electricity transmission company, Energinet.dk (Ener- ginet.dk, 2015)
				0102	574 DCE calculation based on DEPA (2010c), DEA (2012) an EMEP (2006)
		1A2a-g	Industry	03	574 DCE calculation based on DEPA (2010c), DEA (2012) an EMEP (2006)
		1A4b i	Residential	020200	574 DCE calculation based on DEPA (2010c), DEA (2012) an EMEP (2006)
		1A4c i	Agriculture/ Forestry	0203	574 DCE calculation based on DEPA (2010c), DEA (2012) an EMEP (2006)
	FLY ASH FOSSIL	1A1a	Public electricity and heat production	010104	10 Assumed equal to the emission factor for coal in 2010. DCE assumption.
	BROWN COAL BRI.	1A4b	Residential	0202	574 Assumed equal to coal. DCE assumption.
	COKE OVEN COKE	1A2a-g	Industry	03	574 Assumed equal to coal. DCE assumption.
		1A4b	Residential	0202	574 Assumed equal to coal. DCE assumption.
IQUID	PETROLEUM COKE	1A2a-g	Industry	03	605 DCE calculation based on DEPA (2001b), DEA (2012) ar EMEP (2006).
	RESIDUAL OIL	1A1a	Electricity and heat production	0101	100 DCE estimate based on plant specific data for 2008 and 2009.
				0102	344 DCE estimate based on EOF (2013) and DEA (2012)
		1A1b	Petroleum refining	010306	537 DCE calculation based on plant specific data for year 200
		1A2a-g	Industry	03	344 DCE estimate based on EOF (2013) and DEA (2012)
		1A4a	Commercial/ Institutional	0201	344 DCE estimate based on EOF (2013) and DEA (2012)
		1A4b	Residential	0202	344 DCE estimate based on EOF (2013) and DEA (2012)
		1A4c i	Agriculture/ Forestry	0203	344 DCE estimate based on EOF (2013) and DEA (2012)
	GAS OIL	1A1a	Public electricity and heat production	0101 0102	23 DCE estimate based on DEPA (1998), Miljø- og planlæg- ningsudvalget (1998) and DEA (2012).
		1A1b	Petroleum refining	010306	23 DCE estimate based on DEPA (1998), Miljø- og planlæg ningsudvalget (1998) and DEA (2012).
		1A1c	Oil and gas extraction	0105	23 DCE estimate based on DEPA (1998), Miljø- og planlæg- ningsudvalget (1998) and DEA (2012).
		1A2a-g	Industry	03	23 DCE estimate based on DEPA (1998), Miljø- og planlæg- ningsudvalget (1998) and DEA (2012).
		1A4a	Commercial/ Institutional	0201	23 DCE estimate based on DEPA (1998), Miljø- og planlæg- ningsudvalget (1998) and DEA (2012).
		1A4b i	Residential	0202	23 DCE estimate based on DEPA (1998), Miljø- og planlæg ningsudvalget (1998) and DEA (2012).

Fuel type	Fuel	NFR	NFR_name	SNAP	SO2 emission Reference factor, g/GJ
		1A4c	Agriculture/Forestry	0203	23 DCE estimate based on DEPA (1998), Miljø- og planlæg- ningsudvalget (1998) and DEA (2012).
	KEROSENE	1A2g	Industry - other	03	5 DCE estimate based on Tønder (2004) and Shell (2013).
		1A4a	Commercial/ Institutional	0201	5 DCE estimate based on Tønder (2004) and Shell (2013).
		1A4b i	Residential	0202	5 DCE estimate based on Tønder (2004) and Shell (2013).
		1A4c i	Agriculture/ Forestry	0203	5 DCE estimate based on Tønder (2004) and Shell (2013).
	LPG	1A1a	Public electricity and heat production	All	0.13 DCE estimate based on Augustesen (2003) and DEA (2012).
		1A2a-g	Industry	03	0.13 DCE estimate based on Augustesen (2003) and DEA (2012).
		1A4a	Commercial/ Institutional	0201	0.13 DCE estimate based on Augustesen (2003) and DEA (2012).
		1A4b i	Residential	0202	0.13 DCE estimate based on Augustesen (2003) and DEA (2012).
		1A4c i	Agriculture/ Forestry	0203	0.13 DCE estimate based on Augustesen (2003) and DEA (2012).
	REFINERY GAS	1A1b	Petroleum refining	0103	1 DCE estimate based on plant specific data for one plant, average value for 1995-2002.
GAS	NATURAL GAS	1A1a	Public electricity and heat production	0101, 0102, except engines	0.43 DCE estimate based on data from Energinet.dk (2013)
				010105 engines	
		1A1b	Petroleum refining	0103	0.43 DCE estimate based on data from Energinet.dk (2013)
		1A1c	Oil and gas extraction	0105	0.43 DCE estimate based on data from Energinet.dk (2013)
		1A2a-g	Industry	03 ex- cept	0.43 DCE estimate based on data from Energinet.dk (2013)
				engines	
		1A4a	Commercial/ Institutional	Engines 0201	0.5 Kristensen (2003) 0.43 DCE estimate based on data from Energinet.dk (2013)
		1A4a		except engines	č (<i>'</i> ,
				Engines	
		1A4b i	Residential	0202	0.43 DCE estimate based on data from Energinet.dk (2013)
				except	0 (),
				engines	
				Engines	0.5 Kristensen (2003)
		1A4c i	Agriculture/ Forestry	0203	0.43 DCE estimate based on data from Energinet.dk (2013)
			-	except	
				engines	
				Engines	
WAST	E WASTE	1A1a	Public electricity and heat production	0101	8.3 Nielsen et al. (2010a)

Fuel type	Fuel	NFR	NFR_name	SNAP	SO2 emission Reference factor, g/GJ
				0102	14 DCE estimate based on plant specific data for four plants, 2009 data.
		1A2a-g	Industry	03	14 Assumed equal to district heating plants (DCE assump- tion).
		1A4a	Commercial/ Institutional	0201	14 Assumed equal to district heating plants (DCE assump- tion).
	INDU-STRIAL WASTE	1A2g	Industry - Other	031600	14 Assumed equal to waste. DCE assumption.
BIO- MASS	WOOD	1A1a	Public electricity and heat production	0101	1.9 Nielsen et al. (2010a)
				0102	11 EEA (2013)
		1A2a-g	Industry	03	11 EEA (2013)
		1A4a	Commercial/ Institutional	0201	11 EEA (2013)
		1A4b i	Residential	0202	11 EEA (2013)
		1A4c i	Agriculture/ Forestry	0203	11 EEA (2013)
	STRAW	1A1a	Public electricity and heat production	0101	49 Nielsen et al. (2010a)
			, , , , , , , , , , , , , , , , , , , ,	0102	130 Nikolaisen et al. (1998)
		1A4b i	Residential	0202	130 Assumed equal to district heating plants. DCE assumption.
		1A4c i	Agriculture/ Forestry	0203	130 Assumed equal to district heating plants. DCE assumption.
	BIO OIL	1A1a	Public electricity and heat production	0101	0.1 DCE estimate based on Folkecenter for Vedvarende Energi (2000) and DEA (2012).
		1A2a-g	Industry	03	0.1 DCE estimate based on Folkecenter for Vedvarende Energi (2000) and DEA (2012).
		1A4b i	Residential	0202	0.1 DCE estimate based on Folkecenter for Vedvarende Energi (2000) and DEA (2012).
	BIOGAS	1A1a	Public electricity and heat production	0101, except engines	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2012).
				Engines	19.2 Nielsen & Illerup (2003)
				0102	25 DCE estimate based on Christiansen (2003), Hjort- Gregersen (1999) and DEA (2012).
		1A2a-q	Industry	03,	25 DCE estimate based on Christiansen (2003), Hjort-
		0	-	except	Gregersen (1999) and DEA (2012).
				engines	
				03,	19.2 Nielsen & Illerup (2003)
				engines	
		1A4a	Commercial/ Institutional	0201,	25 DCE estimate based on Christiansen (2003), Hjort-
				except engines	Gregersen (1999) and DEA (2012).
				020105	19.2 Nielsen & Illerup (2003)

uel	Fuel	NFR	NFR_name	SNAP	SO2 emission Reference
рe					factor,
					g/GJ
		1A4b	Residential	0202	25 DCE estimate based on Christiansen (2003), Hjort-
					Gregersen (1999) and DEA (2012).
		1A4c i	Agriculture/ Forestry	0203,	25 DCE estimate based on Christiansen (2003), Hjort-
				except	Gregersen (1999) and DEA (2012).
				engines	
				020304	19.2 Nielsen & Illerup (2003)
	BIO GASIF GAS	1A1a	Public electricity and heat production	010105	1.9 Assumed equal to wood. DCE assumption.
	BIONATGAS	1A1a	Public electricity and heat production	0101	0.43 Assumed equal to natural gas.
		1A2a-g	Industry	03	0.43 Assumed equal to natural gas.
		1A4a	Commercial/ Institutional	0201	0.43 Assumed equal to natural gas.
		1A4b	Residential	0202	0.43 Assumed equal to natural gas.
		1A4c	Agriculture/ Forestry	0203	0.43 Assumed equal to natural gas.

NO_x emission factors are discussed in Nielsen et al. (2014). The emission factors applied for 2014 are shown in Table 3A-4.2.

Fuel	Fuel	NFR	NFR_name	SNAP	NOx emission Reference
уре			-		factor,
					g/GJ
olid	ANODE CARBON	1A2g	Industry - other	032000	132 Assumed equal to coal. DCE assumption.
	COAL	1A1a	Public electricity and heat production	0101	26 DCE estimate based on Energinet.dk (2015) and EU ETS (2015)
				0102	95 DEPA (2001)
		1A2a-g	Industry	03	132 DCE estimate based on plant specific data for 2011.
				except	
				cement	
				produc-	
				tion	
		1A2f	Industry, cement production	0316	162 DCE estimate based on plant specific data for 2014.
		1A4b i	Residential	020200	95 DEPA (2001)
		1A4c i	Agriculture/ Forestry	0203	95 DEPA (2001)
	FLY ASH FOSSIL	1A1a	Public electricity and heat production	0101	30 Assumed equal to the emission factor for coal in 2010.
	BROWN COAL BRI.	1A4b	Residential	0202	95 Assumed equal to coal. DCE assumption.
	COKE OVEN COKE	1A2a-g	Industry	03	132 Assumed equal to coal. DCE assumption.
		1A4b	Residential	0202	95 Assumed equal to coal. DCE assumption.
IQUID	PETROLEUM COKE	1A2a-g	Industry	03	129 Assumed equal to residual oil. DCE assumption.
	RESIDUAL OIL	1A1a	Public electricity and heat production	0101	138 DCE estimate based on Energinet.dk (2009); Energinet.c (2010); Energinet.dk (2011): EU ETS (2009-2011)
				0102	142 DEPA (2001)
		1A1b	Petroleum refining	010306	200 IPCC (1997)
		1A2a-g	Industry	03	129 DCE estimate based on plant specific data from two plan 2011
		1A4a	Commercial/Institutional	0201	142 DEPA (2001)
		1A4b	Residential	0202	142 DEPA (2001)
		1A4c i	Agriculture/ Forestry	0203	142 DEPA (2001)
	GAS OIL	1A1a	Public electricity and heat production	010101,	114 DCE estimate based on plant specific data for 2011. Data
				010102	from Energinet.dk (2011) and EU ETS (2011).
				010103	130 DEPA (2012b), DEPA (2003b) and DEPA (1990)
				0102	
				010104	350 DCE estimate based on Eltra & Elkraft System, (2001) ar DEA (2012b)
				010105	942 Nielsen et al. (2010a)
		1A1b	Petroleum refining	010306	65 DEPA (1990)
		1A1c	Oil and gas extraction	010504	350 Assumed equal to gas turbines applied in CHP plants. Do assumption.
		1A2a-0	Industry	03	130 DEPA (2012b), DEPA (2003b) and DEPA (1990)
			······································	except	
				engines	
		1A22.0	Industry	Engines	942 Nielsen et al. (2010a)

Table 3A-4.2 NO_x emission factors and references, 2014

Fuel type	Fuel	NFR	NFR_name	SNAP	NOx emission Reference factor, g/GJ
		1A4a	Commercial/ Institutional	0201	52 DEPA (2001)
				020105	942 Nielsen et al. (2010a)
		1A4b i	Residential	0202	52 DEPA (2001a)
				Engines	942 Nielsen et al. (2010a)
		1A4c	Agriculture/Forestry	0203	52 DEPA (2001a)
			0 ,	Engines	
	KEROSENE	1A2g	Industry - other	03	50 EEA (2009)
		1A4a	Commercial/ Institutional	0201	50 EEA (2009)
		1A4b i	Residential	0202	50 EEA (2009)
		1A4c i	Agriculture/ Forestry	0203	50 EEA (2009)
	LPG	1A1a	Public electricity and heat production	All	96 IPCC (1997)
		1A2a-g	Industry	03	96 IPCC (1997)
		1A4a	Commercial/ Institutional	0201	71 IPCC (1997)
		1A4b i	Residential	0202	47 IPCC (1997)
		1A4c i	Agriculture/ Forestry	0203	71 IPCC (1997)
	REFINERY GAS	1A1b	Petroleum refining	010304	170 DCE estimate based on plant specific data for a gas turbine
					in year 2000.
				010306	94 DCE estimate based on plant specific data for year 2011.
GAS	NATURAL GAS	1A1a	Public electricity and heat production	010101, 010102	55 DEPA (2003b)
				010103	33.38 Schweitzer (2015)
				010104	48 Nielsen et al. (2010a)
				010105	135 Nielsen et al. (2010a)
				0102	33.38 Schweitzer (2015)
		1A1b	Petroleum refining	0103	33.38 Schweitzer (2015)
		1A1c	Oil and gas extraction	010504	196 Nielsen (2015d)
		1A2a-g	Industry	03	33.38 Schweitzer (2015)
				Engines	
				Turbines	
		1A2f		030700	87 DCE estimate based on plant specific data for 11 clay
					production plants, EU ETS (2011-2012); DEPA (2012)
		1A4a	Commercial/ Institutional	0201	33.38 Schweitzer (2015)
			D	Engines	135 Nielsen et al. (2010a)
		1A4b i	Residential	0202	25.6 Schweitzer (2014)
				Engines	
		1A4c i	Agriculture/ Forestry	0203	33.38 Schweitzer (2015)
		4 4 4 -	Dublic sheets is the second based over the strength	Engines	
WAST	E WASTE	1A1a	Public electricity and heat production	0101	102 Nielsen et al. (2010a)
		140-	1	0102	164 DCE estimate based on plant specific data for year 2000.
			Industry	03	164 DCE estimate based on plant specific data for district heat- ing plants in year 2000.
		1A4a	Commercial/ Institutional	0201	164 DCE estimate based on plant specific data for district heat- ing plants in year 2000.

el Fi	uel	NFR	NFR_name	SNAP	NOx emission Reference factor, g/GJ
	NDUSTRIAL VASTE	1A2f	Industry - Other	031600	164 Assumed equal to waste. DCE assumption.
	VOOD	1A1a	Public electricity and heat production	0101	81 Nielsen et al. (2010a)
				0102	90 Serup et al. (1999)
		1A2a-q	Industry	03	90 Serup et al. (1999)
		1A4a	Commercial/ Institutional	0201	90 Serup et al. (1999)
		1A4b i	Residential	0202	76.31 DCE estimate based on DEA (2015a), DEPA (2013) and EEA (2013),
		1A4c i	Agriculture/ Forestry	0203	90 Serup et al. (1999)
S	STRAW	1A1a	Public electricity and heat production	0101	125 Nielsen et al. (2010a)
				0102	90 Nikolaisen et al. (1998)
		1A4b i	Residential	0202	90 Assumed equal to district heating plants. DCE assumption
		1A4c i	Agriculture/ Forestry	0203	90 Assumed equal to district heating plants. DCE assumption
В	BIO OIL	1A1a	Public electricity and heat production	0101	249 Assumed equal to gas oil. DCE assumption. The emission factor for gas oil have been changed and the emission factor for biooil will also be changed in future inventories.
				0102	65 Assumed equal to gas oil. DCE assumption.
		1A2a-g	Industry	03	130 Assumed equal to gas oil. DCE assumption.
		-		Engines	700 Assumed equal to gas oil. DCE assumption.
		1A4b i	Residential	0202	65 Assumed equal to gas oil. DCE assumption.
В	BIOGAS	1A1a	Public electricity and heat production	0101, not engines	28 DEPA (2001a)
				Engines	202 Nielsen et al. (2010a)
				0102	28 DEPA (2001a)
		1 <u>4</u> 2a-a	Industry	03, not	28 DEPA (2001a)
		intza g	maastry	engines	
				03, engines	202 Nielsen et al. (2010a)
				030902	59 DEPA (1990); DEPA (1995)
		1A4a	Commercial/ Institutional	0201, not	28 DEPA (2001a)
				engines	
				020105	202 Nielsen et al. (2010a)
		1A4b	Residential	0202	25.6 Assumed equal to natural gas (upgraded biogas)
		1A4c i	Agriculture/ Forestry	0203, not	28 DEPA (2001a)
				engines	
_				020304	202 Nielsen et al. (2010a)
В	BIO GASIF GAS	1A1a	Public electricity and heat production	010101	96 IPCC (1997)
_				010105	173 Nielsen et al. (2010a)
В	BIONATGAS	1A1a	Public electricity and heat production	0101	55 Assumed equal to natural gas. DCE assumption.
				0102	33.38 Assumed equal to natural gas. DCE assumption.

Fuel	Fuel	NFR	NFR_name	SNAP	NOx emission Reference
type					factor,
					g/GJ
		1A2a-g	Industry	03	33.38 Assumed equal to natural gas. DCE assumption.
		1A4a	Commercial/ Institutional	0201	33.38 Assumed equal to natural gas. DCE assumption.
		1A4b	Residential	0202	25.6 Assumed equal to natural gas. DCE assumption.
		1A4c	Agriculture/ Forestry	0203	33.38 Assumed equal to natural gas. DCE assumption.

	Fuel	NFR	NFR_name	SNAP	NMVOC, Reference
e					g/GJ
DLID	ANODE CARBON	1A2g	Industry - other	0320	10 Assumed equal to coal. DCE assumption.
	COAL	1A1a	Public electricity and heat production	0101	1.2 EEA (2009)
				0102	
			Industry	03	10 EEA (2009)
		1A4c i	Agriculture/ Forestry	0203	88.8 EEA (2009)
	FLY ASH FOSSIL	1A1a	Public electricity and heat production	0101	1.2 Assumed equal to coal. DCE assumption.
	BROWN COAL BRI.	1A4b i	Residential	0202	484 EEA (2009)
	COKE OVEN COKE			03	10 EEA (2009)
		1A4b	Residential	0202	484 Assumed equal to coal. DCE assumption.
QUID	PETROLEUM COKE			03	10 Assumed equal to coal. DCE assumption.
	RESIDUAL OIL	1A1a	Public electricity and heat production	010101	0.8 Nielsen et al. (2010)
				010102	
				010103	
				010104	2.3 EEA (2009)
				010105	2.3 EEA (2009)
				010203	2.3 EEA (2009)
		1A1b	Petroleum refining	010306	2.3 EEA (2009)
		1A2a-g	Industry	03 except engines	0.8 Nielsen et al. (2010)
				Engines	10 EEA (2009)
		1A4a	Commercial/Institutional	0201	5 EEA (2009)
		1A4b	Residential	0202	15 EEA (2009)
		1A4c i	Agriculture/ Forestry	0203	5 EEA (2009)
	GAS OIL	1A1a	Public electricity and heat production	010101	0.8 EEA (2009)
				010102	
				010103	
				010104	0.2 EEA (2009)
				010105	37 EEA (2009)
				0102	0.8 EEA (2009)
		1A1b	Petroleum refining	010306	0.8 EEA (2009)
		1A1c	Oil and gas extraction	010504	0.2 EEA (2009)
		1A2a-g	Industry	03 boilers > 50 MW	5 EEA (2009)
				03 boilers < 50 MW	10 EEA (2009)
				Gas turbines	0.2 EEA (2009)
				Engines	37 EEA (2009)
		1A4a	Commercial/Institutional	0201 except engines	5 EEA (2009)
				Engines	37 EEA (2009)
		1A4b i	Residential	0202	15 EEA (2009)
		1A4c	Agriculture/Forestry	020302	5 EEA (2009)
	KEROSENE	1A2a-g		03	10 EEA (2009)
		1A4a	Commercial/ Institutional	0201	5 EEA (2009)
		1A4b i	Residential	0202	15 EEA (2009)
		1A4c i	Agriculture/ Forestry	0203	5 EEA (2009)
	LPG	1A1a	Public electricity and heat production	0101	0.8 EEA (2009)
	-			0102	

Fuel type	Fuel	NFR	NFR_name	SNAP	NMVOC, Reference a/GJ
- <u>71</u>		1A2a-q	Iron and steel	03	5 EEA (2009)
		1A4a	Commercial/Institutional	0201	5 EEA (2009)
		1A4b i	Residential	0202	10 EEA (2009)
		1A4c i	Agriculture/ Forestry	0203	5 EEA (2009)
	REFINERY GAS	1A1b	Petroleum refining	0103	1.4 Assumed equal to natural gas fuelled gas turbines. DCE assumption.
GAS	NATURAL GAS	1A1a	Public electricity and heat production	010101 010102	2 Danish Gas Technology Centre (2001).
				010103	
				010104	1.6 Nielsen et al. (2010)
				010105	92 Nielsen et al. (2010)
				0102	2 Danish Gas Technology Centre (2001).
		1A1b	Petroleum refining	0103	2 Danish Gas Technology Centre (2001).
		1A1c	Oil and gas extraction	0105	1.6 Nielsen et al. (2010)
			Industry	03 except engines and turbines	2 Danish Gas Technology Centre (2001).
				Turbines	1.6 Nielsen et al. (2010)
				Engines	92 Nielsen et al. (2010)
		1A4a	Commercial/ Institutional	0201 except engines	2 Danish Gas Technology Centre (2001).
		in tha		Engines	92 Nielsen et al. (2010)
		1A4b i	Residential	0202 except engines	4 Gruijthuijsen & Jensen (2000)
		17 (40)	Residential	Engines	92 Nielsen et al. (2010)
		144ci	Agriculture/ Forestry	0203 except engines	2 Danish Gas Technology Centre (2001).
			Agriculture/ Torestry	Engines	92 Nielsen et al. (2010)
VASTE		1A1a	Public electricity and heat production	0101	0.56 Nielsen et al. (2010)
VASIL	- WASIL	IAIa	Fublic electricity and heat production	0102	2 EEA (2009)
		1A22 a	Industry	03	2 EEA (2009)
		1A2a-y 1A4a	Commercial/ Institutional	0201	2 EEA (2009) 2 EEA (2009)
	INDISTRIAL WASTE		Industry	0316	2 EEA (2009) 2 EEA (2009)
	WOOD	1A21 1A1a	Public electricity and heat production	0101	5.1 Nielsen et al. (2010)
/ASS	WOOD	IAIa	rubic electricity and rieat production		
		440	La dura far	0102	7.3 EEA (2009)
10-			Industry	03	10 EEA (2009)
		1A4a	Commercial/ Institutional	0201	146 EEA (2009)
		1A4b i		0202	283.9 DCE estimate based on DEA (2015a), DEPA (2013) and EEA (2013),
		1A4c i	Agriculture/ Forestry	0203	146 EEA (2009)
	STRAW	1A1a	Public electricity and heat production	0101	0.78 Nielsen et al. (2010)
				0102	7.3 EEA (2009)
		1A4b i	Residential	0202	600 EEA (2009)
		1A4c i	Agriculture/ Forestry	0203	600 EEA (2009). Plants are assued equal to residential plants.
				020302	10 EEA (2009)
	BIO OIL	1A1a	Public electricity and heat production	010102	0.8 EEA (2009)
				010105	37 EEA (2009)

l	Fuel	NFR	NFR_name	SNAP	NMVOC, Reference
)					g/GJ
				0102	0.8 EEA (2009)
		1A2a-g	Industry	03, not engines	10 EEA (2009)
		-	-	Engines	37 EEA (2009)
		1A4b i	Residential	0202	15 EEA (2009)
	BIOGAS	1A1a	Public electricity and heat production	0101	2 Assumed equal to natural gas. DCE assumption.
				010105	10 Nielsen et al. (2010)
				0102	2 Assumed equal to natural gas. DCE assumption.
		1A2a-g	Industry	03 except engines	2 Assumed equal to natural gas. DCE assumption.
				Engines	10 Nielsen et al. (2010)
		1A4a	Commercial/Institutional	0201 except engines	2 Assumed equal to natural gas. DCE assumption.
				Engines	10 Nielsen et al. (2010)
		1A4b	Residential	0202	4 Assumed equal to natural gas. DCE assumption.
		1A4c i	Agriculture/ Forestry	0203 except engines	2 Assumed equal to natural gas. DCE assumption.
				Engines	10 Nielsen et al. (2010)
	BIO GASIF GAS	1A1a	Public electricity and heat production	010105	2 Nielsen et al. (2010)
				0101 except engines	0.8 Assumed equal to natural gas. DCE assumption.
	BIONATGAS	1A1a	Public electricity and heat production	0101 and 0102	2 Assumed equal to natural gas. DCE assumption.
		1A2a-g	Industry	03	2 Assumed equal to natural gas. DCE assumption.
		1A4a	Commercial/ Institutional	0201	2 Assumed equal to natural gas. DCE assumption.
		1A4b	Residential	0202	4 Assumed equal to natural gas. DCE assumption.
		1A4c	Agriculture/ Forestry	0203	2 Assumed equal to natural gas. DCE assumption.

Fuel type	Fuel	NFR	NFR_name	SNAP	CO emis- Reference sion factor g/GJ
SOLID	ANODE CARBON	1A2a-g	Industry	03	10 Assumed the same emission factor as for coal. DCE assumption.
	COAL	1A1a	Public electricity and heat production	0101 and 0102	10 Sander (2002)
		1A2a-g		03	10 Assumed equal to boilers in public electricity and heat production. DCE assumption.
		1A4c i	Agriculture/ Forestry	0203	931 EEA (2009)
	FLY ASH FOSSIL	1A1a	Public electricity and heat production	0101	10 Assumed equal to coal. DCE assumption.
	BROWN COAL BRI.		Residential	0202	2000 EEA (2009)
	COKE OVEN COKE	1A2a-g	Industry	03	10 Assumed the same emission factor as for coal. DCE assumption.
		1A4b	Residential	0202	2000 EEA (2009)
LIQUID	PETROLEUM COKE	1A2a-g	Industry	03	61 EEA (2013)
	RESIDUAL OIL	1A1a	Electricity and heat production	010101	15 Sander (2002)
				010104	
				010105	
				010102	2.8 Nielsen et al. (2010)
				010103	
				0102	30 EEA (2007)
		1A1b	Petroleum refining	010306	30 EEA (2007)
		1A2a-g	Industry	03 except engines	2.8 Nielsen et al. (2010)
				Engines	100 EEA (2009)
		1A4a	Commercial/Institutional	0201	30 EEA (2007)
		1A4b	Residential	0202	30 EEA (2007)
		1A4c i	Agriculture/ Forestry	0203	30 EEA (2007)
	GAS OIL	1A1a	Public electricity and heat production	0101 except engines	15 Sander (2002)
				Engines	130 Nielsen et al. (2010)
				0102	30 EEA (2007)
		1A1b	Petroleum refining	010306	30 EEA (2007)
		1A1c	Oil and gas extraction	0105	15 Sander (2002)
		1A2a-g	Industry	03 except gas tur- bines and engines	30 EEA (2007)
				Gas turbines	15 Sander (2002)
				Engines	130 Nielsen et al. (2010)
		1A4a	Commercial/Institutional	0201 except engines	30 EEA (2007)
				Engines	130 Nielsen et al. (2010)
		1A4b i	Residential	0202	43 EEA (2007)
		1A4c	Agriculture/Forestry	0203	30 EEA (2007)
	KEROSENE	1A2a-g	Industry	03	20 EEA (2007)
		1A4a	Commercial/ Institutional	0201	20 EEA (2007)
		1A4b i	Residential	0202	20 EEA (2007)
		1A4c i	Agriculture/ Forestry	0203	20 EEA (2007)
	LPG	1A1a	Public electricity and heat production	0101 and 0102	25 EEA (2007)
		1A2a-g	Industry	03	25 EEA (2007)

Fuel	Fuel	NFR	NFR_name	SNAP	CO emis- Reference
type					sion factor
		1A4a	Commercial/ Institutional	0201	g/GJ 25 EEA (2007)
		1A4a 1A4b i		0201	25 EEA (2007) 25 EEA (2007)
		1A401 1A4ci	Residential	0202	25 EEA (2007) 25 EEA (2007)
	REFINERY GAS	1A4C1 1A1b	Agriculture/ Forestry Petroleum refining	0203	25 EEA (2007)
		Ũ		6.2 Assumed same emission factor as for natural gas fuelled gas turbines. DCE assumption.	
GAS	NATURAL GAS	1A1a	Public electricity and heat production	010101 and 010102	15 Sander (2002)
				010103	28 DEPA (2001)
				010104	4.8 Nielsen et al. (2010)
				010105	58 Nielsen et al. (2010)
				0102	28 DEPA (2001)
		1A1b	Petroleum refining	0103	28 Assumed equal to district heating plants.
		1A1c	Oil and gas extraction	0105	4.8 Nielsen et al. (2010)
		1A2a-g	Industry	03 except gas tur-	28 DEPA (2001)
		•	•	bines and engines	
				Gas turbines	4.8 Nielsen et al. (2010)
				Engines	58 Nielsen et al. (2010)
		1A4a	Commercial/ Institutional	0201 except engines	28 DEPA (2001)
				Engines	58 Nielsen et al. (2010)
		1A4b i	Residential	0202 except engines	20 Gruijthuijsen & Jensen (2000)
				Engines	58 Nielsen et al. (2010)
		1A4c i	Agriculture/ Forestry	0203 except engines	28 DEPA (2001)
				Engines	58 Nielsen et al. (2010)
NASTE	WASTE	1A1a	Public electricity and heat production	0101	3.9 Nielsen et al. (2010)
				0102	10 DCE calculation based on annual environmental reports for Danish plants year 2000.
		1A2a-g	Industry	03	10 Assumed equal to district heating plants. DCE as-
					sumption.
		1A4a	Commercial/ Institutional	0201	10 Assumed equal to district heating plants. DCE as- sumption.
	INDISTRIAL WASTE	1A2f	Industry	0316	10 Assumed equal to waste, district heating plants. DCE assumption.
type F GAS N WASTE V WASTE V MASS	WOOD	1A1a	Public electricity and heat production	0101	90 Nielsen et al. (2010)
100				010203	240 DEPA (2001)
		1A2a-g	Industry	03	240 DEPA (2001)
		1A4a	Commercial/ Institutional	020100	240 DEPA (2001)
		1A4b i	Residential	0202	2113 DCE estimate based on DEA (2015a), DEPA (2013) and EEA (2013),
		1A4c i	Agriculture/ Forestry	020300	240 DEPA (2001)
	STRAW	1A1a	Public electricity and heat production	0101	67 Nielsen et al. (2010)
				0102	325 DEPA (2001); Nikolaisen et al (1998)
		1A4b i	Residential	0202	4000 EEA (2007); Jensen & Nielsen (1990) and Bjerrum (2002)
		1A4c i	Agriculture/ Forestry	0203	4000 EEA (2007); Jensen & Nlelsen (1990) and Bjerrum
			Agriculture/ I oreally	0203	

Fuel	NFR	NFR_name	SNAP	CO emis- Reference					
				sion factor					
				g/GJ					
				(2002)					
			020302	325 DEPA (2001); Nikolaisen et al (1998)					
BIO OIL	1A1a	Public electricity and heat production	0101 and 0102	15 Assumed same emission factor as for gas oil. DCE					
				assumption.					
	1A2a-g	Industry	03	30 Assumed same emission factor as for gas oil. DCE					
				assumption.					
	1A4b i	Residential	0202	100 Assumed same emission factor as for gas oil. DCE assumption.					
BIOGAS	1A1a	Public electricity and heat production	0101 except engines	36 DEPA (2001)					
		·····	Engines	310 Nielsen et al. (2010)					
			0102	36 DEPA (2001)					
	1A2a-g	Industry	03 except engines	36 DEPA (2001)					
	-	•	Engines	310 Nielsen et al. (2010)					
	1A4a	Commercial/ Institutional	0201 except engines	36 DEPA (2001)					
			Engines	310 Nielsen et al. (2010)					
	1A4b	Residential	0202	20 Assumed equal to natural gas. DCE assumption.					
	1A4c i	Agriculture/ Forestry	0203 except engines	36 DEPA (2001)					
			Engines	310 Nielsen et al. (2010)					
BIO GASIF GAS	1A1a	Public electricity and heat production	010105	586 Nielsen et al. (2010)					
			010101	25 -					
BIONATGAS	1A1a	Public electricity and heat production	0101	15 Assumed equal to natural gas. DCE assumption.					
			0102	28 Assumed equal to natural gas. DCE assumption.					
	1A2a-g	Industry	03	28 Assumed equal to natural gas. DCE assumption.					
	1A4a	Commercial/ Institutional	0201	28 Assumed equal to natural gas. DCE assumption.					
	1A4b i	Residential	0202	20 Assumed equal to natural gas. DCE assumption.					
	1A4c i	Agriculture/ Forestry	0203	28 Assumed equal to natural gas. DCE assumption.					

