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1. Introduction 

One of the key pressures related to the eutrophication and quality of the water 
of the Baltic Sea is waterborne (and airborne) nutrient inputs. In the Baltic Sea 
Action Plan from 2007 (BSAP 2007), eutrophication targets were set, and 
based on these preliminary maximum allowable inputs, country-allocated nu-
trient reduction targets were developed and adopted. In HELCOM Copenha-
gen Ministerial Declaration from 3 October 2013, Contracting Parties decided 
on revised nitrogen and phosphorus input reduction targets.  

In order to implement the following commitments: 

• In Article 3 and Article 16 of the Convention on the Protection of the Ma-
rine Environment of the Baltic Sea Area, 1992 (Helsinki Convention) 

• Baltic Sea Action Plan (BSAP), HELCOM Ministerial Meeting, Copenha-
gen, Denmark, 3. October 2013 

• The HELCOM Monitoring and Assessment Strategy, HELCOM Ministe-
rial Meeting, Copenhagen, 3 October, Denmark. 

HELCOM HOD 51-2016 approved the HELCOM project for the Seventh Baltic 
Sea Pollution Load Compilation (PLC-7) (Outcome HOD 51-2016 item 6.79) 

The overall task of the PLC-7 project is to prepare a comprehensive assessment 
of the water- and airborne inputs of nutrients and selected hazardous sub-
stances and their sources to the Baltic Sea during the period 1995-2017 including 
follow up implementation of the HELCOM nutrient reduction scheme and as-
sessment of the effectiveness of measures to reach the BSAP targets. The PLC-7 
project is organized in working packages with the following tasks: 

1. Establishing datasets and update of MAI (Maximum Allowable Inputs) 
and CART (Country Allocated Reduction Targets): 

a) Monitoring and reporting of national annual/periodical data 
b) Updating PLC-Water database and data on atmospheric inputs 

(PLC-Air) 
c) Establishing the periodic assessment data set 

2. Periodic assessment: 
a) Assessment of sources of nutrients 
b) Assessment of the effectiveness of measures 
c) Assessment of inputs of selected hazardous substances 
d) Compilation of the executive summary including policy messages 

3. Methodologies 
a) Updating guidelines and a statistical methodology report 
b) Intercalibration on nutrient and heavy metals. 

All these tasks and objectives call for a standardized and appropriate meth-
odology, including statistical methods. Statistical methods are used e.g. when 
assessing trend in nutrient input time series including test for change points, 
to identify the extent of trends, and estimate uncertainty in nutrient inputs 
datasets. Further statistical methods are needed for the evaluation of progress 
fulfilling HELCOM BSAP nutrient reduction targets (MAI and CART) taking 
into account the uncertainty on nutrient inputs. The statistical methods are 
tools in the PLC assessments to allow the most qualified decisions to be made 
regarding possible trends and acceptance of fulfilling reduction requirements. 
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The report “Statistical aspects in relation to Baltic Sea Pollution Load Compi-
lation” (Larsen & Svendsen, 2013) was developed as a part of the former HEL-
COM PLC-6 project. During the first follow-ups of progresses towards ful-
filling BSAP nutrient reduction scheme and the PLC-6 assessment, the statis-
tical methods has been further developed. The revised statistical methodology 
and new methods are included in this revised version of the 2013 report.  

This report describes and includes a theoretical treatment of the statistical 
methods to be applied in the PLC assessments and BSAP nutrient reduction 
scheme. Focus points are assessment of waterborne input – and for the follow 
up of BSAP nutrient reduction scheme evaluating Contracting Parties fulfil-
ment of MAI and CART. The described methods include flow normalization 
of nutrient inputs, filling in data gaps, testing for outliers, trends and change 
points, calculating changes in inputs in a time series, estimation of dataset un-
certainty, and, finally, how to test whether reduction targets are fulfilled tak-
ing into account the uncertainty on inputs. Examples of quantified uncer-
tainty on riverine inputs are also included. The statistical methods are in-
cluded in the PLC guidelines. The statistical methods are also applicable for 
hazardous substances inputs. 

The statistical procedure for analyzing trends in the normalized nutrient in-
put values plays an important role in the pollution input compilation assess-
ments. The preparation of the data for trend analysis should include an as-
sessment of the data quality, and this report includes proposals on how to fill 
in gaps/missing data in input time series and how to test for outliers in the 
data (chapter 2). 

Furthermore, a study of the variability in the data sets behind the time series 
is important for assessing the size of the different components of variance. If 
some components can be reduced, the trend analysis will be more precise, and 
chapter 3 includes and discusses methods to estimate variance components 
and total uncertainty. 

A final step in the preparation of the data is hydrological normalization of the 
yearly inputs in order to remove some of the effects of climate in the trends and 
to smooth out the input time series. This is described in chapter 4. 

A number of different trend analysis methods, both non-parametric and para-
metric, exist. In HELCOM nutrient input assessments, the non-parametric 
method based on Kendall’s tau has been used as a first step in detecting and 
testing for trends in the first MAI and CART assessment. This method is known 
as the Mann-Kendall’s trend test. Trend methods are described in chapter 5. In 
the recent MAI and CART assessment the Mann-Kendall trend method is used 
for a preliminary analysis of possible trends in the TN and TP input time series. 
Furthermore the method is used for analyzing possible trends in runoff time 
series. The remaining trend analysis, as estimating trend line (slope, intersect 
etc.), is based on linear regression and parametric testing.  

In chapter 6, a method for testing the fulfilment of BSAP nutrient reduction tar-
gets (fulfilment and MAI and CART) is presented. The chapter also includes a 
definition of a traffic light system for inputs to determine for which  Baltic Sea  
main basins  Contracting Parties (or catchments) MAI or CART are 1) fulfilled, 
2) not possible to judge if they are fulfilled due to statistical uncertainty  or 3) 
do not fulfill nutrient input ceiling (or MAI) (reduction requirement). 
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In chapter 7, we illustrate the proposed methods by a step-by-step analysis of 
real input data from the PLC water database to exemplify the practical use of 
some of the proposed methodologies. 

In a concluding chapter, chapter 8, we discuss the different methods pre-
sented for normalizing, trend testing and estimating variance components, 
filling gaps, and testing the fulfilment of reduction targets. We provide rec-
ommendations on which methods to use for the different statistical tasks in-
volved in preparing pollution load compilations. 

The report includes Annex 1 with an in-depth mathematical treatment of the 
Mann-Kendall trend test and Annex 2 with selected percentiles of the t-distri-
bution for different combinations of degrees of freedom.  

Mathematical symbols are defined and described in the relevant sections of 
the report. 

The authors want to express their gratitude for the funding provided by Hel-
sinki Commission and Aarhus University. Further, we want to thanks partic-
ipants of the PLC-7 implementation group, HELCOM PRESSURE and HEL-
COM RedCore DG for comments and inputs, and HELCOM Secretariat for 
help and support.   
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2. Data gaps and outliers 

The reliability of all statistical methods and statistical analysis, for example 
normalization of time series of nutrient inputs and trend analysis of the re-
sulting time series, is greatly enhanced when conducting an initial analysis of 
the data quality. In general, data quality should be ensured by checking the 
data for gaps, i.e. missing values, and for suspect values, i.e. outliers. When 
investigating suspicious values, the data should be checked for analytical er-
rors or errors in data storing process, for consistency with previously reported 
data and with data from other comparable sources, and for errors when trans-
ferring data between databases. 

A first task in the establishment of a data quality routine is precise identifica-
tion of gaps in the dataset (which variables are missing and what is the length 
of the missing period?), followed by determination of the type of gap (not 
measured, measured but not reported, etc.). Data gaps in time series on nutri-
ent input may occur for a number of different reasons: 

• Measurements are missing from a sub-catchment for certain periods of 
time. 

• Measurements of nutrient concentrations are missing. 
• Runoff has not been measured. 
• Nutrient input and runoff data are both missing for a certain period. 
• Measurements could not be made due to external conditions (e.g. ice 

cover) or flooding. 
• Data have not been reported for unknown reason. 
• Concentrations and/or runoff values were evaluated as suspicious and 

have therefore been omitted from the calculation of inputs by the data pro-
vider and alternative inputs have not been estimated. 

Several different methods are available for filling in data gaps. Depending on 
type, any of the following methods can be applied to fill in the gap: 

• The mean value of a statistical distribution. The distribution is determined 
either by including all relevant data on the given catchment or from a 
shorter time series, for instance when estimating missing data from point 
sources in the beginning or end of a time series. 

• The mean of adjacent values. If xa and xc are perceived as two time series 
values with xb missing, then: 𝑥௕ = ௫ೌା௫೎ଶ           (2.1) 

• Linear interpolation. If xa and xb are perceived as two adjacent values to n 
missing values, then the kth missing value (from xa) can be estimated as: 𝑥௞ = 𝑥௔ + 𝑘 ∙ ௫್ି௫ೌ௡ାଵ          (2.2) 

• If runoff is known and a good relationship can be established between nu-
trient input and runoff, this can be used to estimate missing values. 

• A q-q relationship can be used to estimate missing runoff values; a good q-
q relationship can often be established for a nearby river.(q is the discharge) 
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• A load-load relationship for another river for which high correlation can 
be verified. 

• Model estimations of unmonitored catchment inputs, if possible – other-
wise, inputs can be estimated from reference data. 

• Assignment of a real value in the interval between zero and the limit of 
detection (LOD)/limit of quantification (LOQ) to observations below a 
limit of detection/limit of quantification. The PLC guidelines (see chapter 
1) describe how to handle concentrations under LOD/LOQ when calculat-
ing loads. 

Most methods for trend analysis, like the Mann-Kendall’s trend method and 
linear regression (see chapter 5), can handle missing values, preferably in the 
middle and not at the end of the time series (e.g. either the first two or the last 
two years). The trend test will be only negligibly affected if missing values are 
few. The statistical power of the trend tests decreases if the time series in-
cludes gaps, as it is more difficult to prove a real trend significant at reduced 
statistical power. If many missing values have been estimated and the in-
serted values are identical for many years, a trend test should not be per-
formed, as variation will be much smaller than when the data are based on 
real observations. 

Above, various methods for filling in gaps have been described. Usually, the 
circumstance will decide which method to choose, but the following rank is 
suggested: 

1. A model approach – i.e. a regression type model – to estimate nutrient load 
or flow. 

2. Linear interpolation. 
3. Values from a look-up table or values provided by experts. 
4. No filling in of gaps. The time series is used as it is and assessments are 

made afterwards. 

Outliers are data values that are extreme compared to other reported values 
for the same locality (country, basin, catchment, etc.) and can only be deter-
mined and flagged by conducting a formal outlier test using for instance: 

• Dixon’s 4 sigma (σ) test: Outliers are the values outside the interval con-
sisting of the mean ±4 times the standard deviation. 

• A box and whisker diagram. 
• Experience-based definition of maximum and minimum values that is not 

likely to be exceeded or fallen below. 
• Water quality standards (interval values or limits), if available. 

It is important to note that outliers are not necessarily faulty data, but data 
requiring extra careful evaluation prior to use in statistical analyses. 

Suspect or dubious values are values that do not fulfill the requirement of 
being determined as a formal outlier but differ significantly from the remain-
ing values in the time series, or values that are unreliable; for instance, a load 
value for the reported runoff or data from a neighboring catchment. Suspect 
or dubious values may occur if measurements in a sub-catchment have been 
made for only a limited period, if changes in laboratory standards have oc-
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curred, or if changes have been made in other measurement methods, result-
ing in an abrupt change in data values. In addition, calculation mistakes may 
occur due to use of wrong units, faulty water samples, laboratory mistakes, 
etc. Suspect or dubious values should be corrected and treated as a formal 
outlier unless they can be proven correct. 

If a dubious value is determined, deemed to be wrong and omitted from as-
sessments, and if it is not possible for the Contracting Party to correct the 
value, it should be removed from the PLC database by the Contracting Party. 
If a reported data value is determined to be an outlier and deemed to be omit-
ted from assessments, the outlier can be replaced in the assessment using a 
method from the list on data gaps. Usually, filling in data gaps or replacing 
suspect data cannot substitute measured data; thus, if possible, preferably 
measured or consistent model data should be found and used. It should be 
stressed that filled-in data gaps must be clearly marked in the PLC database. 
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3. Uncertainty of inputs (yearly input from a 
specific country or area) 

Time series of nutrient inputs demonstrate a certain amount of year-to-year 
variation due to the contributions from a large number of different compo-
nents. One such component is a possible trend in inputs over time, and time 
series are therefore, by standard, detrended before analysis of variance com-
ponents since trend-induced variations are not of basic interest in estimating 
the variance components. 

In the case of a time series with a constant mean value, i.e. no trend present, 
the time series will either be detrended or tested to avoid a significant upward 
or downward trend. Variation appears within the yearly values – and it is 
thus assumed that the yearly inputs are sampled from the same population of 
inputs with a given mean value and a given variation. This variation is, in fact, 
an estimate of the total uncertainty of a given yearly input, i.e. the standard 
error of the mean.  

Total uncertainty is a complex sum (based on certain assumptions) of a num-
ber of different uncertainty components: 

• Uncertainty due to field sampling (uncertainty from field sampling/meas-
urements of concentrations of nutrients, metals and other substances, un-
certainty from measurements of water velocity and stage, etc.). 

• Laboratory uncertainty (variations in components lend uncertainty to la-
boratory analysis processes). 

• Uncertainty deriving from the sampling set-up (how often, where and 
when, sampling location, time) and the methods for calculating runoff (ei-
ther stage-discharge relationship or other methods) and load (based on 
combined concentrations and runoff). 

• Variation introduced by year-to-year differences in climate (amount, type, 
and distribution of rainfall and changes in accumulated pools (snow/ice, 
soil and groundwater)). 

• Uncertainty from estimation of unmeasured inputs (bias from omitting un-
measured inputs and uncertainty of the methods applied for estimating 
unmonitored inputs). 

• Uncertainty of inputs from direct point sources, including sampling, ana-
lytical errors, etc. 

• Most probably, several other components contributing to uncertainty. 

Awareness exists in most countries of analysis (laboratory) uncertainty, at 
least regarding nutrients. This is relatively well documented but may be one 
of the components contributing the least to total uncertainty. Most other com-
ponents are complex, and some of them are very difficult to estimate in prac-
tice due to unavailability of empirical data. Uncertainty can be diminished by 
optimizing, for instance, time and location of sampling and implementation 
of a monitoring program taking into account variations in concentrations and 
runoff. An optimized monitoring program may introduce more strategic 
monitoring and more precise and modern techniques as well as an optimized 
methodology for estimating inputs from unmonitored areas, strategic meas-
uring being most important factor to decrease uncertainty. 
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Knowing the size of the different uncertainty components is not necessary 
when - as will be discussed later – testing for trends and for compliance with 
set targets. Variance component analysis is used in statistics when the re-
searcher seeks to optimize the sampling design in a hierarchical sampling re-
gime and/or to test for effects (treatment, emission reducing measures or 
other factors) using the correct sums of squares. 

In the PLC assessments, it would be useful to compare the total uncertainty 
of detrended nutrient input time series among countries, among sub-basins, 
etc., to determine if time series have the same level of uncertainty or if some 
countries, sub-basins, etc., have significantly lower or higher uncertainties. In-
vestigation of the size of the different variance components would be highly 
useful for determining the reasons for the differences. The main result of such 
an exercise would be an overall improved data quality with more complete 
and consistent data sets from all Contracting Parties. 

All Contracting Parties are requested to submit estimates of uncertainties for 
yearly inputs of TN and TP as well as for yearly runoff values, but it is not 
requested to report on the individual uncertainty components listed above. 

For this purpose, we need a standardized methodology for estimating the un-
certainties in the national datasets. One such methodology for estimating the 
uncertainty of data from monitored rivers has been described in a paper by 
Harmel et al. (2009). The method is called DUET-H/WQ (software is available 
at the HELCOM web pages), which is based on the so called RMSE (root mean 
square error) propagation method. It is a fair approximation to the true value, 
which is often very complicated to derive. 

In DUET-H/WQ, the uncertainty of individual measured inputs is estimated 
by the formula: 𝐸𝑃 = ට𝐸ொଶ + 𝐸஼ଶ + 𝐸௉ௌଶ + 𝐸஺ଶ + 𝐸஽௉ெଶ ,   (3.1) 

where according to Harmel et al. (2009): 𝐸ொ=Uncertainty of the discharge measurement (±%) 𝐸஼=Uncertainty of sample collection (±%) 𝐸௉ௌ=Uncertainty of sample preservation/storage (±%) 𝐸஺=Uncertainty of laboratory analysis (±%) 𝐸஽௉ெ=Uncertainty of data processing and data management (±%), i.e. input 
calculation or model uncertainty (see Silgram and Schoumans (ed., 2004)). 

Then, the total uncertainty for aggregated data can be estimated by the formula: 𝐸𝑃௧௢௧௔௟ = ଵ଴଴∑ ௫೔೙೔సభ ට∑ ቀ𝑥௜ ∙ ா௉೔ଵ଴଴ቁଶ௡௜ୀଵ         (3.2) 

where EPtotal is given as ±%.  