Table 3A-4.5 SO_2 emission factors time series, g per GJ for the years 1990 to 2014. This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

Table 3A-4.6 NO_x emission factors time series, g per GJ for the years 1990 to 2014. This table is available at: http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/

Table 3A-4.7 NMVOC emission factors time series, g per GJ for the years 1990 to 2014. This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.8CO emission factors time series, g per GJ for the years 1990 to 2014.This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-

<u>iir/</u>

		sion factors (in g per G				Def	DM	Def		Det
fuel_type	fuel_id	fuel_gr_abbr	nfridEA		TSP 17	Ref	PM ₁₀	Ref	PM _{2.5}	Ret
SOLID	101A	ANODIC CARBON	1A2g iii	0320	17	6	12	14	7	14 12
	102A	COAL	1A1a	0101	3	12	2.6	12	2.1	
			140 0 0	0102	6	10	6 12	10 14	5	10 14
			<u>1A2 a-g</u> 1A4c i	03 0203	<u>17</u> 17	6 6	12	14	7	14
	103A	FLY ASH FOSSIL	1A401 1A1a	0203	3	12	2.6	14	2.1	12
	105A 106A	BROWN COAL BRI.		0202	17	12	2.0	12	2.1	16
	100A 107A	COKE OVEN COKE		0202	17	16	12	16	7	16
	IUIA	CONL OVEN CONL	1A2 a-y 1A4b	0202	17	16	12	16	7	16
LIQUID	110A	PETROLEUM	1A2a-g	0202	10	9	7	9	3	
		COKE	-							
	203A	RESIDUAL OIL	1A1a	010101	3	3	3	3	2.5	
				010102	9.5	18	9.5	13	7.9	13
				010103	9.5	18	9.5	13	7.9	13
				010104	3	9	3	9	2.5	
				010105	3	9	3	9	2.5	<u> </u>
			4.6.41	0102	3	9	3	9	2.5	
			1A1b	010306	50	9	40	9	35	ę
			1A2 a-g	03	9.5	18	7.1	13	4.8	13
			1A4a	0201	14	6	10.5	13	7	13
			1A4b	0202	14	6	10.5	13	7	13
			1A4c i	0203	14	6	10.5	13	7	13
	204A	GAS OIL	1A1a	0101	5	9	5	9	5	ç
				0102	5	9	5	9	5	ç
			1A1b	010306	5	9	5	9	5	ç
			1A1c	0105	5	9	5	9	5	ç
			1A2a-g	03	5	9	5	9	5	ç
			1A4a i	0201	5	9	5	9	5	ç
			1A4b i	0202	5	9	5	9	5	ç
			1A4c i	0203	5	9	5	9	5	ç
	206A	KEROSENE	1A2 a-g	all	5	9	5	9	5	ç
			1A4a i	0201	5	9	5	9	5	
			1A4b i	0202	5	9	5	9	5	
			1A4c i	0203	5	9	5	9	5	g
	303A	LPG	1A1a	0101,	0.2	9	0.2	9	0.2	9
	000/1			0102						
			1A2 a-g	03	0.2	9	0.2	9	0.2	9
			1A4a i	0201	0.2	9	0.2	9	0.2	<u> </u>
			1A4b i	0202	0.2	9	0.2	9	0.2	
	0004		1A4c i	0203	0.2	9	0.2	9	0.2	<u> </u>
	308A	REFINERY GAS	1A1b	0103	5	9	5	9	5	ç
GAS	301A	NATURAL GAS	1A1a	0101	0.1	9	0.1	9	0.1	ç
				Gas	0.1	3	0.061	3	0.051	3
				turbines	0.70	-	0.400		0.404	
				Engines	0.76	3	0.189	3	0.161	
			4.4.41	0102	0.1	9	0.1	9	0.1	9
			1A1b	0103	0.1	9	0.1	9	0.1	ç
			1A1c	0105	0.1	3	0.061	3	0.051	9 3 3 3 3 9
			1A2a-g	Engines	0.76	3	0.189	3	0.161	3
				Turbines	0.1	3	0.061	3	0.051	3
				Other	0.1	9	0.1	9	0.1	9
			1A4a i	0201	0.1	9	0.1	9	0.1	g
				Engines	0.76	3	0.189	3	0.161	3 9 9 9 3 3 3 3 3 3
			1A4b i	0202	0.1	9	0.1	9	0.1	ç
				Engines	0.76	3	0.189	3	0.161	3
			1A4c i	0203	0.1	9	0.1	9	0.1	ç
				Engines	0.76	3	0.189	3	0.161	3
WASTE	114A	WASTE	1A1a	0101	0.29	18	0.29	3	0.29	3
			-	0102	0.29	20	0.29	3	0.29	3
			1A2 a-g	03	4.2	20	3.2	20	2.1	20
			1A4a i	0201	4.2	20	3.2	20	2.1	20
	115A		1A2f	0316	4.2	20	3.2	20	2.1	20
	4444	WASTE	4.4.4	0101	40	40	7 45	-	4.00	
BIOMASS	111A	WOOD	1A1a	0101	10	18	7.45	8	4.82	8
				0102	19	1	13	2	10	1
			1A2 a-g	03	19	1	13	2	10	1
			1A4a i	0201	143	1	143	9	135	ç
			1A4b i	0202	362	17	344	17	335	17

Table 3A-4.9 PM emission factors (in g per GJ) and references, 2014

fuel_type	fuel_id	fuel_gr_abbr	nfr_id_EA	snap_id	TSP	Ref	PM ₁₀	Ref	PM _{2.5}	Ref
	_		1A4c i	0203	143	1	143	9	135	9
	117A	STRAW	1A1a i	0101	2.3	18	1.71	3	1.11	3
				0102	21	1	15	2	12	2
			1A4b i	0202	234	4	222	5	211	2 5 5
			1A4c i	0203	234	4	222	5	211	5
				020302	21	1	15	2	12	2 15
	215A	BIO OIL	1A1a	0101	5	15	5	15	5	15
				0102	5	15	5	15	5	15
			1A2a-g	03	5	15	5	15	5	15
			1A4b i	0202	5	15	5	15	5	15
	309A	BIOGAS	1A1a	0101, not	1.5	6	1.5	7	1.5	7
				engines						
				010105	2.63	3	0.451	3	0.206	3
				0102	1.5	6	1.5	7	1.5	7
			1A2a-g	Engines	2.63	3	0.451	3	0.206	3
				Other	1.5	6	1.5	7	1.5	7
			1A4a i	0201	1.5	6	1.5	7	1.5	7
				Engines	2.63	3	0.451	3	0.206	3
			1A4b	0202	0.1	11	0.1	11	0.1	11
			1A4c i	0203	1.5	6	1.5	7	1.5	7
				Engines	2.63	3	0.451	3	0.206	3
	310A	BIO GASIF GAS	1A1a	010105	2.63	19	0.451	19	0.206	19
				010101	0.2	21	0.2	21	0.2	21
	315A	BIONATGAS	1A1a	0101 and	0.1	22	0.1	22	0.1	22
				0102						
			1A2a-g	03	0.1	22	0.1	22	0.1	22
			1A4a	0201	0.1	22	0.1	22	0.1	22
			1A4b	0202	0.1	22	0.1	22	0.1	22
			1A4c	0203	0.1	22	0.1	22	0.1	22

1. Danish legislation, Miljøstyrelsen 2001. Luftvejledningen, Begrænsning af luftforurening fra virksomheder, Vejledning fra Miljøstyrelsen nr 2 2001 (DEPA, 2001).

2. Particulate size distribution for wood and straw combustion in power plants refers to the TNO CEPMEIP emission factor database 2001 (wood). Available at: http://www.air.sk/tno/cepmeip/ (05-02-2015).

- Nielsen, M. & Illerup, J.B: 2003. Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme. Eltra PSO projekt 3141. Kortlægning af emissioner fra decentrale kraftvarmeværker. Delrapport 6. Danmarks Miljøundersøgelser. 116 s. – Faglig rapport fra DMU nr. 442.(In Danish, with an English summary). Available at: <u>http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR442.pdf</u> (05-02-2015).
- German, L., 2003. The Danish Technological Institute, Personal communication, expert judgement, rough estimate.
 Particulate size distribution for wood and straw combustion in residential plants refers to the TNO CEPMEIP emission

factor database 2001 (wood). Available at: http://www.air.sk/tno/cepmeip/ (05-02-2015).
Danish legislation. Miljøstyrelsen 1990, Bekendtgørelse 689, 15/10/1990, Bekendtgørelse om begrænsning af emissioner

af svovldioxid, kvælstofoxider og støv fra store fyringsanlæg. (and Bekendtgørelse 518/1995). (DEPA, 1990)

7. All TSP emission is assumed to be $<2.5\mu$ m (DCE assumption).

8. Estimated based on the TSP emission factor.

- 9. The TNO CEPMEIP emission factor database 2001. Available on the internet at: http://www.air.sk/tno/cepmeip/ (05-02-2015).
- 10. TNO CEPMEIP emission factor database 2001. Available at: http://www.air.sk/tno/cepmeip/ (05-02-2015).
- 11. Biogas upgraded for the town gas grid. Assumed equal to natural gas.
- Livbjerg, H. Thellefsen, M. Sander, B. Simonsen, P., Lund, C., Poulsen, K. & Fogh, C.L., 2001. Feltstudier af Forbrændingsaerosoler, EFP -98 Projekt, Aerosollaboratoriet DTU, FLS Miljø, Forskningscenter Risø, Elsam, Energi E2 (in Danish).
- 13. Particulate size distribution for residual oil combustion refers to the TNO CEPMEIP emission factor database 2001. Available at: http://www.air.sk/tno/cepmeip/ (05-02-2015).
- 14. Particulate size distribution for coal combustion refers to the TNO CEPMEIP emission factor database 2001. Available at: http://www.air.sk/tno/cepmeip/ (05-02-2015).
- 15. Assuming same emission factors as for gas oil (DCE assumption).
- 16. Same emission factor as for coal is assumed (DCE assumption).
- 17. DCE estimate based on DEA (2015a), DEPA (2013), Glasius et al. (2005), EEA (2013), Illerup et al. (2007), Nordic Swan label (2012)
- Nielsen, M., Nielsen, O.K. & Thomsen, M. 2010: Emissionskortlægning for decentral kraftvarme, Energinet.dk miljøprojekt nr. 07/1882. Delrapport 5. Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme, 2006. National Environmental Research Institute, Aarhus University.
- 19. Same emission factor as for biogas assumed (DCE assumption).
- 20. The emission factor have been estimated by DCE based on plant specific data from MSW incineration plants, district heating, 2008.
- 21. Assumed equal to LPG.
- 22. Assumed equal to natural gas.

Table 3A-4.10 TSP emission factors, time series for the years 2000 to 2014. This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

Table 3A-4.11 PM10 emission factors, time series for the years 2000 to 2014. This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

Table 3A-4.12 PM2.5 emission factors, time series for the years 2000 to 2014. This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-</u> iir/

Table 3A-4.13 BC emission factors, time series for the years 2000 to 2014. This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

fuel type	fuel_gr_abbr	<u>, , , , , , , , , , , , , , , , , , , </u>	nfr_name	snap	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn	Reference
			_		mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	mg/GJ	
SOLID	ANODE CARBON	1A2g	Industry	all	4	1.8	13.5	17.5	7.9	13	134	25	200	2
	COAL	1A1a	Public electricity and heat production	all	0.51	0.07	0.86	0.48	1.3	0.97	0.62	5.9	1.9	1
			All other	All	4	1.8	13.5	17.5	7.9	13	134	25	200	2
	FLY ASH FOSSIL		Public electricity and heat production	0101	0.51	0.07	0.86	0.48	1.3	0.97	0.62	5.9	1.9	1
	BROWN COAL BRI.		Residential	0202	2.5	1.5	11.2	22.3	5.1	12.7	130	1	220	2
	COKE OVEN COKE	1A2 a-g	Industry	all	4	1.8	13.5	17.5	7.9	13	134	25	200	2
		-	Residential	0202	2.5	1.5	11.2	22.3	5.1	12.7	130	1	220	2
LIQUID	PETROLEUM COKE	all	All	all	4.3	1.3	2.7	5.7	0.4	362	4.9	2.2	94	2
	RESIDUAL OIL		Public electricity and heat production	all	2.1	0.53	2.6	2.4	0.21	362	2.6	1.2	7.4	1
		All other	All other	all	4.3	1.3	2.7	5.7	0.4	362	4.9	2.2	94	2
	GAS OIL	-	Engines (reciprocating)	all	0.055	0.011	0.2	0.3	0.11	0.013	0.15	0.22	58	4
		-	All other	all	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	3
	KEROSENE		All	all	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	5
	LPG	All	All	all	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	2
	REFINERY GAS	1A1b	Petroleum refining	all	1.8	1.4	1.4	2.7	1.4	1.4	4.1	6.8	1.8	2
GAS	NATURAL GAS	-	Engines (reciprocating)	all	0.05	0.003	0.05	0.01	0.1	0.05	0.04	0.01	2.9	4
		-	All other	all	0.119	0.00025		0.000076	0.1	0.00051	0.0015	0.01	0.0015	7 and 2
WASTE	WASTE	-	All	all	0.59	0.44	1.56	1.3	1.79	2.06	5.52	1.11	2.33	4
	INDUSTRIAL WASTE	1A2f	Industry - Other	all	0.59	0.44	1.56	1.3	1.79	2.06	5.52	1.11	2.33	4
BIOMASS	WOOD	-	All non-residential	all	1.4	0.27	2.34	2.6	0.4	2.34	3.62	0.5	2.3	2 and 4
			Residential	all	0.19	13	23	6	0.56	2	27	0.5	512	8
	STRAW	1A1a	Public electricity and heat production	all	1.4	0.32	1.6	1.7	0.31	1.7	6.2	0.5	0.41	2 and 4
		-	Residential	0202	1	1.4	2.9	8.6	0.5	4.4	40	0.5	130	2
		1A4c i	Agriculture/ Forestry	0203	1	1.4	2.9	8.6	0.5	4.4	40	0.5	130	2
	BIO OIL	-	Engines	engines	0.055	0.011	0.2	0.3	0.11	0.013	0.15	0.22	58	5
		-	All other	-	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	5
	BIOGAS	-	All non-residential	all	0.04	0.002	0.18	0.31	0.12	0.23	0.005	0.21	3.95	4
		-	Residential	all	0.119	0.00025		0.000076	0.1	0.00051	0.0015	0.01	0.0015	9
	BIO GASIF GAS		Public electricity and heat production	010105	0.12	0.009	0.029	0.045	0.54	0.014	0.022	0.18	0.058	4
			010101	010101	0.002	0.001	0.2	0.13	0.12	0.005	0.012	0.002	0.42	5
	BIONATGAS			0.119	0.00025	0.00076	0.000076	0.1	0.00051	0.0015	0.01	0.0015	0.119	10

Table 3A-4.14 HM emission factors (mg per GJ) and references 2014.

Reference:

1. Implied emission factor 2008 estimated by DCE based on plant specific emission data for power plants.

2. EMEP/EEA Emission inventory Guidebook, 2009 update (EEA 2009).

3. CONCAWE (Denier van der Gon & Kuenen, 2009).

4. Nielsen et al. 2010.

Assumed equal to gas oil. DCE assumption.
 Assumed equal to natural gas fuelled engines.
 Gruijthuijsen (2001).

8. EEA (2013)

9. Assumed equal to natural gas (biogas upgraded for distribution in the town gas grid).

10. Assumed equal to natural gas.

Table 3A-4.15 As emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.16 Cd emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.17 Cr emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.18 Cu emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.19 Hg emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.20 Ni emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.21 Pb emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.22 Se emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.23 Zn emission factors time series, mg per GJ, for the years 1990 to 2014.

This table is available at:

http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollutioniir/

Table 3A-4.24 PAH emission factors 2014.

fuel_type		emission factors 2014. fuel_gr_abbr	nfr_id	snap_id	Benzo(a)-		Benzo(b)-		Benzo(k)-		Indeno-	
	_		_		pyrene		flouran-thene		flouran-thene		(1,2,3-c,d)-	
											pyrene	
					µg per GJ	Ref.	µg per GJ	Ref.	µg per GJ	Ref.	µg per GJ	Ref.
SOLID	102A	ANODE CARBON	1A2g	0320	23	4	929			4	698	4
		COAL	1A1a	All	0.14	4	0.29		0.20	4	0.28	4
			1A2 a-g	All	23	4	929		929	4	698	4
			1A4c i	0203	59524	4	63492		1984	4	119048	4
	103A	FLY ASH FOSSIL	1A1a	0101	0.14	4	0.29		0.29	4	0.28	4
	106A	BROWN COAL BRI.	1A4b i	0202	59524	4 (8)	63492		1984	4 (8)	119048	4 (8)
	107A	COKE OVEN COKE	1A2 a-g	all	23	4	929		929	4	698	4
			1A4b	0202	59524	4	63492		1984	4	119048	4
LIQUID	110A	PETROLEUM COKE	1A2 a-g	all	3184	5	0001		-	-	-	-
	203A	RESIDUAL OIL	1A1a	All	109.6	4	475.41		93.21	4	177.28	4
			1A1b	010306	109.6	4	475.41		93.21	4	177.28	4
			1A2 a-g	all	80	4	42		66	4	160	4
			1A4a i	all	80	4	42		66	4	160	4
			1A4b i	all	80	4	42		66	4	160	4
			1A4c i	all	80	4	42		66	4	160	4
	204A	GAS OIL	1A1a	Not engines	109.6	4	475.41	4	93.21	4	177.28	4
				Engines	1.9	7	15		1.7	7	1.5	7
			1A1b	010306	109.6	4	475.41		•••=•	4	177.28	4
			1A1c	010504	109.6	4	475.41		93.21	4	177.28	4
			1A2 a-g	Not engines	80	4	42		66	4	160	4
				Engines	1.9	7	15		1.7	7	1.5	7
			1A4a i	Not engines	80	4	42		66	4	160	4
				Engines	1.9	7	15		1.7	7	1.5	7
			1A4b i	0202	80	4	42			4	160	4
			1A4c i	0203	80	4	42		66	4	160	4
GAS	301A	NATURAL GAS	1A1a	010104	1	8		8		8	3	8
				010105	1.2	7	9		1.7	7	1.8	7
			1A1c	010504	1	8	1	8		8	3	8
			1A2 a-g	Turbines	1	8	1	8		8	3	8
				Engines	1.2	7	9	-	1.7	7	1.8	7
			1A4a i	020105	1.2	7	9		1.7	7	1.8	7
			1A4b i	020202	0.133	6	0.000			6	2.653	6
				020204	1.2	6	9	6		6	1.8	6
			1A4c i	020304	1.2	6				6	1.8	6
WASTE	114A	WASTE	1A1a	all	0.8	7	1.7		0.9	7	1.1	7
			1A4a i	0201	0.8	7	1.7		0.9	7	1.1	7
	115A	INDUSTRIAL WASTE		0316	0.8	7	1.7		0.9	7	1.1	7
BIOMASS	111A	WOOD	1A1a	0101	11	7	15		5	7	0.8	7
				0102	6.46	4	1292.52		1292.52	4	11.56	4
			1A2 a-g	all	6.46	4	1292.52		1292.52	4	11.56	4
			1A4a i	0201	168707	4	221769		10100	4	119728	4
1			1A4b i	All	44308	9	45436	9	16452	9	24688	9

fuel_type	fuel_id	fuel_gr_abbr	nfr_id	snap_id	Benzo(a)-		Benzo(b)-		Benzo(k)-		Indeno-	
					pyrene		flouran-thene		flouran-thene		(1,2,3-c,d)-	
											pyrene	
			1A4c i	all	168707	4	221769	4	73469	4	119728	4
	117A	STRAW	1A1a	0101	0.5	7	0.5	7	0.5	7	0.5	7
				0102	1529	2	3452	2	1400	2	1029	2
			1A4b i	0202	12956	2	12828	2	6912	2	4222	2
			1A4c i	0203	12956	2	12828	2	6912	2	4222	2
	215A	BIO OIL	1A1a	all	109.6	3	475.41	3	93.21	3	177.28	3
			1A2 a-g	all	80	3	42	3	66	3	160	3
			1A4b i	0202	80	3	42	3	66	3	160	3
	309A	BIOGAS	Engines	All	1.3	7	1.2	7	1.2	7	0.6	7
	310A	BIO GASIF GAS	Engines	010105	2	7	2	7	2	7	2	7

1. -

2. Same emission factors as for gas oil is assumed (DCE assumption).

3. Berdowski J.J.M., Veldt C., Baas J., Bloos J.P.J., Klein A.E. 1995, Technical Paper to the OSPARCOM-HELCOM-UNECE Emission Inventory of heavy Metals and Persistent Organic Pollutants, TNO-report, TNO-MEP – R 95/247.

4. Finstad A., Haakonsen G., Kvingedal E. & Rypdal K. 2001. Utslipp til luft av noen miljøgifter i Norge, Dokumentasjon av metode og resultater, Statistics Norway Report 2001/17 (In Norwegian).

5. Jensen, J. 2001, Danish Gas Technology centre, personal communication, e-mail 11-10-2001.

6. Nielsen, M., Nielsen, O.K. & Thomsen, M. 2010c: Emissionskortlægning for decentral kraftvarme, Energinet.dk miljøprojekt nr. 07/1882. Delrapport 5. Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme, 2006. National Environmental Research Institute, Aarhus University.

 Nielsen, M. & Illerup, J.B. 2003. Emissionsfaktorer og emissionsopgørelse for decentral kraftvarme. Eltra PSO projekt 3141. Kortlægning af emissioner fra decentrale kraftvarmeværker. Delrapport 6. Danmarks Miljøundersøgelser. 116 s. – Faglig rapport fra DMU nr. 442. (In Danish, with English summary). Available at : http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/FR442.pdf (07-02-2011).

8. Same emission factor as for coal is assumed (DCE assumption).

9. Aggregated emission factor based on the technology distribution in the sector and guidebook (EEA 2013) emission factors. Technology distribution based on: DEPA (2013)

Table 3A-4.25 PAH emission factors time series, μg pr GJ for the years 1990 to 2014.

This table is available at :

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

fuel_type	fuel_id	ion factors for PCDD/F, 2 fuel_gr_abbr	nfr_id	snap_id	PCDD/F, ng per G
SOLID	102A	ANODE CARBON	1A2g	0320	1.3
00112		COAL	1A1a	0101 and 0102	1.3
			1A2 a-g	03	1.3
			1A4ci	0203	30
	103A	FLY ASH FOSSIL	1A1a	0101	1.3
	106A	BROWN COAL BRI.	1A4b i	0202	80
	100/1 107A	COKE OVEN COKE	1A2 a-g	03	1.3
	10171		1A4c	0203	80
LIQUID	110A	PETROLEUM COKE	1A2 a-g	03	1.3
LIQUID	203A	RESIDUAL OIL	1A1a	All	0.88
	2034	RESIDUAL OIL	1A1b	010306	
			1A10 1A2 a-g	03	0.88
					0.88
			1A4a i	0201	1
			1A4b i	0202	1
		0.1.0.01	1A4c i	0203	1
	204A	GAS OIL	1A1a	Not engines	0.88
				Engines	0.9
			1A1b	010306	0.88
			1A1c	010504	0.88
			1A2 a-g	Not engines	0.88
				Engines	0.9
			1A4a i	Not engines	1
				Engines	0.9
			1A4b i	0202	1
			1A4ci	0203	1
	206A	KEROSENE	1A2a-g	03	0.88
			1A4a i	0201	1
			1A4b i	0202	1
			1A4c i	0203	1
	303A	LPG	1A1a	0101 and 0102	0.02
			1A2a-g	03	0.02
			1A4a i	0201	
			1A4b i	0202	
			1A401 1A4ci	0202	
	2004				
040	308A	REFINERY GAS	1A1b	0103	0.02
GAS	301A	NATURAL GAS	1A1a	Not engines	0.02
				Engines	0.5
			1A1b	0103	0.02
			1A1c	010504	0.02
			1A2 a-g	03, Not	0.02
				engines	
				Engines	0.5
			1A4a i	0201	
				020105	0.5
			1A4b i	0202	
				020204	0.5
			1A4c i	0203	
				020304	0.5
WASTE	114A	WASTE	1A1a	0101 and	0.0
	-		-	0102	
			1A4a i	0201	
	115A	INDUSTRIAL WASTE		0316	
BIOMASS	111A	WOOD	1A1a	0101	1
DIOMAGO	шA	1100D	inia	0102	1
			142 0 0		
			1A2 a-g	03	10
			1A4a i	0201	40
			1A4b i	0202	30
			1A4c i	0203	40
	117A	STRAW	1A1a	0101	1

Table 3A-4.26 Emission factors for PCDD/F, 2014.

fuel_type	fuel_id	fuel_gr_abbr	nfr_id	snap_id	PCDD/F, ng
	_		—		per GJ
				0102	22
			1A4b i	0202	500
			1A4c i	0203	400
	215A	BIO OIL	1A1a	0101 and	0.882
				0102	
			1A2 a-g	03	0.882
			1A4b i	0202	10
	309A	BIOGAS	1A1a	Engines	0.96
				Not engines	0.025
			1A2a-g	Not engines	0.025
				Engines	0.96
			1A4a i	Not engines	2
				Engines	0.96
			1A4b	Not engines	2
			1A4c i	Not engines	2
				Engines	0.96
	310A	BIO GASIF GAS	1A1a	010105	1.7
				010101	0.025
	315A	BIONATGAS	1A1a	0101 and	0.025
				0102	
			1A2a-g	03	0.025
			1A4a	0201	2
			1A4b	0202	2
			1A4c	0203	2

		Residential wood
	Waste incineration,	combustion,
	PCDD/F,	PCDD/F,
Year	ng/GJ	ng/GJ
1990	2095	696
1991	1746	695
1992	1396	694
1993	1047	693
1994	907	690
1995	767	685
1996	628	675
1997	488	667
1998	348	656
1999	253	619
2000	157	590
2001	157	537
2002	157	516
2003	157	512
2004	81	507
2005	5	487
2006	5	465
2007	5	470
2008	5	446
2009	5	416
2010	5	399
2011	5	383
2012	5	368
2013	5	339
2014	5	302

References for HCB are discussed in Nielsen et al. (2014). Table 3A-4.28 presents the applied emission factors.

Table 3A-4	.28 Emission facto	ors for HCB, 2014.	
Fuel	NFR (SNAP)	Emission factor,	Reference
		ng/GJ	
Coal	1A1, 1A2	6,700	Grochowalski & Konieczyński (2008); EEA (2013)
Coal	1A4b	1,200,000	Syc et al. (2011)
Coal	1A4a and 1A4c	23,000	Syc et al. (2011)
Other solid fuels	1A1, 1A2	6,700	Assumed equal to coal.
Other solid fuels	1A4	1,200,000	Assumed equal to coal.
Liquid fuels ¹⁾	1A1, 1A2, 1A4	220	Nielsen et al. (2010)
Gaseous fuels	1A1, 1A2, 1A4	-	Negligible
Waste	1A1, 1A2, 1A4	4,300	Nielsen et al. (2010). A time series have been estimated. The emission factor for 1990 (190,000 ng/GJ) refer to Pacyna et al. (2003).
Wood	1A1, 1A2	5,000	EEA (2013)
Wood	1A4	5,000	EEA (2013)
Straw	1A1, 1A2	113	Nielsen et al. (2010)
Straw	1A4	5,000	EEA (2013)
Biogas	1A1, 1A2, 1A4	190	Nielsen et al. (2010)
Bio gasifi- cation gas	1A1, 1A2, 1A4	800	Nielsen et al. (2010)

1) Except LPG and refinery gas

Table 3A-4.29 Emission factor time series for HCB from waste incineration.

Table SA-4.2	
Year	HCB, ng/GJ
1990	190000
1991	158000
1992	127000
1993	95000
1994	82000
1995	70000
1996	57000
1997	45000
1998	32000
1999	23000
2000	14000
2001	12000
2002	10000
2003	8000
2004	6000
2005	4300
2006	4300
2007	4300
2008	4300
2009	4300
2010	4300
2011	4300
2012	4300
2013	4300
2014	4300

able 3A-4.30 Emis		
Fuei	NFR (SNAP)	Emission factor, Reference Σ dl-PCB.
		ng/GJ
Coal	1A1	839 Grochowalski & Konieczyński (2008)
Coal	1A2	5.700 Thistlethwaite (2001a)
Coal	1A4	7,403 Syc et al. (2011)
Other solid fuels	1A1	839 Assumed equal to coal.
Other solid fuels	1A2	5,700 Assumed equal to coal.
Other solid fuels	1A4	7,403 Assumed equal to coal.
Residual oil	1A1, 1A2, 1A4	839 The teq value refers to Dyke et al. (2003).
		The TEQ value is equal to the emission factor for coal
		combustion in power plants and the sum of dioxin-like
		PCB congeners has been assumed equal to the corre-
		sponding factor for coal.
Gas oil	1A1, 1A2, 1A4	93 Nielsen et al. (2010)
Other liquid fuels ¹⁾	1A1, 1A2, 1A4	93 Assumed equal to gas oil.
Gaseous fuels	1A1, 1A2, 1A4	- Negligible
Waste	1A1, 1A2, 1A4	109 Nielsen et al. (2010). A time series have been estimat-
		(time series) ed. The emission factor for 1990 (46,000 ng/GJ / 117 ng
		WHO ₁₉₉₈ teq/GJ) have been estimated based on the
		assumption that the PCB emission factor time series
		follow the PCDD/F time series.
Wood	1A1, 1A2,	2,800 Thistlethwaite (2001a)
	1A4a/c	
Wood	1A4b	2,313 Hedman et al. (2006). A time series have been estimat-
		(time series) ed based on time series for technologies applied in
		Denmark.
Straw	1A1, 1A2	3,110 Assumed equal to residential plants.
Straw	1A4	3,110 Syc et al. (2011)
Biogas	1A1, 1A2, 1A4	90 Nielsen et al. (2010)
Bio gasification	1A1, 1A2, 1A4	144 Nielsen et al. (2010)
gas		

1. Except LPG and refinery gas

Emission factor time series for waste incineration and for residential wood combustion are shown in Table 3A-4.31.

Table 3A-4.31 PCB e	ission factor time series for waste incineration and for residentia	al
wood combustion		
Maran	Marte Desidential and a	

Year	Waste	Residential wood
	incineration	combustion
	∑dl-PCB,	∑dI-PCB,
	ng/GJ	ng/GJ
1990	45671	6648
1991	38063	6622
1992	30433	6588
1993	22825	6559
1994	19773	6510
1995	16721	6445
1996	13690	6327
1997	10638	6231
1998	7586	6101
1999	5515	5708
2000	3423	5390
2001	3423	4834
2002	3423	4609
2003	3423	4548
2004	1766	4477
2005	109	4267
2006	109	4028
2007	109	4050
2008	109	3801
2009	109	3496
2010	109	3309
2011	109	3138
2012	109	2974
2013	109	2678
2014	109	2313

Table 3A-4.32 Technolo	y specific PCB emission factors for residential wood combustion.
T 1 1	

Technology	dl-PCB	∑dI-PCB Reference and assumptions
	emission	emission
	factor,	factor,
	ng WHO-	ng/GJ
	teq/GJ	
Old stove	53	7049 Hedman (2006), old boiler
New stove	53	7049 Hedman (2006), old boiler
Modern stove (2008-2015)	7	931 Hedman (2006), modern boiler
Modern stove (2015-2017)	7	931 Hedman (2006), modern boiler
Modern stove (2017-)	7	931 Hedman (2006), modern boiler
Eco labelled stove / new	3.5	466 Hedman (2006), assumed 1/2 modern
advanced stove (-2015)		boiler
Eco labelled stove / new	3.5	466 Hedman (2006), assumed ½ modern
advanced stove (2015-)		boiler
Other stove	53	7049 Hedman (2006), old boiler
Old boiler with acc. tank	53	7049 Hedman (2006), old boiler
Old boiler without acc. tank	53	7049 Hedman (2006), old boiler
New boiler with acc. tank	7	931 Hedman (2006), modern boiler
New boiler without acc. tank	7	931 Hedman (2006), modern boiler
Pellet boilers/stoves	3.5	466 Hedman (2006), assumed 1/2 modern
		boiler

Table 3A-4.33 Emission factors for	NH₃,	2014.
------------------------------------	------	-------

Fuel	NFR (SNAP)	Emission factor, Reference
		g/GJ
Coal/BKB/COKE	1A4b	3.8 EEA (2009)
Wood	1A4b	36.3 EEA (2013), technology
		distribution based on DEPA
		(2013)
Waste	1A1a	0.29 Nielsen et al. (2010)
Straw	1A4b	3.8 EEA (2009)

Table 3A	-4 34 Emiss	ion factor time	series for NHa	residential wood combustion.
	1.01 Emilio			

Table 3A	-4.34 Emission facto
Year	NH ₃ emission,
	g/GJ
1990	68.6
1991	68.5
1992	68.3
1993	68.1
1994	67.8
1995	67.3
1996	66.3
1997	65.5
1998	64.4
1999	61.0
2000	58.5
2001	53.7
2002	51.9
2003	51.8
2004	51.5
2005	49.9
2006	48.0
2007	49.2
2008	47.7
2009	45.5
2010	44.3
2011	43.4
2012	42.5
2013	40.0
2014	36.3

Table 3A-4.35 BC fraction of PM_{2.5}, 2014

	A-4.35 BC fraction		
Fuel_id	Fuel	SNAP	BC_% Reference: EEA Guidebook 2013:
101A	Anodic carbon	032000	2.2% Energy Industries, Table 3-2
102A	Coal	010100	2.2% Energy Industries, Table 3-2
102A	Coal	010101	2.2% Energy Industries, Table 3-2
102A	Coal	010102	2.2% Energy Industries, Table 3-2
102A 102A	Coal Coal	010103 010104	2.2% Energy Industries, Table 3-2 2.2% Energy Industries, Table 3-2
102A 102A	Coal	010105	2.2% Energy Industries, Table 3-2
102A	Coal	010200	2.2% Energy Industries, Table 3-2
102A	Coal	010201	2.2% Energy Industries, Table 3-2
102A	Coal	010202	2.2% Energy Industries, Table 3-2
102A	Coal	010203	2.2% Energy Industries, Table 3-2
102A	Coal	020100	6.4% Small Combustion, Table 3-7
102A	Coal	020200	6.4% Small Combustion, Table 3-3
102A	Coal	020300	6.4% Small Combustion, Table 3-7
102A	Coal	020304	6.4% Small Combustion, Table 3-7
102A	Coal	030100	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030102	6.4% Manufacturing Industries, Table 3-2
102A 102A	Coal Coal	030103 030400	6.4% Manufacturing Industries, Table 3-26.4% Manufacturing Industries, Table 3-2
102A 102A	Coal	030500	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030600	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030700	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030703	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030800	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030900	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030902	6.4% Manufacturing Industries, Table 3-2
102A	Coal	030903	6.4% Manufacturing Industries, Table 3-2
102A	Coal	031100	6.4% Manufacturing Industries, Table 3-2
102A	Coal	031102	6.4% Manufacturing Industries, Table 3-2
102A 102A	Coal Coal	031200 031300	6.4% Manufacturing Industries, Table 3-26.4% Manufacturing Industries, Table 3-2
102A	Coal	031400	6.4% Manufacturing Industries, Table 3-2
102A	Coal	031600	6.4% Manufacturing Industries, Table 3-2
102A	Coal	032000	6.4% Manufacturing Industries, Table 3-2
103A	Fly ash fossil	010104	2.2% Assumed equal to coal. DCE assumption.
106A	Brown coal bri.	020100	6.4% Small Combustion, Table 3-7
106A	Brown coal bri.	020200	6.4% Small Combustion, Table 3-3
106A 106A	Brown coal bri. Brown coal bri.	020300 030100	6.4% Small Combustion, Table 3-7 6.4% Manufacturing Industries, Table 3-2
106A	Brown coal bri.	030800	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	020200	6.4% Small Combustion, Table 3-3
107A	Coke oven coke	030100	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	030400	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	030700	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	030800	6.4% Manufacturing Industries, Table 3-2
107A 107A	Coke oven coke Coke oven coke	030900 030902	6.4% Manufacturing Industries, Table 3-26.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	030903	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	031200	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	031300	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	031400	6.4% Manufacturing Industries, Table 3-2
107A	Coke oven coke	032000	6.4% Manufacturing Industries, Table 3-2
110A	Petroleum coke	010100	5.6% Energy Industries, table 3-5
110A 110A	Petroleum coke	010102	5.6% Energy Industries, table 3-5
110A 110A	Petroleum coke Petroleum coke	020100 020200	56.0% Small Combustion, Table 3-5 8.5% Small Combustion, Table 3-5
110A	Petroleum coke	020200	56.0% Small Combustion, Table 3-5
110A	Petroleum coke	030100	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	030400	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	030600	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	030700	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	030800	56.0% Manufacturing Industries, Table 3-4
110A 110A	Petroleum coke Petroleum coke	030900 031000	56.0% Manufacturing Industries, Table 3-4 56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	031100	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	031300	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	031400	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	031600	56.0% Manufacturing Industries, Table 3-4
110A	Petroleum coke	032000	56.0% Manufacturing Industries, Table 3-4
111A	Wood	010100	3.3% Energy Industries, Table 3-7
111A 111A	Wood Wood	010101 010102	3.3% Energy Industries, Table 3-7 3.3% Energy Industries, Table 3-7
	u	510102	o.o/v Energy industries, Table o-7

Fuel_id		SNAP	BC_% Reference: EEA Guidebook 2013:
111A	Wood	010103	3.3% Energy Industries, Table 3-7
111A	Wood	010104	3.3% Energy Industries, Table 3-7
111A	Wood	010200	3.3% Energy Industries, Table 3-7
111A	Wood	010201	3.3% Energy Industries, Table 3-7
111A	Wood	010202	3.3% Energy Industries, Table 3-7
111A	Wood	010203	3.3% Energy Industries, Table 3-7
111A	Wood	020100	28.0% Small Combustion, Table 3-10
111A	Wood	020103	28.0% Small Combustion, Table 3-10
111A	Wood	020105	28.0% Small Combustion, Table 3-10
111A	Wood	020200	14.4% See residential wood combustion
111A	Wood	020202	14.4% See residential wood combustion
111A	Wood	020204	14.4% See residential wood combustion
111A	Wood	020300	28.0% Small Combustion, Table 3-10
111A	Wood	020302	28.0% Small Combustion, Table 3-10
111A	Wood	020303	28.0% Small Combustion, Table 3-10
111A	Wood	020304	28.0% Small Combustion, Table 3-10
111A	Wood	030100	28.0% Manufacturing Industries, Table 3-5
111A	Wood	030102	28.0% Manufacturing Industries, Table 3-5
111A	Wood	030103	28.0% Manufacturing Industries, Table 3-5
111A	Wood	030400	28.0% Manufacturing Industries, Table 3-5
111A	Wood		28.0% Manufacturing Industries, Table 3-5
111A 111A	Wood	030500 030600	28.0% Manufacturing Industries, Table 3-5
111A 111A	Wood	030700	
			28.0% Manufacturing Industries, Table 3-5
111A	Wood	030800	28.0% Manufacturing Industries, Table 3-5
111A	Wood	030900	28.0% Manufacturing Industries, Table 3-5
111A	Wood	030902	28.0% Manufacturing Industries, Table 3-5
111A	Wood	030903	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031000	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031100	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031102	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031200	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031300	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031305	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031400	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031403	28.0% Manufacturing Industries, Table 3-5
111A	Wood	031603	28.0% Manufacturing Industries, Table 3-5
111A	Wood	032000	28.0% Manufacturing Industries, Table 3-5
111A	Wood	032003	28.0% Manufacturing Industries, Table 3-5
114A	Waste	010100	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010101	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010102	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010103	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010104	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010105	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010200	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010201	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010202	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	010203	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	020100	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	020103	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030100	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030102	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030400	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030600	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030700	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030800	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	030900	3.5% Municipal waste Incineration, Table 3-1
114A 114A	Waste	030902	3.5% Municipal waste Incineration, Table 3-1
114A 114A	Waste	031000	3.5% Municipal waste Incineration, Table 3-1
114A 114A	Waste	031100	3.5% Municipal waste Incineration, Table 3-1
114A 114A	Waste	031200	3.5% Municipal waste Incineration, Table 3-1
		031300	
114A 114A	Waste		3.5% Municipal waste Incineration, Table 3-1
114A	Waste	031400	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	031600	3.5% Municipal waste Incineration, Table 3-1
114A	Waste	032000	3.5% Municipal waste Incineration, Table 3-1
115A	Industrial waste	031600	3.5% Municipal waste Incineration, Table 3-1
117A	Straw	010100	3.3% Energy Industries, Table 3-7
117A	Straw	010101	3.3% Energy Industries, Table 3-7
117A	Straw	010102	3.3% Energy Industries, Table 3-7
117A	Straw	010103	3.3% Energy Industries, Table 3-7
117A	Straw	010104	3.3% Energy Industries, Table 3-7
117A	Straw	010200	3.3% Energy Industries, Table 3-7
117A	Straw	010201	3.3% Energy Industries, Table 3-7

Fuel_id	Fuel	SNAP	BC_% Reference: EEA Guidebook 2013:
117A	Straw	010202	3.3% Energy Industries, Table 3-7
117A	Straw	010203	3.3% Energy Industries, Table 3-7
117A	Straw	020103	28.0% Small Combustion, Table 3-10
117A 117A	Straw Straw	020200 020300	10.0% Small Combustion, Table 3-6 28.0% Small Combustion, Table 3-10
117A	Straw	020302	28.0% Small Combustion, Table 3-10
117A	Straw	030100	28.0% Manufacturing Industries, Table 3-5
117A	Straw	030103	28.0% Manufacturing Industries, Table 3-5
117A	Straw	030105	28.0% Manufacturing Industries, Table 3-5
117A	Straw	030903	28.0% Manufacturing Industries, Table 3-5
117A	Straw	031305	28.0% Manufacturing Industries, Table 3-5
117A	Straw	032003	28.0% Manufacturing Industries, Table 3-5
203A 203A	Residual oil	010100	5.6% Energy Industries, Table 3-5
203A 203A	Residual oil Residual oil	010101 010102	5.6% Energy Industries, Table 3-5 5.6% Energy Industries, Table 3-5
203A	Residual oil	010103	5.6% Energy Industries, Table 3-5
203A	Residual oil	010104	5.6% Energy Industries, Table 3-5
203A	Residual oil	010105	5.6% Energy Industries, Table 3-5
203A	Residual oil	010200	5.6% Energy Industries, Table 3-5
203A	Residual oil	010202	5.6% Energy Industries, Table 3-5
203A	Residual oil	010203	5.6% Energy Industries, Table 3-5
203A	Residual oil	010306	5.6% Energy Industries, Table 4-4
203A 203A	Residual oil Residual oil	020100 020103	56.0% Small Combustion, Table 3-9 56.0% Small Combustion, Table 3-9
203A 203A	Residual oil	020103	8.5% Small Combustion, Table 3-5
203A 203A	Residual oil	020300	56.0% Small Combustion, Table 3-9
203A	Residual oil	020302	56.0% Small Combustion, Table 3-9
203A	Residual oil	020304	56.0% Small Combustion, Table 3-9
203A	Residual oil	030100	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030102	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030103	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030104	56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil Residual oil	030105 030400	56.0% Manufacturing Industries, Table 3-4 56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil	030403	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030500	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030600	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030603	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030700	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030800	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030900	56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil Residual oil	030902 030903	56.0% Manufacturing Industries, Table 3-4 56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil	030904	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	030905	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031000	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031100	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031102	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031200	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031300	56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil Residual oil	031305 031400	56.0% Manufacturing Industries, Table 3-4 56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil	031400	56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil	031500	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031503	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031600	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	031603	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	032000	56.0% Manufacturing Industries, Table 3-4
203A	Residual oil	032002	56.0% Manufacturing Industries, Table 3-4
203A 203A	Residual oil Residual oil	032003 032005	56.0% Manufacturing Industries, Table 3-4
203A 204A	Gas oil	032005	56.0% Manufacturing Industries, Table 3-4 33.5% Energy Industries, Table 3-6
204A 204A	Gas oil	010101	33.5% Energy Industries, Table 3-6
204A	Gas oil	010102	33.5% Energy Industries, Table 3-6
204A	Gas oil	010103	33.5% Energy Industries, Table 3-6
204A	Gas oil	010104	33.5% Energy Industries, Table 3-18
204A	Gas oil	010105	78.0% Energy Industries, Table 3-19
204A	Gas oil	010200	33.5% Energy Industries, Table 3-6
204A	Gas oil	010201	33.5% Energy Industries, Table 3-6
204A 204A	Gas oil Gas oil	010202 010203	33.5% Energy Industries, Table 3-6
204A 204A	Gas oil	010203	33.5% Energy Industries, Table 3-6 33.5% Energy Industries, Table 3-18
204A 204A	Gas oil	010204	78.0% Energy Industries, Table 3-19

Fuel_idFuelSNAPBC_%Reference: EEA Guida204AGas oil01030633.5%Energy Industries, Tabl204AGas oil01050433.5%Energy Industries, Tabl204AGas oil01050578.0%Energy Industries, Tabl204AGas oil02010056.0%Small Combustion, Table204AGas oil02010256.0%Small Combustion, Table204AGas oil02010356.0%Small Combustion, Table204AGas oil02010578.0%Energy Industries, Table204AGas oil02010578.0%Energy Industries, Table204AGas oil0202003.9%Small Combustion, Table204AGas oil02020478.0%Energy Industries, Table204AGas oil02030256.0%Small Combustion, Table204AGas oil02030478.0%Energy Industries, Table204AGas oil02030478.0%Energy Industries, Table204AGas oil03010056.0%Manufacturing Industrie204AGas oil03010256.0%Manufacturing Industrie204AGas oil03010256.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0% <th>le 4-5 le 3-18 le 3-19 ole 3-9 ole 3-9 ole 3-9 le 3-37 ole 3-21 le 3-19 ole 3-9 ole 3-9 ole 3-9 ole 3-37 os, Table 3-4 os, Table 3-4</th>	le 4-5 le 3-18 le 3-19 ole 3-9 ole 3-9 ole 3-9 le 3-37 ole 3-21 le 3-19 ole 3-9 ole 3-9 ole 3-9 ole 3-37 os, Table 3-4 os, Table 3-4
204AGas oil01050433.5%Energy Industries, Table204AGas oil01050578.0%Energy Industries, Table204AGas oil02010056.0%Small Combustion, Table204AGas oil02010256.0%Small Combustion, Table204AGas oil02010256.0%Small Combustion, Table204AGas oil02010356.0%Small Combustion, Table204AGas oil02010578.0%Energy Industries, Table204AGas oil0202003.9%Small Combustion, Table204AGas oil02020478.0%Energy Industries, Table204AGas oil02030256.0%Small Combustion, Table204AGas oil02030256.0%Small Combustion, Table204AGas oil02030256.0%Small Combustion, Table204AGas oil02030478.0%Energy Industries, Table204AGas oil03010056.0%Manufacturing Industries204AGas oil03010256.0%Manufacturing Industries204AGas oil03010356.0%Manufacturing Industries204AGas oil03010356.0%Manufacturing Industries204AGas oil03010356.0%Manufacturing Industries	le 3-18 le 3-19 ole 3-9 ole 3-9 ole 3-9 le 3-37 ole 3-21 le 3-19 ole 3-9 ole 3-9 ole 3-37 os, Table 3-4 os, Table 3-4
204AGas oil01050578.0% Energy Industries, Table204AGas oil02010056.0% Small Combustion, Table204AGas oil02010256.0% Small Combustion, Table204AGas oil02010256.0% Small Combustion, Table204AGas oil02010356.0% Small Combustion, Table204AGas oil02010578.0% Energy Industries, Table204AGas oil0202003.9% Small Combustion, Table204AGas oil02020478.0% Energy Industries, Table204AGas oil02030056.0% Small Combustion, Table204AGas oil02030256.0% Small Combustion, Table204AGas oil02030256.0% Small Combustion, Table204AGas oil02030478.0% Energy Industries, Table204AGas oil02030478.0% Energy Industries, Table204AGas oil03010056.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Table	le 3-19 ole 3-9 ole 3-9 ole 3-9 le 3-37 ole 3-21 le 3-19 ole 3-9 ole 3-9 ole 3-37 os, Table 3-4 os, Table 3-4
204AGas oil02010056.0%Small Combustion, Tab204AGas oil02010256.0%Small Combustion, Tab204AGas oil02010356.0%Small Combustion, Tab204AGas oil02010578.0%Energy Industries, Tabl204AGas oil0202003.9%Small Combustion, Tab204AGas oil0202003.9%Small Combustion, Tab204AGas oil02020478.0%Energy Industries, Tabl204AGas oil02030056.0%Small Combustion, Tab204AGas oil02030256.0%Small Combustion, Tab204AGas oil02030478.0%Energy Industries, Tabl204AGas oil02030478.0%Energy Industries, Tabl204AGas oil03010056.0%Manufacturing Industrie204AGas oil03010256.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie204AGas oil03010356.0%Manufacturing Industrie	ble 3-9 ble 3-9 ble 3-9 ble 3-37 ble 3-21 ble 3-19 ble 3-9 ble 3-9 ble 3-37 ble 3-37 ble 3-4 ble 3-4 ble 3-4
204AGas oil02010356.0% Small Combustion, Tab204AGas oil02010578.0% Energy Industries, Tabl204AGas oil0202003.9% Small Combustion, Tab204AGas oil0202003.9% Small Combustion, Tab204AGas oil02020478.0% Energy Industries, Tabl204AGas oil02030056.0% Small Combustion, Tab204AGas oil02030256.0% Small Combustion, Tab204AGas oil02030478.0% Energy Industries, Tabl204AGas oil02030478.0% Energy Industries, Tabl204AGas oil03010056.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Tabl	ole 3-9 le 3-37 ole 3-21 le 3-19 ole 3-9 ole 3-9 le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil02010578.0% Energy Industries, Table204AGas oil0202003.9% Small Combustion, Table204AGas oil02020478.0% Energy Industries, Table204AGas oil02030056.0% Small Combustion, Table204AGas oil02030256.0% Small Combustion, Table204AGas oil02030256.0% Small Combustion, Table204AGas oil02030478.0% Energy Industries, Table204AGas oil03010056.0% Manufacturing Industries204AGas oil03010256.0% Manufacturing Industries204AGas oil03010356.0% Manufacturing Industries204AGas oil03010356.0% Manufacturing Industries204AGas oil03010433.5% Energy Industries, Table	le 3-37 ole 3-21 le 3-19 ole 3-9 ole 3-9 le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil0202003.9% Small Combustion, Tab204AGas oil02020478.0% Energy Industries, Tabl204AGas oil02030056.0% Small Combustion, Tab204AGas oil02030256.0% Small Combustion, Tab204AGas oil02030256.0% Small Combustion, Tab204AGas oil02030478.0% Energy Industries, Tabl204AGas oil03010056.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Tabl	ble 3-21 le 3-19 ble 3-9 ble 3-9 le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil02020478.0% Energy Industries, Table204AGas oil02030056.0% Small Combustion, Table204AGas oil02030256.0% Small Combustion, Table204AGas oil02030256.0% Small Combustion, Table204AGas oil02030478.0% Energy Industries, Table204AGas oil03010056.0% Manufacturing Industries204AGas oil03010256.0% Manufacturing Industries204AGas oil03010356.0% Manufacturing Industries204AGas oil03010356.0% Manufacturing Industries204AGas oil03010433.5% Energy Industries, Table	le 3-19 ole 3-9 ole 3-9 le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil02030056.0% Small Combustion, Tab204AGas oil02030256.0% Small Combustion, Tab204AGas oil02030478.0% Energy Industries, Tabl204AGas oil03010056.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Tabl	ole 3-9 ole 3-9 le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil02030256.0% Small Combustion, Tab204AGas oil02030478.0% Energy Industries, Tabl204AGas oil03010056.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Tabl	ole 3-9 le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil02030478.0% Energy Industries, Table204AGas oil03010056.0% Manufacturing Industries204AGas oil03010256.0% Manufacturing Industries204AGas oil03010356.0% Manufacturing Industries204AGas oil03010356.0% Manufacturing Industries204AGas oil03010433.5% Energy Industries, Table	le 3-37 es, Table 3-4 es, Table 3-4
204AGas oil03010056.0% Manufacturing Industrie204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Table	es, Table 3-4 es, Table 3-4
204AGas oil03010256.0% Manufacturing Industrie204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Table	es, Table 3-4
204AGas oil03010356.0% Manufacturing Industrie204AGas oil03010433.5% Energy Industries, Tabl	
204A Gas oil 030104 33.5% Energy Industries, Tabl	55, Table 5-4
C	le 3-18
ZUHA DAS DIL USUTUS ZA U% EDEROV IDOUSIFIES LADI	
204A Gas oil 030400 56.0% Manufacturing Industrie	
204A Gas oil 030402 56.0% Manufacturing Industrie	
204A Gas oil 030403 56.0% Manufacturing Industrie	
204A Gas oil 030500 56.0% Manufacturing Industrie	
204A Gas oil 030600 56.0% Manufacturing Industrie	
204A Gas oil 030602 56.0% Manufacturing Industrie	es, Table 3-4
204A Gas oil 030604 33.5% Energy Industries, Tabl	
204A Gas oil 030700 56.0% Manufacturing Industrie	
204A Gas oil 030703 56.0% Manufacturing Industrie	
204A Gas oil 030800 56.0% Manufacturing Industrie	
204A Gas oil 030900 56.0% Manufacturing Industrie	
204A Gas oil 030902 56.0% Manufacturing Industrie	-
204AGas oil03090356.0% Manufacturing Industrie204AGas oil03090433.5% Energy Industries, Tabl	
204AGas oil03090433.5% Energy Industries, Tabl204AGas oil03100056.0% Manufacturing Industrie	
204A Gas oil 031100 56.0% Manufacturing Industrie	
204A Gas oil 031102 56.0% Manufacturing Industrie	
204A Gas oil 031103 56.0% Manufacturing Industrie	
204A Gas oil 031200 56.0% Manufacturing Industrie	
204A Gas oil 031205 78.0% Energy Industries, Tabl	
204A Gas oil 031300 56.0% Manufacturing Industrie	es, Table 3-4
204A Gas oil 031305 78.0% Energy Industries, Tabl	le 3-19
204A Gas oil 031400 56.0% Manufacturing Industrie	
204A Gas oil 031403 56.0% Manufacturing Industrie	
204A Gas oil 031505 78.0% Energy Industries, Tabl	
204A Gas oil 031600 56.0% Manufacturing Industrie	
204A Gas oil 031603 56.0% Manufacturing Industrie	
204AGas oil03200056.0% Manufacturing Industrie204AGas oil03200256.0% Manufacturing Industrie	
204A Gas oil 032002 56.0% Manufacturing industrie	
204A Gas oil 032005 78.0% Energy Industries, Tabl	
206A Kerosene 020100 56.0% Small Combustion, Tab	
206A Kerosene 020200 8.5% Small Combustion, Tab	
206A Kerosene 020300 56.0% Small Combustion, Tab	
206A Kerosene 030100 56.0% Manufacturing Industrie	
206A Kerosene 031500 56.0% Manufacturing Industrie	-
206A Kerosene 032000 56.0% Manufacturing Industrie	
215A Bio oil 010101 33.5% Assumed equal to gas	
215A Bio oil 010102 33.5% Assumed equal to gas	
215A Bio oil 010103 33.5% Assumed equal to gas	
215A Bio oil 010105 78.0% Assumed equal to gas	
215A Bio oil 010200 33.5% Assumed equal to gas 215A Bio oil 010202 33.5% Assumed equal to gas	
215A Bio oil 010202 33.5% Assumed equal to gas 215A Bio oil 010203 33.5% Assumed equal to gas	
215ABio oil01020553.5%Assumed equal to gas215ABio oil02010578.0%Assumed equal to gas	
215A Bio oil 020100 3.9% Assumed equal to gas	
215A Bio oil 020200 78.0% Assumed equal to gas	
215A Bio oil 030100 56.0% Manufacturing Industrie	
215A Bio oil 030103 56.0% Manufacturing Industrie	
215A Bio oil 030105 78.0% Assumed equal to gas	
215A Bio oil 030605 56.0% Manufacturing Industrie	•
215A Bio oil 030903 56.0% Manufacturing Industrie	
215A Bio oil 031305 78.0% Assumed equal to gas	oil. DCE assumption.
215A Bio oil 031600 56.0% Manufacturing Industrie	
215A Bio oil 032005 78.0% Assumed equal to gas	
225A Orimulsion 010101 2.2% Assumed equal to coal.	. DCE assumption.

Fuel_id	Fuel	SNAP	BC_% Reference: EEA Guidebook 2013:
301A	Natural gas	010100	2.5% Energy Industries, Table 3-4
301A	Natural gas	010101	2.5% Energy Industries, Table 3-4
301A	Natural gas	010102	2.5% Energy Industries, Table 3-4
301A	Natural gas	010103	2.5% Energy Industries, Table 3-4
301A 301A	Natural gas	010103	2.5% Energy Industries, Table 3-4
301A	Natural gas	010105	2.5% Energy Industries, Table 3-20
301A	Natural gas	010200	2.5% Energy Industries, Table 3-4
301A	Natural gas	010202	2.5% Energy Industries, Table 3-4
301A	Natural gas	010203	2.5% Energy Industries, Table 3-4
301A	Natural gas	010205	2.5% Energy Industries, Table 3-4
301A	Natural gas	010502	2.5% Energy Industries, Table 3-4
301A	Natural gas	010503	2.5% Energy Industries, Table 3-4
301A	Natural gas	010504	2.5% Energy Industries, Table 3-17
301A	Natural gas	010505	2.5% Energy Industries, Table 3-20
301A	Natural gas	020100	4.0% Small Combustion, Table 3-8
301A	Natural gas	020103	4.0% Small Combustion, Table 3-8
301A	Natural gas	020104	2.5% Small Combustion, Table 3-34
301A	Natural gas	020105	2.5% Energy Industries, Table 3-36
301A	Natural gas	020200	5.4% Small Combustion, Table 3-19
301A	Natural gas	020202	5.4% Small Combustion, Table 3-19
301A	Natural gas	020204	2.5% Energy Industries, Table 3-20
301A	Natural gas	020300	4.0% Small Combustion, Table 3-8
301A	Natural gas	020303	2.5% Energy Industries, Table 3-17
301A 301A	-		2.5% Energy Industries, Table 3-17 2.5% Energy Industries, Table 3-36
	Natural gas	020304	
301A	Natural gas	030100	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030102	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030103	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030104	2.5% Energy Industries, Table 3-17
301A	Natural gas	030105	2.5% Energy Industries, Table 3-20
301A	Natural gas	030106	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030400	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030402	4.0% Manufacturing Industries, Table 3-3
301A			0
	Natural gas	030500	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030600	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030602	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030603	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030604	2.5% Energy Industries, Table 3-17
301A	Natural gas	030605	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030700	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030703	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030705	2.5% Energy Industries, Table 3-20
301A	Natural gas	030800	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030900	4.0% Manufacturing Industries, Table 3-3
	0		5
301A	Natural gas	030902	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030903	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	030904	2.5% Energy Industries, Table 3-17
301A	Natural gas	030905	2.5% Energy Industries, Table 3-20
301A	Natural gas	031000	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031005	2.5% Energy Industries, Table 3-20
301A	Natural gas	031100	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031102	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031102	5
			4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031104	2.5% Energy Industries, Table 3-17
301A	Natural gas	031200	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031205	2.5% Energy Industries, Table 3-20
301A	Natural gas	031300	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031305	2.5% Energy Industries, Table 3-20
301A	Natural gas	031400	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031405	2.5% Energy Industries, Table 3-20
301A	Natural gas	031500	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031503	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	031604	2.5% Energy Industries, Table 3-17
301A	Natural gas	031605	2.5% Energy Industries, Table 3-20
301A	Natural gas	032000	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	032003	4.0% Manufacturing Industries, Table 3-3
301A	Natural gas	032004	2.5% Energy Industries, Table 3-17
301A	Natural gas	032005	2.5% Energy Industries, Table 3-20
303A	LPG	010100	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010101	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010102	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010103	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010104	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010200	2.5% Assumed equal to natural gas. DCE assumption.