EPtotal i= Uncertainty for the sum 𝑥 = ∑ 𝑥௜௡௜ୀଵ  

xi = Monthly input from a catchment or a country. 
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The Contracting Parties will need to gather information on the different un-
certainties, either from empirical data or from national or international papers 
and reports based on the same kind of data, i.e. riverine measurements based 
on more or less similar methods. 

Furthermore, uncertainties regarding input estimates from unmonitored ar-
eas need to be described in order to estimate the total uncertainty for the 
whole catchment area. Uncertainty on direct inputs can be estimated using 
the same formula as above. 

The uncertainties for many of the components listed above are not quantified 
or estimated, but the uncertainty on individual water flow quantifications are 
well known and should in most cases be lower than ± 5% (Herschy 2009 and 
WMO 2008). The precision on daily water flow depends on the number of 
discharge observations, and is estimated for open gauging stations in streams 
channels in Denmark to be from 8% (given as standard deviation) with 10 
annual discharge observations (measurements of discharge), about 6% with 
12 measurements to less than 1% with more than 40 annual measurements 
(Kronvang et al. 2014). For modelled water flow the uncertainty might be 
higher. For chemical analysis the requirement in Denmark is that the total (ex-
panded) uncertainty for total nitrogen and total phosphorus is less than 15% 
(or 0.1 mg N l-1 and 0.01 mg P l-1 at low concentration values in freshwater, 
respectively 5 mg N l-1 and 1 mg P l-1 at low concentration values in  

As mentioned in the beginning of this chapter, total uncertainty may also be 
estimated from the variance of a time series of inputs without trends or a 
detrended time series. It is the standard error of the mean input throughout 
the period. The two estimates of total uncertainty can then be compared. Both 
of the methods described here do not detect a systematical measurement bias, 
e.g. in runoff or in phosphorus inputs. Rather, they estimated the variation 
around an average value. 

In a situation where the given time series of inputs show a significant positive 
serial correlation, the standard error is underestimated and total uncertainty 
is accordingly underestimated. In this report, we assume that the serial corre-
lation in a yearly time series of nutrient inputs is small; the basic calculation 
of the standard error is therefore used as a close approximation to the true 
value of the standard error. 

The method by Harmel et al. (2009) is illustrated by two examples: 1) total 
uncertainty for a river with high measurement precision and 2) total uncer-
tainty for a river with low measurement precision – see table 3.1. 

 

Table 3.1. Illustration of the method by Harmel et al. (2009) with 2 examples of variance 

components in formula (3.1). Example 1 with low total uncertainty (river with high meas-

urement precision) and example 2 with high uncertainty (river with low measurement pre-

cision) 

Variance components Example 1 Example 2 𝐸ொ 5% 50% 𝐸஼ 5% 100% 𝐸௉ௌ 5% 30% 𝐸஺ 5% 25% 𝐸஽௉ெ 5% 50% 
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In Example 1 (table 3.1) EP is 11% and in Example 2 EP is 129% when using 
formula 3.1. Total uncertainty of assuming a constant monthly input of 2500 
tons (xi) is 3% for Example 1 and 36% for Example 2. Total uncertainties were 
calculated using formula 3.2. 

A third example of calculating the uncertainty is from using Danish data for 
total nitrogen (TN) inputs to the marine areas around Denmark. The total in-
put to the Danish marine environment is a sum of two components. One com-
ponent is from the monitored catchment area and the other is from the un-
monitored area. The inputs from the unmeasured area is estimated by using 
a model.  

 Example: Uncertainty on total nitrogen inputs for Danish monitored areas:  
The calculation of the uncertainty is done by using the statistical principle 
“Propagation of errors”. This principle can be explained as: 

Let X be the sum of n stochastically independent measured inputs Xi 𝑋 = ∑ 𝑋௜.௡௜ୀଵ                                (3.3) 

The variance of X can be calculated as: 𝜎௑ଶ = 𝑉𝑎𝑟ሺ𝑋ሻ = ∑ 𝜎௑೔ଶ .௡௜ୀଵ    (3.4) 

The standard deviation is then calculated as: 

𝜎௑ = ට∑ 𝜎௑೔ଶ௡௜ୀଵ .     (3.5) 

And the relative standard deviation (denoted the precision) is calculated as 

100 ∙ ఙ೉௑ = ଵ଴଴∑ ௑೔೙೔సభ ට∑ 𝜎௑೔ଶ௡௜ୀଵ .   (3.6) 

The calculation of the total inputs from the monitored areas constitute of 
measurements from 169 stations in streams. These stations cover approxi-
mately 55% of the total Danish catchment area. Bias and precision can then be 
calculated as 𝑏𝑖𝑎𝑠 ሺ%ሻ = ଵ଴଴∑ ௑೔భలవ೔సభ ∑ 𝑏𝑖𝑎𝑠௜ ∙ 𝑋௜,ଵ଺ଽ௜ୀଵ     (3.7) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ሺ%ሻ = ଵ଴଴∑ ௑೔భలవ೔సభ ට∑ ሺ𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ ∙ 𝑋௜ሻଶଵ଺ଽ௜ୀଵ . (3.8) 

Here 𝑏𝑖𝑎𝑠௜  and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ are the individual biases and precisions (given in 
decimal notation) for each river indexed by i. The total uncertainty can then 
be calculated as 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ሺ%ሻ = ଵ଴଴∑ ௑೔భలవ೔సభ ට∑ ሺ𝑏𝑖𝑎𝑠௜ ∙ 𝑋௜ሻଶ + ሺ𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜ ∙ 𝑋௜ሻଶଵ଺ଽ௜ୀଵ . (3.8) 

A Monte Carlo study (Kronvang & Bruhn, 1996) based on daily samples has 
shown that for Danish streams categorized by their catchment area, the fol-
lowing values for bias and precision are valid for TN load: 
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0-50 km2:  Bias: -1% to -3%;  Precision: 1-3% 
50-200 km2:  Bias: -0.7% to -3%;  Precision: 1-3% 
>200 km2:  Bias: -1% to -4%;  Precision: 2-5% 

These number are valid for the yearly load from one stream station and in-
clude the uncertainty of laboratory analysis, yearly variation of concentrations 
and stream discharge and uncertainty from the method for calculating yearly 
load (by linear interpolation). The uncertainty from the measurement of the 
concentration in the stream (placement of bottle horizontal and vertical in the 
stream) is not included and therefore 2% is added to the precision in the 3 
categories. 

Using the formulae, it can be calculated that the total bias is -1% to –3%, the 
total precision is 0.7% to 1.2% and the total uncertainty is 0.7% to 1.3%. For an 
average stream station the bias is -1% to -3%, the precision is 3% to 5% and 
the uncertainty is 3.2% to 5.8%. 

 Example: Uncertainty on total nitrogen inputs for Danish unmonitored areas 
The TN input from the unmonitored areas is based on model estimates for 
1286 very small catchments covering the rest of the Danish area (45%). The 
year load from each small catchment is calculated using the formula 𝐿 = 𝑁𝑑𝑖𝑓𝑓𝑢𝑠𝑒௠௢ௗ௘௟ + 𝑅௟௔௞௘ + 𝑅௦௧௥௘௔௠ + 𝑁௪௔௦௧௘ − 𝑅௧௢௧௔௟, (3.10) 𝑁𝑑𝑖𝑓𝑓𝑢𝑠𝑒௠௢ௗ௘௟ = the estimated nitrogen inputs from the model 𝑅௟௔௞௘= Estimated nitrogen retention in lakes  𝑅௦௧௥௘௔௠ = Estimates nitrogen retention in streams 𝑁௪௔௦௧௘ = Nitrogen inputs from waste water 𝑅௧௢௧௔௟ = Total nitrogen retention.  

In table 3.2 are shown bias and precision for the components in formula (3.10) 
based on both numerical calculations, the study by Kronvang & Bruhn (1996) 
and estimates. 

 

 

Table 3.2. Bias and precision for nitrogen inputs in formula (3.10) based on both numeri-

cal calculations, estimates and Kronvang and Bruhn (1996). 

Components Bias (%) Precision (%) 

Model -15 to 25 12 to 15 

Retention lake -5 to 5 40 

Retention stream -5 to 10 40 

Retention total -5 40 

Point source: industry -1 to -3 1 to 10 

Point source: waste water -1 to -3 1 to 10 

Point source: fishfarms -1 to -3 1 to 20 

Point source: rain water -5 40 
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Using the formulae (3.3) to (3.9) and the bias and precision indicated in table 
3.2 the total bias for the unmonitored area is calculated to 20% to 28%, the total 
precision is 0.8% to 2.0% and the total uncertainty is 1.2% to 2.2%. For an av-
erage small unmonitored catchment the bias is 27%, precision 15% to 20% and 
the uncertainty 31% to 34%. 