Fuel_id		SNAP	BC_% Reference: EEA Guidebook 2013:
303A	LPG	010202	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010203	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	010306	2.5% Assumed equal to natural gas. DCE assumption.
303A	LPG	020100	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	020103	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	020105	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	020200	5.4% Assumed equal to natural gas. DCE assumption.
303A	LPG	020300	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030100	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030400	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030402	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030500	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030600	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030602	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030700	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030800	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	030900	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	031000	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	031100	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	031200	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	031300	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	031400	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	031500	4.0% Assumed equal to natural gas. DCE assumption.
303A	LPG	032000	4.0% Assumed equal to natural gas. DCE assumption.
308A	Refinery gas	010101	18.4% Energy Industries, Table 4-2
308A	Refinery gas	010203	18.4% Energy Industries, Table 4-2
308A	Refinery gas	010300	18.4% Energy Industries, Table 4-2
308A	Refinery gas	010304	18.4% Energy Industries, Table 4-2
308A	Refinery gas	010306	18.4% Energy Industries, Table 4-2
308A	Refinery gas	032000	18.4% Energy Industries, Table 4-2
309A	Biogas	010100	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010101	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010102	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010103	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010104	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010105	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010200	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010203	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010205	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	010505	3.3% Assumed % equal to wood. DCE assumption
309A	Biogas	020100	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	020103	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	020104	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	020105	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	020300	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	020304	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030100	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030102	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030103	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030104	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030105	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030400	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030900	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030902	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030903	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	030905	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	031300	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	032000	28.0% Assumed % equal to wood. DCE assumption
309A	Biogas	032005	28.0% Assumed % equal to wood. DCE assumption
310A	Bio gasif. gas	010105	3.3% Assumed % equal to wood. DCE assumption
310A	Bio gasif. gas	020105	3.3% Assumed % equal to wood. DCE assumption
310A	Bio gasif. gas	020304	28.0% Assumed % equal to wood. DCE assumption
310A	Bio gasif. gas	030105	28.0% Assumed % equal to wood. DCE assumption
310A	Bio gasif. gas	031305	28.0% Assumed % equal to wood. DCE assumption

Table	3A-4.36 Residential wo	\underline{b} ou compustion, BC I	raction
Year	% of PM2.5	_	
1990	12.3%		
1991	12.3%		
1992	12.3%		
1993	12.3%		
1994	12.3%		
1995	12.3%		
1996	12.3%		
1997	12.3%		
1998	12.3%		
1999	12.3%		
2000	12.4%		
2001	12.4%		
2002	12.5%		
2003	12.6%		
2004	12.7%		
2005	12.7%		
2006	12.8%		
2007	13.0%		
2008	13.3%		
2009	13.5%		
2010	13.7%		
2011	13.9%		
2012	14.1%		
2013	14.4%		
2014	14.7%	_	

Table 3A-4.36 Residential wood combustion, BC fraction of PM_{2.5}, time series.

Annex 3A-5 Implied emission factors for waste incineration plants and power plants combustion coal

Pollutant	Implied	Unit
	emission factor	
SO ₂	13	g pr GJ
NO _x	85	g pr GJ
TSP	0.47	g pr GJ
PM ₁₀	0.39	g pr GJ
PM _{2.5}	0.33	g pr GJ
As	0.57	mg pr GJ
Cd	0.38	mg pr GJ
Cr	1.45	mg pr GJ
Cu	1.42	mg pr GJ
Hg	1.98	mg pr GJ
Ni	2.31	mg pr GJ
Pb	5.16	mg pr GJ
Se	1.17	mg pr GJ
Zn	2.56	mg pr GJ

Table 3A-5.1 Implied emission factors for municipal waste incineration plants 2014.

 Table 3A-5.2
 Implied emission factors
 for power plants combusting coal, 2014.

 Pollutant
 Implied
 Unit

Pollutant	Implied	Unit
	emission	
	factor	
SO ₂	8.2	g pr GJ
NOx	26	g pr GJ
TSP	2.9	g pr GJ
PM ₁₀	2.5	g pr GJ
PM _{2.5}	2.0	g pr GJ
As	0.52	mg pr GJ
Cd	0.04	mg pr GJ
Cr	0.47	mg pr GJ
Cu	0.33	mg pr GJ
Hg	0.84	mg pr GJ
Ni	0.66	mg pr GJ
Pb	0.38	mg pr GJ
Se	6.3	mg pr GJ
Zn	1.4	mg pr GJ

Annex 3A-6 Large point sources

Table 3A-6.1 Large point sources, 2014. Large point sources AffaldPlus+, Naestved Forbraendingsanlaeg AffaldPlus+, Naestved Kraftvarmevaerk Affaldplus+, Slagelse Forbr. and DONG Slagelse KVV Affaldscenter aarhus - Forbraendsanlaegget Affaldsforbraendingsanlaeg I/S REFA Amagerforbraending Amagervaerket Ardagh Glass Holmegaard A/S Asnaesvaerket Avedoerevaerket AVV Forbraendingsanlaeg Bofa I/S Centralkommunernes Transmissionsselskab F berg Cheminova DanSteel DTU Esbjergvaerket Faxe Kalk Fjernvarme Fyn, Centrum Varmecentral Frederikshavn Affaldskraftvarmevaerk Frederikshavn Kraftvarmevaerk Fynsvaerket Grenaa Forbraending Grenaa Kraftvarmevaerk H.C.Oerstedsvaerket Haldor Topsoee Hammel Fjernvarmeselskab Helsingoer Kraftvarmevaerk Herningvaerket Hilleroed Kraftvarmevaerk Hjoerring Varmeforsyning Horsens Kraftvarmevaerk I/S Faelles Forbraending I/S Kara Affaldsforbraendingsanlaeg I/S Kraftvarmevaerk Thisted I/S Nordforbraending I/S Reno Nord I/S Reno Syd I/S Vestforbraending Koege Kraftvarmevaerk Kolding Forbraendingsanlaeg TAS Kommunekemi Koppers Kyndbyvaerket L90 Affaldsforbraending Maricogen Masnedoevaerket Maabjergvaerket Nordic Sugar Nakskov Nordic Sugar Nykoebing Nordjyllandsvaerket Nybro Gasbehandlingsanlaeg Odense Kraftvarmevaerk Oestkraft Rensningsanlaegget Lynetten Rockwool A/S Doense Rockwool A/S Vamdrup Saint-Gobain Isover A/S Shell Raffinaderi Silkeborg Kraftvarmevaerk Skaerbaekvaerket Skagen Forbraending Soenderborg Kraftvarmevaerk Special Waste System Statoil Raffinaderi Studstrupvaerket Svanemoellevaerket Svendborg Kraftvarmevaerk Viborg Kraftvarme

Vordingborg Kraftvarme Aalborg Portland AarhusKarlshamn Denmark A/S Danisco Grindsted Dupont Randersvaerket Verdo Dalum Kraftvarmevaerk Duferco Danish Steel

		ources, aggregated fuel co	nsumption in 2014.
Year	2014		
nfr_id_EA	fuel_id	fuel_gr_abbr	Sum of Fuel_TJ
1A1a	102A	COAL	102053
	103A	SUB-BITUMINOUS	19
	111A	WOOD	32642
	114A	WASTE	36491
	117A	STRAW	7395
	203A	RESIDUAL OIL	929
	204A	GAS OIL	555
	215A	BIO OIL	33
	301A	NATURAL GAS	14321
	303A	LPG	33
	309A	BIOGAS	99
	310A	BIO GASIF GAS	0
1A1a Total			194569
1A1b	203A	RESIDUAL OIL	387
	204A	GAS OIL	4
	301A	NATURAL GAS	102
	303A	LPG	0
	308A	REFINERY GAS	15356
1A1b Total			15850
1A1c	204A	GAS OIL	0
	301A	NATURAL GAS	117
1A1c Total			118
1A2a	204A	GAS OIL	0
	301A	NATURAL GAS	1451
	303A	LPG	4
1A2a Total			1455
1A2c	203A	RESIDUAL OIL	201
	204A	GAS OIL	4
	301A	NATURAL GAS	1562
	303A	LPG	0
1A2c Total			1768
1A2e	102A	COAL	1049
17 120	107A	COKE OVEN COKE	129
	111A	WOOD	11
	203A	RESIDUAL OIL	2563
	204A	GAS OIL	45
	215A	BIO OIL	65
	301A	NATURAL GAS	113
	309A	BIOGAS	110
1A2e Total		2.00.0	4084
1A2f	102A	COAL	1433
17121	110A	PETROLEUM COKE	6625
	115A	INDUSTR. WASTES	1848
	203A	RESIDUAL OIL	182
	203A 204A	GAS OIL	3
	215A	BIO OIL	0
	301A	NATURAL GAS	7
1A2f Total	5017		10097
1A2g viii	101A	ANODIC CARBON	0
inzy vill	101A 102A	COAL	145
	102A 107A	COKE OVEN COKE	445
			440 1
	204A 301A	GAS OIL NATURAL GAS	
140~		INATURAL GAS	1233
1A2g viii Tota		MARTE	1824
1A4a i	114A	WASTE	158
4440 . 7.4.1	309A	BIOGAS	0
1A4a i Total			158
Grand Total			229923

Table 3A-6.3	Large poi	nt sources,	plant sp	pecific	emissions ¹	
Veer 201	1					

nf_id lps_name SO2 NOx NMVOC CO NH3 TSP PMn0 ² PM2.5 ² BC As Cd Cr Cu Hg Ni Pb Se Zn Pr 1A1a AffaldPlus+, Naestved Forbraendingsanlaeg x	
1A1aAffaldPlus+, Naestved Forbraendingsanlaegxxxxxxxxxxxxx1A1aAffaldPlus+, Naestved Kraftvarmevaerkxxx <td< td=""><td>CDD</td></td<>	CDD
1A1a AffaldPlus+, Naestved Kraftvarmevaerk x <td></td>	
1A1a Affaldplus+, Slagelse Forbr. and DONG Slagelse KVV x	
1A1a Affaldscenter aanua - Forbraendisanlaegget x <td< td=""><td></td></td<>	
1A1a Affaldsforbraendingsanlaeg I/S REFA x	
1A1a Amagerforbraending x	
1A1aAmagervaerketxx <td></td>	
1A1a Asnaesvaerket x	
1A1aAvedoerevaerketxx </td <td></td>	
1A1aAVV Forbraendingsanlaegxxx <td></td>	
1A1aBofa I/Sxx	
1A1aCentralkommunernes Transmissionsselskab F_bergxxxxx1A1aDTUxx <t< td=""><td></td></t<>	
1A1aDTUxxx <td></td>	
1A1aEsbjergvaerketxx <td></td>	
1A1aFjernvarme Fyn, Centrum Varmecentralx1A1aFrederikshavn Affaldskraftvarmevaerkxx <td></td>	
1A1aFrederikshavn Affaldskraftvarmevaerkxx<	
1A1aFrederikshavn Kraftvarmevaerkxxxxxxxx1A1aFynsvaerketxx<	
1A1aFynsvaerketxx<	
1A1aGrenaa Kraftvarmevaerkxxxxxxx1A1aH.C.Oerstedsvaerketxxxx1A1aHelsingoer Kraftvarmevaerkxxxx1A1aHerningvaerketxxxxxx1A1aHeilleroed Kraftvarmevaerkxxxxxxxx1A1aHilleroed Kraftvarmevaerkxxxxxxxx	
1A1aH.C.Oerstedsvaerketxx1A1aHelsingoer Kraftvarmevaerkx1A1aHerningvaerketxx1A1aHilleroed Kraftvarmevaerkx1A1aHilleroed Kraftvarmevaerkx	
1A1aHelsingoer Kraftvarmevaerkx1A1aHerningvaerketxxx<	
1A1a Herningvaerket x x x x x x x x x x x x x x x x x x x	
1A1a Hilleroed Kraftvarmevaerk x	
1A1a Hjoerring Varmetorsyning x x x	
1A1a Horsens Kraftvarmevaerk x x x x x x x x x x x	
1A1aI/S Faelles Forbraendingxxxxxxxx	
1A1a I/S Kara Affaldsforbraendingsanlaeg x x x x x x x x x x x x x x x x	
1A1a I/S Nordforbraending x x x x x x x x x x x x x x x	
1A1a I/S Reno Nord x x x x x x x x x x	
1A1a I/S Reno Syd x x x x x x x x x x x x x x x x x	
1A1aI/S Vestforbraendingxxx <t< td=""><td></td></t<>	
1A1a Koege Kraftvarmevaerk x x x x	
1A1a Kolding Forbraendingsanlaeg TAS x x x x x x x x x x x x x x x x x	
1A1a Kommunekemi x x x x x x x x x x	
1A1a Kyndbyvaerket x x x x x x x x x x x x x x x x x x x	
1A1aL90 Affaldsforbraendingxxxxxxx	
1A1a Masnedoevaerket x x	
1A1a Maabjergvaerket x x x x x x x x x x x x x x x x x x x	
1A1a Nordjyllandsvaerket x x x x x x x x x x x x x x x x x x x	
1A1a Odense Kraftvarmevaerk x x x x x x x x x x x x x x x x x x x	
1A1a Oestkraft x x x x	
1A1a Silkeborg Kraftvarmevaerk x	
1A1a Skaerbaekvaerket x x x x x x x x x x x x x x x x x x x	
1A1a Skagen Forbraending x x x x x	
1A1a Soenderborg Kraftvarmevaerk x x x x x x x x x x x x x x x x x x	

1A1a	Special Waste System	х	х х	х										х					Х
1A1a	Studstrupvaerket	х	х		Х	[х	х	х	х	х	х	х	х	х	х	х	х	
1A1a	Svanemoellevaerket		х	х															
1A1a	Svendborg Kraftvarmevaerk	х	х х	х	Х	[х	х	х							х			х
1A1a	Viborg Kraftvarme		х																
1A1a	Vordingborg Kraftvarme	х	х																
1A1a	Dalum Kraftvarmevaerk	х	х																
1A1a	Randersvaerket Verdo	х	х		х	[х	х	х										
1A1a	I/S Kraftvarmevaerk Thisted	х	х											х					х
1A1a	Hammel Fjernvarmeselskab		х	х															
1A1b	Shell Raffinaderi	х	х																
1A1b	Statoil Raffinaderi	х	х																
1A1c	Nybro Gasbehandlingsanlaeg		х																
1A2a	DanSteel		х																
1A2c	Cheminova		х																
1A2c	Haldor Topsoee		х																
1A2c	Koppers	х	х х																
1A2e	Maricogen		х																
1A2e	Nordic Sugar Nakskov	х	х																
1A2e	Nordic Sugar Nykoebing	х	х		Х	2	х	х	х										
1A2e	AarhusKarlshamn Denmark A/S	х	х		Х	[х	х	х										
1A2e	Danisco Grindsted Dupont		х																
1A2f	Faxe Kalk	х	х																
1A2f	Aalborg Portland	х	х	х	Х	[х	х	х					х					
1A2g v	iii Ardagh Glass Holmegaard A/S		х	х															
1A2g v	iii Rockwool A/S Doense	х	х																
1A2g v	iii Rockwool A/S Vamdrup	х	х																
1A2g v	iii Saint-Gobain Isover A/S		х																
1A4a i	Rensningsanlaegget Lynetten	х	х	х	Х		х	х	х		х			х		х			х
Total		3474	113287	2651 6	4	74	394	291	9	54	8	62	51	177	79	96	565	241	587
Total e	mission from stationary combustion	7250	25785 13221	9899911	24 1	3376	12519	12000	1765	230	474	989	539	290	1653	2048	865	1781	3 1 3 8 1 1
	of total emission from stationary combustion based on	48%	44% 0.06%	3% 0.5	5% 4	%	3%	2%	0.5%	24%	2%	6%	10%	61%	5%	5%	65%	1%	4%
plant s	pecific data, %																		

Emissions of the pollutants marked with "x" are plant specific. Emission of other pollutants is estimated based on emission factors. The total shown *in this table* only includes plant specific data.
 Based on particle size distribution and BC fractions.

Annex 3A-7 Uncertainty estimates, 2014

Table 3A-7.1 Uncertainty estimates.	Gas	Base year Ye	art omission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type R consiti	Uncertainty i	Uncertainty in	Uncertainty
SIVAF	Gas	emission		uncertainty	uncertainty	uncertainty	uncertainty as % of total national emis- sions in year t	vity	vity			introduced into the trend in total national emissions
		Input data	Input data	Input data	Input data	%	%	%	%	%	%	0/
		Mg SO2	Mg SO2	%	%	,,						
1A1a Public electricity and heat production	SO2	126144.202	2588.964	1.000	10.000	10.050	3.589	-0.021	0.017	-0.214	0.024	0.216
1A1b Petroleum refining	SO2	1058.722	164.980	1.000	10.000	10.050	0.229	0.001	0.001	0.007	0.002	0.008
1A1c_ii Oil and gas extraction	SO2	4.077	10.241	1.000	10.000	10.050	0.014	0.000	0.000	0.001	0.000	0.001
1A2 Manufacturing industries and construction	SO2	15761.944	2765.174	2.000	10.000	10.198	3.889	0.013	0.018	0.131	0.051	0.141
1A4a i Commercial / institutional	SO2	1877.428	109.298	3.000	20.000	20.224	0.305	0.000	0.001	0.003	0.003	0.004
1A4b_i Residential (excluding wood)	SO2	6192.989	387.672	3.000	20.000	20.224	1.081	0.001	0.003	0.013	0.011	0.016
1A4b i Residential wood	SO2	98.499	332.336	20.000	20.000	28.284	1.296	0.002	0.002	0.042	0.061	0.074
1A4c_i Agriculture / forestry / fishing	SO2 SO2 SO2	3188.997	891.585	3.000	20.000	20.224	2.487	0.005	0.006	0.096	0.025	0.099
Total	SO2	154326.857	7250.249				37.187					0.082
Total uncertainties					Overall uncer- ainty i the year (%):		6.098			Trend uncertainty (%):		0.286

SNAP	Gas	Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		Mg NOx	Mg NOx	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	NOx	90614.520	10939.690	1.000	15.000	15.033	6.378	-0.084	0.096	-1.262	0.136	1.270
1A1b Petroleum refining	NOx	1461.869	1233.000	1.000	20.000	20.025	0.958		0.011	0.159	0.015	0.159
1A1c_ii Oil and gas extraction	NOx	2370.571	4661.762	1.000	20.000	20.025	3.620	0.036	0.041	0.726	0.058	0.728
	NOx	11978.652	4510.837	2.000	20.000	20.100	3.516			0.315	0.112	0.335
1A4a_i Commercial / institutional	NOx	1457.220	671.210	3.000	50.000	50.090	1.304	0.003	0.006		0.025	0.152
1A4b_i Residential (excluding wood)	NOx	3949.735	938.503	3.000	30.000	30.150	1.097	0.000	0.008	0.011	0.035	0.037
1A4b_i Residential wood	NOx	538.279	2305.393	20.000	50.000	53.852	4.815		0.020		0.574	1.120
1A4c_i Agriculture / forestry / fishing	NOx	1201.839	524.820	3.000	50.000	50.090	1.020	0.002	0.005	0.111	0.020	0.113
	NOx											
	NOx											
Total	NOx	113572.686	25785.216				94.193					3.570
Total uncertainties					Overall uncer-		9.705			Trend		1.889
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Gas	Base year Y	ear t emission	Activity data E	Emission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		Mg NMVOC	Mg NMVOC	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	NMVOC	450.524	940.195	1.000	50.000	50.010	3.556	0.035	0.059	1.775	0.083	1.777
1A1b Petroleum refining	NMVOC	22.855	22.597	1.000	50.000	50.010	0.085	0.000	0.001	0.012	0.002	0.012
1A1c_ii Oil and gas extraction	NMVOC	13.275	38.070	1.000	50.000	50.010	0.144	0.002	0.002	0.085	0.003	0.085
1A2 Manufacturing industries and construction	NMVOC	1099.002	237.690	2.000	50.000	50.040	0.900	-0.042	0.015	-2.098	0.042	2.098
1A4a_i Commercial / institutional	NMVOC	131.949	216.305	3.000	50.000	50.090	0.819	0.007	0.014	0.335	0.057	0.340
1A4b_i Residential (excluding wood)	NMVOC	4627.179	1863.092	3.000	50.000	50.090	7.058	-0.122	0.117	-6.125	0.494	6.144
1A4b_i Residential wood	NMVOC	7275.847	8577.777	20.000	100.000	101.980	66.162	0.159	0.537	15.943	15.177	22.011
1A4c_i Agriculture / forestry / fishing	NMVOC	2365.650	1325.770	3.000	50.000	50.090	5.023	-0.039	0.083	-1.970	0.352	2.001
	NMVOC											
	NMVOC											
Total	NMVOC	15986.283	13221.495				4466.660					533.943
Total uncertainties					Overall uncer-		66.833			Trend		23.107
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Gas	Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		Mg CO	Mg CO	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	CO	7941.876	9626.645	1.000	20.000	20.025	1.947	0.029	0.066	0.581	0.093	0.588
1A1b Petroleum refining	CO	125.940	109.811	1.000	20.000	20.025	0.022	0.000	0.001	0.003	0.001	0.004
1A1c_ii Oil and gas extraction	CO	58.790	114.216	1.000	20.000	20.025	0.023	0.001	0.001	0.010	0.001	0.010
1A2 Manufacturing industries and construction	CO	4651.782	3481.310	2.000	20.000	20.100	0.707	0.002	0.024	0.045	0.067	0.081
1A4a_i Commercial / institutional	CO	964.570	766.731	3.000	50.000	50.090	0.388	0.001	0.005	0.039	0.022	0.045
1A4b_i Residential (excluding wood)	CO	47956.385	12083.091	3.000	50.000	50.090	6.114	-0.139	0.083	-6.968	0.351	6.977
1A4b i Residential wood	CO	52232.953	63829.078	20.000	100.000	101.980	65.752	0.194	0.437	19.392	12.361	22.997
1A4c_i Agriculture / forestry / fishing	CO	32124.839	8987.810	3.000	50.000	50.090	4.548	-0.087	0.062	-4.368	0.261	4.375
	CO											
	CO											
Total	CO	146057.137	98998.691				4385.761					597.027
Total uncertainties					Overall uncer-		66.225			Trend		24.434
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Gas	emission	ear t emission	Activity data E uncertainty	uncertainty	Combined uncertainty	Combined uncertainty as % of total national emis- sions in year t	Type A sensiti- vity	vity	Uncertainty i trend in na- tional emis- sions intro- duced by emission factor uncertainty	Uncertainty in trend in na- tional emis- sions intro- duced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
		Input data Mg NH3	Input data Mg NH3	Input data %	Input data %	%	%	%	%	%	%	%
1A1a Public electricity and heat production 1A1b Petroleum refining 1A1c_ii Oil and gas extraction 1A2 Manufacturing industries and construction 1A4a_i Commercial / institutional 1A4b_i Residential (excluding wood) 1A4b_i Residential wood 1A4c_i Agriculture / forestry / fishing	NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3 NH3	0.287 22.166 614.406	14.360 10.995 1098.149	1.000 1.000 2.000 3.000 3.000 20.000 3.000	1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000	1000.000 1000.000 1000.002 1000.004 1000.004 101.980 1000.004	12.782 9.786 99.679	0.022 -0.044 0.022	0.023 0.017 1.724	21.753 -44.121 2.217	0.032 0.073 48.771	21.753 44.121 48.821
Total	NH3	636.859	1123.504				10195.026					4803.432
Total uncertainties					Overall uncer- ainty i the year (%):		100.970			Trend uncertainty (%):		69.307

SNAP	Gas	Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission (year		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
		2000)					% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		Mg TSP	Mg TSP	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	TSP	1020.847	715.395	1.000	20.000	20.025	1.071	-0.013	0.048	-0.270	0.068	0.278
1A1b Petroleum refining	TSP	143.931	96.156	1.000	50.000	50.010	0.360	-0.002	0.006	-0.111	0.009	0.111
1A1c_ii Oil and gas extraction	TSP	2.543	2.381	1.000	50.000	50.010	0.009	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	TSP	755.762	261.718	2.000	30.000	30.067	0.588	-0.028	0.018	-0.839	0.050	0.841
1A4a_i Commercial / institutional	TSP	164.581	175.954	3.000	50.000	50.090	0.659	0.002	0.012	0.095	0.050	0.107
1A4b_i Residential (excluding wood)	TSP	886.344	679.737	3.000	50.000	50.090	2.546	-0.008	0.046	-0.390	0.194	0.435
1A4b_i Residential wood	TSP	11354.712	10942.797	20.000	200.000	200.998	164.438	0.050	0.735	9.957	20.777	23.040
1A4c_i Agriculture / forestry / fishing	TSP	567.758	501.608	3.000	50.000	50.090	1.878	-0.001	0.034	-0.027	0.143	0.145
	TSP											
	TSP											
Total	TSP	14896.479	13375.746				27051.773					531.851
Total uncertainties					Overall uncer-		164.474			Trend		23.062
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Gas	Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission (year		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
		2000)					% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data						-	
		Mg PM10	Mg PM10	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	PM10	829.241	548.353	1.000	20.000	20.025	0.877	-0.015	0.040	-0.293	0.056	0.298
1A1b Petroleum refining	PM10	130.701	92.287	1.000	50.000	50.010	0.369	-0.002	0.007	-0.094	0.009	0.095
1A1c_ii Oil and gas extraction	PM10	1.551	1.454	1.000	50.000	50.010	0.006	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	PM10	546.120	196.675	2.000	30.000	30.067	0.472	-0.022	0.014	-0.646	0.040	0.647
1A4a_i Commercial / institutional	PM10	157.577	173.895	3.000	50.000	50.090	0.696	0.002	0.013	0.113	0.053	0.125
1A4b_i Residential (excluding wood)	PM10	847.425	644.861	3.000	50.000	50.090	2.580	-0.009	0.047	-0.442	0.198	0.485
1A4b i Residential wood	PM10	10786.026	10390.382	20.000	200.000	200.998	166.818	0.045	0.751	8.967	21.254	23.068
1A4c_i Agriculture / forestry / fishing	PM10	528.833	471.401	3.000	50.000	50.090	1.886	-0.001	0.034	-0.027	0.145	0.147
	PM10											
	PM10											
Total	PM10	13827.475	12519.308				27839.942					532.911
Total uncertainties					Overall uncer-		166.853			Trend		23.085
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Gas	Base year Y	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission (year		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
		2000)					% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		Mg PM2,5	Mg PM2,5	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	PM2,5	692.962	428.861	1.000	20.000	20.025	0.716	-0.016	0.033	-0.322	0.047	0.325
1A1b Petroleum refining	PM2,5	124.086	90.353	1.000	50.000	50.010	0.377	-0.002	0.007	-0.092	0.010	0.093
1A1c_ii Oil and gas extraction	PM2,5	1.297	1.216	1.000	50.000	50.010	0.005	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	PM2,5	305.440	129.226	2.000	30.000	30.067	0.324	-0.012	0.010	-0.351	0.028	0.352
1A4a_i Commercial / institutional	PM2,5	146.763	164.246	3.000	50.000	50.090	0.686	0.002	0.013	0.111	0.054	0.124
1A4b_i Residential (excluding wood)	PM2,5	812.485	613.029	3.000	50.000	50.090	2.559	-0.010	0.047	-0.521	0.200	0.558
1A4b_i Residential wood	PM2,5	10446.416	10130.395	20.000	200.000	200.998	169.679	0.038	0.778	7.675	22.003	23.304
1A4c_i Agriculture / forestry / fishing	PM2,5	492.688	442.898	3.000	50.000	50.090	1.849	-0.001	0.034	-0.043	0.144	0.150
	PM2,5											
	PM2,5											
Total	PM2,5	13022.137	12000.224				28802.104					543.647
Total uncertainties					Overall uncer-		169.712			Trend		23.316
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Gas	Base year Ye	ar t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission (year		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
		2000)					% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		Gg BC	Gg BC	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	BC	0.028	0.015	1.000	1000.000	1000.000	8.600	-0.009	0.009	-8.607	0.013	8.607
1A1b Petroleum refining	BC	0.017	0.015	1.000	1000.000	1000.000	8.434	-0.002	0.009	-1.887	0.013	1.887
1A1c_ii Oil and gas extraction	BC	0.000	0.000	1.000	1000.000	1000.000	0.018	-0.000	0.000	-0.002	0.000	0.002
1A2 Manufacturing industries and construction	BC	0.055	0.019	2.000	1000.000	1000.002	10.557	-0.024	0.011	-24.376	0.032	24.376
1A4a_i Commercial / institutional	BC	0.051	0.049	3.000	1000.000	1000.004	27.500	-0.003	0.029	-3.271	0.124	3.273
1A4b_i Residential (excluding wood)	BC	0.072	0.061	3.000	1000.000	1000.004	34.661	-0.009	0.037	-9.269	0.157	9.270
1A4b_i Residential wood	BC	1.291	1.484	20.000	1000.000	1000.200	840.986	0.065	0.896	64.734	25.341	69.517
1A4c_i Agriculture / forestry / fishing	BC	0.143	0.123	3.000	1000.000	1000.004	69.414	-0.018	0.074	-17.797	0.314	17.799
	BC											
	BC											
Total	BC	1.657	1.765				714290.632					5917.920
Total uncertainties					Overall uncer-		845.157			Trend		76.928
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye	ar t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg As	kg As	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	As	926.933	108.861	1.000	50.000	50.010	23.628	-0.063	0.093	-3.150	0.132	3.153
1A1b Petroleum refining	As	30.790	29.317	1.000	100.000	100.005	12.724	0.020	0.025	1.990	0.036	1.991
1A1c_ii Oil and gas extraction	As	1.128	2.831	1.000	100.000	100.005	1.229	0.002	0.002	0.223	0.003	0.224
1A2 Manufacturing industries and construction	As	156.331	68.068	2.000	100.000	100.020	29.547	0.032	0.058	3.183	0.165	3.188
1A4a_i Commercial / institutional	As	13.431	2.920	3.000	300.000	300.015	3.802	0.000	0.003	0.069	0.011	0.070
1A4b_i Residential (excluding wood)	As	14.210	5.765	3.000	300.000	300.015	7.506	0.003	0.005	0.761	0.021	0.761
1A4b_i Residential wood	As	1.701	5.740	20.000	1000.000	1000.200	24.918	0.005	0.005	4.630	0.139	4.632
1A4c_i Agriculture / forestry / fishing	As	22.705	6.913	3.000	300.000	300.015	9.001	0.002	0.006	0.625	0.025	0.625
	As											
	As											
Total	As	1167.230	230.414				2367.444					46.546
Total uncertainties					Overall uncer-		48.656			Trend		6.822
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Cd	kg Cd	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Cd	718.812	26.800	1.000	50.000	50.010	2.826	-0.338	0.028	-16.889	0.039	16.889
1A1b Petroleum refining	Cd	21.271	22.002	1.000	100.000	100.005	4.640	0.012	0.023	1.197	0.032	1.197
1A1c_ii Oil and gas extraction	Cd	0.002	0.006	1.000	100.000	100.005	0.001	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	Cd	53.970	23.246	2.000	100.000	100.020	4.903	-0.003	0.024	-0.348	0.068	0.355
1A4a_i Commercial / institutional	Cd	30.036	0.599	3.000	300.000	300.015	0.379	-0.015	0.001	-4.427	0.003	4.427
1A4b_i Residential (excluding wood)	Cd	9.745	4.058	3.000	300.000	300.015	2.567	-0.001	0.004	-0.232	0.018	0.233
1A4b_i Residential wood	Cd	116.408	392.761	20.000	600.000	600.333	497.210	0.348	0.408	208.881	11.545	209.200
1A4c_i Agriculture / forestry / fishing	Cd	11.984	4.750	3.000	300.000	300.015	3.005	-0.001	0.005	-0.360	0.021	0.361
	Cd											
	Cd											
Total	Cd	962.229	474.221				247287.572					44071.261
Total uncertainties					Overall uncer-		497.280			Trend		209.932
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Y emission	ear t emission	Activity data E uncertainty	mission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emis- sions in year t	Type A sensiti- vity	vity	Uncertainty i trend in na- tional emis- sions intro- duced by emission factor uncertainty	Uncertainty in trend in na- tional emis- sions intro- duced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
		Input data	Input data	Input data	Input data					,		
		kg Cr	kg Cr	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Cr	4639.758	160.087	1.000	50.000	50.010	8.091	-0.129	0.030	-6.468	0.042	6.468
1A1b Petroleum refining	Cr	23.104	22.544	1.000	100.000	100.005	2.278	0.003	0.004	0.342	0.006	0.342
1A1c_ii Oil and gas extraction	Cr	0.007	0.018	1.000	100.000	100.005	0.002	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	Cr	216.482	78.852	2.000	100.000	100.020	7.971	0.007	0.015	0.725	0.042	0.726
1A4a_i Commercial / institutional	Cr	177.281	4.048	3.000	300.000	300.015	1.227	-0.005	0.001	-1.611	0.003	1.611
1A4b_i Residential (excluding wood)	Cr	37.489	8.538	3.000	300.000	300.015	2.589	0.000	0.002	0.090	0.007	0.090
1A4b_i Residential wood	Cr	205.952	694.885	20.000	400.000	400.500	281.259	0.123	0.130	49.089	3.674	49.226
1A4c_i Agriculture / forestry / fishing	Cr	49.740	20.511	3.000	300.000	300.015	6.219	0.002	0.004	0.634	0.016	0.634
	Cr											
	Cr											
Total	Cr	5349.813	989.482				79287.908					2468.698
Total uncertainties					Overall uncer-		281.581			Trend		49.686
				ta	ainty i the year (%):					uncertainty (%):		

SNAP		Base year Ye emission	ear t emission	Activity data E uncertainty	mission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emis- sions in year t	Type A sensiti- vity	vity	Uncertainty i trend in na- tional emis- sions intro- duced by emission factor	Uncertainty in trend in na- tional emis- sions intro- duced by activity data	Uncertainty introduced into the trend in total national emissions
		Input data	Input data	Input data	Input data					uncertainty	uncertainty	
		kg Cu	kg Cu	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Cu	2870.506	147.748	1.000	50.000	50.010	13.700	-0.080	0.042	-4.017	0.059	4.017
1A1b Petroleum refining	Cu	45.203	43.667	1.000	100.000	100.005	8.097	0.010	0.012	1.035	0.017	1.036
1A1c_ii Oil and gas extraction	Cu	0.001	0.002	1.000	100.000	100.005	0.000	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	Cu	306.913	101.148	2.000	100.000	100.020	18.758	0.015	0.028	1.534	0.080	1.536
1A4a_i Commercial / institutional	Cu	122.662	4.402	3.000	300.000	300.015	2.449	-0.004	0.001	-1.199	0.005	1.199
1A4b_i Residential (excluding wood)	Cu	69.877	24.965	3.000	300.000	300.015	13.888	0.004	0.007	1.212	0.030	1.212
1A4b_i Residential wood	Cu	53.727	181.274	20.000	1000.000	1000.200	336.183	0.049	0.051	48.702	1.443	48.723
1A4c_i Agriculture / forestry / fishing	Cu	85.295	36.115	3.000	300.000	300.015	20.090	0.007	0.010	1.955	0.043	1.956
	Cu											
	Cu											
Total	Cu	3554.183	539.321				114226.497					2400.261
Total uncertainties					Overall uncer-		337.974			Trend		48.992
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye	ar t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	
										emission factor uncertainty	activity data uncertainty	
		Input data	Input data	Input data	Input data					anoontainty	anoontainty	
		kg Hg	kg Hg	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Hg	2448.434	171.942	1.000	50.000	50.010	29.659	-0.028	0.061	-1.383	0.086	1.385
1A1b Petroleum refining	Hg	20.093	21.664	1.000	100.000	100.005	7.473	0.007	0.008	0.693	0.011	0.693
1A1c_ii Oil and gas extraction	Hg	0.948	2.379	1.000	100.000	100.005	0.821	0.001	0.001	0.081	0.001	0.081
1A2 Manufacturing industries and construction	Hg	192.035	61.492	2.000	100.000	100.020	21.214	0.015	0.022	1.477	0.061	1.478
1A4a_i Commercial / institutional	Hg	124.046	2.017	3.000	300.000	300.015	2.087	-0.004	0.001	-1.133	0.003	1.133
1A4b_i Residential (excluding wood)	Hg	16.349	3.943	3.000	300.000	300.015	4.080	0.001	0.001	0.240	0.006	0.240
1A4b_i Residential wood	Hg	5.014	16.919	20.000	200.000	200.998	11.729	0.006	0.006	1.159	0.169	1.172
1A4c_i Agriculture / forestry / fishing	Hg	22.752	9.570	3.000	300.000	300.015	9.903	0.003	0.003	0.767	0.014	0.768
	Hg											
	Hg											
Total	Hg	2829.672	289.926				1642.829					7.894
Total uncertainties					Overall uncer-		40.532			Trend		2.810
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye emission	ear t emission	Activity data E uncertainty	Emission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emis- sions in year t	Type A sensiti- vity	vity	Uncertainty i trend in na- tional emis- sions intro- duced by emission factor uncertainty	Uncertainty in trend in na- tional emis- sions intro- duced by activity data uncertainty	the trend in total national emissions
		Input data	Input data	Input data	Input data					,		
		kg Ni	kg Ni	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Ni	8038.635	255.609	1.000	50.000	50.010	7.731	-0.033	0.015	-1.636	0.022	1.636
1A1b Petroleum refining	Ni	493.501	161.544	1.000	100.000	100.005	9.771	0.007	0.010	0.677	0.014	0.677
1A1c_ii Oil and gas extraction	Ni	0.005	0.012	1.000	100.000	100.005	0.001	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	Ni	6274.977	1089.047	2.000	100.000	100.020	65.881	0.028	0.066	2.784	0.186	2.791
1A4a_i Commercial / institutional	Ni	587.219	25.964	3.000	300.000	300.015	4.711	-0.002	0.002	-0.588	0.007	0.588
1A4b_i Residential (excluding wood)	Ni	386.269	12.763	3.000	300.000	300.015	2.316	-0.002	0.001	-0.465	0.003	0.465
1A4b i Residential wood	Ni	17.909	60.425	20.000	700.000	700.286	25.593	0.004	0.004	2.474	0.103	2.476
1A4c_i Agriculture / forestry / fishing	Ni	793.895	48.024	3.000	300.000	300.015	8.714	-0.002	0.003	-0.562	0.012	0.562
	Ni											
	Ni											
Total	Ni	16592.410	1653.388				5254.002					17.931
Total uncertainties					Overall uncer- ainty i the year		72.484			Trend uncertainty		4.235
					(%):					(%):		

SNAP		Base year Ye	ar t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Pb	kg Pb	%	%	%	%	%		%	%	%
1A1a Public electricity and heat production	Pb	12005.915	347.194	1.000	50.000	50.010	8.478	-0.082	0.023	-4.106	0.032	4.106
1A1b Petroleum refining	Pb	63.725	64.856	1.000	100.000	100.005	3.167	0.004	0.004	0.369	0.006	0.369
1A1c_ii Oil and gas extraction	Pb	0.014	0.036	1.000	100.000	100.005	0.002	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	Pb	1483.940	480.047	2.000	100.000	100.020	23.445	0.018	0.031	1.839	0.089	1.841
1A4a_i Commercial / institutional	Pb	679.141	5.800	3.000	300.000	300.015	0.850	-0.006	0.000	-1.676	0.002	1.676
1A4b_i Residential (excluding wood)	Pb	308.283	115.824	3.000	300.000	300.015	16.967	0.005	0.008	1.463	0.032	1.463
1A4b_i Residential wood	Pb	241.770	815.734	20.000	400.000	400.500	159.523	0.051	0.053	20.520	1.511	20.576
1A4c_i Agriculture / forestry / fishing	Pb	483.468	218.500	3.000	300.000	300.015	32.009	0.010	0.014	3.018	0.061	3.019
	Pb											
	Pb											
Total	Pb	15266.256	2047.990				27392.280					457.819
Total uncertainties					Overall uncer-		165.506			Trend		21.397
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye emission	ear t emission	Activity data E uncertainty	Emission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emis- sions in year t	Type A sensiti- vity	vity	Uncertainty i trend in na- tional emis- sions intro- duced by emission factor	Uncertainty in trend in na- tional emis- sions intro- duced by activity data	the trend in total national emissions
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Se	kg Se	%	%	%	%	%	%	%	%	
1A1a Public electricity and heat production	Se	3453.494	625.460	1.000	50.000	50.010	36.145	-0.033	0.158	-1.650	0.224	1.665
1A1b Petroleum refining	Se	97.931	105.274	1.000	100.000	100.005	12.166	0.021	0.027	2.122	0.038	2.122
1A1c_ii Oil and gas extraction	Se	0.095	0.238	1.000	100.000	100.005	0.027	0.000	0.000	0.005	0.000	0.006
1A2 Manufacturing industries and construction	Se	276.911	88.784	2.000	100.000	100.020	10.261	0.007	0.022	0.711	0.064	0.714
1A4a_i Commercial / institutional	Se	27.780	1.425	3.000	300.000	300.015	0.494	-0.001	0.000	-0.354	0.002	0.354
1A4b_i Residential (excluding wood)	Se	19.855	1.691	3.000	300.000	300.015	0.586	-0.001	0.000	-0.202	0.002	0.202
1A4b_i Residential wood	Se	4.477	15.106	20.000	200.000	200.998	3.509	0.004	0.004	0.715	0.108	0.724
1A4c_i Agriculture / forestry / fishing	Se	67.855	27.410	3.000	300.000	300.015	9.503	0.003	0.007	0.952	0.029	0.953
	Se											
	Se											
Total	Se	3948.398	865.386				1662.944					9.386
Total uncertainties					Overall uncer-		40.779			Trend		3.064
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye	ar t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	
										emission factor	activity data	
		land the second		la sub data						uncertainty	uncertainty	
		Input data	Input data	Input data	Input data	0/	0/	0/	0/	0/	0/	0/
		kg Zn	kg Zn	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Zn	16298.113	405.647	1.000	50.000	50.010	1.139	-0.362	0.015	-18.119	0.021	18.119
1A1b Petroleum refining	Zn	148.226	64.008	1.000	100.000	100.005	0.359	-0.001	0.002	-0.114	0.003	0.114
1A1c_ii Oil and gas extraction	Zn	0.014	0.036	1.000	100.000	100.005	0.000	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	Zn	3705.929	1009.651	2.000	100.000	100.020	5.669	-0.050	0.036	-4.966	0.103	4.967
1A4a i Commercial / institutional	Zn	866.854	15.113	3.000	300.000	300.015	0.255	-0.020	0.001	-5.885	0.002	5.885
1A4b i Residential (excluding wood)	Zn	927.407	377.244	3.000	300.000	300.015	6.354	-0.008	0.014	-2.382	0.058	2.383
1A4b i Residential wood	Zn	4584.669	15468.741	20.000	200.000	200.998	174.547	0.452	0.559	90.326	15.812	91.699
1A4c i Agriculture / forestry / fishing	Zn	1139.005	472.381	3.000	300.000	300.015	7.956	-0.009	0.017	-2.827	0.072	2.828
	Zn											
	Zn											
Total	Zn	27670.217	17812.821				30604.035					8810.020
Total uncertainties					Overall uncer-		174.940			Trend		93.862
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty		vity	vity	trend in na-	trend in na-	
							% of total			tional emis-	tional emis-	
							national emis-			sions intro-	sions intro-	
							sions in year t			duced by	duced by	
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data	0/	0/	<u>.</u>	24	24	A /	A (
		g Dioxin	g Dioxin	%	%	%	%	%	%		%	
1A1a Public electricity and heat production	Dioxin	30.911	1.469	1.000	200.000	200.002	21.273	-0.161	0.031	-32.261	0.044	
1A1b Petroleum refining	Dioxin	0.002	0.001	1.000	1000.000	1000.000	0.053	0.000	0.000	0.006	0.000	0.006
1A1c_ii Oil and gas extraction	Dioxin	0.000	0.001	1.000	1000.000	1000.000	0.043	0.000	0.000	0.011	0.000	0.011
	Dioxin	0.904	0.051	2.000	1000.000	1000.002	3.695	-0.005	0.001	-4.575	0.003	4.575
1A4a_i Commercial / institutional	Dioxin	2.189	0.487	3.000	1000.000	1000.004	35.293	-0.003	0.010	-3.332	0.044	3.333
1A4b_i Residential (excluding wood)	Dioxin	4.297	1.496	3.000	1000.000	1000.004	108.330	0.005	0.032	4.943	0.135	4.944
1A4b_i Residential wood	Dioxin	6.231	9.129	20.000	600.000	600.333	396.798	0.155	0.194	93.109	5.499	93.271
1A4c_i Agriculture / forestry / fishing	Dioxin	2.419	1.178	3.000	1000.000	1000.004	85.261	0.010	0.025	9.919	0.106	9.920
	Dioxin											
	Dioxin											
Total	Dioxin	46.953	13.811				178165.387					9895.152
Total uncertainties					Overall uncer-		422.096			Trend		99.474
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Y	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-		introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Benzo(b)	kg Benzo(b)	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Benzo(b)	22.622	34.140	1.000	100.000	100.005	1.794	0.003	0.024	0.270	0.034	0.272
1A1b Petroleum refining	Benzo(b)	0.622	0.186	1.000	100.000	100.005	0.010	-0.000	0.000	-0.046	0.000	0.046
1A1c_ii Oil and gas extraction	Benzo(b)	0.009	0.024	1.000	100.000	100.005	0.001	0.000	0.000	0.001	0.000	0.001
1A2 Manufacturing industries and construction	Benzo(b)	48.987	72.647	2.000	100.000	100.020	3.818	0.005	0.051	0.495	0.145	0.516
1A4a_i Commercial / institutional	Benzo(b)	52.109	249.959	3.000	1000.000	1000.004	131.351	0.127	0.176	126.761	0.746	126.763
1A4b_i Residential (excluding wood)	Benzo(b)	121.877	37.139	3.000	1000.000	1000.004	19.516	-0.089	0.026	-88.683	0.111	88.683
1A4b_i Residential wood	Benzo(b)	943.771	1372.716	20.000	1000.000	1000.200	721.490	0.076	0.966	75.941	27.328	80.708
1A4c_i Agriculture / forestry / fishing	Benzo(b)	230.761	136.182	3.000	1000.000	1000.004	71.562	-0.122	0.096	-121.501	0.407	121.502
	Benzo(b)											
	Benzo(b)											
Total	Benzo(b)	1420.758	1902.992				543320.930					45210.474
Total uncertainties					Overall uncer-		737.103			Trend		212.628
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Y	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Benzo(k)	kg Benzo(k)	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Benzo(k)	10.404	22.054	1.000	100.000	100.005	3.332	0.016	0.046	1.606	0.065	1.607
1A1b Petroleum refining	Benzo(k)	0.122	0.036	1.000	100.000	100.005	0.006	-0.000	0.000	-0.027	0.000	0.027
1A1c_ii Oil and gas extraction	Benzo(k)	0.019	0.047	1.000	100.000	100.005	0.007	0.000	0.000	0.004	0.000	0.004
1A2 Manufacturing industries and construction	Benzo(k)	22.692	9.425	2.000	100.000	100.020	1.424	-0.045	0.020	-4.548	0.056	4.548
1A4a_i Commercial / institutional	Benzo(k)	16.050	82.913	3.000	1000.000	1000.004	125.243	0.127	0.173	126.527	0.732	126.529
1A4b_i Residential (excluding wood)	Benzo(k)	39.727	19.998	3.000	1000.000	1000.004	30.208	-0.072	0.042	-72.316	0.177	72.317
1A4b_i Residential wood	Benzo(k)	356.321	497.061	20.000	1000.000	1000.200	750.979	0.012	1.035	12.218	29.272	31.720
1A4c_i Agriculture / forestry / fishing	Benzo(k)	34.947	30.481	3.000	1000.000	1000.004	46.043	-0.037	0.063	-36.805	0.269	36.806
	Benzo(k)											
	Benzo(k)											
Total	Benzo(k)	480.282	662.017				582701.558					23623.493
Total uncertainties					Overall uncer-		763.349			Trend		153.699
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Y	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Benzo(a)	kg Benzo(a)	%	%	%	%	%	%		%	%
1A1a Public electricity and heat production	Benzo(a)	6.881	8.622	1.000	100.000	100.005	0.502	0.000	0.006		0.009	0.019
1A1b Petroleum refining	Benzo(a)	0.143	0.043	1.000	100.000	100.005	0.002	-0.000	0.000		0.000	0.009
1A1c_ii Oil and gas extraction	Benzo(a)	0.009	0.024	1.000	100.000	100.005	0.001	0.000	0.000		0.000	0.001
1A2 Manufacturing industries and construction	Benzo(a)	10.801	21.469	2.000	100.000	100.020	1.250	0.006	0.015		0.043	0.591
1A4a_i Commercial / institutional	Benzo(a)	40.998	190.247	3.000	1000.000	1000.004	110.734	0.099	0.135	99.473	0.572	99.475
1A4b_i Residential (excluding wood)	Benzo(a)	116.485	37.506	3.000	1000.000	1000.004	21.831	-0.074	0.027	-74.013	0.113	74.013
1A4b_i Residential wood	Benzo(a)	1023.279	1338.635	20.000	1000.000	1000.200	779.313	0.065	0.949		26.855	69.936
1A4c_i Agriculture / forestry / fishing	Benzo(a)	211.305	121.510	3.000	1000.000	1000.004	70.726	-0.096	0.086	-96.301	0.366	96.302
	Benzo(a)											
	Benzo(a)											
Total	Benzo(a)	1409.902	1718.056				625070.788					29538.609
Total uncertainties					Overall uncer-		790.614			Trend		171.868
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP		Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data							
		kg Indeno	kg Indeno	%	%	%	%	%	%	%	%	%
1A1a Public electricity and heat production	Indeno	6.057	6.076	1.000	100.000	100.005	0.573	0.000	0.006	0.021	0.008	0.023
1A1b Petroleum refining	Indeno	0.232	0.069	1.000	100.000	100.005	0.007	-0.000	0.000	-0.014	0.000	0.014
1A1c_ii Oil and gas extraction	Indeno	0.028	0.071	1.000	100.000	100.005	0.007	0.000	0.000	0.004	0.000	0.004
1A2 Manufacturing industries and construction	Indeno	13.576	3.590	2.000	100.000	100.020	0.339	-0.009	0.003	-0.865	0.009	0.865
1A4a_i Commercial / institutional	Indeno	37.086	135.222	3.000	1000.000	1000.004	127.609	0.090	0.123	90.493	0.522	90.495
1A4b_i Residential (excluding wood)	Indeno	117.831	12.265	3.000	1000.000	1000.004	11.574	-0.092	0.011	-92.188	0.047	92.188
1A4b_i Residential wood	Indeno	599.052	745.886	20.000	1000.000	1000.200	704.031	0.152	0.679	152.157	19.203	153.364
1A4c_i Agriculture / forestry / fishing	Indeno	324.751	156.483	3.000	1000.000	1000.004	147.673	-0.142	0.142	-142.263	0.604	142.264
	Indeno											
	Indeno											
Total	Indeno	1098.614	1059.662				533885.72					60448.52
Total uncertainties					Overall uncer-		730.675			Trend		245.863
				ta	ainty i the year					uncertainty		
					(%):					(%):		

SNAP	Base year Y	ear t emission	Activity data E	Emission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
	emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-		introduced into
						% of total			tional emis-	tional emis-	the trend in
						national emis-			sions intro-	sions intro-	total national
						sions in year t			duced by	duced by	emissions
									emission factor	activity data	
									uncertainty	uncertainty	
	Input data	Input data	Input data	Input data	0/	0/	^ /	0 /		<u>.</u>	<i></i>
	kg HCB	kg HCB	%	%	%	%			%	%	%
1A1a Public electricity and heat production HCE		1.061	1.000	1000.000	1000.000	798.253	0.011	0.183	10.603	0.258	10.606
1A1b Petroleum refining HCE		0.000	1.000	1000.000	1000.000	0.065	0.000	0.000	0.003	0.000	0.003
1A1c_ii Oil and gas extraction HCE	•	0.000	1.000	1000.000	1000.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction HCE	0.140	0.059	2.000	1000.000	1000.002	44.634	0.005	0.010	4.705	0.029	4.705
1A4a_i Commercial / institutional HCE	0.181	0.008	3.000	1000.000	1000.004	5.959	-0.006	0.001	-5.752	0.006	5.752
1A4b_i Residential (excluding wood) HCE	0.932	0.015	3.000	1000.000	1000.004	11.251	-0.034	0.003	-34.040	0.011	34.040
1A4b_i Residential wood HCE	0.045	0.151	20.000	500.000	500.400	56.861	0.024	0.026	12.110	0.735	12.132
1A4c_i Agriculture / forestry / fishing HCE	0.146	0.035	3.000	1000.000	1000.004	26.209	0.000	0.006	0.235	0.025	0.237
HCE	•										
HCE	•										
Total HCE	5.814	1.329				643281.618					1473.702
Total uncertainties				Overall uncer-		802.048			Trend		38.389
			t	ainty i the year					uncertainty		
				(%):					(%):		

SNAP		Base year Ye	ear t emission	Activity data E	mission factor	Combined	Combined	Type A sensiti-	Type B sensiti-	Uncertainty i	Uncertainty in	Uncertainty
		emission		uncertainty	uncertainty	uncertainty	uncertainty as	vity	vity	trend in na-	trend in na-	introduced into
							% of total			tional emis-	tional emis-	the trend in
							national emis-			sions intro-	sions intro-	total national
							sions in year t			duced by	duced by	emissions
										emission factor	activity data	
										uncertainty	uncertainty	
		Input data	Input data	Input data	Input data					-	-	
		kg PCB	kg PCB	. %	. %	%	%	%	%	%	%	%
1A1a Public electricity and heat production	PCB	0.893	0.254	1.000	1000.000	1000.000	642.670	-0.039	0.216	-38.561	0.305	38.562
1A1b Petroleum refining	PCB	0.001	0.000	1.000	1000.000	1000.000	0.821	-0.000	0.000	-0.038	0.000	0.038
1A1c_ii Oil and gas extraction	PCB		0.000	1.000	1000.000	1000.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2 Manufacturing industries and construction	PCB	0.121	0.044	2.000	1000.000	1000.002	111.915	0.003	0.038	3.096	0.106	3.098
1A4a i Commercial / institutional	PCB	0.045	0.004	3.000	1000.000	1000.004	8.908	-0.010	0.003	-9.868	0.013	9.868
1A4b_i Residential (excluding wood)	PCB	0.027	0.009	3.000	1000.000	1000.004	22.730	-0.000	0.008	-0.033	0.032	0.046
	РСВ	0.060	0.070	20.000	1000.000	1000.200	176.491	0.042	0.059	42.307	1.678	42.340
1A4c i Agriculture / forestry / fishing	PCB	0.031	0.014	3.000	1000.000	1000.004	36.501	0.003	0.012	3.367	0.052	3.367
	PCB											
	PCB											
Total	PCB	1.178	0.396				458628.001					3397.982
Total uncertainties					Overall uncer-		677.221			Trend		58.292
				ta	ainty i the year					uncertainty		
					(%):					(%):		

This table is also available at: http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/

Annex 3A-8 Emission inventory 2014 based on SNAP sectors

Table 3A-8.1 Emission inventory 2014 based on SNAP sectors. This table is available at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

Annex 3A-9 Description of the Danish energy statistics

This description of the Danish energy statistics has been prepared by Denmark's National Environmental Research Institute, NERI (now DCE) in cooperation with the Danish Energy Agency (DEA) as background information to the Danish National Inventory Report (NIR).

The Danish energy statistics system

DEA is responsible for the Danish energy balance. Main contributors to the energy statistics outside DEA are Statistics Denmark and Danish Energy Association (before Association of Danish Energy Companies). The statistics is performed using an integrated statistical system building on an Access database and Excel spreadsheets.

The DEA follows the recommendations of the International Energy Agency as well as Eurostat.

The national energy statistics is updated annually and all revisions are immediately included in the published statistics, which can be found on the DEA homepage. It is an easy task to check for breaks in a series because the statistics is 100 % time-series oriented.

The national energy statistics does not include Greenland and Faroe Islands.

For historical reasons, DEA receive monthly information from the Danish oil companies regarding Danish deliveries of oil products to Greenland and Faroe Islands. However, the monthly (MOS) and annual (AOS) reporting of oil statistics to Eurostat and IEA exclude Greenland and Faroe Islands. For all other energy products, the Danish figures are also excluding Greenland and Faroe Islands.

Reporting to the Danish Energy Agency

The Danish Energy Agency receives monthly statistics for the following fuel groups:

- Crude oil and oil products.
 - Monthly data from 46 oil companies, the main purpose is monitoring oil stocks according to the oil preparedness system.
- Natural gas.
 - Fuel/flare from platforms in the North Sea.
 - Natural gas balance from the regulator Energinet.dk (National monopoly).
- Coal and coke.
 - Power plants (94 %).
 - Industry companies (4 %).
 - Coal and coke traders (2 %).
- Electricity.
 - Monthly reporting by e-mail from the regulator Energinet.dk (National monopoly).
 - The statistics covers:
 - Production by type of producer.
 - Own use of electricity.
 - Import and export by country.
 - Domestic supply (consumption + distribution loss).
- Town gas (quarterly) from two town gas producers.

 The large central power plants also report monthly consumption of biomass.

Annual data includes renewable energy including waste. The DEA conducts a biannual survey on wood pellets and wood fuel. Statistics Denmark conducts biannual surveys on the energy consumption in the service and industrial sectors. Statistics Denmark prepares annual surveys on forest (wood fuel) & straw.

Other annual data sources include:

- DEA:
- Survey on production of electricity and heat and fuels used.
- Survey on end use of oil.
- Survey on end use of natural gas.
- Survey on end use of coal and coke.
- DCE (former NERI), Aarhus University.
- Energy consumption for domestic air transport.
- Danish Energy Association (Association of Danish Energy companies).
- Survey on electricity consumption.
- Ministry of Taxation.
- Border trade.
- Centre for Biomass Technology.
- Annual estimates of final consumption of straw and wood chips.

Annual revisions

In general, DEA follows the same procedures as in the Danish national account. This means that normally only figures for the last two years are revised.

Aggregating the energy statistics on SNAP level

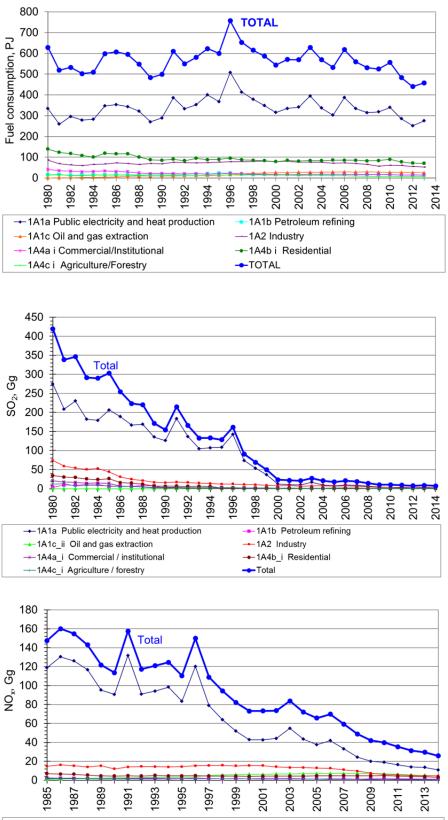
The sectors used in the official energy statistics have been mapped to SNAP categories, used in the Danish emission database. DCE aggregates the official energy statistics to SNAP level based on a source correspondence table.

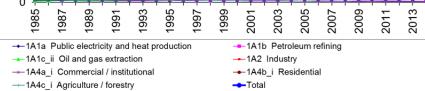
In cooperation between DEA and DCE, a fuel correspondence table has been developed mapping the fuels used by the DEA in the official energy statistics with the fuel codes used in the Danish national emission database. The fuel correspondence table between fuel categories used by the DEA, DCE and NFR is presented in Annex 3A-3.

The mapping between the energy statistics and the SNAP and fuel codes used by DCE can be seen in the table below.

Table 3A-9.1 Correspondence between the Danish national energy statistics and the SNAP nomenclature (only stationary combustion part shown).