For the total Danish catchment area, combing the calculated bias, precision and 
uncertainty for both the monitored and unmonitored areas and using special 
versions of formulae (3.7) to (3.9), we get a total bias of 7.4% to 12.8%, a total 
precision of 0.5% to 1.1% and a total uncertainty of 7.4% to 12.8% on TN inputs. 

 Example: Uncertainty on total phosphorus inputs from Denmark 
With respect to total phosphorus (TP), calculations show that for the meas-
ured area the bias is -6 to -3%, the precision is 1 – 2% and the uncertainty is 
then 1 – 2.5%.  For the unmeasured area the bias is between -5 and 30%, the 
precision is 1 – 3% and the uncertainty is 1 – 4%. 
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4. Hydrological normalization of nutrient  
inputs 

The annual riverine inputs of nutrients show large variations between the re-
ported years. Variation in runoff is a major reason behind this and is mainly 
caused by climate effects on hydrological factors such as precipitation, includ-
ing accumulation and melting of snow/ice, and evapotranspiration, but also 
by temperature, etc. To remove the main part of the variation introduced by 
hydrological factors, the annual nutrient inputs are flow-normalized. Care 
should be taken when normalizing data if point sources have a large impact 
on calculated inputs, especially during periods with low water flow. Normal-
ization should therefore not be applied on inputs from point sources discharg-
ing directly to the sea. 

Normalization of riverine loads is a statistical method whose result is a new 
time series of nutrient inputs where the major part of the hydrology-intro-
duced variation has been removed. The normalized time series has a reduced 
between-year variation and the trend analysis is thus much more precise. Sig-
nificant trends in the normalized series can probably be attributed to an effect 
of human activities. 

Different methods for normalizing inputs are described in Silgram and Schou-
mans (ed., 2004), chapter 4. In this report, we focus on methods based on em-
pirical data. The empirical hydrological normalization method is based on the 
regression of annual loads and annual runoff; thus, the method normalizes the 
loads to an average runoff (averaged over the time series period). In this way, 
the variation attributable to the annual amount of runoff is removed, whereas 
the effect of differences in the distribution of runoff over the year is not re-
moved. In Silgram and Schoumans (ed., 2004), the normalization is based on 
un-transformed loads and runoffs. In our experience, the regression explains 
slightly more of the variation if both annual input and annual runoff values are 
transformed by the natural logarithmic function before normalizing. 

The hydrological normalization should be regarded as a prerequisite for ana-
lysing trends. The trend analysis is a two-step process including: 1) the nor-
malization and 2) the actual trend analysis. 

According to Silgram and Schoumans (ed., 2004), the empirical hydrological 
normalization method should be based on the linear relationship between an-
nual runoff (Q) and the annual load (L) of a nutrient: 𝐿௜ = 𝛼 + 𝛽 ∙ 𝑄௜ + 𝜀௜,         (4.1) 

α and β = Parameters associated with linear regression 

 εi = Residual error in the linear regression.  

Then, the normalized load is calculated as: 𝐿௜ே = 𝐿௜ − ሺ𝑄௜ − 𝑄തሻ ∙ 𝛽መ ,       (4.2) 𝑄ത = Average runoff for the whole time series period 
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Qi = Runoff in year i 

^ = Indicates that it is an estimated parameter.  

To avoid possible negative loads, the below formula should be used: 

𝐿௜ே = 𝐿௜ ∙ ఈෝାఉ෡∙ொതఈෝାఉ෡∙ொ೔.       (4.3) 

Normally, the relationship is modelled after log-log transformation, reducing 
the influence of large loads and runoff values giving a slightly more precise 
fit with residuals that are more likely to be Gaussian distributed, which is a 
statistical prerequisite for the regression method. Thus, normalization should 
be based on a log-log regression between load and runoff: 

log 𝐿௜ = 𝛼 + 𝛽 ∙ log 𝑄௜ + 𝜀௜.        (4.4) 

To avoid large negative values when log transforming very small load or run-
off values, it is suggested to multiply load and runoff with 1000 before log 
transforming. 

Formula 4.4 gives the following formula for normalized loads: 𝐿௜ே = exp൫log 𝐿௜ − ൫log 𝑄௜ −  log𝑄തതതതതത൯ ∙ 𝛽መ൯ ∙ expሺ0.5 ∙ MSEሻ., (4.5) 

In the above formula (4.4) and (4.5), “log” is the natural logarithmic function, 
“exp” is the exponential function, and MSE stands for Mean Squared Error 
and is derived by the regression analysis (Snedecor and Cochran, 1989). MSE 
is calculated in all standard statistical software programs and is in general 
defined as: 

MSE= ଵ௡ିଶ ∑ ሺ𝑥௜ − 𝑥పෝ ሻଶ௡௜ୀଵ ,   (4.6) 

n = Number of observations in the time series  𝑥௜= Observed value 𝑥పෝ   = Modeled value from linear regression.  

In this report 𝑥௜ would be log 𝐿௜ and 𝑥పෝ  would be log 𝐿ప෣ , and log the natural 
logarithm function. 

The factor “exp(0.5⋅MSE)” in the formulae is a bias correction factor and is 
derived as described by Ferguson (1986). The factor is needed in order to back-
transform to a mean value and not to a geometric mean, whose calculation 
does not require this factor. If expሺ0.5 ∙ MSEሻ > 1.25, this indicate that the fit 
in formula (4.4) is not very good and it is probably better to use formula (4.1) 
and (4.2). The main reason for using the natural logarithmic function for trans-
formation is stabilization of the variance among residuals. Without the trans-
formation, residuals are often distributed with a heavy tail to the right.  

In the PLC-5 assessment, the following method was used: 

log
10

𝐿௜ே = log
10

𝐿௜ ∙ ఈෝାఉ෡∙log10ொതఈෝାఉ෡∙log10ொ೔,        (4.7) 
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after which the power function was used to back-transform formula (4.7). This 
method gives normalized loads, which are a bit too low. Use of the natural 
logarithmic function has a more solid foundation in statistics than the base 10 
logarithmic function.  

In principle, the presented methods can be applied even with a significant 
trend in the runoff time series, as long as the relationship between runoff and 
load is unchanged. Usually, the relationship changes with a significant change 
in the runoff over time. This implies that a trend analysis of the runoff time 
series is needed in order to determine whether an upward or downward trend 
in the flow is present. .It is our recommendation to divide the time series in two or 
more parts of equal length, and do the normalization for the each part separately. Each 
part of the time series should at least have a length of 8-10 years. Impact of this pro-
cedure need to be investigated further by data examples. 

In general, the differences between the methods, mentioned in formulas 4.1 to 
4.6, are small, but especially for time series with a large year-to-year variation, 
methods without a correction term will give biased values with an underesti-
mation of the normalized loads. This can have an unwanted effect when test-
ing fulfillment of targets. 

Hydrological normalization should be carried out catchment-wise, i.e. nutri-
ent loads should be normalized for each catchment separately. If the normal-
ization is performed country-wise or sub-basin-wise, the result will not be the 
same as the catchment-wise normalized nutrient loads summed to country or 
sub-basin level. 

To illustrate the method, we used data from the Vistula River, Poland, to nor-
malize both the load of TN and TP. Figure 4.1 shows scatter plots and the 
linear relation between loads and flow. Figure 4.2 shows the normalized time 
series together with the unnormalized loads. Note the large reduction in be-
tween-year variation in the normalized time series. 

Figure 4.3 demonstrates the importance of normalizing TN and TP inputs. The 
example compares actual (not normalized) annual inputs of water + airborne 
inputs of nitrogen and phosphorus to the Bothnian Sea with the correspond-
ing normalized TN and TP inputs. 

 

Figure 4.1. Scatter plots of annual inputs of TN (a) and TP (b) against runoff and the linear regressions (transformation 
based on natural logarithmic function). Data represent the inputs of TN and TP to the Baltic Sea from the Vistula River in 
Poland during 1994-2010. 
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Figure 4.2. Time series plot of 
annual actual (not normalized) 
time series (dark green) and of 
normalized time series (green) of 
annual TN (a) and TP (b) in 
tonnes of Vistula River, Poland 
1995-2016. 