Dim. 10 Endrage Fuel-code SNAP SNAP	Unit: TJ		End-use		Transformation	
SNAP Fuel (in Danish) Fuel-code SNAP Fuel-code - Border Trade - - Motor Gasoline - </td <td>Shit. 15</td> <td></td> <td>End-use</td> <td></td> <td></td> <td>1</td>	Shit. 15		End-use			1
Foreign Trade		SNAP	Fuel (in Danish)	Fuel-code		Fuel-code
- • Motor Gasoline - Petroleum Coke 0202 Petrokoks 110A						
- Casi-Disea Oil - Petrokoks 110A Vessels in Foreign Trade - International Marine Burkers - Gas-Disea Oil - Fuel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Extraction and Gasification - Extraction - Casification - Extraction - Casification - Biogas 309A - Biogas, Chere 091006 Biogas 309A - Gasification - Biogas 309A - Gasification - Biogas, Chere 091006 Biogas 309A - Refineries Notice						
- Petroleum Coke 0202 Petrokoks 110A Vessels in Foreign Trade						
Vessels in Foreign Trade		0202	Petrokoks	110A		
Gas-Diesel Oil Lubricants Extraction - Statural Gas - Statural Gas - Silogas, Landfill 0 91006 - Biogas - Biogas, Cher - Biogas, Cher - Biogas, Cher - Biogas, Cher - Biogas, Cher - Refinery Gas - Gasification - Selfinery Gas - Gasification - Refinery Gas - Gasification - Refinery Gas - LPG - Otil 20306 - Fuel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Fuel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Gas-Diesel Oil - Fuel Oil - Refinery Gas - Cas - Naphing (LYN) - Gas-Diesel Oil - Cas-Diesel Oil - Fuel Oil - Cas-Diesel Oil - Cas-Diesel Oil - Fuel Oil - Fuel Oil - Cas-Diesel Oil						
- Fuel Oli - Extraction and Gasification - Extraction and Gasification - Matural Gas - Natural Gas - Natural Gas - Biogas, Lonfill 001006 Biogas 309A Biogas, Lonfill 001006 Biogas 309A Biogas, Lonfill 001006 Biogas 309A Fuel Oli Refinery Gas Refinery Gas Refinery Gas Fuel Oli Gas-Diseel Oli Fuel Oli Fuel Oli Gas-Diseel Oli Gas-Diseel Oli Gas-Diseel Oli Gas-Diseel Oli Fuel Oli Fuel Oli Fuel Oli Fuel Oli Fuel Oli Fuel Oli Gas-Diseel Oli Gas-Diseel Oli Gas-Diseel Oli Gas-Diseel Oli Gas-Diseel Oli Fuel Oli						
- Lubricants Extraction and Gasification - Ratural Gas 010504 Naturgas 301A - Gasification - Gasification - - Biogas, Cohler 091006 Biogas 309A - Biogas, Cohler 091006 Biogas 309A - Refinery Gas 010306 Rafinaderigas 308A - L PG 010306 Rafinaderigas 308A - L PG 010306 Ras Spilolite 204A - Fuel Oll 010306 Fuel Spilolite 204A - Fuel Oll 0101 204A - L PG 0101 204A - L PG Oll 0101 204A - L PG Oll 0101 204A - L PG Oll						
Energy Sector Extraction - Extraction and Gasification - - Natural Gas 010504 Naturgas 301A - Gasification 091006 Biogas 309A - Biogas, Landfill 091006 Biogas 309A - Refiner(se - - - - Gas/Dissel Oll 010306 Refin 26 A - - Gas/Dissel Oll 0101 20A - - Fuel Oll 0103 6 As Disselolle 203A - Fuel Oll 0101 20A - - Fuel Oll 0101 20A - - Straw 0101 102A - - Straw 0101 102A - - Fuel Oll 0101 20A - - Fuel Oll 0101 20A - - Refinery Gas 0101 2						
Extraction						
- Natural Cas 010504 Naturgas 301A - Biogas, Landfill 091006 Biogas 309A - Biogas, Sother 091006 Biogas 309A - Refinerds 010306 Refinaderigas 308A - Charles 010306 Refinaderigas 308A - LPG 010306 Cas & Dieselolie 20A - Gas-Diesel Oil 010306 Cas & Dieselolie 20A - Fuel Oil 010306 Cas & Dieselolie 203A - Fuel Oil 0101 204A - - Fuel Oil 0101 203A - - Fuel Oil 0101 102A - - Refinery Gas 0101 101A - - LPG 0101 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Gasification 091006 Biogas 309A - Biogas, Other 091006 Biogas 309A Refineries - - Refineries - - Own Use 010306 Raffinaderigas 308A - - Refinerry Gas 010306 LPC 303A - - Fuel Oll 010306 Cas & Splicelie 204A - - Fuel Oll 010306 Cas & Splicelie 204A - - Fuel Oll 010306 Cas & Splicelie 204A - - Fuel Oll 010306 Cas & Splicelie 204A - - Fuel Oll 01010 204A - - - Fuel Oll 0101 203A - - - Fuel Oll 0101 203A - - - Refinery Gas						
- Biogas, Landfill 091006 Biogas 309A - Biogas, Other 091006 Biogas 309A Refineries - Own Use - Refinery Gas 010306 Raffinaderigas 308A - LPG 010306 LPG 303A - LPG 010101306 Gas & Dieselolie 204A - Fuel Oil 010306 Fuelolie & 204A - Fuel Oil 010306 Fuelolie & 204A - Fuel Oil 0101 203A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 203A - Fuel Oil 0101 102A - Fuel Oil 0101 102A - Fuel Oil 0101 102A - Fuel Oil 0101 102A - Fuel Oil 0101 1012A - Refinery Gas 0103 308A - LPG 0101 203A - Petroleum Coke 0101 1010 203A - Petroleum Coke 0101 102A - Straw 0101 111A - Wood Chips 0101 111A - Wood Chips 0101 111A - Wood Chips 0101 111A - Wood Chips 0101 114A - Wastes, Renewable 0101 114A - Wastes, Renewable 0101 114A - Petroleum Coke 0101 114A - Wood Chips 0101 203A - Naphtha (LVN) - Commusion 0101 225A - Petroleum Coke 0101 114A - Wood Chips 0101 11		010504	Naturgas	301A		
- Biogas 309A Refineries - - Own Use - - Refinery Gas 010306 Raffinaderigas 308A - Refinery Gas 010306 Raffinaderigas 308A - Ref Oli 010306 Gas & Dieselolie 203A - Fuel Oli 010306 Fuelolie & Spitdolie 203A Transformation Sector - - - Large-scale Power Production - - - - Fuel Oli 0101 204A - - Staw 0101 102A - - Staw 0101 102A - - Staw 0101 204A - - LPG 0101 204A - - Leicoli de Power Production - Refinery Gas 0101		091006	Biogas	3094		
Refineries						
- Refinery Gas 010306 Raffinaderigas 303A - Gas-/Diesel Oil 010306 Gas & Dieselolie 204A - Fuel Oil 010306 Fuelolie & Spildolie 203A Transformation Sector Large-scale Power Units - - - Fuel Oil 0101 204A - - Gas-/Diesel Oil 0101 204A - - Fuel Oil 0101 204A - - Fuel Oil 0101 203A - - Fuel Sused for Power Production - - - - Straw 0101 308A - - Refinery Gas 0103 308A - - LPG 0101 303A - - Naphtha (LVN) 0101 201A - - Fuel Oil 0101 201A - - Petroleum Coke 0101 101A 203A - Straw 0101 101A 205A - Straw 0101 101A - - Voord Poleuto <t< td=""><td></td><td></td><td>Ŭ</td><td></td><td></td><td></td></t<>			Ŭ			
- LPG 010306 LPG 303A - Gas/Dissel Oil 010306 Gas & Disseloile 204A - Fuel Oil 010306 Gas & Disseloile 203A Transformation Sector Large-scale Power Units 0101 204A - Fuel Sused for Power Production 0101 204A - Gas/Dissel Oil 0101 204A - Fuel Oil 0101 203A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 203A - Fuel Oil 0101 204A - Straw 0101 107A - Straw 0101 107A - Refinery Gas 0101 204A - Verol 0101 204A - Fuel Oil 0101 204A - Petroleum Coke 0101 204A - Fuel Oil 0101 204A - Straw 0101 110A - Vorimulsion 0101 102A - Straw						
- Gas-Objesel Oil 010306 Gas & Dieselolie 203A - Fuel Oil 010306 Fuelolie & Spildolie 203A Large-scale Power Units - Fuelolie & Spildolie 203A - Fuelo Units 0101 204A - Gas-/Objesel Oil 0101 204A - Fuelo Used for Power Production 0101 204A - Fuelo Used for Power Production 0101 117A Large-Scale CHP Units - - - - Refinery Gas 0103 308A - LPG 0101 303A - LPG 0101 204A - Naphtha (LVN) 0101 204A - Refinery Gas 0101 308A - LPG 0101 204A - Natural Gas 0101 204A - Ortimulsion 0101 110A - Vood Chips 0101 111A - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Fuel Oil 010306 Fuelolie & Spildolie 203A Transformation Sector Large-scale Power Units - <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
Transformation Sector Large-scale Power Units - Fuels Used for Power Production - Gas-/Diesel Oli 0101 204A - Fuel Oli 0101 203A - Fuel Oli 0101 102A - Straw 0101 117A Large-Scale CHP Units 117A 117A - Refinery Gas 0103 308A - I PG 0101 200A - Refinery Gas 0101 200A - Refinery Gas 0101 200A - Refinery Gas 0101 200A - Verbleum Coke 0101 110A - Petroleum Coke 0101 110A - Orimulsion 0101 203A - Straw 0101 110A - Vood Chips 0101 111A - Wood Chips 0101 111A - Wood Chips 0101 111A - Wood Vaste 0101 111A - Wood Vaste 0101 111A - Wood Vaste 0101 111A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
- Fuels Used for Power Production - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Electricity Plant Coal 0101 102A - Straw 0101 102A - Refinery Cas 0103 308A - LPG 0101 203A - Naphtha (LVN) 0101 200A - Fuel Oil 0101 200A - Fuel Oil 0101 200A - Refinery Cas 0101 200A - Naphtha (LVN) 0101 200A - Fuel Oil 0101 203A - Fuel Oil 0101 203A - Orimulsion 0101 203A - Otimulsion 0101 205A - Straw 0101 102A - Straw 0101 102A - Straw 0101 111A - Wood Chips 0101 111A - Wood Waste 0101 111A - Wood Vaste 0101 114A - Vaste, R						
- Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Electricity Plant Coal 0101 117A Large-Scale CHP Units 0101 203A - Fuels Used for Power Production 0103 308A - LPG 0101 203A - Staw 0101 303A - LPG 0101 204A - Gas-/Disesl Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Visudision 0101 204A - Visudision 0101 205A - Visudision 0101 205A - Void Chips 0101 101A - Visod Chips 0101 111A - Wood Pielts 0101 111A - Wood Chips 0101 114A - Wood Chips 0101 114A - Wood Chips 0101 114A - Wood Chips 0101						
Fuel Oil 0101 203A Straw 0101 102A Straw 0101 117A Large-Scale CHP Units - - - Refinery Gas 0103 308A - LPG 0101 210A - Naphtha (LVN) 0101 200A - Feroleum Coke 0101 200A - Petroleum Coke 0101 203A - Petroleum Coke 0101 203A - Refinery Gas 0101 203A - Petroleum Coke 0101 203A - Petroleum Coke 0101 100A - Natural Gas 0101 301A - Vood Chips 0101 102A - Straw 0101 111A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Pellets 0101 114A - Waste, Non-renewable 0101 114A - Waste, Non-renewable 0101 114A - Refinery Gas 01					0404	0044
Electricity Plant Coal 0101 102A Straw 0101 117A Large-Scale CHP Units - - - Fuels Used for Power Production - - - Refinery Gas 0103 308A - LPG 0101 203A - Gas-/Dissel Oil 0101 203A - Fuel Oil 0101 203A - Petroleum Coke 0101 203A - Natural Gas 0101 205A - Natural Gas 0101 107A - Vood Chips 0101 117A - Wood Chips 0101 117A - Wood Pallets 0101 111A - Wood Pallets 0101 111A - Wood Waste 0101 111A - Wood Pallets 0101 114A - Waste, Non-renewable 0101 114A - Vaste, Non-re						
Straw 0101 117A Large-Scale CHP Units - - Fuels Used for Power Production - - Refinery Gas 0103 308A - LPG 0101 203A - Naphtha (LVN) 0101 204A - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 1001 - Natural Gas 0101 205A - Natural Gas 0101 101A - Notod Chips 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Pellets 0101 309A - Biogas, Landfill 0101 309A - Waste, Non-renewable 0101 114A - Waste, Non-renewable 0101 114A - Waste, Non-renewable 0101 308A - LPG 0101 303A - Leg 0101 204A - Refinery Gas 0101 303A<						
Large-Scale CHP Units - Reliney Gas 0103 308A - LPG 0101 303A - Naphtha (LVN) 0101 210A - Gas-Diesel Oil 0101 203A - Petroleum Coke 0101 203A - Petroleum Coke 0101 205A - Natural Gas 0101 301A - Electricity Plant Coal 0101 107A - Vood Chips 0101 117A - Wood Pellets 0101 111A - Wood Pellets 0101 111A - Wood Chips 0101 114A - Waste, Non-renewable 0101 114A - Fuel Oil 0101 20A	Straw					
- Refinery Gas 0103 308A - LPG 0101 303A - Naphtha (LVN) 0101 204A - Gas-/Diesel Oil 0101 203A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Potroleum Coke 0101 101A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 111A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Pellets 0101 111A - Wood Pellets 0101 309A - Waste, Non-renewable 0101 309A - Waste, Ron-wable 0101 114A - Fuel SUsed for Heat Production - - - Refinery Gas 0101 303A	Large-Scale CHP Units					
- LPG 0101 303A - Naphtha (LVN) 0101 210A - Gas-Diesel Oil 0101 204A - Petroleum Coke 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 101A - Straw 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Waste 0101 111A - Wood Waste 0101 111A - Wood Waste 0101 111A - Wood Sters 0101 309A - Biogas, Landfill 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - LPG 0101 303A - LPG						
- Naphtha (LVN) 0101 210A - Fouel Oil 0101 204A - Fouel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Wood Waste 0101 309A - Wastes, Renewable 0101 114A - Used for Heat Production 1010 204A - Refineny Gas 0101 204A - Refineny Gas 0101 204A						
- Gas-/Diesel Oil 0101 204A Fuel Oil 0101 203A Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 117A - Wood Chips 0101 117A - Wood Pellets 0101 111A - Wood Pellets 0101 111A - Wood Vaste 0101 111A - Wood Vaste 0101 114A - Biogas, Landfill 0101 309A - Waste, Non-renewable 0101 114A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - Wastes, Renewable 0101 308A - LPG 0101 303A - Naphtha (LVN) 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-					
Fuel Oil 0101 203A Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 1011 - Biogas, Landfill 0101 309A - Biogas, Chers 0101 114A - Waste, Non-renewable 0101 114A - Vusate, Non-renewable 0101 114A - LPG 0101 303A IPG 0101 205A - Naphtha (LVN) 0101 204A - Fuel Oil 0101 204A - Petroleum Coke 0101 110A - Orimulsion 0101 204A - Petroleum Coke 0101 204A - Fuel Oil 0101 205A - Natural Gas 0101 205A - Natural Gas 0101 110A						
- Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Vaste 0101 309A - Waste, Non-renewable 0101 309A - Wastes, Renewable 0101 114A - Wastes, Renewable 0101 114A - Fuels Used for Heat Production - - Refinery Gas 0101 303A Naphtha (LVN) 0101 204A Fuel Oil 0101 204A Fuel Oil 0101 205A Petroleum Coke 0101 101A - Orimulsion 0101 205A Straw 0101 102A - Straw 0101 111A - Wood Chips						
- Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Others 0101 309A - Biogas, Others 0101 309A - Waste, Non-renewable 0101 114A - Wustes, Renewable 0101 114A - Fuels Used for Heat Production 101 14A - LPG 0101 303A - Asphtha (LVN) 0101 20A - Fuel Oil 0101 20A - Fuel Oil 0101 20A - Petroleum Coke 0101 101A - Naphtha (LVN) 0101 20A - Straw 0101 301A - Notinual Gas 0101	Petroleum Coke				0101	110A
- Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Vaste 0101 111A - Wood Vaste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Others 0101 114A - Waste, Non-renewable 0101 114A - Waste, Non-renewable 0101 114A - Waste, Renewable 0101 114A - Waste, Renewable 0101 114A - Waste, Renewable 0101 308A - LPG 0101 303A - Refinery Gas 0101 204A - LPG 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Natural Gas <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
- Straw 0101 117A - Wood Chips 0101 111A - Wood Waste 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - Wastes, Non-renewable 0101 114A - Fuels Used for Heat Production 111 114A - LPG 0103 308A - I.PG 0101 210A - Naphtha (LVN) 0101 204A - Fuel Oil 0101 203A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 205A - Natural Gas 0101 301A - Electricity Plant Coal 0101 101A - Wood Chips 0101 111A - Wood Waste 0101 11						
- Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Others 0101 309A - Waste, Non-renewable 0101 114A - Waste, Renewable 0101 114A - Waste, Renewable 0101 114A - Waste, Renewable 0101 309A - Refinery Gas 0103 308A - LPG 0101 210A - Refinery Gas 0101 210A - Ras/Disesl Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 110A - Straw 0101 111A - Wood Chips						
- Wood Peliets 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - Vastes, Renewable 0101 114A - Wastes, Renewable 0101 114A - Refinery Gas 0103 308A - LPG 0101 210A - Sas-/Diesel Oil 0101 204A - Fuel Oil 0101 204A - Fuel Oil 0101 204A - Petroleum Coke 0101 110A - Orimulsion 0101 205A - Natural Gas 0101 301A - Straw 0101 301A - Wood Chips 0101 111A - Wood Chips 0101 111A - Wood Waste 0101 111A - Wood Waste 0101 111A - Wood Chips 0101 111A - Wood Waste 0101 111A - Wood Chips 0101 111A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
- Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Others 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - Wastes, Renewable 0101 114A - Wastes, Renewable 0101 308A - LPG 0101 303A - Naphtha (LVN) 0101 204A - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 203A - Electricity Plant Coal 0101 205A - Natural Gas 0101 101A - Wood Chips 0101 102A - Straw 0101 111A - Wood Chips 0101 111A - Wood Chips 0101 111A - Wood Was						
- Biogas, Others 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - Fuels Used for Heat Production - - - Refinery Gas 0103 308A - LPG 0101 210A - Naphtha (LVN) 0101 204A - Gas-/Diesel Oil 0101 203A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Chher 0101 309A - Waste, Non-renewable 0101 114A	Wood Waste				0101	
- Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A - Fuels Used for Heat Production - - - Refinery Gas 0103 308A - LPG 0101 203A - Naphtha (LVN) 0101 204A - Gas-/Diesel Oil 0101 203A - Fuel Oil 0101 203A - Fuel Oil 0101 203A - Orimulsion 0101 203A - Natural Gas 0101 110A - Electricity Plant Coal 0101 301A - Wood Chips 0101 102A - Wood Chips 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Wastes, Renewable 0101 114A						
- Wastes, Renewable 0101 114A - Fuels Used for Heat Production 0103 308A - Refinery Gas 0103 308A - LPG 0101 303A - Naphtha (LVN) 0101 210A - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 101A - Straw 0101 117A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Waste, Non-renewable 0101 114A						
- Fuels Used for Heat Production - Refinery Gas 0103 308A - LPG 0101 303A - Naphtha (LVN) 0101 210A - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Vetroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A						
Refinery Gas 0103 308A LPG 0101 303A - Naphtha (LVN) 0101 210A - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A					0101	1147
- Naphtha (LVN) 0101 210A - Gas-/Diesel Oil 0101 204A - Fuel Oil 0101 203A - Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A					0103	308A
Gas-/Diesel Oil 0101 204A Fuel Oil 0101 203A Petroleum Coke 0101 110A - Orimulsion 0101 225A - Natural Gas 0101 301A - Electricity Plant Coal 0101 102A - Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A	LPG				0101	303A
Fuel Oil 0101 203A Petroleum Coke 0101 110A Orimulsion 0101 225A Natural Gas 0101 301A Electricity Plant Coal 0101 102A Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A						
Petroleum Coke 0101 110A Orimulsion 0101 225A Natural Gas 0101 301A Electricity Plant Coal 0101 102A Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A						
Orimulsion 0101 225A Natural Gas 0101 301A Electricity Plant Coal 0101 102A Straw 0101 117A - Wood Chips 0101 111A - Wood Vaste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A						
Natural Gas 0101 301A Electricity Plant Coal 0101 102A Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A						
Straw 0101 117A - Wood Chips 0101 111A - Wood Pellets 0101 111A - Wood Waste 0101 111A - Biogas, Landfill 0101 309A - Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A						
Wood Chips 0101 111A Wood Pellets 0101 111A Wood Waste 0101 111A Biogas, Landfill 0101 309A Biogas, Other 0101 309A Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A					0101	102A
Wood Pellets 0101 111A Wood Waste 0101 111A Biogas, Landfill 0101 309A Biogas, Other 0101 309A Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A						
Wood Waste 0101 111A Biogas, Landfill 0101 309A Biogas, Other 0101 309A Waste, Non-renewable 0101 114A Wastes, Renewable 0101 114A	•					
Biogas, Landfill 0101 309A Biogas, Other 0101 309A Waste, Non-renewable 0101 114A Wastes, Renewable 0101 114A						
- Biogas, Other 0101 309A - Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A						
- Waste, Non-renewable 0101 114A - Wastes, Renewable 0101 114A						
	Waste, Non-renewable				0101	114A
Small-Scale CHP Units					0101	114A
	Small-Scale CHP Units					


Unit: TJ		End-use		Transformatio	n
		Fuel (in Devict)	F ood and a	1980-1993	E I I.
- Fuels Used for Power Production	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
Gas-/Diesel Oil				0101	204A
Fuel Oil				0101	203A
Natural Gas				0101	301A
Hard Coal				0101	102A
Straw				0101	117A
Wood Chips Wood Pellets				0101 0101	111A 111A
Wood Pellets Wood Waste				0101	111A
Biogas, Landfill				0101	309A
Biogas, Other				0101	309A
Waste, Non-renewable				0101	114A
Wastes, Renewable				0101	114A
 Fuels Used for Heat Production 					
Gas-/Diesel Oil				0101	204A
Fuel Oil				0101	203A
Natural Gas				0101	301A
Coal				0101	102A
Straw				0101	117A
Wood Chips Wood Pellets				0101 0101	111A 111A
Wood Pellets Wood Waste				0101	111A 111A
Biogas, Landfill				0101	309A
Biogas, Other				0101	309A
Waste, Non-renewable				0101	114A
Wastes, Renewable				0101	114A
District Heating Units					
- Fuels Used for Heat Production					
 - Refinery Gas 				0103	308A
LPG				0102	303A
 - Gas-/Diesel Oil 				0102	204A
Fuel Oil				0102	203A
Waste Oil				0102	203A
Petroleum Coke				0102	110A
Natural Gas				0102	301A
Electricity Plant Coal				0102 0102	102A
Coal Straw				0102	102A 117A
Wood Chips				0102	111A
Wood Pellets				0102	111A
Wood Waste				0102	111A
Biogas, Landfill				0102	309A
Biogas, Sludge				0102	309A
Biogas, Other				0102	309A
 - Waste, Non-renewable 				0102	114A
 - Wastes, Renewable 				0102	114A
Fish Oil				0102	215A
Autoproducers, Electricity Only					
- Fuels Used for Power Production				0320	3014
Natural Gas Biogas, Landfill				0320 0320	301A 309A
Biogas, Sewage Sludge				0320	309A 309A
Biogas, Other				0320	309A
Autoproducers, CHP Units					
- Fuels Used for Power Production					
Refinery Gas				0103	308A
Gas-/Diesel Oil				0320	204A
Fuel Oil				0320	203A
Waste Oil				0320	203A
Natural Gas				0320	301A
Coal				0320	102A
Straw				0320	117A
Wood Chips				0320	111A
Wood Pellets				0320	111A 111A
Wood Waste				0320 0320	111A 3094
Biogas, Landfill Biogas, Sludge				0320 0320	309A 309A
Biogas, Studge Biogas, Other				0320	309A 309A
Fish Oil				0320	215A
Waste, Non-renewable				0320	213A 114A
				5525	1171


Unit: TJ		Enduco		Transformation	
Unit. 15		End-use		1980-1993	
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
Wastes, Renewable	-			0320	114A
 Fuels Used for Heat Production 					
Refinery Gas				0103	308A
Gas-/Diesel Oil				0320	204A
Fuel Oil Waste Oil				0320 0320	203A 203A
Natural Gas				0320	301A
Coal				0320	102A
Wood Chips				0320	102A
Wood Waste				0320	111A
Biogas, Landfill				0320	309A
Biogas, Sludge				0320	309A
Biogas, Other				0320	309A
Waste, Non-renewable				0320	114A
Wastes, Renewable				0320	114A
Autoproducers, Heat Only					
 Fuels Used for Heat Production Gas-/Diesel Oil 				0320	204A
Fuel Oil				0320	204A 203A
Waste Oil				0320	203A 203A
Natural Gas				0320	301A
Straw				0320	117A
Wood Chips				0320	111A
Wood Chips				0320	111A
Wood Waste				0320	111A
Biogas, Landfill				0320	309A
 Biogas, Sludge 				0320	309A
Biogas, Other				0320	309A
Waste, Non-renewable				0102	114A
Wastes, Renewable	000400		0014	0102	114A
Town Gas Units	030106	Naturgas	301A		
 Fuels Used for Production of District Heating 	030106	Kul (-83) / Gasolie (84-)	102A / 204A		
Transport sector		(04-)	204A		
Military Transport					
- Aviation Gasoline					
- Motor Gasoline					
- JP4					
- JP1					
- Gas-/Diesel Oil					
Road					
- LPG					
- Motor Gasoline					
- Other Kerosene	0202	Petroleum	206A		
- Gas-/Diesel Oil - Fuel Oil					
Rail					
- Motor Gasoline					
- Other Kerosene					
- Gas-/Diesel Oil					
- Electricity					
Domestic Sea Transport					
- LPG					
- Other Kerosene					
- Gas-/Diesel Oil					
- Fuel Oil					
Air Transport, Domestic					
- LPG					
- Aviation Gasoline					
- Motor Gasoline	0004	Detectory	0004		
- Other Kerosene	0201	Petroleum	206A		
- JP1 Air Transport International					
Air Transport, International - Aviation Gasoline					
- JP1 Agriculture and Forestry					
- LPG					
- Motor Gasoline		D / 1			
- Other Kerosene	0203	Petroleum	206A		
- Gas-/Diesel Oil					

- Fuel Oil				Tuese of a sume of a se	
		End-use		Transformation 1980-1993	
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
	0203	Fuelolie & Spildolie	203A	-	
 Petroleum Coke 	0203	Petrokoks	110A		
- Natural Gas	0203	Naturgas	301A		
- Coal	0203	Kul	Kul 102A		
 Brown Coal Briquettes 	0203	Brunkul	kul 106A		
- Straw	0203	Halm	117A		
- Wood Chips	0203	Træ	111A		
 Wood Waste 	0203	Træ	111A		
- Biogas, Other	0203	Biogas	309A		
Horticulture					
- LPG					
- Motor Gasoline					
- Gas-/Diesel Oil					
- Fuel Oil	0203	Fuelolie & Spildolie	203A		
- Petroleum Coke	0203	Petrokoks	110A		
- Natural Gas	0203	Naturgas	301A		
- Coal	0203	Kul	102A		
- Wood Waste	0203	Træ	111A		
Fishing					
- LPG					
- Motor Gasoline					
- Other Kerosene - Gas-/Diesel Oil					
- Fuel Oil					
Manufacturing Industry					
- Refinery Gas	0320	Raffinaderigas	308A		
- LPG	0320	Railliauenyas	300A		
- Naphtha (LVN)					
- Motor Gasoline					
- Other Kerosene	0320	Petroleum	206A		
- Gas-/Diesel Oil	0020	retroicum	200/1		
- Fuel Oil	0320	Fuelolie & Spildolie	203A		
- Waste Oil	0320	Fuelolie & Spildolie	203A		
- Petroleum Coke	0320	Petrokoks	110A		
- Natural Gas	0320	Naturgas	301A		
- Coal	0320	Kul	102A		
- Coke	0320	Koks	107A		
- Brown Coal Briguettes	0320	Brunkul	106A		
- Wood Pellets	0320	Træ	111A		
- Wood Waste	0320	Træ	111A		
 Biogas, Landfill 	0320	Biogas	309A		
- Biogas, Other	0320	Biogas	309A		
 Wastes, Non-renewable 	0320	Affald	114A		
 Wastes, Renewable 	0320	Affald	114A		
- Town Gas	0320	Naturgas	301A		
Construction					
- LPG	0320	LPG	303A		
- Motor Gasoline		5 / /			
- Other Kerosene	0320	Petroleum	206A		
- Gas-/Diesel Oil	0000		0000		
- Fuel Oil	0320	Fuelolie & Spildolie	203A		
- Natural Gas	0320	Naturgas	301A		
Wholesale	000.1	1.50			
- LPG	0201	LPG	303A		
- Motor Gasoline	0201	Petroleum	206A		
- Other Kerosene	0201	Gas & Dieselolie	204A		
- Gas-/Diesel Oil	0201	Fuelolie & Spildolie	203A		
- Petroleum Coke	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
- Wood Waste	0201	Træ	111A		
Retail Trade - LPG	0201		2024		
- LFG	0201	LPG Betroloum	303A		
Other Kereecaa	0201	Petroleum	206A		
- Other Kerosene	0201	Gas & Dieselolie Fuelolie & Spildolie	204A		
- Gas-/Diesel Oil	0201		203A		
- Gas-/Diesel Oil - Fuel Oil	0201		1104		
- Gas-/Diesel Oil - Fuel Oil - Petroleum Coke	0201	Petrokoks	110A 301A		
- Gas-/Diesel Oil - Fuel Oil - Petroleum Coke - Natural Gas			110A 301A		
 Gas-/Diesel Oil Fuel Oil Petroleum Coke Natural Gas Private Service 	0201 0201	Petrokoks Naturgas	301A		
- Gas-/Diesel Oil - Fuel Oil - Petroleum Coke - Natural Gas	0201	Petrokoks			

Unit: TJ		End-use		Transformatio	n
				1980-1993	
	SNAP	Fuel (in Danish)	Fuel-code	SNAP	Fuel-code
- Gas-/Diesel Oil	0201	Gas & Dieselolie	204A		
- Fuel Oil	0201	Fuelolie & Spildolie	203A		
- Waste Oil	0201	Fuelolie & Spildolie	203A		
- Petroleum Coke	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
- Wood Chips	0201	Træ	111A		
- Wood Waste	0201	Træ	111A		
- Biogas, Landfill	0201	Biogas	309A		
 Biogas, Sludge 	0201	Biogas	309A		
- Biogas, Other	0201	Biogas	309A		
 Wastes, Non-renewable 	0201	Affald	114A		
 Wastes, Renewable 	0201	Affald	114A		
- Town Gas	0201	Naturgas	301A		
Public Service					
- LPG	0201	LPG	303A		
- Other Kerosene	0201	Petroleum	206A		
- Gas-/Diesel Oil	0201	Gas & Dieselolie	204A		
- Fuel Oil	0201	Fuelolie & Spildolie	203A		
 Petroleum Coke 	0201	Petrokoks	110A		
- Natural Gas	0201	Naturgas	301A		
- Coal	0201	Kul	102A		
 Brown Coal Briguettes 	0201	Brunkul	106A		
- Wood Chips	0201	Træ	111A		
- Wood Pellets	0201	Træ	111A		
- Town Gas	0201	Naturgas	301A		
Single Family Houses		0			
- LPG	0202	LPG	303A		
- Motor Gasoline					
- Other Kerosene	0202	Petroleum	206A		
- Gas-/Diesel Oil	0202	Gas & Dieselolie	204A		
- Fuel Oil	0202	Fuelolie & Spildolie	203A		
- Petroleum Coke	0202	Petrokoks	110A		
- Natural Gas	0202	Naturgas	301A		
- Coal	0202	Kul	102A		
- Coke	0202	koks	107A		
- Brown Coal Briquettes	0202	Brunkul	106A		
- Straw	0202	Halm	117A		
- Firewood	0202	Træ	111A		
- Wood Chips	0202	Træ	111A		
- Wood Pellets	0202	Træ	111A		
- Town Gas	0202	Naturgas	301A		
Multi-family Houses	0202	Hatargao	00171		
- LPG	0202	LPG	303A		
- Other Kerosene	0202	Petroleum	206A		
- Gas-/Diesel Oil	0202	Gas & Dieselolie	200A		
- Fuel Oil	0202	Fuelolie & Spildolie	204A 203A		
- Petroleum Coke	0202	Petrokoks	110A		
- Natural Gas	0202	Naturgas	301A		
- Coal	0202				
- Coal	0202	Kul Koks	102A		
			107A		
- Brown Coal Briquettes	0202	Brunkul	106A		
- Town Gas	0202	Naturgas	301A		

Annex 3A-10 Time-series 1980/1985-2014

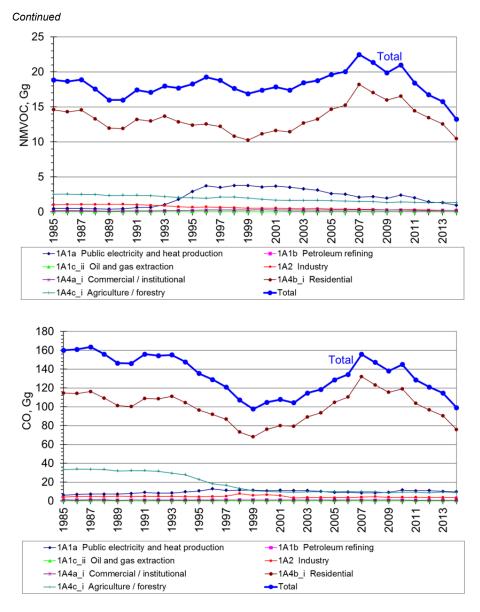


Figure 3A-10.1 Time-series for fuel consumption and emissions, 1980/1985 - 2014.

Annex 3A-11 QA/QC for stationary combustion

An updated quality manual for the Danish emission inventories has been published in 2013 (Nielsen et al. 2013). The quality manual describes the concepts of quality work and definitions of sufficient quality, critical control points and a list of Point for Measuring (PM).

Documentation concerning verification of the Danish emission inventories has been published by Fauser et al. (2013). The reference approach for the energy sector is shown in the annual National Inventory Report, Chapter 3.4.

The sector report for stationary combustion (Nielsen et al. 2014) has been reviewed by external experts in 2004, 2006, 2009 and 2014 (Nielsen et al. 2004; Nielsen et al. 2006; Nielsen et al. 2009; Nielsen et al., 2014). This forms a vital part of the QA activities for stationary combustion.

Source specific QA/QC and PM's are shown below.

Data storage, level 1

Table 3A-11.1 lists the sectoral PM's for data storage level 1.

Table 3A-11.1 List of PM, data storage level 1.