Figure 4.3. Actual (green) and 
normalized (black) annual total 
(water and airborne) nitrogen (a) 
and phosphorus (b) inputs to 
Bothnian Bay 1995-2016. Air-
borne Inputs are climate normal-
ize as described in PLC guide-
lines annex 7 (HELCOM, in 
prep.). 
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5. Trend analysis, change points and estima-
tion of change 

Trend analysis on normalized nutrient input series to different parts of the Baltic 
Sea, including trend analysis of the water runoff is an important tool  in the PLC 
assessments , when evaluating if nutrient inputs are reduced and when evaluat-
ing progress towards fulfilling BSAP nutrient reduction targets (MAI and 
CART). Further, it supports evaluation of the effects of implemented measures. 
The time series used in the trend analysis should always be normalized, but the 
methods described below may, of course, be used to analyse trends in unnor-
malised nutrient inputs as well. Trend analysis can be performed using a range 
of different both parametric and non-parametric methods. Parametric methods 
comprise ordinary regression with year as the independent variable and linear 
and non-linear regression methods, such as polynomial, exponential or more 
complex regression methods. The most well-known non-parametric method is 
the Mann-Kendall trend test and the Theil-Sen estimator for the yearly change 
in nutrient input. Apart from describing trend analysis methods, this chapter 
also addresses methods for estimating the size of the trend when it is not linear. 

The Mann-Kendall method (Hirsch et al., 1982) is a well-established method 
for testing for a monotone trend in a time series. It is non-parametric and 
based on Kendall’s tau, which is a measure of the correlation between two 
different variables. The method is robust towards outliers and a few missing 
data. If the trend is linear, Mann-Kendall’s method has slightly less power 
than ordinary regression analysis. The Annex gives a detailed mathematical 
description of the method, and software can be downloaded free at 
http://en.ilmatieteenlaitos.fi/makesens. 

The Mann-Kendall trend method is used for a preliminary analysis of possible 
trends in the TN and TP load time series. Furthermore the Mann-Kendall 
method is used for analyzing possible trends in runoff time series. The re-
maining trend analysis, as estimating trend line (slope, intersect etc.), is based 
on linear regression and parametric testing. In the first version of this report 
concerning statistical methods more focus was placed on using the Mann-
Kendall method. 

Ordinary regression analysis is also a well-known statistical method (figure 
5.1), but demands a linear relationship with Gaussian distributed residuals, 
which are stochastic independent as well (Snedecor and Cochran, 1989). If the 
time series is serially correlated, both the Mann-Kendall test and ordinary re-
gression must be modified, since the tests will be impacted by this, and the 
probabilities of statistical test values can therefore not be trusted. On the other 
hand, it appears that the autocorrelation for annual time series of either loads 
or runoff is small and can be ignored; thus, the methods can be used without 
modifications as a good approximation. The minimum time series length for 
application of the Mann-Kendall test is 8 years.  

Both Mann-Kendall’s trend analysis and ordinary linear regression allow perfor-
mance of a one-sided trend test if focus is on testing for a downward or increasing 
development in a time series. This is of relevance in the PLC assessments and 
when evaluating progress towards HELCOM BSAP reduction targets. 
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A time series plot can show one or two clear trend reversals (also called 
change points in time), e.g. when the first part of the time series shows a linear 
increase and the second part shows a linear decrease in nutrient inputs. The 
trend analysis can then be carried out by using a model with two or three 
linear curves or by applying two or three Mann-Kendall trend tests if time 
series sections include a sufficient number of years (example in figure 5.2).  

Year of trend reversal (the change point) can either be determined by inspect-
ing the time series plot or by applying a statistical method (Carstensen and 
Larsen, 2006). If an exact year of change in the inputs is known (e.g. reduced 
inputs due to implementation of new municipal wastewater treatment plants 
or new treatment methods, etc.), this year should be applied as change point, 
and the time series should be divided accordingly. Statistical estimation of the 
time when a change occurs in a time series is complex and involves a calcula-
tion procedure with iterative estimations. The LOESS (locally weighted scat-
terplot smoothing) regression method can be used as a supplement for detect-
ing non-linear trends and for helping detecting change points/step trends as 
shown in figure 5.1b and 5.2b. 

It is suggested to use models with 1, 2 or 3 linear parts for different sections 
of the time series (it is still possible that no part of the time series includes 
significant linear trends). Determination of breakpoints will be statistically an-
alyzed by using an iterative statistical process, which will determine the most 
significant breakpoint (the significance of the breakpoint is evaluated by the 
change in -2logQ) – or automatically, where -2logQ is the result from testing 
a statistical hypothesis with likelihood-ratio test. And each part of time series 
before or after a change point should at least be five years or more It is pro-
posed to investigate two different breakpoint models, here described with 
two linear parts: 

Figure 5.1. a. Total annual nor-
malized air and waterborne TN 
inputs (tonnes) to the Baltic Sea. 
Trend line estimated with linear 
regression model. 
b. As a but the trend line is esti-
mated with LOESS (locally 
weighted scatterplot smoothing) 
regression method. 
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Model 1:  𝐿ே௜ = ൜𝛼 + 𝛽 ∙ 𝑖,                                  𝑓𝑜𝑟 𝑖 < 𝑌 𝛼 + 𝛽 ∙ 𝑖 + 𝑑 ∙ ሺ𝑖 − 𝑌ሻ, 𝑓𝑜𝑟 𝑖 ≥ 𝑌  

Model 2:  𝐿ே௜ = ൜𝛼ଵ + 𝛽ଵ ∙ 𝑖,      𝑓𝑜𝑟 𝑖 < 𝑌 𝛼ଶ + 𝛽ଶ ∙ 𝑖,     𝑓𝑜𝑟 𝑖 ≥ 𝑌   

LN = Normalized input 

α = Intercept 

β and d  = Slopes 

Y = A given year 

 i = Different years in the time series. 

Model 1 is continuous at the breakpoint (the two lines are connected) while 
model 2 has disconnected lines at the breakpoint (a step). 

After the first breakpoint is determined, another iterative process looking for 
a second breakpoint is performed. 

Change-points models are an aid for estimating the last year value, and to get 
an idea of the overall trend during the full time series period. 

Finally, significance of the slope in the last segment is tested, and if not signif-
icant different from zero then we use the model: 

Figure 5.2. a. Annual normalized 
TP inputs (tonnes) 1995-2015 to 
Gulf of Riga. One change point in 
the time series are detected, and 
the trend line is based on Mann-
Kendal trend test and linear re-
gression. 
b. As a but the trend line is esti-
mated with LOESS regression 
method. 
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𝐿ே௜ = ൜𝛼 + 𝛽 ∙ 𝑖,      𝑓𝑜𝑟 𝑖 < 𝑌 𝑐,                   𝑓𝑜𝑟 𝑖 ≥ 𝑌  

c = Estimated input (a constant) 

 Summarizing the procedure:  
Analyzing for one change-point: 

No: Is there an overall significant trend? 
  Yes: Fit a linear model 
  No: Estimate a constant throughout time series 

Yes: Analyzing for a second change-point 
  Yes: Testing the significance of the last segment 
   Yes: Fit model 
   No: A constant in the last segment 
  No: Testing the significance of the last segment 
   Yes: Fit model 
   No: A constant in the last segment. 

The second part of trend analysis is the task of estimating the size of the trend 
or the change per year. Again, several different methods exist, and the specific 
use of these depends on the shape of the trend. The Theil-Sen slope estimator 
(Hirsch et al., 1982) is a non-parametric estimator that is resistant towards out-
liers (suspect) values. The method assumes a linear trend and estimates the 
change per year, and the estimator fails if the trend is non-linear, and if the time 
series shows time reversal, it is necessary to split the time series into two parts. 

The size of a linear trend can also be estimated by regression. This is the clas-
sical approach, which is, however, not flexible with regard to all shapes of 
trend. The simplest method is using the start and end values in the time series 
of flow-normalized inputs, but if start and/or end values are too distant from 
the general trend, this method is not reliable. 

If we seek to identify the total change in nutrient inputs over the whole time 
series expressed as a percentage, we can use the two methods below. Esti-
mated linear slope: 

100 ∙ ሺ௡ିଵሻ∙ఉ෡ఈෝ ,         (5.1) 

n = Length (number of years) of the series 𝛼ො = Estimated intercept (input at start year minus one year) 𝛽መ   = Estimated slope.  

In the case of change-points use the formula for each segment and add up the 
percentages. Remember to add the step trend if such one is detected at the 
change point. If the slope is not significant in one or more of the segment use 
a slope estimate equal zero in the formula. 

For the evaluation of BSAP reduction targets and PLC assessments intercept 
and slope in formula (5.1) is based on linear regression estimates. Alterna-
tively slope can be determined with Theil Sen slope estimator and intercept 
using the estimator suggested by Conover (1980). When using start and end 
values we have the formula: 
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100 ∙ ሺend-startሻ start⁄ .         (5.2) 

In the case of change-points use the formula for each segment and add up the 
percentages. Remember to add the step trend if such one is detected at the 
change point. If the slope is not significant in one or more of the segment use 
the average value in the segment for starting and ending values.  

For some times series, the start value, the end value or both can deviate too 
much from the general trend; if so, an approach using the average value of, 
for instance, the first 3 years and the last 3 years would reduce the influence 
of single years. 

The trend analysis methods are illustrated below based on the time series of 
normalized TN inputs to Danish Straits. In figure 5.3, the normalized time 
series are shown together with a model fit of the trends. The model fit consists 
of one change point in year 2003 and the linear fits before and after the change 
point are significant. A trend analysis should always be initiated with a time 
series plot of the data series. The Mann-Kendall trend test is also significant 
with Z=-5.24 (P<0.0001). 

 
The estimated change over the whole period for the normalized TN inputs is 
-32% according to formula 5.1 and -36% according to formula (5.2). Using the 
model with one change point the estimated change over the whole period is -
33%.  

 

Figure 5.3. The fitting of a model 
with one change point to the nor-
malized TN inputs (tonnes) to the 
Danish Straits. 
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6. Testing fulfilment of BSAP reduction  
targets 

The progress in nutrient input reduction can be tested by two different meth-
ods: 1) trend analysis of time series of normalized nutrient inputs, as dis-
cussed in chapter 5; and 2) statistical analysis of whether the country-wise 
nutrient reduction targets under BSAP have been significantly met by a Con-
tracting Party. In this chapter, a statistical method for testing fulfillment of 
reduction targets is proposed, and a traffic light system is introduced to illus-
trate a country’s progress towards fulfilling the targets. A statistical method 
for testing if a normalized nutrient time series has moved relative to a defined 
nutrient target is needed. For this purpose, a parametric method based on the 
simple test of the mean value in a sample of Gaussian distributed data is sug-
gested – a method that is often referred to as the fail-safe principle. 

Let us assume that we have a time series of normalized inputs. The time series 
is initially assumed to be without a statistical significant trend and without a 
significantly large serial correlation, and we assume that the reduction target T 
(or any kind of target such as, for instance, nutrient input ceilings for a country) 
is defined without error, i.e. is a fixed value (certain amount of nitrogen/phos-
phorus given without any uncertainty). Let us finally assume that the data is 
sampled from a Gaussian distribution with mean value μ and variance σ2. 

As null hypothesis for the statistical test, we assume that the target has not 
been fulfilled, i.e.:  

TH ≥μ:0 , 

H = Hypothesis 

T = Target  

The alternative hypothesis TH A <μ:  follows from this, i.e. the target has 
been fulfilled. Now assume that the test probability α is defined to be 5% 
(0.05), and then calculate the statistic. 𝑥̅஺஽ = 𝑥̅ + 𝑡௡ିଵ,଴.଴ହ ∙ SE,     (6.1) 𝑥̅஺஽    = Adjusted mean 𝑥̅= Mean of all values in the time series 

SE = Standard error (SE = standard deviation divided by square root of n) 

n = number of observations in the time series 𝑡௡ିଵ,଴.଴ହ = 95% percentile in a t-distribution with n-1 degrees of freedom.  

A test probability of 5% means that we have a 5% probability of incorrectly 
rejecting the null hypothesis. 
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This statistic is called the adjusted mean, and if the statistic is less than the 
target T, the reduction target is fulfilled. 

In the case of a time series on nutrient inputs with a significant trend, another 
statistical method is needed for testing if a BSAP target is fulfilled. Let us as-
sume that the trend is linear, a linear regression model with year as independ-
ent variable can be fitted to the time series, estimates for α and β can be calcu-
lated, and the residuals are Gaussian distributed. The linear model is then 
used to predict a normalized nutrient input for the last year (yearn) in the time 
series. This estimate is calculated as: 𝐿௡ே෢ = 𝛼ො + 𝛽መ ∙ 𝑦𝑒𝑎𝑟௡ .      (6.2) 

 𝐿௡ே෢  = Estimated normalized input in year n 𝛼ො = Estimated intercept 𝛽መ  = Estimated slope 

Next, we need the standard error of the prediction (predicted input) that is 
defined as: 

SE=√𝑀𝑆𝐸·ඥ1 𝑛⁄ + 𝑦𝑒𝑎𝑟௡ଶ ∑ 𝑦𝑒𝑎𝑟௜ଶ௡௜ୀଵ⁄     (6.3) 

MSE = Mean Squared Error as defined in chapter 4 

n = Number of years in the time series 

yearn = Last year in the time series (i.e. 2014) 

yeari = A given year in the time series (i.e. 1997) 

As reference year for the time series of years is used year=0. Then the statistic 
is calculated as: 𝑥̅஺஽ = 𝐿௡ே෢ + 𝑡௡ିଶ,଴.଴ହ ∙ SE,     (6.4) 

 𝑡௡ିଶ,଴.଴ହ = 95% percentile in a t-distribution with n-2 degrees of freedom.  

A list with the 95% percentiles for different values of n-2 is given in annex 2.  

The mathematical definition of the standard error of the prediction SE given 
in (6.3) is a well-known statistic from ordinary linear regression (Snedecor and 
Cochran, 1989). If the trend is not linear, other models have to be used for the 
time series, and the formula for the standard error needs to be revised. The 
form of the trend in the data will dictate the methods to be applied. These 
methods are based on the assumption of the existence of one or two change 
points in the time series (see chapter 5).  

 “Trend method” 
A few examples are given here, the examples are based on models with one 
change-point Y, and we assume that the last year in the time series is denoted 
by yearn. In general, we denote the method the “trend method”. The first ex-
ample is a model with one change point and a linear model before and a linear 
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model after and no change in level before and after the change point. The sec-
ond example is equal to the first example but with a change in level at the 
change point.  The last example (example 3) is with a constant level after the 
change point. 

Example 1: 

𝐿ே௜ = ൜𝛼 + 𝛽 ∙ 𝑖,                                  𝑓𝑜𝑟 𝑖 < 𝑌 𝛼 + 𝛽 ∙ 𝑖 + 𝑑 ∙ ሺ𝑖 − 𝑌ሻ, 𝑓𝑜𝑟 𝑖 ≥ 𝑌  

𝐿௡ே෢ = 𝛼ො + 𝛽መ ∙ 𝑦𝑒𝑎𝑟௡ + 𝑑መ ∙ ሺ𝑦𝑒𝑎𝑟௡ − 𝑌ሻ 

Example 2: 

𝐿ே௜ = ൜𝛼ଵ + 𝛽ଵ ∙ 𝑖,      𝑓𝑜𝑟 𝑖 < 𝑌 𝛼ଶ + 𝛽ଶ ∙ 𝑖,     𝑓𝑜𝑟 𝑖 ≥ 𝑌  

𝐿௡ே෢ = 𝛼ଶෞ + 𝛽ଶ෢ ∙ 𝑦𝑒𝑎𝑟௡. 
Example 3: 

𝐿ே௜ = ൜𝛼 + 𝛽 ∙ 𝑖, 𝑓𝑜𝑟 𝑖 < 𝑌𝑐,             𝑓𝑜𝑟 𝑖 ≥ 𝑌  

𝐿௡ே෢ = 𝑐̂ 

The SE for the estimated input for the last year (yearn) has the general form of 

𝑆𝐸 = √𝑀𝑆𝐸 ∙ ඨ1 𝑚ൗ + 𝑦𝑒𝑎𝑟௡ଶ ∑ 𝑖ଶ௬௘௔௥೙௜ୀ௒൘  

m = Number of years after Y (≥Y).  

MSE is calculated for the full model i.e. including all years in the time series. 

Correction for calculating control value for yearn  𝑥̅஺஽ = 𝐿௡ே ෢ + 𝑘 ∙ SE.   (6.5) 

k = 95% percentile in a t-distribution with n-p degrees of freedom.  

p Number of parameters in the final model. 

 Traffic light system 
Finally, a traffic light system can be defined to obtain a status of whether a 
country or a sub-basin has met the set BSAP target, whether it is close to ful-
filling the target, or whether the target has not been fulfilled. This is described 
in HELCOM LOAD 4/2012 doc 5/2.2. Statistically, we define the system: 

Red: 
If 𝑥 ഥor 𝐿௡ே෢ > 𝑇, i.e. estimated normalized input for the last year or the average 
normalized nutrient input over the considered period (when there is no trend) 
is above the target value T. 
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Yellow: 
If 𝑥 ഥor 𝐿௡ே෢ < 𝑇,  and if 𝑥̅஺஽ > 𝑇, i.e. the null hypothesis of target test is ac-
cepted, but the estimated normalized input for the last year or the average 
normalized input over the considered period (when there is no trend) is lower 
than the target value. 