Level	CCP	ld	Description	Sectoral/general	Stationary combustion
Data Storage level 1	1. Accuracy	DS.1.1.1	General level of uncertainty for every dataset including the reasoning for the specific values.	Sectoral	Uncertainties are estimated and references given in IIR chapter 3.2.
	2. Comparability	DS1.2.1	Comparability of the emission fac- tors/calculation parameters with data from international guidelines, and eval- uation of major discrepancies.	Sectoral	In general, if national referenced emission factors differ considerably from IPCC Guideline/EEA Guidebook values this is discussed in NIR chap- ter 3.2.4. This documentation is improved annual- ly based on reviews. At CRF level, a project has been carried out comparing the Danish inventories with those of other countries (Fauser et al. 2013).
	3.Completeness	DS.1.3.1	Ensuring that the best possible national data for all sources are included, by setting down the reasoning behind the selection of datasets.	Sectoral	A list of external data are shown and discussed below.
	4.Consistency	DS.1.4.1	The original external data has to be archived with proper reference.	Sectoral	It is ensured that all external data are archived at DCE. Subsequent data processing takes place in other spreadsheets or databases. The datasets are archived annually in order to ensure that the basic data for a given report are always available in their original form.
					In addition all references are archived.
	6.Robustness	US.1.6.1	Explicit agreements between the exter- nal institution holding the data and DCE about the conditions of delivery	Sectoral	For stationary combustion, a data delivery agreement is made with the DEA. DCE and DEA have renewed the data delivery agreement in 2014. Most of the other external data sources are available due to legislatory requirements. See Table 3.2.39.
	7.Transparency	DS.1.7.1	Listing of all archived datasets and external contacts.	Sectoral	A list of external datasets and external contacts is shown in Table 3A-11.2 below.

Dataset	Description	AD or Emf.	Reference	Contact(s)	Data agreement/ Comment
Energiproducenttællingen.xls	Data set for all electricity and heat producing plants.	Activity data	The Danish Energy Agency (DEA)	Kaj Stærkind	Data agreement.
Gas consumption for gas engines and gas turbines 1990-1994	Historical data set for gas engines and gas turbines.	Activity data	The Danish Energy Agency (DEA)	Jane Rusbjerg	No data agreement. Historical data
Basic data (Grunddata.xls)	The Danish energy statistics. Data set applied for both the reference approach and the national approach.	Activity data	The Danish Energy Agency (DEA)	Jane Rusbjerg	Data agreement. However, the data set is also published as part of national energy statistics
Energy statistics for industrial sub- sectors	Disaggregation of the indus- trial fuel consumption. The data set have been applied for the first time in the inven- tory reported in 2012.	Activity data	The Danish Energy Agency (DEA)	Jane Rusbjerg	Data agreement.
SO_2 & NO _x data, plants>25 MW _e	Annual emission data for all power plants > 25 MW _e . Includes information on methodology: measurements or emission factor.	Emissions	Energinet.dk	Christian F.B. Niel- sen	No data agreement.
Emission factors	Emission factors refer to a large number of sources.	Emission factors	See chapter regarding emission factors		Some of the annually updated CO ₂ emission factors are based on EU ETS data, see below. For the other emission factors no formal data delivery agreement.
HM and PM from public power plants	Emissions from the two large power plant operators in DK DONG Energy and Vattenfall	Emissions	Dong Energy Vattenfall	Marina Snowman Møller, Heidi Demant	No formal data agreement.
Annual environmental reports / envi- ronmental data	Emissions from plants de- fined as large point sources	Emissions	Various plants		No data agreement necessary. Plants are obligated by law and data published on the Danish EPA homepage.
EU ETS data	Plant specific CO ₂ emission factors	Emission factors and fuel consump- tion	The Danish Energy Agency (DEA)	Dorte Maimann Helen Falster	Plants are obligated by law. The availability of detailed information is part of the data agreement with DEA.

Energiproducenttaellingen - statistic on fuel consumption from district heating and power plants (DEA)

The data set includes all plants producing power or district heating. The spreadsheet from DEA is listing fuel consumption of all plants included as large point sources in the emission inventory. The statistic on fuel consumption from district heating and power plants is regarded as complete and with no significant uncertainty since the plants are bound by law to report their fuel consumption and other information.

Gas consumption for gas engines and gas turbines 1990-1994 (DEA)

For the years 1990-1994, DEA has estimated consumption of natural gas and biogas in gas engines and gas turbines. DCE assesses that the estimation by the DEA are the best available data.

Basic data (DEA)

The Danish energy statistics. The spreadsheet from DEA is used for the CO_2 emission calculation in accordance with the IPCC reference approach and is also the first data set applied in the national approach. The data set is included in the data delivery agreement with DEA, but it is also published annually on DEA's homepage.

Energy statistics for industrial subsectors (DEA)

The data includes disaggregation of the fuel consumption for industrial plants. The data set is estimated for the reporting to Eurostat. The dataset is included in the data agreement with DEA.

SO_2 and NO_x emission data from electricity producing plants > $25 MW_{\rm e}$ (Energinet.dk)

Plants larger than 25 MW_e are obligated to report emission data for SO_2 and NO_x to the DEA annually. Data are on production unit level and classified. The data on plant level are part of the plants annually environmental reports. DCE's QC of the data consists of a comparison with data from previous years and with data from the plants' annual environmental reports.

Emission factors

For specific references, see the chapter regarding emission factors. Some of the annually updated CO_2 emission factors are based on EU ETS data, se below.

Data for emission of heavy metals and particles from central power plants, DONG Energy and Vattenfall

The two major Danish power plant operators assess heavy metal emissions from their plants using model calculations based on fuel data and type of flue gas cleaning. DCE's QC of the data consists of a comparison with data from previous years and with data from the plants' annual environmental reports.

Annual environmental reports (DEPA)

A large number of plants are obligated by law to report annual environmental data including emission data. DCE compares the data with those from previous years and large discrepancies are checked.

EU ETS data (DEA)

EU ETS data are information on fuel consumption, heating values, carbon content of fuel, oxidation factor and CO_2 emissions. DCE receives the veri-

fied reports for all plants which utilises a detailed estimation methodology. DCE's QC of the received data consists of comparing to calculation using standard emission factors as well as comparing reported values with those for previous years.

Data processing, level 1

Table 3A-11.3 lists the sectoral PM's for data processing level 1.

Level	CCP	ld	Description	Sectoral / general	Stationary combustion
Data Pro- cessing level 1	1. Accuracy	DP.1.1.1	Uncertainty assessment for every data source not part of DS.1.1.1 as input to Data Storage level 2 in relation to type and scale of varia- bility.	Sectoral	Uncertainties are estimated and references given in NIR chapter 3.2.5.
	2.Comparability	DP.1.2.1	The methodologies have to follow the international guidelines sug- gested by UNFCCC and IPCC.	Sectoral	The methodological approach is consistent with international guidelines. An overview of tiers is given in NIR Chapter 3.2.5
	3.Completeness	DP.1.3.1	Identification of data gaps with regard to data sources that could improve quantitative knowledge.	Sectoral	The energy statistics is considered complete.
	4.Consistency	DP.1.4.1	Documentation and reasoning of methodological changes during the time series and the qualitative assessment of the impact on time series consistency.	Sectoral	The two main methodological changes in the time series; implementation of Energipro- ducenttaellingen (plant specific fuel consumption data) from 1994 onwards and implementa- tion of EU ETS data from 2006 onwards is discussed in NIR chapter 3.2.
	5.Correctness	DP.1.5.2	Verification of calculation results using time series	Sectoral	Time series for activity data on SNAP and CRF source catego- ry level are used to identify possible errors. Time series for emission factors and the emis- sion from CRF subcategories are also examined.
		DP.1.5.3	Verification of calculation results using other measures	Sectoral	The IPCC reference approach validates the fuel consumption rates and CO_2 emission. Both differ less than 2.0 % (1990-2014). The reference approach is further discussed in NIR Chapter 3.4.
	7.Transparency	DP.1.7.1	The calculation principle, the equa- tions used and the assumptions made must be described.	Sectoral	This is included in NIR chapter 3.2.5.
		DP.1.7.2	Clear reference to dataset at Data Storage level 1	Sectoral	This is included in NIR chapter 3.2.5.
		DP.1.7.3	A manual log to collect information about recalculations.	Sectoral	-

Data storage, level 2

Table 3A-11.4 lists the sectoral PM's for data storage level 2.

Table 3A-11.4	List of PM, da	ita storage	e level 2.		
Level	CCP	ld	Description	Sectoral / general	Stationary combustion
Data Storage	5 Correctness	DS 2 5 1	Check if a correct data import to	0	To ensure a correct connection
level 2	0.00110011055	00.2.0.1	level 2 has been made	Geolorai	between data on level 2 and level 1 different controls are in place, e.g. control of sums and random tests.

Data storage level 4

Table 3A-11.5 lists the sectoral PM's for data storage level 4.

Level	CCP	ld	Description	Sectoral / general	Stationary combustion
Data Storage level 4	4. Consistency	DS.4.4. 3	The IEFs from the CRF are checked both regarding level and trend. The level is compared to relevant emission factors to ensure correctness. Large dips/jumps in the time series are explained.	Sectoral	Large dips/jumps in time series are discussed and explained in NIR chapter 3.2.

Other QC procedures

The emission from each large point source is compared with the emission reported the previous year.

Some automated checks have been prepared for the emission databases:

- Check of units for fuel rate, emission factors and plant-specific emissions.
- Check of emission factors for large point sources. Emission factors for pollutants that are not plant-specific should be the same as those defined for area sources.
- Additional checks on database consistency.
- Emission factor references are included in this report.
- Annual environmental reports are kept for subsequent control of plantspecific emission data.
- QC checks of the country-specific emission factors have not been performed, but most factors are based on input from companies that have implemented some QA/QC work. The major power plant owner/operators in Denmark, DONG Energy and Vattenfall have obtained the ISO 14001 certification for an environmental management system. The Danish Gas Technology Centre and Force Technology both run accredited laboratories for emission measurements.

National external review

The sector report for stationary combustion has been reviewed by external experts in 2004, 2006, 2009 and 2014 (Nielsen et al., 2004; Nielsen et al., 2006; Nielsen et al., 2009; Nielsen et al., 2014). This forms a vital part of the QA activities for stationary combustion.

Annex 3B - Transport and other mobile sources

List of content

Annex 3B-1: Fleet data 1985-2013 for road transport (No. vehicles)

Annex 3B-2: Mileage data 1985-2013 for road transport (km)

Annex 3B-3: EU directive emission limits for road transportation vehicles

Annex 3B-4: Basis emission factors for road transportation vehicles (g/km)

Annex 3B-5: Reduction factors for road transport emission factors

Annex 3B-6: Deterioration factors for road transport emission factors

Annex 3B-7: Final fuel consumption factors (MJ/km) and emission factors (g/km) in 2013

Annex 3B-8: Fuel consumption (GJ) and emissions (tons) per vehicle category and as totals

Annex 3B-9: COPERT IV:DEA statistics fuel use ratios and mileage adjustment factors

Annex 3B-10-1: Correspondence table between actual aircraft type codes and representative aircraft types

Annex 3B-10-2: LTO no. per representative aircraft type for domestic and int. flights (Copenhagen and other airports)

Annex 3B-10-3: No. of flights between Danish airports and airports in Greenland and Faroe Islands

Annex 3B-10-4: LTO fuel consumption and emission factors per representative aircraft type for Copenhagen Airport and other airports

Annex 3B-11-1: Stock data for diesel tractors 1985-2013

Annex 3B-11-2: Stock data for gasoline tractors 1985-2013

Annex 3B-11-3: Stock data for harvesters 1985-2013

Annex 3B-11-4: Stock data for fork lifts 1985-2013

Annex 3B-11-5: Stock data for construction machinery 1985-2013

Annex 3B-11-6: Stock data for machine pools 1985-2013

Annex 3B-11-7: Stock data for household and gardening machinery 1985-2013

Annex 3B-11-8: Stock data and engine size data for recreational craft 1985-2013

Annex 3B-11-9: Basis fuel consumption and emission factors, deterioration factors and transient factors for non road working machinery and equipment and recreational craft. Stock and activity data for certain specific types of machinery

Annex 3B-12-1: Annual traffic data (no. of round trips) for Danish domestic ferries 1990-2013

Annex 3B-12-2: Ferry service, ferry name, engine year, main engine MCR (kW), engine type, specific fuel consumption (sfc), aux. engine (kW)

Annex 3B-12-3: Sailing time (single trip) for Danish domestic ferries

Annex 3B-12-4: Engine load factor (% MCR) for Danish domestic ferries

Annex 3B-12-5: Round trip shares for Danish domestic ferries

Annex 3B-13-1: Specific fuel consumption, NOx, CO, VOC, NMVOC and CH₄ emission factors (g pr kWh) per engine year for diesel ship engines

Annex 3B-13-2: S-%, SO₂ , PM and BC emission factors (g/kg fuel and g/GJ) per fuel type for diesel ship engines

Annex 3B-14: Fuel sales figures from DEA, and further processed fuel consumption data suited for the Danish inventory

Annex 3B-15-1: Emission factors for 1990 in CollectER format

Annex 3B-15-2: Emission factors for 2013 in CollectER format

Annex 3B-15-3: Emissions for 1990 in CollectER format

Annex 3B-15-4: Emissions for 2013 in CollectER format

Annex 3B-15-5: Non-exhaust emission factors, activity data and total non-exhaust emissions of TSP, PM1, PM2.5, BC and heavy metals in 2013

Annex 3B-16-1: Fuel consumption 1985-2013 in NFR format

Annex 3B-16-2: Emissions 1985-2013 in NFR format

Annex 3B-17: Uncertainty estimates

Annex 3B-1: Fleet data 1985-2013 for road transport (No. vehicles)

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-2: Mileage data 1985-2013 for road transport (km) http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-3: EU directive emission limits for road transportation vehicles

Filvale cars and	light duty vern	CIES I (< 1303	, ky).				
G prkm		EURO 1	EURO 2	EURO 3 ¹⁾	EURO 4	EURO 5	EURO 6
Normal temp.							
CO	Gasoline	2.72	2.2	2.3	1.0	1.0	1.0
	Diesel	2.72	1.0	0.64	0.5	0.5	0.5
HC	Gasoline	-	-	0.20	0.10	0.1	0.1
NMHC	Gasoline	-	-	-	-	0.068	0.068
NO _x	Gasoline	-	-	0.15	0.08	0.06	0.06
	Diesel	-	-	0.5	0.25	0.18	0.08
HC+NO _x	Gasoline	0.97	0.5	-	-		-
	Diesel	0.97	0.7/0.9 ²⁾	0.56	0.30	0.23	0.17
Particulates	Diesel	0.14	0.08/0.10 ²⁾	0.05	0.025	0.005	0.005
Particulates (#)		-	-	-	-	-	6x10 ^{11 4)}
Low temp.							
CO	Gasoline	-	-	-	15	15	15
HC	Gasoline	-	-	-	1.8	1.8	1.8
Evaporation							
HC ³⁾	Gasoline	2.0	2.0	2.0	2.0	2.0	2.0

Private cars and light duty vehicles I (<1305 kg).

¹⁾ Changed test procedure at normal temperatures (40 s warm-up phase omitted) and for evaporation measurements. ²⁾ Less stringent emission limits for direct injection diesel engines. ³⁾ Unit: g/test. ⁴⁾ Applicable for diesel and gasoline direct injection (GDI). 6x10¹² within first three years of Euro 6 effective dates

Light duty vehicle	53 II (1505-170	ло ку)					
G pr km		EURO 1	EURO 2	EURO 3 ¹⁾	EURO 4	EURO 5	EURO 6
Normal temp.							
CO	Gasoline	5.17	4.0	4.17	1.81	1.81	1.81
	Diesel	5.17	1.25	0.80	0.63	0.63	0.63
HC	Gasoline	-	-	0.25	0.13	0.13	0.13
NMHC	Gasoline	-	-	-	-	0.9	0.9
NOx	Gasoline	-	-	0.18	0.10	0.75	0.75
	Diesel	-	-	0.65	0.33	0.235	0.105
HC+NO _x	Gasoline	1.4	0.6	-	-	-	-
	Diesel	1.4	1.0/1.3 ²⁾	0.72	0.39	0.295	0.195
Particulates	Gasoline					0.005	0.005
	Diesel	0.19	0.12/0.14 ²⁾	0.07	0.04	0.005	0.005
Particulates (#)		-	-	-	-	-	6x10 ^{11 4)}
Low temp.							
CO	Gasoline	-	-	-	24	24	24
HC	Gasoline	-	-		2.7	2.7	2.7
Evaporation							
HC ³⁾	Gasoline	2.0	2.0	2.0	2.0	2.0	2.0

Light duty vehicles II (1305-1760 kg)

¹⁾ Changed test procedure at normal temperatures (40 s warm-up phase omitted) and for evaporation measurements. ²⁾ Less stringent emission limits for direct injection diesel engines. ³⁾ Unit: g/test. ⁴⁾ Applicable for diesel and gasoline direct injection (GDI). 6x10¹² within first three years of Euro 6 effective dates

Light duty vehicles	s III (>1760 kg).
---------------------	-------------------

Eight duty voniolo	e (⊧eeg	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
G pr km		EURO 1	EURO 2	EURO 3 ¹⁾	EURO 4	EURO 5	EURO 6
Normal temp.							
CO	Gasoline	6.9	5.0	5.22	2.27	2.27	2.27
	Diesel	6.9	1.5	0.95	0.74	0.74	0.74
HC	Gasoline	-	-	0.29	0.16	0.16	0.16
NMHC	Gasoline					0.108	0.108
NO _x	Gasoline	-	-	0.21	0.11	0.082	0.082
	Diesel	-	-	0.78	0.39	0.28	0.125
HC+NO _x	Gasoline	1.7	0.7	-	-	-	-
	Diesel	1.7	1.2/1.6 ²⁾	0.86	0.46	0.35	0.215
Particulates	Gasoline					0.005	0.005
	Diesel	0.25	0.17/0.20 ²⁾	0.10	0.06	0.005	0.005
Particulates (#)		-	-	-	-	-	6x10 ^{11 4)}
Low temp.							
CO	Gasoline	-	-	-	30	30	30
HC	Gasoline	-	-	-	3.2	3.2	3.2
Evaporation							
HC ³⁾	Gasoline	2.0	2.0	2.0	2.0	2.0	2.0

¹⁾ Changed test procedure at normal temperatures (40 s warm-up phase omitted) and for evaporation measurements. ²⁾ Less stringent emission limits for direct injection diesel engines. ³⁾ Unit: g/test. ⁴⁾ Applicable for diesel and gasoline direct injection (GDI). 6x10¹² within first three years of Euro 6 effective dates.

Heavy duty diesel vehicles.

					EURO			
(g pr kWh)		EURO I	EURO II	EURO III	IV	EURO V	EURO VI	EEV ²⁾
	Test ¹⁾	1993	1996	2001	2006	2009	2014	2000
CO	ECE/ESC	4.5	4.0	2.1	1.5	1.5	1.5	1.5
	ETC	-	-	(5.45)	4.0	4.0	4.0	3.0
HC	ECE/ESC	1.1	1.1	0.66	0.46	0.46	0.13	0.25
	ETC	-	-	(0.78)	0.55	0.55	0.16	0.40
NOx	ECE/ESC	8.0	7.0	5.0	3.5	2.0	0.4	2.0
	ETC	-	-	(5.0)	3.5	2.0	0.4	2.0
Particulates ³	³⁾ ECE/ESC	0.36/0.61	0.15/0.25	0.10/0.13	0.02	0.02	0.01	0.02
	ETC	-	-	(0.16/0.21)	0.03	0.03	0.01	0.02
	ELR	-	-	0.8	0.5	0.5		0.15
NH_3	ECE/ESC						10 (ppm)	
	ETC						10 (ppm)	
1) Test press	dura Lura 1	am [TOT (atation	and a large state of the second state of the s				

¹⁾ Test procedure: Euro 1 og Euro 2: ECE (stationary)

Euro 3: ESC (stationary) + ELR (load response)

Euro 4, Euro 5 og EEV: ESC (stationary) + ETC (transient) + ELR (load response) ²⁾ EEV: Emission limits for extra environmental friendly vehicles, used as a basis for economical incitaments (gas fueled vehicles).

³⁾ For Euro 1, Euro 2 og Euro 3 less stringent emission limits apply for small engines:

.,	9 = 0.0 0 .000 0
Euro 1:	<85 kW
Euro 2:	<0,7 l
Euro 3:	<0,75 l

Annex 3B-4: Basis emission factors for road transportation vehicles (q/km)

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-5: Reduction factors for road transport emission factors

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-6: Deterioration factors for road transport emission factors

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-7: Final fuel consumption factors (MJ/km) and emission factors (g/km) in 2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-8: Fuel consumption (GJ) and emissions (tonnes) per vehicle category and as totals

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-9: COPERT IV:DEA statistics fuel use ratios and mileage adjustment factors

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-10-1: Correspondence table between actual aircraft type codes and representative aircraft types

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-10-2: LTO no. per representative aircraft type for domestic and int. flights (Copenhagen and other airports) http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-10-3: No. of flights between Danish airports and airports in Greenland and Faroe Islands

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-10-4: LTO fuel consumption and emission factors per representative aircraft type for Copenhagen Airport and other airports

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-1: Stock data for diesel tractors 1985-2013 http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-2: Stock data for gasoline tractors 1985-2013 http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-3: Stock data for harvesters 1985-2013 http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-4: Stock data for fork lifts 1985-2013 http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-5: Stock data for construction machinery 1985-2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-6: Stock data for machine pools 1985-2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-7: Stock data for household and gardening machinery 1985-2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-11-8: Stock data and engine size data for recreational craft 1985-2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/ Annex 3B-11-9: Basis fuel consumption and emission factors, deterioration factors and transient factors for non road working machinery and equipment and recreational craft. Stock and activity data for certain specific types of machinery

Engine size	Emission Level	NO _x	VOC	СО	N ₂ O	NH ₃	TSP	Fuel
[P=kW]					[g pr kWh]			
P<19	<1981	12,00	5,00	7,00	0,035	0,002	2,80	300
P<19	1981-1990	11,50	3,80	6,00	0,035	0,002	2,30	285
P<19	1991-Stage I	11,20	2,50	5,00	0,035	0,002	1,60	270
P<19	Stage I	11,20	2,50	5,00	0,035	0,002	1,60	270
P<19	Stage II	11,20	2,50	5,00	0,035	0,002	1,60	270
P<19	Stage IIIA	11,20	2,50	5,00	0,035	0,002	1,60	270
P<19	Stage IIIB	11,20	2,50	5,00	0,035	0,002	1,60	270
P<19	Stage IV	11,20	2,50	5,00	0,035	0,002	1,60	270
19<=P<37	<1981	18,00	2,50	6,50	0,035	0,002	2,00	300
19<=P<37	1981-1990	18,00	2,20	5,50	0,035	0,002	1,40	281
19<=P<37	1991-Stage I	9,80	1,80	4,50	0,035	0,002	1,40	262
19<=P<37	Stage I	9,80	1,80	4,50	0,035	0,002	1,40	262
19<=P<37	Stage II	6,50	0,60	2,20	0,035	0,002	0,40	262
19<=P<37	Stage IIIA	6,08	0,60	2,20	0,035	0,002	0,40	262
19<=P<37	Stage IIIB	6,08	0,60 0,60	2,20	0,035	0,002	0,40	262
19<=P<37	Stage IV	6,08	0,60 0,60	2,20	0,035	0,002	0,40	262
37<=P<56	<1981	7,70	2,40	6,00	0,035	0,002	1,80	202
37<=P<56	1981-1990	8,60	2,00	5,30	0,035	0,002	1,20	275
37<=P<56	1991-Stage I	11,50	1,50	4,50	0,035	0,002	0,80	260
37<=P<56	Stage I	7,70	0,60	2,20	0,035	0,002	0,40	260
37<=P<56	Stage II	5,50	0,40	2,20	0,035	0,002	0,20	260
37<=P<56	Stage IIIA	3,81	0,40	2,20	0,035	0,002	0,20	260
37<=P<56	Stage IIIB	3,81	0,28	2,20	0,035	0,002	0,03	260
37<=P<56	Stage IV	3,81	0,28	2,20	0,035	0,002	0,03	260
56<=P<75	<1981	7,70	2,40	6,00	0,035	0,002	1,80	290
56<=P<75	1981-1990	8,60	2,00	5,30	0,035	0,002	1,20	275
56<=P<75	1991-Stage I	11,50	1,50	4,50	0,035	0,002	0,80	260
56<=P<75	Stage I	7,70	0,60	2,20	0,035	0,002	0,40	260
56<=P<75	Stage II	5,50	0,40	2,20	0,035	0,002	0,20	260
56<=P<75	Stage IIIA	3,81	0,40	2,20	0,035	0,002	0,20	260
56<=P<75	Stage IIIB	2,97	0,28	2,20	0,035	0,002	0,03	260
56<=P<75	Stage IV	0,40	0,28	2,20	0,035	0,002	0,03	260
75<=P<130	<1981	10,50	2,00	5,00	0,035	0,002	1,40	280
75<=P<130	1981-1990	11,80	1,60	4,30	0,035	0,002	1,00	268
75<=P<130	1991-Stage I	13,30	1,20	3,50	0,035	0,002	0,40	255
75<=P<130	Stage I	8,10	0,40	1,50	0,035	0,002	0,20	255
75<=P<130	Stage II	5,20	0,30	1,50	0,035	0,002	0,20	255
75<=P<130	Stage IIIA	3,24	0,30	1,50	0,035	0,002	0,20	255
75<=P<130	Stage IIIB	2,97	0,13	1,50	0,035	0,002	0,03	255
75<=P<130	Stage IV	0,40	0,13	1,50	0,035	0,002	0,03	255
130<=P<560	<1981	17,80	1,50	2,50	0,035	0,002	0,90	270
130<=P<560	1981-1990	12,40	1,00	2,50	0,035	0,002	0,80	260
130<=P<560	1991-Stage I	11,20	0,50	2,50	0,035	0,002	0,40	250
130<=P<560	Stage I	7,60	0,30	1,50	0,035	0,002	0,20	250
130<=P<560	Stage II	5,20	0,30	1,50	0,035	0,002	0,10	250
130<=P<560	Stage IIIA	3,24	0,30	1,50	0,035	0,002	0,10	250
130<=P<560	Stage IIIB	1,80	0,13	1,50	0,035	0,002	0,03	250
130<=P<560	Stage IV	0,40	0,13	1,50	0,035	0,002	0,03	250

Basis factors for diesel fuelled non road machinery.

Basis factors for 4-stroke gasoline non road machine	ery.
--	------

Engine	Size code	Size classe	Emission Level	NO _x	VOC	со	N ₂ O	NH_3	TSP	Fuel
0		[S=ccm]		, A			[g pr kWh]	0		
4-stroke	SH2	20<=S<50	<1981	2.4	33	198	0.002	0.03	0.09	496
4-stroke	SH2	20<=S<50	1981-1990	3.5	27.5	165	0.002	0.03	0.08	474
4-stroke	SH2	20<=S<50	1991-Stage I	4.7	22	132	0.002	0.03	0.06	451
4-stroke	SH2	20<=S<50	Stage I	4.7	22	132	0.002	0.03	0.06	406
4-stroke	SH2	20<=S<50	Stage II	4.7	22	132	0.002	0.03	0.06	406
4-stroke	SH3	S>=50	<1981	2.4	33	198	0.002	0.03	0.09	496
4-stroke	SH3	S>=50	1981-1990	3.5	27.5	165	0.002	0.03	0.08	474
4-stroke	SH3	S>=50	1991-Stage I	4.7	22	132	0.002	0.03	0.06	451
4-stroke	SH3	S>=50	Stage I	4.7	22	132	0.002	0.03	0.06	406
4-stroke	SH3	S>=50	Stage II	4.7	22	132	0.002	0.03	0.06	406
4-stroke	SN1	S<66	<1981	1.2	26.9	822	0.002	0.03	0.09	603
4-stroke	SN1	S<66	1981-1990	1.8	22.5	685	0.002	0.03	0.08	603
4-stroke	SN1	S<66	1991-Stage I	2.4	18	548	0.002	0.03	0.06	603
4-stroke	SN1	S<66	Stage I	4.3	16.1	411	0.002	0.03	0.06	475
4-stroke	SN1	S<66	Stage II	4.3	16.1	411	0.002	0.03	0.06	475
4-stroke	SN2	66<=S<100	<1981	2.3	10.5	822	0.002	0.03	0.09	627
4-stroke	SN2	66<=S<100	1981-1990	3.5	8.7	685	0.002	0.03	0.08	599
4-stroke	SN2	66<=S<100	1991-Stage I	4.7	7	548	0.002	0.03	0.06	570
4-stroke	SN2	66<=S<100	Stage I	4.7	7	467	0.002	0.03	0.06	450
4-stroke	SN2	66<=S<100	Stage II	4.7	7	467	0.002	0.03	0.06	450
4-stroke	SN3	100<=S<225	<1981	2.6	19.1	525	0.002	0.03	0.09	601
4-stroke	SN3	100<=S<225	1981-1990	3.8	15.9	438	0.002	0.03	0.08	573
4-stroke	SN3	100<=S<225	1991-Stage I	5.1	12.7	350	0.002	0.03	0.06	546
4-stroke	SN3	100<=S<225	Stage I	5.1	11.6	350	0.002	0.03	0.06	546
4-stroke	SN3	100<=S<225	Stage II	5.1	9.4	350	0.002	0.03	0.06	546
4-stroke	SN4	S>=225	<1981	1.3	11.1	657	0.002	0.03	0.09	539
4-stroke	SN4	S>=225	1981-1990	2	9.3	548	0.002	0.03	0.08	514
4-stroke	SN4	S>=225	1991-Stage I	2.6	7.4	438	0.002	0.03	0.06	490
4-stroke	SN4	S>=225	Stage I	2.6	7.4	438	0.002	0.03	0.06	490
4-stroke	SN4	S>=225	Stage II	2.6	7.4	438	0.002	0.03	0.06	490

Basis factors for 2-stroke g	asoline non road	machinery.
------------------------------	------------------	------------

Engine	Size code	Size classe	Emission Level	NO _x	VOC	со	N ₂ O	NH ₃	TSP	Fuel
0		[ccm]					[g pr kWh]	-		
2-stroke	SH2	20<=S<50	<1981	1	305	695	0.002	0.01	7	882
2-stroke	SH2	20<=S<50	1981-1990	1	300	579	0.002	0.01	5.3	809
2-stroke	SH2	20<=S<50	1991-Stage I	1.1	203	463	0.002	0.01	3.5	735
2-stroke	SH2	20<=S<50	Stage I	1.5	188	379	0.002	0.01	3.5	720
2-stroke	SH2	20<=S<50	Stage II	1.5	44	379	0.002	0.01	3.5	500
2-stroke	SH3	S>=50	<1981	1.1	189	510	0.002	0.01	3.6	665
2-stroke	SH3	S>=50	1981-1990	1.1	158	425	0.002	0.01	2.7	609
2-stroke	SH3	S>=50	1991-Stage I	1.2	126	340	0.002	0.01	1.8	554
2-stroke	SH3	S>=50	Stage I	2	126	340	0.002	0.01	1.8	529
2-stroke	SH3	S>=50	Stage II	1.2	64	340	0.002	0.01	1.8	500
2-stroke	SN1	S<66	<1981	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN1	S<66	1981-1990	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN1	S<66	1991-Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN1	S<66	Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN1	S<66	Stage II	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN2	66<=S<100	<1981	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN2	66<=S<100	1981-1990	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN2	66<=S<100	1991-Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN2	66<=S<100	Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN2	66<=S<100	Stage II	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN3	100<=S<225	<1981	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN3	100<=S<225	1981-1990	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN3	100<=S<225	1991-Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN3	100<=S<225	Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN3	100<=S<225	Stage II	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN4	S>=225	<1981	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN4	S>=225	1981-1990	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN4	S>=225	1991-Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN4	S>=225	Stage I	0.5	155	418	0.002	0.01	2.6	652
2-stroke	SN4	S>=225	Stage II	0.5	155	418	0.002	0.01	2.6	652

Fuel consumption and emission factors for LPG fork lifts.