Green: 
If 𝑥̅஺஽ < 𝑇, i.e. the null hypothesis of the target test is rejected, i.e. the alterna-
tive hypothesis is accepted meaning the target has been fulfilled, and the esti-
mated normalized input for the last year or the average normalized input over 
the considered period (when there is no trend) is lower than the target value. 

 Testing whether estimated last year inputs is lower than input in the refe- 
rence period 
For testing whether the estimated last year value  is significantly different 
from the mean value in the reference period we apply the following procedure. 

The reference period is defined to be the period 1997-2003. First calculate the 
mean value in the reference period 𝐿ே ሺ௥௘௙ሻതതതതതതതതത = ଵ଻ ∑ 𝐿ே௜ଶ଴଴ଷ௜ୀଵଽଽ଻                                              (6.6) 

and calculate the 95% confidence interval for 𝐿ே ሺ௥௘௙ሻതതതതതതതതത by 𝐿ே ሺ௥௘௙ሻതതതതതതതതത ± 𝑘 ∙ SE௥௘௙.    (6.7) 

The k factor is the 97.5% percentile in a t-distribution with 6 degrees of free-
dom (k=2,447) (7 years in the reference period minus 1). The SEref is the stand-
ard error of the mean value. 

For the estimate of the last year 𝐿௡ே෢ 1 we can calculate the 95% confidence in-
terval as well by calculating   𝐿௡ே෢ ± 𝑘 ∙ 𝑆𝐸                               (6.8) 

where the k factor is the 97.5% percentile in a t-distribution with n-p degrees 
of freedom. The number p is the number of parameters in the final model. 

Testing the hypothesis of no difference between the reference period and the 
last year value can simply be done by determining if ൫𝐿ே ሺ௥௘௙ሻതതതതതതതതത − 𝐿௡ே෢ ൯ −  𝑘 ∙ ටSE௥௘௙ଶ + 𝑆𝐸ଶ > 0  (6.9) 

where k is the 97.5% percentile in a t-distribution with n-p+6 degrees of freedom. 

To illustrate the principles, we tested if the normalized TN inputs to the Danish 
Straits met the provisional MAI input ceiling of 65,998 tonnes TN per year. Us-
ing the model with one change point in 2003 (se figure 5.3) the estimating input 
in year 2016 is 55,442 tonnes with a SE of 1,082 tonnes. According to formula 
(6.5) the control value becomes 57313 tons, which is less than 65,998 tonnes, so 
in the example the traffic light evaluation results in a green light. This example 
is illustrated in figure 6.1. 
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The average TN inputs in the reference period to Danish Straits were 71,728 
tonnes and the confidence interval according to formula (6.6) is [65,789; 
77,667] tonnes. The confidence interval for the 2016 estimate is [53,177; 57,707] 
tonnes according to formula (6.7). Using formula (6.9) we calculate that the 
left side of the inequality sign is 11,288 tonnes, which is larger than zero, so 
we conclude that TN input in 2016 to Danish Straits is statistical significantly 
reduced (with 23%) since the reference period 1997-2003. 

Table 6.1 includes another example of applying of the statistical analysis de-
scribed to evaluate fulfilment of Finish phosphorus input ceilings based on 
data from 1995-2014. TP  inputs to Gulf of Finland (322 tonnes P) are higher 
than the inputs ceiling to GUF (322 tonnes P), and the traffic light is then red 
and taking into account uncertainty the remaining reduction to fulfill reduc-
tions targets was 351 tons. The traffic light for Bothnian Sea is yellow, because 
the estimated TP inputs in 2014 when including uncertainty on the input esti-
mate are higher than the input ceilings to BOS. For Bothnian Bay meet the 
input ceiling (green) with 137 tonnes P (extra reduction) taking into account 
uncertainty. 

  

Figure 6.1. Principles on time se-
ries with trend created annual TN 
input to the Danish Straits. Full 
green line is the target (MAI), “----
-“ line is the estimated value (TN 
input) in 2016, and “….” line is 
the test value (TN input taking 
into account uncertainty) accord-
ing to formula 6.5. 

Table 6.1. Illustration of the traffic light system. Evaluation of progress towards reductions targets (nutrient inputs ceiling) of TP 

for Finland to Bothnian Bay (BOB), Bothnian Sea (BOS) and Gulf of Finland (GUF) based on normalized annual TP inputs from 

Finland during 1995-2014. Green: input ceiling are meet. Red: input ceilings are not fulfilled. Yellow: It cannot be judge with sta-

tistical certainty if input ceilings are fulfilled taking into account uncertainty. 

Finland TP       BOB BOS GUF 

A : Input ceiling    1668 1255 322 

B: Estimated input 2014   1483 1248 647 

C: Inputs 2014 including uncertainty (test value) 1531 1311 673 

Extra reduction  (A-C)         137   

Remaining reduction to fulfill MAI    56 351 
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7. Step by step analysis illustrated by  
HELCOM data examples 

This chapter will present a full statistical analysis of time series from normal-
ization in order to test whether a target has been fulfilled. We use data from 
the input of TN to the Baltic Proper. 

We assume that the data have been evaluated for data gaps and outliers and 
thus are without missing values and errors – in other words, the data have 
been accepted by all relevant Contracting Parties. 

Firstly hydrological normalization is performed individually for all rivers that 
discharge into the Baltic Proper. The normalization of the River Vistula (Po-
land) TN loads is given as an example. 

The relationship between log-transformed inputs of TN and runoff in River 
Vistula is shown in figure 7.1. 

 
The next figure shows the normalized inputs of TN summed up for all rivers 
discharging into the Baltic Proper, plotted together with the measured actual 
inputs. As can be seen, the variation between years is significantly reduced. 

As mentioned, the normalization is carried out for all rivers discharging into 
the Baltic Proper, and these normalized inputs summed for all the rivers to-
gether with inputs from direct point sources and atmospheric deposition are 
used for the trend analysis and the target testing. 

Figure 7.3 shows the model estimated for the time series. The model consist 
of one change point in year 2000 and the linear components before and after 
2000 are both statistical significant. 

Figure 7.1. Linear regression on 
annual TN inputs (tonnes) and 
runoff for River Vistula in Poland. 
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The result of the Mann-Kendall trend test is a highly significant downward 
trend (two-side test, Z=-4.06, P<0.0001) in both section of the time series as 
there is a break point in year 2000. The slope in the section from 1995 to 2000 
is estimated to be -16.630 tons per year and from 2000 to 2016 it is -2.946 t per 
year (linear regression, Theil-Sen slope). The total change in input over the 
period is estimated to be -21% (using formula (5.1) Theil-Sen slope), -25% us-
ing formula (5.2) (linear regression) consisting of -16.1% from 1995 to 2000 and 
-10.9% from 2000 to 2016. 

The nitrogen input ceiling (target) for the Baltic proper is set to 325,001 tons. 
The model estimated normalized load in 2016 is 386,869 tons and the test 
value using formula 6.5 is calculated to be 399,163 tons, both are well above 
the target, so the traffic light would be red for the basin (see figure 7.4). 

The 95% confidence interval for the estimated normalized TN input in 2016 s 
(386,869 tons) is [371,989; 401,750]. For the reference period 1997-2003 the 
mean normalized TN inputs is 437,010 tons with a 95% confidence interval of 
[417,213 ;456,807], since the left hand side of the inequality in formula (6.9) 
equals 27,953 which is larger than zero so the estimated TN inputs for 2016 is 
statistical significantly lower (11%) than the average TN input during the ref-
erence period.  

Figure 7.2. Normalized (green) 
and actual water and airborne TN 
inputs (tonnes) to the Baltic 
Proper. 

Figure 7.3. Linear trend fit to an-
nual normalized water + airborne 
TN inputs (tonnes) to the Baltic 
Proper during 1995-2016. 
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Figure 7.4. Testing the target 
value for water and airborne TN 
inputs (tonnes) to the Baltic 
Proper for the period 1995-2016. 
Full line is target (MAI), “……..“ 
line is estimated value (inputs) in 
2016, and “------” line is test value 
(inputs including statistical uncer-
tainty) according to formula 6.5. 



34 

8. Discussion and recommendations 

This report deals with the statistical aspects of analyses in relation to PLC data 
assessments, and evaluation of fulfilment of BSAP reduction targets (MAI and 
CART) etc. A number of different topics are covered, as instance hydrological 
normalization, trend and change point analysis, and significance tests for 
whether targets have been met or not. In the following, we have listed recom-
mendations for which statistical method is best suited for the preparation of 
the PLC guideline. 

• Good data quality and consistency are necessary to conduct reliable statis-
tical analyses of the available time series. Time series may include gaps 
and/or suspect/dubious values. In chapter 2 of this report, methods for 
filling in gaps and how to determine if a dubious value is an outlier are 
described. 

• Regarding total uncertainty in country data: It is a difficult task to calculate 
the exact uncertainty for the data provided by the contracting parties. One 
potential method may be to apply the simpler method DUET-H/WQ de-
scribed in Harmel et al. (2009), which gives an approximation to the total 
uncertainty in monitored catchments. Information on the uncertainty of 
nutrient inputs in unmonitored areas has to be given by the Contracting 
Party – either by model uncertainty or as an expert evaluation. 

• Normalization of nutrient inputs should be performed using the method 
based on transformed inputs and runoff. Transformation should be under-
taken using the natural logarithmic function (see formula 4.6 in this re-
port). Normalization is carried out for each catchment (river) separately, 
and normalized inputs can be summed up at country or at Baltic Sea sub-
basin level. Normalization is a necessary step before conducting trend 
analysis. The method ensures that variation in annual inputs is signifi-
cantly reduced, contributing to test for a significant trend in inputs by al-
lowing identification of minor trends as being statistically significant. If a 
decision is made to use monthly input time series in the future, similar 
normalization methods can be applied to the monthly data (see Silgram 
and Schoumans (ed., 2004)). 

• Concerning trend analysis, the Mann-Kendall non-parametric trend 
method is recommended for testing a significant monotone trend in the 
normalized time series. The method is robust although autocorrelation can 
deflate the power of the test as it will for all statistical test methods. We 
assume that the autocorrelation in the yearly time series of nutrient inputs 
is of minor importance and therefore see the Mann-Kendall trend test as 
very good approximation. This non-parametric method can be used on 
both “raw” nutrient time series, normalized time series and runoff (cli-
mate) time series. If it is decided to use monthly input time series in the 
future, the Kendall trend test has been extended to a seasonal version 
(Hirsch and Slack, 1984). It is suggested to use the Mann-Kendall trend 
method for a first analysis of possible trends. Parametric methods like re-
gression is suggested for a more detailed analysis of trends and their mag-
nitude (as for the slope, intercept, last year inputs, changes in inputs etc.). 
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• If the time series show two or more distinct trends (trend reversal), two or 
more linear trends should be applied to model the time series. The change-
point can either be determined by visual inspection of the time series plot 
or by a statistical method (Carstensen and Larsen, 2006). It is suggested to 
limit the number of change points to two for time series of 20 years of 
length. And each part of time series before or after a change point should 
at least be five years or more. 

• Estimating the change in nutrient inputs can be done by the non-paramet-
ric Theil-Sen slope estimator. The method assumes a constant change, i.e. 
a linear trend. As change point analysis is applied, it is recommended to 
use linear regression for estimating slope and intercept in PLC assessment 
and for evaluation progress towards reductions targets. If the trend is not 
linear, a non-linear model or start-end difference should be used. 

• To follow up HELCOM BSAP nutrient reduction targets a statistical 
method is needed in order to evaluate whether the reductions require-
ments have been fulfilled, and to quantify remaining reduction/distance 
to the targets. For time series with a non-significant trend, the equation in 
formula 6.1 can be used to calculate the estimated latest year nutrient input 
(trend method) and evaluate this value against the target value taking into 
account uncertainty. For time series with a significant linear trend equa-
tion in 6.4 should be used. For times series without trend or without trend 
in the part after a break point including the latest year the average of input 
in part should be used as the estimated input. We have defined a traffic 
light system allowing evaluation of nutrient inputs from varying catch-
ments/Contracting Parties to the Baltic Sea according to defined targets. 
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Annex 1: Mathematical description of the 
Mann-Kendall trend test 

Trend analysis of a time series of length T and early loads of nutrients can be 
done by applying Mann-Kendall’s trend test (Hirsch et al., 1982). This test 
method is also known as Kendall’s τ  (Kendall, 1975). The aim of this test is 
to show if a downward or upward trend over the period of T years is statisti-
cally significant, or if the time series merely consists of a set of random obser-
vations of a certain size. The Mann-Kendall’s trend test has become a very 
effective and popular method for trend analysis of water quality data. 

The Mann-Kendall’s trend test is a non-parametric statistical method, which 
means that the method has fewer assumptions than a formal parametric test 
method. The data do not need to follow a Gaussian distribution as in ordinary 
linear regression but should be without serial correlation. Furthermore, the 
method tests for monotone trends and not necessarily linear trends, and it 
thus tests for a wider range of possible trend shapes. The direction of the mon-
otone trends may be either downward or upward without any specific form. 
The power of the Kendall trend method is slightly lower than ordinary linear 
regression if the time series data are Gaussian distributed and the trend is ac-
tually linear, as this will encompass the slightly less restrictive assumptions. 

Let nxxx ,,, 21  be yearly loads of total nitrogen (TN) or total phosphorus 
(TP) for the years n,,2,1  .  The null hypothesis of the trend analysis is: the n 
yearly data values are randomly ordered. The null hypothesis is tested against 
the alternative hypothesis that the time series has a monotone trend. The Ken-
dall statistic is calculated as (S = variance): 
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If either jx  or ix  is missing, then ( ) 0sgn =− ij xx  per definition. 

The trend is tested by calculating the test statistic: 
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The variance S under the hypothesis of no trend is calculated as: 
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where n is the number of loads in the time series. 

A positive S-value indicates an upward trend and a negative value indicates 
a downward trend. When both a downward and an upward trend are of in-
terest (a two-sided test), the null hypothesis of randomly ordered data is re-
jected when the numerical value of Z is less than the ( )2

α -percentile or greater 
than the ( )21 α− -percentile (two-sided test) in the Gaussian distribution with 
mean value 0 and variance 1. A one-sided test can be carried out as well. The 
significance level α  is typically 5%. The reason for evaluating Z in the stand-
ard Gaussian distribution is the fact that S under the null hypothesis is Gauss-
ian distributed with mean value 0 and variance ( )Svar  for ∞→n . The 
Gaussian approximation is very good if n ≥10, and fair for 5≤n≤10. 

It is possible to calculate an estimate of the trend β (a slope estimate) if one 
assumes that the trend is constant (linear) during the period and the estimate 
is change per year. Hirsch et al. (1982) introduced the Theil-Sen slope estima-
tor, which can be calculated in the following way for all pair of observations 
( )ji xx ,  with nij ≤<≤1 : 

ji

xx
d ji

ij −
−

= . 

The slope estimator is the median value of all the ijd -values and is a robust 
non-parametric estimator and will generally work for time series with serial 
correlation and non-Gaussian distributed data. A ( )α−1100  % confidence 
interval for the slope can be obtained by undertaking the below calculations 
(Gilbert, 1987). 

Select the desired confidence level α  (1, 5 or 10 %) and apply: 
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in the following calculations. It is standard to use a confidence level of 5%. 

Calculate: 
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where 

( ).1
2

1 −= nnN  

Lower and upper confidence limits are the 1M th largest and the ( )12 +M th 
largest value of the N ranked slope estimates ijd . 

A non-parametric estimate for the intercept α can be calculated according to 
Conover (1980). The estimator is calculated as: 𝛼ො = 𝑀௫ − 𝛽መ ∙ 𝑀௜, 
where Mx is the median value of all the data in the time series, and Mi is the 
median value of n,,2,1  . Intercept and slope can also be determined from 
linear regression, which are the method used in the PLC assessment. 

If the time series consists of data from different seasons (i.e. monthly loads), it 
is possible to apply Mann-Kendall’s seasonal trend test (Hirsch and Slack, 1984). 
This is done by calculating the test statistic S for every season separately. Sub-
sequently, the test statistic for the whole time series is equaled to the sum of 
each of the seasonal test statistics. We refer to Carstensen and Larsen (2006) for 
a detailed mathematical description of the seasonal trend test. 
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Annex 2:  List of 95% percentiles and 97.5 per-
centiles of the t-distribution for the 
different possible combinations of de-
grees of freedom (df) 

df  95% percentile 
14  1.761 
15  1.753 
16  1.746 
17  1.740 
18  1.734 
19  1.729 
20  1.725 
21  1.721 
22  1.717 
23  1.714 
24  1.711 
25  1.708 
26  1.706 

df  97.5% percentile 
14  2.145 
15  2.131 
16  2.120 
17  2.110 
18  2.101 
19  2.093 
20  2.086 
21  2.080 
22  2.074 
23  2.069 
24  2.064 
25  2.060 
26  2.056 
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