NO _x	VOC	CC)	NH₃	N_2O	TSP	FC		
[g pr kWh]	[g pr kWh]	[g pr kWh] [g pr k	Wh] [g	pr kWh]	[g pr kWh]	[g pr kWh]		
19	2.2	1.5	5 0.	003	0.05	0.07	311		
Fuel consum	Fuel consumption and emission factors for All Terrain Vehicles (ATV's).								
ATV type	NO _x	VOC	СО	NHa	3 N2	O TSP	Fuel		
	[g pr GJ] [g pr GJ] [(g pr GJ]	[g pr GJ]	[g pr G	J] [g pr GJ]	[kg pr hour]		
Professional	108	1077	16306	2	2	2 32	1.125		
Private	128	1527	22043	2	2	2 39	0.75		

Fuel type	Vessel type	Engine	Engine type	Direktiv	Engine size	CO	VOC	N_2O	NH_3	NO _x	TSP	Fuel
					[kW]	[g pr kWh]						
Gasoline	Other boats (< 20 ft)	Out board	2-stroke	2003/44	8	202.5	45.9	0.01	0.002	2.0	10.00	791
Gasoline	Other boats (< 20 ft)	Out board	2-stroke	Konv.	8	427.0	257.0	0.01	0.002	2.0	10.00	791
Gasoline	Other boats (< 20 ft)	Out board	4-stroke	2003/44	8	202.5	24.0	0.03	0.002	7.0	0.08	426
Gasoline	Other boats (< 20 ft)	Out board	4-stroke	Konv.	8	520.0	24.0	0.03	0.002	7.0	0.08	426
Gasoline	Yawls and cabin boats	Out board	2-stroke	2003/44	20	162.0	36.5	0.01	0.002	3.0	10.00	791
Gasoline	Yawls and cabin boats	Out board	2-stroke	Konv.	20	374.0	172.0	0.01	0.002	3.0	10.00	791
Gasoline	Yawls and cabin boats	Out board	4-stroke	2003/44	20	162.0	14.0	0.03	0.002	10.0	0.08	426
Gasoline	Yawls and cabin boats	Out board	4-stroke	Konv.	20	390.0	14.0	0.03	0.002	10.0	0.08	426
Gasoline	Sailing boats (< 26 ft)	Out board	2-stroke	2003/44	10	189.0	43.0	0.01	0.002	2.0	10.00	791
Gasoline	Sailing boats (< 26 ft)	Out board	2-stroke	Konv.	10	427.0	257.0	0.01	0.002	2.0	10.00	791
Gasoline	Sailing boats (< 26 ft)	Out board	4-stroke	2003/44	10	189.0	24.0	0.03	0.002	7.0	0.08	426
Gasoline	Sailing boats (< 26 ft)	Out board	4-stroke	Konv.	10	520.0	24.0	0.03	0.002	7.0	0.08	426
Gasoline	Speed boats	In board	4-stroke	2003/44	90	141.0	10.0	0.03	0.002	12.0	0.08	426
Gasoline	Speed boats	In board	4-stroke	Konv.	90	346.0	10.0	0.03	0.002	12.0	0.08	426
Gasoline	Speed boats	Out board	2-stroke	2003/44	50	145.8	31.8	0.01	0.002	3.0	10.00	791
Gasoline	Speed boats	Out board	2-stroke	Konv.	50	374.0	172.0	0.01	0.002	3.0	10.00	791
Gasoline	Speed boats	Out board	4-stroke	2003/44	50	145.8	14.0	0.03	0.002	10.0	0.08	426
Gasoline	Speed boats	Out board	4-stroke	Konv.	50	390.0	14.0	0.03	0.002	10.0	0.08	426
Gasoline	Water scooters	Built in	2-stroke	2003/44	45	147.0	32.2	0.01	0.002	3.0	10.00	791
Gasoline	Water scooters	Built in	2-stroke	Konv.	45	374.0	172.0	0.01	0.002	3.0	10.00	791
Gasoline	Water scooters	Built in	4-stroke	2003/44	45	147.0	14.0	0.03	0.002	10.0	0.08	426
Gasoline	Water scooters	Built in	4-stroke	Konv.	45	390.0	14.0	0.03	0.002	10.0	0.08	426
Diesel	Motor boats (27-34 ft)	In board		2003/44	150	5.0	1.7	0.035	0.002	8.6	1.00	275
Diesel	Motor boats (27-34 ft)	In board		Konv.	150	5.3	2.0	0.035	0.002	8.6	1.20	275
Diesel	Motor boats (> 34 ft)	In board		2003/44	250	5.0	1.6	0.035	0.002	8.6	1.00	275
Diesel	Motor boats (> 34 ft)	In board		Konv.	250	5.3	2.0	0.035	0.002	8.6	1.20	275
Diesel	Motor boats (< 27 ft)	In board		2003/44	40	5.0	1.8	0.035	0.002	9.8	1.00	281
Diesel	Motor boats (< 27 ft)	In board		Konv.	40	5.5	2.2	0.035	0.002	18.0	1.40	281
Diesel	Motor sailors	In board		2003/44	30	5.0	1.9	0.035	0.002	9.8	1.00	281
Diesel	Motor sailors	In board		Konv.	30	5.5	2.2	0.035	0.002	18.0	1.40	281
Diesel	Sailing boats (> 26 ft)	In board		2003/44	30	5.0	1.9	0.035	0.002	9.8	1.00	281
Diesel	Sailing boats (> 26 ft)	In board		Konv.	30	5.5	2.2	0.035	0.002	18.0	1.40	281

Fuel consumption and emission factors for recreational craft.

CH ₄ shares of VOC for diesel,	gasoline and LPG.
---	-------------------

Fuel type	CH ₄ share of VOC
Diesel	0.024
Gasoline 4-stroke	0.034
Gasoline 2-stroke	0.07
LPG	0.05

Deterioration factors for diesel machinery.

		,		
Emission Level	NO _x	VOC	СО	TSP
<1981	0.024	0.047	0.185	0.473
1981-1990	0.024	0.047	0.185	0.473
1991-Stage I	0.024	0.047	0.185	0.473
Stage I	0.024	0.036	0.101	0.473
Stage II	0.009	0.034	0.101	0.473
Stage IIIA	0.008	0.027	0.151	0.473
Stage IIIB	0.008	0.027	0.151	0.473
Stage IV	0.008	0.027	0.151	0.473

Deterioration factors for gasoline 2-stroke machinery.

Engine		Size classe	Emission Level	NOx	VOC	CO	TSF
2-stroke	SH2	20<=S<50	<1981	0	0.2	0.2	(
2-stroke	SH2	20<=S<50	1981-1990	0	0.2	0.2	C
2-stroke	SH2	20<=S<50	1991-Stage I	0	0.2	0.2	C
2-stroke	SH2	20<=S<50	Stage I	0	0.29	0.24	C
2-stroke	SH2	20<=S<50	Stage II	0	0.29	0.24	C
2-stroke	SH3	S>=50	<1981	-0.031	0.2	0.2	(
2-stroke	SH3	S>=50	1981-1990	-0.031	0.2	0.2	(
2-stroke	SH3	S>=50	1991-Stage I	-0.031	0.2	0.2	(
2-stroke	SH3	S>=50	Stage I	0	0.266	0.231	C
2-stroke	SH3	S>=50	Stage II	0	0.266	0.231	(
2-stroke	SN1	S<66	<1981	-0.6	0.201	0.9	1.1
2-stroke	SN1	S<66	1981-1990	-0.6	0.201	0.9	1.1
2-stroke	SN1	S<66	1991-Stage I	-0.6	0.201	0.9	1.1
2-stroke	SN1	S<66	Stage I	-0.33	0.266	1.109	5.103
2-stroke	SN1	S<66	Stage II	-0.33	0	1.109	5.103
2-stroke	SN2	66<=S<100	<1981	-0.6	0.201	0.9	1.1
2-stroke	SN2	66<=S<100	1981-1990	-0.6	0.201	0.9	1.1
2-stroke	SN2	66<=S<100	1991-Stage I	-0.6	0.201	0.9	1.1
2-stroke	SN2	66<=S<100	Stage I	-0.33	0.266	1.109	5.103
2-stroke	SN2	66<=S<100	Stage II	-0.33	0	1.109	5.103
2-stroke	SN3	100<=S<225	<1981	-0.6	0.201	0.9	1.1
2-stroke	SN3	100<=S<225	1981-1990	-0.6	0.201	0.9	1.1
2-stroke	SN3	100<=S<225	1991-Stage I	-0.6	0.201	0.9	1.1
2-stroke	SN3	100<=S<225	Stage I	-0.33	0.266	1.109	5.103
2-stroke	SN3	100<=S<225	Stage II	-0.33	0	1.109	5.103
2-stroke	SN4	S>=225	<1981	-0.6	0.201	0.9	1.1
2-stroke	SN4	S>=225	1981-1990	-0.6	0.201	0.9	1.1
2-stroke	SN4	S>=225	1991-Stage I	-0.6	0.201	0.9	1.1
2-stroke	SN4	S>=225	Stage I	-0.274	0	0.887	1.935
2-stroke	SN4	S>=225	Stage II	-0.274	0	0.887	1.935

Deterioration factors for gasoline 4-stroke machinery.

Engine	Size code	Size classe	Emission Level	NO _x	VOC	CO	TSP
4-stroke	SN1	S<66	<1981	-0.6	1.1	0.9	1.1
4-stroke	SN1	S<66	1981-1990	-0.6	1.1	0.9	1.1
4-stroke	SN1	S<66	1991-Stage I	-0.6	1.1	0.9	1.1
4-stroke	SN1	S<66	Stage I	-0.3	1.753	1.051	1.753
4-stroke	SN1	S<66	Stage II	-0.3	1.753	1.051	1.753
4-stroke	SN2	66<=S<100	<1981	-0.6	1.1	0.9	1.1
4-stroke	SN2	66<=S<100	1981-1990	-0.6	1.1	0.9	1.1
4-stroke	SN2	66<=S<100	1991-Stage I	-0.6	1.1	0.9	1.1
4-stroke	SN2	66<=S<100	Stage I	-0.3	1.753	1.051	1.753
4-stroke	SN2	66<=S<100	Stage II	-0.3	1.753	1.051	1.753
4-stroke	SN3	100<=S<225	<1981	-0.6	1.1	0.9	1.1
4-stroke	SN3	100<=S<225	1981-1990	-0.6	1.1	0.9	1.1
4-stroke	SN3	100<=S<225	1991-Stage I	-0.6	1.1	0.9	1.1
4-stroke	SN3	100<=S<225	Stage I	-0.3	1.753	1.051	1.753
4-stroke	SN3	100<=S<225	Stage II	-0.3	1.753	1.051	1.753
4-stroke	SN4	S>=225	<1981	-0.6	1.1	0.9	1.1
4-stroke	SN4	S>=225	1981-1990	-0.6	1.1	0.9	1.1
4-stroke	SN4	S>=225	1991-Stage I	-0.6	1.1	0.9	1.1
4-stroke	SN4	S>=225	Stage I	-0.599	1.095	1.307	1.095
4-stroke	SN4	S>=225	Stage II	-0.599	1.095	1.307	1.095
4-stroke	SH2	20<=S<50	<1981	0	0	0	0
4-stroke	SH2	20<=S<50	1981-1990	0	0	0	0
4-stroke	SH2	20<=S<50	1991-Stage I	0	0	0	0
4-stroke	SH2	20<=S<50	Stage I	0	0	0	0
4-stroke	SH2	20<=S<50	Stage II	0	0	0	0
4-stroke	SH3	S>=50	<1981	0	0	0	0
4-stroke	SH3	S>=50	1981-1990	0	0	0	0
4-stroke	SH3	S>=50	1991-Stage I	0	0	0	0
4-stroke	SH3	S>=50	Stage I	0	0	0	0
4-stroke	SH3	S>=50	Stage II	0	0	0	0

Transient factors for diesel machinery.	s for diesel machinery.	Transient factors for
---	-------------------------	-----------------------

Emission Level		Load factor	NO _x	VOC	СО	TSP	Fuel
<1981	High	> 0.45	0.95	1.05	1.53	1.23	1.01
1981-1990	High	> 0.45	0.95	1.05	1.53	1.23	1.01
1991-Stage I	High	> 0.45	0.95	1.05	1.53	1.23	1.01
Stage I	High	> 0.45	0.95	1.05	1.53	1.23	1.01
Stage II	High	> 0.45	0.95	1.05	1.53	1.23	1.01
Stage IIIA	High	> 0.45	1.04	1.05	1.53	1.47	1.01
Stage IIIB	High	> 0.45	1	1	1	1	1
Stage IV	High	> 0.45	1	1	1	1	1
<1981	Middle	0.25>= LF <= 0.45	1.025	1.67	2.05	1.6	1.095
1981-1990	Middle	0.25>= LF <= 0.45	1.025	1.67	2.05	1.6	1.095
1991-Stage I	Middle	0.25>= LF <= 0.45	1.025	1.67	2.05	1.6	1.095
Stage I	Middle	0.25>= LF <= 0.45	1.025	1.67	2.05	1.6	1.095
Stage II	Middle	0.25>= LF <= 0.45	1.025	1.67	2.05	1.6	1.095
Stage IIIA	Middle	0.25>= LF <= 0.45	1.125	1.67	2.05	1.92	1.095
Stage IIIB	Middle	0.25>= LF <= 0.45	1	1	1	1	1
Stage IV	Middle	0.25>= LF <= 0.45	1	1	1	1	1
<1981	Low	<0.25	1.1	2.29	2.57	1.97	1.18
1981-1990	Low	<0.25	1.1	2.29	2.57	1.97	1.18
1991-Stage I	Low	<0.25	1.1	2.29	2.57	1.97	1.18
Stage I	Low	<0.25	1.1	2.29	2.57	1.97	1.18
Stage II	Low	<0.25	1.1	2.29	2.57	1.97	1.18
Stage IIIA	Low	<0.25	1.21	2.29	2.57	2.37	1.18
Stage IIIB	Low	<0.25	1	1	1	1	1
Stage IV	Low	<0.25	1	1	1	1	1

Annual working hours, load factors and lifetimes for agricultural tractors.

Tractor type	Annual working hours	Load factor	Lifetime (yrs)
Diesel	500 (0-7 years)	0.5	30
	500-100 (7-16 years)		
	100 (>16 years)		
Gasoline (certified)	100	0.4	37
Gasoline (non certified)	50	0.4	37

Annual working hours, load factors and lifetimes for harvesters.

Annual working hours	Load factor	Lifetime (yrs)
250-100 (linear decrease 0-24 years)	0.8	25

Annual working hours, load factors and lifetime for machine pool machinery.

Tractor type	Hours pr yr	Load factor	Lifetime (yrs)
Tractors	750	0.5	7
Harvesters	100	0.8	11
Self-propelled vehicles	500	0.75	6

Operational data for other machinery types in agriculture.

Machinery type	Fuel type	Load factor	Lifetime (yrs)	Hours	Size (kW)
ATV private	Gasoline	-	6	250	-
ATV professional	Gasoline	-	8	400	-
Bedding machines	Gasoline	0.3	10	50	3
Fodder trucks	Gasoline	0.4	10	200	8
Other (gasoline)	Gasoline	0.4	10	50	5
Scrapers	Gasoline	0.3	10	50	3
Self-propelled vehicles	Diesel	0.75	15	150	60
Sweepers	Gasoline	0.3	10	50	3

Annual working hours,	load factors and lifetimes	for forestry machinery.
-----------------------	----------------------------	-------------------------

Machinery type	Hours	Load factors	Lifetime
Chippers	1200	0.5	6
Tractors (other)	100 (1990) 400 (2004)	0.5	15
Tractors (silvicultural)	800	0.5	6
Harvesters	1200	0.5	8
Forwarders	1200	0.5	8
Chain saws (forestry)	800	0.4	3

Annual working hours, load factors and lifetime for fork lifts.

Annual working hours, load factors and metime for fork lints.				
Hours pr yr	Load factor	Lifetime (yrs)		
1200 (>=50 kW and <=10 years	0.27	20		
old)				
650 (>=50 kW and >10 years old)				
650 (<50 kW)				

Operational data for construction machinery.

Machinery type	Load factor	Lifetime	Hours	Size
Track type dozers	0.5	10	1100	140
Track type loaders	0.5	10	1100	100 (1990) 150 (2004)
Wheel loaders (0-5 tonnes)	0.5	10	1200	20
Wheel loaders (> 5,1 tonnes)	0.5	10	1200	120
Wheel type excavators	0.6	10	1200	100
Track type excavators (0-5 tonnes)	0.6	10	1100	20
Track type excavators (>5,1 tonnes)	0.6	10	1100	120
Excavators/Loaders	0.45	10	700	50
Dump trucks	0.4	10	900 (1990) 1200 (2004)	60 (1990) 180 (2004)
Mini loaders	0.5	14	700	30
Telescopic loaders	0.5	14	1000	35

Stock and operational data for other machinery types in industry.

Sector	Fuel type	Machinery type	Size (kW)	No Loa	ad Factor	Hours
Construction machinery	Diesel	Tampers/Land rollers	30	2800	0.45	600
Construction machinery	Diesel	Generators (diesel)	45	5000	0.5	200
Construction machinery	Diesel	Kompressors (diesel)	45	5000	0.5	500
Construction machinery	Diesel	Pumps (diesel)	75	1000	0.5	5
Construction machinery	Diesel	Asphalt pavers	80	300	0.35	700
Construction machinery	Diesel	Motor graders	100	100	0.4	700
Construction machinery	Diesel	Refuse compressors	160	100	0.25	1300
Construction machinery	Gasoline	Generators (gasoline)	2.5	11000	0.4	80
Construction machinery	Gasoline	Pumps (gasoline)	4	10000	0.4	300
Construction machinery	Gasoline	Kompressors (gasoline)	4	500	0.35	15
Industry	Diesel	Refrigerating units (distribution)	8	3000	0.5	1250
Industry	Diesel	Refrigerating units (long distance)	15	3500	0.5	200
Industry	Diesel	Tractors (transport, industry)	50	3000	0.4	500
Airport GSE and other	Diesel	Airport GSE and other (light duty)	100	500	0.5	400
Airport GSE and other	Diesel	Airport GSE and other (medium duty)	125	350	0.5	300
Airport GSE and other	Diesel	Airport GSE and other (Heavy duty)	175	650	0.5	200
Building and construction	Diesel	Vibratory plates	6	3500	0.6	300
Building and construction	Diesel	Aereal lifts (diesel)	30	150	0.4	400
Building and construction	Diesel	Sweepers (diesel)	30	200	0.4	300
Building and construction	Diesel	High pressure cleaners (diesel)	30	50	0.8	500
Building and construction	Gasoline	Rammers	2.5	3000	0.4	80
Building and construction	Gasoline	Drills	3	100	0.4	10
Building and construction	Gasoline	Vibratory plates (gasoline)	4	2500	0.5	200
Building and construction	Gasoline	Cutters	4	800	0.5	50
Building and construction	Gasoline	Other (gasoline)	5	1000	0.5	40
Building and construction	Gasoline	High pressure cleaners (gasoline)	5	500	0.6	200
Building and construction	Gasoline	Sweepers (gasoline)	10	500	0.4	150
Building and construction	Gasoline	Slicers	10	100	0.7	150
Building and construction	Gasoline	Aereal lifts (gasoline)	20	50	0.4	400

Operational data for the most important types of household and gardening machinery.

					Lifetime
Machinery type	Engine	Size (kW)	Hours	Load factor	(yrs)
Chain saws (private)	2-stroke	2	5	0.3	10
Chain saws (professional)	2-stroke	3	270	0.4	3
Cultivators (private-large)	4-stroke	3.7	5	0.6	5
Cultivators (private-small)	4-stroke	1	5	0.6	15
Cultivators (professional)	4-stroke	7	360	0.6	8
Hedge cutters (private)	2-stroke	0.9	10	0.5	10
Hedge cutters (professional)	2-stroke	2	300	0.5	4
Lawn movers (private)	4-stroke	2.5 (2000) 3.5 (2004) 2.5 (2000) 3.5	25 250	0.4	8
Lawn movers (professional)	4-stroke	(2004)		0.4	4
Riders (private)	4-stroke	11	50	0.5	12
Riders (professional)	4-stroke	13	330	0.5	5
Shrub clearers (private)	2-stroke	1	15	0.6	10
Shrub clearers (professional)	2-stroke	2	300	0.6	4
Trimmers (private)	2-stroke	0.9	20	0.5	10
Trimmers (professional)	2-stroke	0.9	200	0.5	4

Stock and operational data for other machines in household and gardening.

			Size			Lifetime
Machinery type	Engine	No.	(kW)	Hours	Load factor	(yrs)
Chippers	2-stroke	200	10	100	0.7	10
Garden shredders	2-stroke	500	3	20	0.7	10
Other (gasoline)	2-stroke	200	2	20	0.5	10
Suction machines	2-stroke	300	4	80	0.5	10
Wood cutters	4-stroke	100	4	15	0.5	10

Operational data for recreational craft.

Fuel type	Vessel type	Engine type	Stroke	Hours	Lifetime	Load factor
Gasoline	Other boats (<20 ft)	Out board engine	2-stroke	30	10	0.5
Gasoline	Other boats (<20 ft)	Out board engine	4-stroke	30	10	0.5
Gasoline	Yawls and cabin boats	Out board engine	2-stroke	50	10	0.5
Gasoline	Yawls and cabin boats	Out board engine	4-stroke	50	10	0.5
Gasoline	Sailing boats (<26ft)	Out board engine	2-stroke	5	10	0.5
Gasoline	Sailing boats (<26ft)	Out board engine	4-stroke	5	10	0.5
Gasoline	Speed boats	In board engine	4-stroke	75	10	0.5
Gasoline	Speed boats	Out board engine	2-stroke	50	10	0.5
Gasoline	Speed boats	Out board engine	4-stroke	50	10	0.5
Gasoline	Water scooters	Built in	2-stroke	10	10	0.5
Gasoline	Water scooters	Built in	4-stroke	10	10	0.5
Diesel	Motor boats (27-34 ft)	In board engine		150	15	0.5
Diesel	Motor boats (>34 ft)	In board engine		100	15	0.5
Diesel	Motor boats (<27 ft)	In board engine		75	15	0.5
Diesel	Motor sailors	In board engine		75	15	0.5
Diesel	Sailing boats (<26ft)	In board engine		25	15	0.5

Annex 3B-12-1: Annual traffic data (no. of round trips) for Danish domestic ferries 1990-2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-12-2: Ferry service, ferry name, engine year, main engine MCR (kW), engine type, specific fuel consumption (sfc), aux. engine (kW)

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-12-3: Sailing time (single trip) for Danish domestic ferries

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-12-4: Engine load factor (% MCR) for Danish domestic ferries

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-12-5: Round trip shares for Danish domestic ferries http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/ Annex 3B-13-1: Specific fuel consumption, NOx, CO, VOC, NMVOC and CH_4 emission factors (g pr kWh) per engine year for diesel ship engines

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-13-2: S-%, SO₂, PM and BC emission factors (g/kg fuel and g/GJ) per fuel type for diesel ship engines <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-</u> <u>documentation/air-pollution-iir/</u>

Annex 3B-14: Fuel sales figures from DEA, and further processed fuel consumption data suited for the Danish inventory

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-15-1: Emission factors for 1990 in CollectER format http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/

Annex 3B-15-2: Emission factors for 2013 in CollectER format http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/

Annex 3B-15-3: Emissions for 1990 in CollectER format http://envs.au.dk/videnudveksling/luft/emissioner/supporting- http://envs.au.dk/videnudveksling/luft/emissioner/supporting-

Annex 3B-15-4: Emissions for 2013 in CollectER format http://envs.au.dk/videnudveksling/luft/emissioner/supporting-

Annex 3B-15-5: Non-exhaust emission factors, activity data and total non-exhaust emissions of TSP, PM_1 , $PM^{2.5}$, BC and heavy metals in 2013

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-16-1: Fuel consumption 1985-2013 in NFR format http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/

Annex 3B-16-2: Emissions 1985-2013 in NFR format http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 3B-17: Uncertainty estimates <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-</u> <u>documentation/air-pollution-iir/</u>

Annex 3C - Industrial processes (NFR 2)

Annex 3C-1:	Activity data Solvent use (Gg per year)
Annex 3C-2:	Emission factors Solvent use (Gg NMVOC per Gg)
Annex 3C-3:	Emissions Solvent use (Gg NMVOC per year)
Annex 3C-4:	Activity data for asphalt in road paving (Mg per year)
Annex 3C-5:	NMVOC and CO emissions from road paving with asphalt (Gg per year)
Annex 3C-6:	Activity data for asphalt roofing (Mg per year)
Annex 3C-7:	NMVOC and CO emissions from asphalt roofing (Gg per year)
Annex 3C-8:	Activity data Paraffin wax use (Gg per year)
Annex 3C-9:	Emission factors Paraffin wax use
Annex 3C-10:	Emissions Paraffin wax

Non-energy products from fuels and solvent use (NFR 2D)

All annexes are available online at: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-documentation/air-pollution-iir/</u>

Annex 3D - Agriculture

 Mathematical Structure
 Mathematical Structure

 http://envs.au.dk/videnudveksling/luft/emissioner/supporting documentation/air-pollution-iir/

Table 3D-2a: Nitrogen excretion rates in average, kg N per head per year. See:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Table 3D-2b: Nitrogen excretion given as TAN (Total Ammonical Nitrogen), kg N per head per year. See:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Table 3D-3: Changes in housing type. See:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

	1985-1999	2000-2001	2002	2003-2014
Cattle	Percent			
No cover	20	5	5	2
Full cover	80	95	95	98
Swine				
No cover	40	20	10	5%
Full cover	60	80	90	95
Fur animals				
No cover	20	5	5	2
Full cover	80	95	95	98
	0)			

Ref: COWI (2000)

Table 3D-5: PM emission from housings, Gg TSP, PM₁₀ and PM_{2.5}. See: <u>http://envs.au.dk/videnudveksling/luft/emissioner/supporting-</u>documentation/air-pollution-iir/

Table 3D-6: Assumptions for synthetic fertiliser

EMEP/EEA fertiliser types ¹	Danish fertiliser types	
Ammonium nitrate (AN)	Ammonium nitrate	
Anhydrous ammonia	Liquid ammonia	
Ammonium phosphates (MAP, DAP)	Calcium and boron calcium nitrate Diammonphosphate	
	Other NP fertiliser types	
	Magnesium fertiliser	
Ammonium sulphate (AS)	Ammonium sulphate	
Calcium ammonium nitrate (CAN)	Calcium ammonium nitrate and other nitrate types	
Calcium nitrate (CN)	-	
Ammonia solutions (AN)	Other nitrogen fertiliser	
Ammonia solutions (Urea AN)		
Urea ammonium solutions (UAS)	-	
Urea	Urea	
Other NK and NPK	NPK-fertiliser	
	NK fertiliser	

¹ EMEP/EEA emission inventory guidebook 2013, Table 3-2 Emission factors for total NH₃ emissions from soils due to N fertiliser volatilization.

Table 3D-7: Area of cultivated crops. See:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Table 3D-8a-d: Number of treatments. See:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Table 3D-9: Activity data for field burning of agricultural wastes. See: http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Table 3D-10: Emissions of pollutants from field burning of agricultural wastes. See:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

References

COWI, 2000: Overdækning af gyllebeholdere og kommunernes tilsyn hermed – undersøgelsesrapport. Danish Forest and Nature Agency. December 2000. (In Danish).

Annex 3E - Waste

Annex 3E-1:	Human cremation activity data, 1980-2014	
Annex 3E-2:	Animal cremation activity data, 1980-2014	
Annex 3E-3:	Emissions from human cremation, 1980-2014	
Annex 3E-4:	Emissions from animal cremation, 1980-2014	
Annex 3E-5:	Compost production activity data, 1985-2014	
Annex 3E-6:	Emissions from composting, 1985-2014	
Annex 3E-7:	Combusted biogas at biogas production plants activity data, 1994-2004	
Annex 3E-8:	Combusted biogas at biogas production plants emissions, 1994-2004	
Annex 3E-9:	Occurrence of all fires, building and vehicle fires, 1980-2014	
Annex 3E-10:	Accidental building fires full scale equivalent ac- tivity data, 1980-2014	
Annex 3E-11:	Emission factors for building fires, 1980-2014	
Annex 3E-12:	Average building floor space, 1980-2014	
Annex 3E-13:	Emissions from building fires, 1980-2014	
Annex 3E-14:	Full scale vehicle fires, 1980-2014	
Annex 3E-15:	Average vehicle weight, 1980-2014	
Annex 3E-16:	Accidental vehicle fires activity data, 1980-2014	
Annex 3E-17:	Emissions from accidental vehicle fires, 1980-2014	

All annexes are available online at:

http://envs.au.dk/videnudveksling/luft/emissioner/supportingdocumentation/air-pollution-iir/

Annex 4 – Completeness and use of notation keys

Not estimated categories

The Danish air emission inventory is generally complete. However, some categories and/or pollutants are reported as NE (Not estimated).

Mobile combustion

PAH emissions from tire and brake wear are not estimated, due to lack of emission factors.

Industrial processes

- Emissions of BC from construction and demolition are not estimated.
- Emissions from pulp and paper production have not been estimated.
- Emissions from consumption of POPs and heavy metals have not been estimated.
- Emissions of PM, BC and PAH from road paving with asphalt and asphalt roofing have not been estimated.
- Emissions of PM from food and beverages industry have not been estimated.
- Emissions from some product uses have not been estimated, e.g. use of shoes.

Agriculture

Emissions of PM from off-farm storage, handling and transport of bulk agricultural products have not been estimated, due to lack of emission factors.

 NO_{x} emissions from cultivated crops have not been estimated, due to lack of emission factors.

Waste

Emissions from solid waste disposal on land have not been estimated.

Emissions from wastewater handling have not been estimated.

Emissions from small scale waste burning have not been estimated.

The emission of selenium and HCB from accidental fires has not been estimated due to lack of available emission factors.

Categories reported as IE (Included Elsewhere)

The table below indicates the categories where the notation key IE has been used in the reporting for some or all pollutants.

Table A3.1 List of categories reported as included elsewhere.

Category reported as IE	Emissions where emissions are included
2A1 Cement production	1A2f Manufacturing industries and construction: Non-metallic minerals
2A2 Lime production	1A2f Manufacturing industries and construction: Non-metallic minerals
2A3 Glass production	1A2f Manufacturing industries and construction: Non-metallic minerals

Emissions from cement production (2A1), lime production (2A2) and glass production (2A3) are included in manufacturing industries and construction (1A2f). For some or all pollutants, it is not possible to separate the process emissions from the energy related emissions.

For some pollutants in other categories IE is also used. The specific reasons are explained in the sectoral chapters of the report.

ANNUAL DANISH INFORMATIVE INVENTORY REPORT TO UNECE

Emission inventories from the base year of the protocols to year 2014

This report is a documentation report on the emission inventories for Denmark as reported to the UNECE Secretariat under the Convention on Long Range Transboundary Air Pollution due by 15 February 2016. The report contains information on Denmark's emission inventories regarding emissions of (1) SO_X for the years 1980-2014, (2) NO_X, CO. NMVOC and NH₃ for the years 1985-2014, (3) Particulate matter: TSP, PM₁₀, PM_{2.5} for the years 2000-2014, (4) Heavy Metals: Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn for the years 1990-2014, (5) Polyaromatic hydrocarbons (PAH): Benzo(a) pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene, PCDD/F and HCB for the years 1990-2014. Further, the report contains information on background data for emissions inventory.